模糊集的基本运算
模糊数学2运算分解定理
38
λ截集的性质1
性质1. 设A,B为论域X上的模糊集, λ∈[0,1],若A⊆B,则 Aλ⊆Bλ
证明: x ∈ Aλ ⇔ μA(x)≥λ A⊆B⇔∀x∈X, μB(x) ≥μA(x) ⇒μB(x)≥λ⇔ x ∈ Bλ
39
λ截集的性质2
性质2. 设A,B为论域X上的模糊集,
,当u A
0,当u A
46
1-5. 分解定理
47
三大定理
分解定理 表现定理 扩张原理
48
1-5 分解定理
分解定理是把模糊集合论的问题化 为经典集合论的问题来求解
模糊集合 水平截集
经典集合
49
分解定理Ⅰ
分解定理Ⅰ:设A为论域X上的模糊子 集, Aλ是A的λ截集,λ ∈[0,1],则 如下分解式成立:
[0,1]
A U H () [0,1]
54
分解定理Ⅲ的证明(2)
2)1 2 H (1) H (2 ) 证明:H (1) A1 A2 H (2 )
A1 A2是截集的性质
55
分解定理Ⅲ的证明(3)
3) A I H ( ) ( 0), A U H ( ) ( 1)
24
课内作业1-2
设X={a,b,c,d,e,f,g} A=0.5/b+0.4/c+1/d+0.7/f B=0.3/a+0.9/b+0.4/c+1/d+0.6/f+1/g C=1/a+0.3/b+0.6/c+0.2/d+1/f+0.6/g 求A∩B, A∪B, (A∪B)c ∩C, (A
故上式 [ ] [ 0] A(x)
模糊集合
精确集合
X 6
1
X 6
A 0
A 1
X 6
模糊集合
13
A ( x) 1
A ( x) [0 1]
1
6
13
2) 连续形式: 令X = R+ 为人类年龄的集合, 模糊集合 B = “年龄在50岁左右”则表示为:
B { x, B ( x ) | x X } 1 式中: B ( x) x 50 4 1 ( ) 10
112121xfxfxxf??它的定义比模糊凸的定义严格不符合凸函数条件1x2x语言变量5元组为特征?????????规则与各值含义有关的语法值名称的句法规则产生论域术语的集合变量的名称
基于模糊推理的智能控制
1)模糊集合与模糊推理
2)模糊推理系统
3)模糊控制系统
0. 模糊概念
天气冷热
雨的大小
风的强弱
Trig(x;20,60,80)
Trap(x;10,20,60,90)
g(x;50,20)
bell(x:20,4,50)
隶属函数的参数化:
以钟形函数为例, bell ( x; a, b, c) a,b,c,的几何意义如图所示。
1
1
x c 2b a
斜率=-b/2a
c-a
c
c+a
改变a,b,c,即可改变隶属函数的形状。
R(U ,V ) {( x, y, R ( x, y)) | ( x, y) U V } U ,V 是二个论域。
同 一 空 间
R ( x, y) [0,1]
y1 y2 y3 y4
x1 0.8 1.0 0.1 0.7 0 x2 0 0.8 0 x3 0.9 1.0 0.7 0.8
第三章 模糊控制理论基础
模糊控制的理论基础
第一节 概述
一、模糊控制的提出
以往的各种传统控制方法均是建立在 被控对象精确数学模型基础上的,然而, 随着系统复杂程度的提高,将难以建立 系统的精确数学模型。 在工程实践中,人们发现,一个复杂 的控制系统可由一个操作人员凭着丰富 的实践经验得到满意的控制效果。这说 明,如果通过模拟人脑的思维方法设计 控制器,可实现复杂系统的控制,由此 产生了模糊控制。
证:设 A (u) 0.4 , 则
A (u) 1 0.4 0.6
A (u) A (u) 0.4 0.6 0.6 1
A (u) A (u) 0.4 0.6 0.4 0
模糊集及其补集均无明确的边界
2 模糊算子
模糊集合的逻辑运算实质上就是隶属 函数的运算过程。采用隶属函数的取大 (MAX)-取小(MIN)进行模糊集合的 并、交逻辑运算是目前最常用的方法。但 还有其它公式,这些公式统称为“模糊算 子”。 设有模糊集合A、B和C,常用的模糊 算子如下:
1 2
3
4
5
1
2
3
4
5
2. 函数描述法 【例二】 以年龄作为论域,取U=[0,200]. ZADEH给出了 “年老O”和“年轻Y”两个模糊集的隶属函数式,分 别为
0 O (u ) u 50 2 1 [1 ( ) ] 5 0 u 50 50 u 200
A∩(B∪C)=(A∩B) ∪(A∩C)
6.复原律
A A
7.对偶律
A B A B
A B A B
8.两极律
A∪E=E,A∩E=A
A∪Ф=A,A∩Ф=Ф
例3.4 设
模糊集理论及应用讲解
经典集合与特征函数
4、隶属度 特征函数CA(u)在u=u0处的值CA(U0)称为u0对A的隶属度。
模糊集合与隶属函数
1、隶属函数
[0 设U是论域,μA是将任何u∈U映射为 ,1]上某个值的函数,
即:
:U→[ μA
0,1的一个隶属函数。
?0.4 0.5 0.1?
例
R1 ? ??0.2 0.6 0.2??
??0.5 0.3 0.2??
?0.2 0.8? R2 ? ??0.4 0.6??
??0.6 0.4??
?0.4 0.5? R ? R1 ?R2 ? ??0.4 0.6??
λ水平截集
解: (1)λ水平截集 A1={ u3 } A0.6={ u2,u3,u4 } A0.5={ u2,u3,u4,u5 } A0.3={ u1,u2,u3,u4,u5 } (2)核、支集 KerA={ u3 } SuppA={ u1,u2,u3,u4,u5 }
模糊数
模糊数 如果实数域上的模糊集A的隶属函数μA (u)在R上连续,且具有如下性 质:
2、模糊集
设A={ μA (u) | u∈U } ,则称A为论域U上的一个模糊集。 3、隶属度
μA (u)称为u对模糊集A的隶属度。
模糊集合与隶属函数
模糊集合完全由其隶属函数确定,即一个模糊集合与其隶属函数是等 价的。
可以看出 对于模糊集A,当U中的元素u的隶属度全为0时,则A就是个空 集; 当全为1时,A就是全集U; 当仅取0和1时,A就是普通子集。
UR V R的论域为U×V。 特别地,当U=V时,R称为U上的二元模糊关系;若R的论域为n个集合
的直积U1×U2×…×Un,则称R为n元模糊关系。
二、模糊计算
§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。
如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。
由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。
若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。
定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。
定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。
在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。
其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。
模糊集合论及其应用
模糊集合论及其应用模糊集合论是一种重要的数学工具,它能够处理现实世界中的模糊、不确定和不精确的信息,具有广泛的应用前景。
本文首先介绍模糊集合论的基本概念和运算,然后探讨其在决策分析、控制理论、人工智能等领域的应用,并最后展望其未来发展方向。
一、模糊集合论的基本概念和运算1.1 模糊集合的定义在传统的集合论中,一个元素只能属于集合或不属于集合,不存在中间状态。
而在模糊集合论中,一个元素可以同时属于多个集合,并且对于不同的元素,其属于集合的程度也不同。
因此,模糊集合论将集合的概念进行了扩展,使其能够更好地描述现实世界中的不确定性和模糊性。
设X为一个非空的集合,称为全集,一个模糊集A是一个从X到[0,1]的函数,即:$$A(x):Xrightarrow[0,1]$$其中,A(x)表示元素x属于模糊集A的隶属度,取值范围为[0,1]。
当A(x)=1时,表示x完全属于A;当A(x)=0时,表示x完全不属于A;当0<A(x)<1时,表示x部分属于A。
1.2 模糊集合的运算模糊集合的运算包括模糊集合的交、并、补和乘积等。
模糊集合的交:对于两个模糊集合A和B,其交集为:$$(Acap B)(x)=min{A(x),B(x)}$$模糊集合的并:对于两个模糊集合A和B,其并集为:$$(Acup B)(x)=max{A(x),B(x)}$$模糊集合的补:对于一个模糊集合A,其补集为:$$(eg A)(x)=1-A(x)$$模糊集合的乘积:对于两个模糊集合A和B,其乘积为:$$(Atimes B)(x,y)=min{A(x),B(y)}$$其中,(A×B)(x,y)表示元素(x,y)属于模糊集合A×B的隶属度。
1.3 模糊关系和模糊逻辑在模糊集合论中,还有两个重要的概念,即模糊关系和模糊逻辑。
模糊关系是指一个元素对另一个元素的隶属度,可以用矩阵表示。
例如,设A和B是两个模糊集合,它们之间的模糊关系R可以表示为: $$R=begin{bmatrix} R_{11} & R_{12} R_{21} & R_{22}end{bmatrix}$$其中,Rij表示元素i与元素j之间的隶属度。
模糊逻辑(一)
Application
1987年,日本人研制成功新一代数字模糊微处理器; 1990年,美国加 利福尼亚的TogaiInfra
logic公司推出第二代数字模糊微处理器F C110 ; 1992年,德国西 门子公司宣布第三代数字模糊微处 理器Fuzzy 166研制成功,从而标志着模糊控制理论、 模糊控制系统应用和计算机的结合已进入成熟的 实用阶段.
水至清则无鱼,人至察则无友!
Application
七十年代欧洲进行模糊逻辑在工业方面的应用研究:
实现了第一个试验性的蒸汽机控制; 热交换器模糊逻辑控制试验; 转炉炼钢模糊逻辑控制试验; 温度模糊逻辑控制; 十字路口交通控制; 污、废水处理等。
Application
八十年代日本情况: 列车的运行和停车模糊逻辑控制,节能11—14%; 汽车速度模糊逻辑控制(加速平滑、上下坡稳定); 港口集装箱起重机的小车行走和卷扬机的运行控制; 家电模糊逻辑控制(电饭煲、洗衣机、微波炉、空 调、 电冰箱等)。
There were strong and immediate objections(缺陷). For example, Heraclitus(赫拉 克利特)proposed that things could be simultaneously True and not True.
History
Classical sets
用特征函数可以表示一个集合。例如,一个学 习小组共6人{A(女),B(男),C (男),D (女),E (男),F (男)}, 则男生和女生的集合可以分别表 示为。
男生=0/x1+1/x2+1/x3+0/x4+1/x5+1/x6 女生=1/x1+0/x2+0/x3+1/x4+0/x5+0/x6
模糊控制技术-第二章
上述定义表明:
①论域U中的元素是分明的,即U本身是普通 集合,只是U的子集是模糊集合,故称A为 U的模糊子集,简称模糊集。 ②隶属函数μA(u)是用来说明u隶属于A的程度 的,μA(u)的值越接近于1,表示u隶属于A 的程度越高;当μA(u)的值域变为{0,1}时, 隶属函数μA(u)蜕化为普通集合的特征函数, 模糊集合也就蜕化为普通集合。
' ~ ~ ~ ~ ~
~
0.1 0.1 0.6 0.5 0.7 0.9 0.9 1 C u1 u2 u3 u4
'
0.1 0.5 0.7 0.9 u1 u2 u3 u4
~
0.9 0.4 0.3 0.1 A u1 u2 u3 u4
18
台(support)集合
39
• 例:设X={1,2,3,4},Y={a,b, c},Z={α,β},Χ×Y以及Y×Z上的模糊关 系R与S如图所示。
2.2.2 模糊关系 (1)普通关系:客观世界存在的普遍现象,描 述了事物之间存在的某种联系。 1)集合的直积 • 由两个集合U和V的各自元素u与v组成的序 偶(u,v)的全体集合,称为U与V的直积,记 为U×V,即
U×V={(u,v)|u∈U,v∈V }
• 一般情况下,U×V≠V×U。 2)普通二元关系
A 和 A 分别称为模糊集合 A 的强 截集和弱
正则(normal)模糊集合
[0,) 1 (0, 1]
截集
如果:max A (u )
uU
1 ,则称A为正则模糊集合
凸(convex)模糊集合
A (u1 (1 )u2 ) min( A (u1 ), A (u2 )) u1,u2 U, [0, 1]
智能控制技术(第3章-模糊控制的数学基础)
二、模糊控制的特点 模糊控制是建立在人工经验基础之上
的。对于一个熟练的操作人员,他往往凭 借丰富的实践经验,采取适当的对策来巧 妙地控制一个复杂过程。若能将这些熟练 操作员的实践经验加以总结和描述,并用 语言表达出来,就会得到一种定性的、不 精确的控制规则。如果用模糊数学将其定 量化就转化为模糊控制算法,形成模糊控 制理论。
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
trimf,P=[3 6 8]
图 高斯型隶属函数(M=1)
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9 10
trimf,P=[2 4 6]
图 广义钟形隶属函数(M=2)
1
0.9
0.8
(7)交集 若C为A和B的交集,则
C=A∩B 一般地,
A B A B (u) min( A (u), B (u)) A (u) B (u)
(8)模糊运算的基本性质 模糊集合除具有上述基本运算性质
外,还具有下表所示的运算性质。
运算法则 1.幂等律 A∪A=A,A∩A=A 2.交换律 A∪B=B∪A,A∩B=B∩A 3.结合律 (A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)
4.吸收律 A∪(A∩B)=A A∩(A∪B)=A 5.分配律 A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B) ∪(A∩C) 6.复原律
CH1-1~2模糊集的概念及其运算
超越它,精确性和有意义性就变成两个相互排斥的特性。” 扎德
11
例如,要你某时到某地去迎接一个“大胡子高个子长
头发戴宽边黑色眼镜的中年男人”. 尽管这里只提供了一个精确信息------男人,而其他
信息------大胡子、高个子、长头发、宽边黑色眼镜、
中年等都是模糊概念,但是你只要将这些模糊概念
经过头脑的综合分析判断,就可以接到这个人.
12
三、研究方向及应用
理论上的研究方向
1、发展模糊集的理论和方法,建立 自身的理论体系; 2、将各个经典数学分支进行模糊化; 3、应用上将fuzzy集方法打入各个 学科专业领域。
模糊数学在实际中的应用几乎涉及到国民经济的 各个领域及部门,农业、林业、气象、环境、地质 勘探、医学、经济管理等方面都有模糊数学的广泛 而又成功的应用.
22
到了20世纪90年代初, 市场上已经出现了大量 的模糊消费产品。在日本出现了“模糊”热, 家电产品中, 不带Fuzzy的产品几乎无人购买。 空调器、电冰箱、洗衣机、洗碗机等家用电器 中已广泛采用了模糊控制技术。我国也于20世 纪90年代初在杭州生产了第一台模糊洗衣机。 模糊数学于1976年传入我国后, 得到迅速发展。 1980年成立了模糊数学与模糊系统学会, 1981 年创办《模糊数学》(华中工学院)杂志, 1987 年创办《模糊系统学会》(国防科技大学)。中 国被公认为模糊数学研究的四大中心 (美国、 欧洲、日本、中国) 之一。
13
四、模糊数学发展历程
1. 模糊理论的萌芽(20世纪60年代) 对模糊性的讨论, 可以追溯得很早。20世纪的 大 哲 学 家 罗 素 (B.Russel) 在 1923 年 一 篇 题 为 《含糊性》(Vagueness) 的论文里专门论述过 我们今天称之为“模糊性”的问题(严格地说, 两者稍有区别), 并且明确指出: “认为模糊知 识必定是靠不住的, 这种看法是大错特错的。” 尽管罗素声名显赫, 但这篇发表在南半球哲学 杂志的文章并未引起当时学术界对模糊性或含 糊性的很大兴趣。这并非是问题不重要, 也不 是因为文章写得不深刻, 而是“时候未到”。
第七章 模糊控制技术第三节模糊集合中的基本定义和运算
2.模糊集合的基本运算
• 设A和B是U中的模糊子集,隶属函数分别为μA和μB,则模 糊集合中的并、交、补等运算可以定义如下: 并运算:并(A∪B)的隶属函数μA∪B,对所有μ∈U被逐 点定义为取极大值运算即:(式中“∨”为取极大值运算 )
交运算:交பைடு நூலகம்A∩B)的隶属函数μA∩B,对所有μ∈U被逐点 定义为取极小值运算即:(式中“∧”为取极小值运算)
第七章 模糊控制技术
主要内容
一、模糊集合 二、隶属函数及其确定 三、模糊集合中的基本定义和运算 四、模糊关系 五、模糊推理 六、模糊控制器的设计 七、模糊控制器设计实例
三、模糊集合中的基本定义和运算
1.基本定义
• 与经典集合论一样,模糊集合也定义了基本运算如并、交、 补等。以下定义模糊集合的幂集、空集、全集、集合的包含 和相等。 论域U中模糊集合的全体称为U中的模糊幂集,记做F(U):
补运算:模糊集合A的补隶属函数μA ,对所有被逐点定义 为
三、模糊集合中的基本定义和运算
3.模糊集合运算的基本定律
模糊集合的运算满足以下的基本定律:
设U为论域。A、B、C为U中的任意模糊子集,则下列等式成立:
幂等律:
结合律: 交换律:
分配律:
同一律:
零一律:
吸收律:
双重否认律:
德·摩根律:
➢ 可以看出,模糊集与经典集的集合运算的基本性质完全相同,但是 模糊集运算不满足互补律,即:
对于任一u∈U,若μG(x)=0,称A为空集φ;若μG(x)=1,则 称为全集,A=U。
设A和B是U的模糊集,即A、B∈F(U),若对任一u∈U都有 B(U)≤B(U),则称B包含于A,或称B是A的子集,记做 。若对于任一u∈U都有B(U)=A(U),则称B等于A,记做B=A 。
模糊数学方法(1)
10 6 0.60 20 14 0.70 30 23 0.77 40 31 0.78 50 39 0.78 60 47 0.76 70 53 0.76 80 62 0.78 90 68
试验次数 n
zhj q
100 76 0.76
模糊集 A 的隶属度 μ A (27) = 0.78 .
⎧1, μ A ( x) ≥ λ ; ⎩0, μ A ( x) < λ .
ห้องสมุดไป่ตู้
⑶ ( A ∪ B )λ = Aλ ∪ Bλ , ( A ∩ B ) λ = Aλ ∩ Bλ . 为了后面的应用,下面给出几个常用术语: 定义 3 设模糊集 A ∈ F ( X ) ,则 ⑵ 称集合 Ker A = {x | μ A ( x) = 1} 为 A 的核,则记为 ker A = A1 ,若 ker A ≠ φ ,则 ⑶ 称 集 合 Bd A = {x | 0 < μ A ( x) < 1} 为 A 的 边 界 , 则 记 为 ker A = A1 , 即 ⑴ 称集合 Supp A = {x | μ A ( x) > 0} 为 A 的支集,则记为 Supp A = A0 .
Bd A=Supp A − ker A .
A(奴隶社会) =
隶社会还是封建社会是最困难的.若以 λ = 0.9 的置信水平判断奴隶社会,可得 A 的截集 为 A0.9 = {夏,商,西周} . 并有
Supp A = {夏,商,西周,春秋,战国,秦,西汉,东汉}, Ker A = {夏,商}, Bd A = {西周,春秋,战国,秦,西汉,东汉}.
xn
其中, “
μ A ( xi )
模糊控制03-模糊集合的其他运算
模糊并——s-范数
4、直和 5、爱因斯坦和 6、代数和 7、最大
模糊并——s-范数
例3.1,通过图形的方式,表现出Yager的s-范 数和代数和s-范数大于最大算子。 定理3.1 对任意一个s-范数(即满足公理s1~s4 的函数s:[0,1]×[0,1]→[0,1]),当a,b∈[0,1]时, 下面不等式成立: max(a,b)≤s(a,b)≤sds(a,b)
模糊并——s-范数
对前式进行等式变换,可得:
1 1 1 1 [( 1) /( 1)] ln( 1) ln( 1) a b a b lim ln z lim 1 1 [( 1) /( 1)] 1 a b 1 ln( 1) b
模糊并——s-范数
先证明 max(a,b)≤s(a,b) 因a=a且b≥0,由公理s3,则s(a,b)≥s(a,0), 由公理s1,有s(a,0)=a,所以s(a,b)≥a; 由公理s2,有s(a,b)=s(b,a) ≥s(b,0) ≥b; 所以,s(a,b) ≥max(a,b)
模糊并——s-范数
公理s3:a≤a’且b≤b’,则s(a,b)≤s(a’,b’)
模糊并——s-范数
μ(x)
a b c x a
μ(x)
b c x
公理s4:s(s(a,b),c)=s(a,s(b,c));
模糊并——s-范数
定义3.2 任意一个满足公理s1~s4的函数 s:[0,1]×[0,1]→[0,1]都叫s-范数 常见的范数主要有7种: 1、Dombi的s-范数 2、Dubois-Prade的s-范数 3、Yager的s-范数
c[ A ( x)] A ( x)
按前述的模糊补集定义,映射c可以表示为: c[ A ( x)] 1 A ( x)
模糊集
.
第29页
注意 不再成立. 例 设U 从而
对于模糊集合,互补律
3. 向量表示法:
U
A ( A ( u 1 ), A ( u 2 ), , A ( u n )).
若论域为可列集则上的模糊子集
U {u 1 , u 2 , , u n , , },
A
A (u i )
ui
第13页
i 1
例3 某车间由五个工人组成一个工作小组作为 论域 U {u 1,u 2,u 3,u 4,u 5}, “技术优良”为一模 糊概念,每个工人附以该工人属于“技术优良” 的等级顺次为0.75,0.50,0.98,0.66,0.84,则 模糊子集 A 为
第19页
例 1 U x1 , x 2 , x 3 , x 4 , x 5 商 品 集 ) ( , A= “ 商 品 好 ” , A B 即 xi , 0 .1 x1 0 .6 x1 0 .3 x2 0 .5 x2 0 .6 x3 0 .7 x3 A B
第20页
A A A, A A A; A B B A, A B B A; ( A B ) C A ( B C ), ( A B ) C A ( B C ); A ( A B ) A , A ( A B ) A; ( A B ) C ( A C ) ( B C ), ( A B ) C ( A C ) ( B C );
,
xA c源自U1 A (x)
.
模糊数学基本知识
一.模糊数学的基础知识1.模糊集、隶属函数及模糊集的运算。
普通集合A ,对x ∀,有A x ∈或A x ∉。
如果要进一步描述一个人属于年轻人的程度大小时,仅用特征函数就不够了。
模糊集理论将普通集合的特征函数的值域推广到[0,1]闭区间内,取值的函数以度量这种程度的大小,这个函数(记为)(x E )称为集合E 的隶属函数。
即对于每一个元素x ,有[0,1]内的一个数)(x E 与之对应。
(1)模糊子集的定义:射给定论域U ,U 到[0,1]上的任一映射: ))((],1,0[:U u u A u U A ∈∀→→都确定了U 上的一个模糊集合,简称为模糊子集。
)(u A 称为元素u 属于模糊集A 的隶属度。
映射所表示的函数称为隶属函数。
例如:设论域U=[0,100],U 上的老年人这个集合就是模糊集合:⎪⎩⎪⎨⎧≤<-+≤=--10050,))550(1(50,0)(12u u u u A 若在集合U 上定义了一个隶属函数,则称E 为模糊集。
(2)模糊集合的表示:},.....,,{21n u u u U =,)(u A 称为元素u 属于模糊集A 的隶属度;则模糊集可以表示为:nn u u A u u A u u A A )(....)()(2211+++=。
或 )}(),.....,(),({21n u A u A u A A =,))}(,()),.....,(,()),(,{(2211n n u A u u A u u A u A =,(3)模糊集合的运算:)}(),.....,(),({21n u A u A u A A =,)}(),.....,(),({21n u B u B u B B =,并集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∨∨∨=⋃,交集:)}()(),.....,()(),()({2211n n u B u A u B u A u B u A B A ∧∧∧=⋂,补集:)}(1),.....,(1),(1{21n c u A u A u A A ---=,包含:B A u B u A U u ⊂≤∈∀,则有有若)()(,,2.模糊集的截集已知U 上模糊子集))((],1,0[:U u u A u U A ∈∀→→对]1,0[∈λ,则称})(,{λλ≥∈=u A U u u A 为模糊集A 的λ-截集; 称})(,{λλ>∈=u A U u u A s 为模糊集A 的λ-强截集;λ称为λA 、sA λ的置信水平或阀值。
从入门到精通模糊逻辑算法原理详解
从入门到精通模糊逻辑算法原理详解模糊逻辑是一种基于模糊集的推理方法,在人工智能领域应用广泛。
本文旨在从入门到精通地详细解释模糊逻辑算法原理。
一、什么是模糊逻辑在传统逻辑中,一个命题只能是真或假。
然而,在现实生活中,很多概念存在模糊性,比如“高矮胖瘦”等。
模糊逻辑就是一种能够处理这些模糊性的逻辑。
模糊逻辑的基础是模糊集理论,即一种介于绝对真和绝对假之间的数学符号。
模糊集把命题的真实性定义为一个0到1之间的实数,表示命题成立的程度。
例如,“这个苹果是红色的”这个命题是部分正确和部分错误的,可以用0.8表示。
二、模糊逻辑的算法原理模糊逻辑的算法原理主要包括模糊集的表示、模糊逻辑运算和模糊推理三个部分。
1. 模糊集的表示模糊集可以用数学函数形式来表示,常用的有三角形、梯形、高斯等函数形式。
以三角形为例,其函数形式如下:$$\mu _{A}(x)=\left\{\begin{matrix}0& \ x<x_0 \\\frac{x-x_0}{x_1-x_0} & \ x_0≤x<x_1\\1&\ x_1≤x≤x_2\\\frac{x_3-x}{x_3-x_2} &\ x_2<x≤x_3\\0& \ x>x_3\end{matrix}\right.$$其中,$x_0$ 和 $x_3$ 表示集合 $A$ 的边界,$x_1$ 和 $x_2$ 表示集合 $A$ 的顶点。
2. 模糊逻辑运算模糊逻辑运算包括交、并、补、差等。
设 $A$ 和 $B$ 为模糊集,其模糊逻辑运算如下:交运算:$A\cap B$,表示两个模糊集的交集。
通常用 $T$ 表示其高峰值。
并运算:$A\cup B$,表示两个模糊集的并集。
通常用 $S$ 表示其面积。
补运算:$\bar{A}$,表示模糊集 A 的补集。
通常用 $1-A$ 表示。
差运算:$A-B$,表示模糊集 A 减去模糊集 B 后的剩余部分。
毕达哥拉斯模糊集的减法
毕达哥拉斯模糊集的减法一、毕达哥拉斯模糊集简介毕达哥拉斯模糊集(Patial Fuzzy Set)是一种基于几何概念的模糊集,起源于古希腊数学家毕达哥拉斯。
它是以一个模糊区域为基础,用一个模糊集合来表示该区域内的不确定性。
在实际应用中,毕达哥拉斯模糊集被广泛应用于图像处理、模式识别、人工智能等领域。
二、毕达哥拉斯模糊集的减法原理毕达哥拉斯模糊集的减法是基于集合论中的减法运算。
对于两个毕达哥拉斯模糊集A和B,它们的差集C可以表示为:C = {(x, y) | (x, y) ∈ A且(x, y) B}其中,x表示模糊区域的长度,y表示模糊区域的宽度。
三、毕达哥拉斯模糊集减法的应用1.图像处理:在图像处理中,毕达哥拉斯模糊集的减法可以用于分割、去噪和边缘检测等任务。
通过计算图像中两个模糊集合的差集,可以得到物体的边界,从而实现图像分割和目标提取。
2.模式识别:在模式识别领域,毕达哥拉斯模糊集的减法可以用于特征提取和分类。
通过计算不同模式之间的差集,可以得到用于区分它们的特征向量,从而实现模式分类。
3.人工智能:在人工智能领域,毕达哥拉斯模糊集的减法可以用于知识表示和推理。
它可以用于表示不确定性和模糊性,从而实现智能系统的推理和决策。
四、实例分析以图像处理为例,给定一张含有噪声的图像,我们可以用毕达哥拉斯模糊集表示原始图像和噪声。
然后计算两个模糊集合的差集,得到去噪后的图像。
通过多次迭代,可以实现图像的降噪和清晰化。
五、总结与展望毕达哥拉斯模糊集的减法在许多领域都具有广泛的应用前景。
随着模糊集理论的不断发展,毕达哥拉斯模糊集的减法也将得到进一步的完善和拓展。
模糊集的基本运算
A ={(x1, 0.4), (x2, 0.5), (x3, 0), (x4, 0.6)}.
四.模糊集的运算性质
1. 经典集合的运算性质 经典集合关于并、交、补运算具有以下性质: 设X为论域, A, B, C为X上的经典集合, 则
A=(0.55, 0.78, 0.91, 0.56). X上的模糊集B为:
帅哥
B=(0.35, 0.52, 0.65, 0.37). 则根据定义有BA.
超男
定义 论域X上的模糊集A与B称为是相等的, 如果AB 且BA, 即对任意xX有A(x)= B(x).
3. 模糊集的并 设X为非空论域, A, B为X上的两个经典集合。 A∪B={xX| xA或xB}.
第二章 模糊集的基本运算
一. 模糊集的表示方法
模糊集合是论域X 到[0,1]的映射, 因此用隶属函 数来表示模糊集合是最基本的方法。除此以外, 还有 以下的表示方法: 1)序偶表示法
A={(x, A(x)|xX}. 例如: 用集合X={x1, x2, x3, x4}表示某学生宿舍中的四 位男同学, “帅哥”是一个模糊的概念。经某种方法 对这四位学生属于帅哥的程度(“帅度”)做的评价依 次为: 0.55, 0.78, 0.91, 0.56, 则以此评价构成的模糊集 合A记为:
A(x)
1 0
xa xa
1
xa
A(x) ek(xa) x a, k 0
A(x)
1 ek
( xa )2
xa x a, k 01A( x)源自11 b(x a)c
xa x a (b, c 0)
模糊集合的运算以及合成
模糊集合的运算以及合成
模糊集合是指其元素的隶属度不是二元的,而是在0到1之间的一个连续的实数。
模糊集合的运算包括交集、并集、补集和差集等。
交集运算是指对应元素的隶属度取较小值,即取最小规则。
并集运算是指对应元素的隶属度取较大值,即取最大规则。
补集运算是指对应元素的隶属度取1减去原隶属度的值。
差集运算是指对应元素的隶属度取最大值减去最小值。
这些运算可以帮助我们对模糊集合进行逻辑运算和推理。
另外,模糊集合的合成是指将两个或多个模糊集合通过某种规则进行合并得到一个新的模糊集合。
常见的合成方法包括最小-最大合成法、最大-最大合成法、乘积合成法等。
最小-最大合成法是指首先对两个模糊集合进行最小化合成,然后再对结果进行最大化合成。
最大-最大合成法是指对两个模糊集合进行最大化合成。
乘积合成法是指对应元素的隶属度进行乘积运算。
这些合成方法可以根据具体的应用场景选择合适的方法进行合成,以得到符合实际情况的模糊集合。
总之,模糊集合的运算和合成是模糊逻辑理论中的重要内容,通过这些运算和合成方法,我们可以更好地处理模糊信息,进行模
糊推理和决策,应用于控制系统、人工智能等领域。
希望我对模糊集合的运算和合成能够给你提供一些帮助。
模糊集合及其运算
模糊集合的基本运算
1、模糊集合相等 若两个模糊集合A和B,对于所有的 ,均有 则称模糊集合A与B相等,记作 。 2、模糊集合的包含关系 若两个模糊集合A和B,对于所有的 ,均有 则称模糊集合A包含于B,记作 。
模糊集合的基本运算
3、模糊空集
若对所有 ,均有 ,则称A为模糊空集,记
作。
4、模糊集合的并集
B 1 0.9 1 0.4 1 0 1 0.7 0.1 0.6 1 0.3
x1
x2
x3
x4
x1 x2 x3 x4
模糊集合运算的基本性质B C) (A B) (A C)
2、结合律 (A B) C A (B C) (A B) C A (B C)
8、双重否定律
A A
模糊集合运算的基本性质
提问: 为什么在模糊集合里排中律不成立?
9、其它运算类型 见板书
模糊关系
定义:n元模糊关系R是定义在直积X1×X2×... ×Xn上的模糊集合,它可以表示为
R X1X2 Xn
R (x1, x2 , , xn ) /(x1, x2 , , xn )
X1X 2 X n
6,1)
,(7,0.7),(8,0.3),(9,0),(10,0)}
或者A=
=
模糊集合的其它表示方式
例2.2 若以年龄为论域,并设X=[0,200]。设O表 示模糊集合“年老”,Y表示模糊集合“年轻”。 已知“年老”和“年轻”的隶属度函数分别表示 为
模糊集合的其它表示方式
O
(x,0)
0
x
50
x,
模糊集合的定义及表示方法
概念:如果将篮子里的所有“大苹果”看作是一个集合,那么 “大苹果”就是一个模糊集合,因为我们没有确切的定义什 么样的苹果叫做大苹果。另一方面,如果我们认为3两以上 的苹果算是绝对的大苹果,也就是说3两以上的苹果属于 “大苹果”的程度为1,那么2.9两的苹果属于“大苹果”的 程度大概就可以是0.9左右,2.8两的苹果大概就是0.8。这种 属于程度就称为隶属度函数,其值在0~1之间连续变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 A(x) 1
0
x a b ab xab x ab
A(x) ek(xa)2 , k 0
A( x)
ek (xa) ek (xa)
xa xa
A(x) 1
b 0 (c为正偶数)
1 b(x a)c
0
c
x
a
A(x) 1 c b
A={(x1, 0.55), (x2, 0.78), (x3, 0.91), (x4, 0.56)}.
2) 向量表示法 当论域X={x1, x2, …, xn}时, X上的模糊集A可表示为向量 A=(A(x1), A(x2), …,A(xn)). 模糊集“帅哥”A可记为:
A=(0.55, 0.78, 0.91, 0.56).
0
A( x)
x b
a a
1
0
xa
A( x)
1 2
1 2
sin
b
a
[x
a
2
b
]
1
xb
a xb
xa a xb xb
“年轻”模糊集合的隶属函数为降半柯西分布, 其中取 a =1/5 , b =25 , c =2. “年老”模糊集合的隶属函数为升半柯 西分布, 其中取a=1/5 , b=50, c=2. 3. 中间型(对称型)
二. 典型的隶属函数
构造恰当的隶属函数是模糊集理论应用的基础。一 种基本的构造隶属函数的方法是“参考函数法”, 即参 考一些典型的隶属函数, 通过选择适当的参数, 或通过拟 合、整合、实验等手段得到需要的隶属函数。
下面介绍典型隶属函数。 1. 偏小型
降半矩形分布, 降半Γ形分布, 降半正态分布, 降半柯 西分布, 降半梯形分布, 降岭形分布。
向量的每个分量都在0与1之间,称之为模糊向量。
3) Zadeh表示法 当论域为有限集{x1, x2, …, xn}时, 模糊集合可表示为 A=A(x1)/x1+A(x2)/x2+ …+A(xn)/xn. 注意, 这里仅仅是借用了算术符号+和/, 并不表示分数 和运算, 而只是描述A中有哪些元素,以及各个元素的隶属
第二章 模糊集的基本运算
一. 模糊集的表示方法
模糊集合是论域X 到[0,1]的映射, 因此用隶属函 数来表示模糊集合是最基本的方法。除此以外, 还有 以下的表示方法: 1)序偶表示法
A={(x, A(x)|xX}. 例如: 用集合X={x1, x2, x3, x4}表示某学生宿舍中的四 位男同学, “帅哥”是一个模糊的概念。经某种方法 对这四位学生属于帅哥的程度(“帅度”)做的评价依 次为: 0.55, 0.78, 0.91, 0.56, 则以此评价构成的模糊集 合A记为:
0
xa a xb xb
2. 偏大型
升半矩形分布,升半Γ形分布,升半正态分布,升半柯
西分布,升半梯形分布,升岭形分布。
A( x)
0 1
xa xa
A(
x)
0 1
ek
(
xa
)2
xa x a, k 0
0
xa
A(x) 1 ek(xa) x a, k 0
0
A( x)
1
1 b(x a)c
xa x a (b, c 0)
1 B(x) A(x)
X
例 论域X={x1, x2, x3, x4}时, X上的模糊集A为:
A=(0.55, 0.78, 0.91, 0.56). X上的模糊集B为:
帅哥
B=(0.35, 0.52, 0.65, 0.37). 则根据定义有BA.
超男
定义 论域X上的模糊集A与B称为是相等的, 如果AB 且BA, 即对任意xX有A(x)= B(x).
3. 模糊集的并 设X为非空论域, A, B为X上的两个经典集合。 A∪B={xX| xA或xB}.
易证 CAB(x)=max{CA(x), CB(x)}=CA(x)CB(x).
A( x)
1 0
xa xa
1
xa
A(x) ek(xa) x a, k 0
A( x)
1 ek
(
xa)2
xa c
xa x a (b, c 0)
1
xa
A( x)
1 2
1 2
sin
b
a
[x
a
2
b
]
0
xb
a xb
1
A(
x)
b b
x a
经典集合可用特征函数完全刻画, 因而经典集合可看成 模糊集的特例(即隶属函数只取0, 1两个值的模糊集)。
设 X 为 非 空 论 域 , X 上 的 全 体 模 糊 集 记 作 F(X). 于 是 , P(X)F(X), 这里P(X)为X的幂集(即X的全体子集构成的集合).
特别地, 空集的隶属函数恒为0, 全集X的隶属函数恒为1, 即、X都是X上的模糊集。
例如, 论域X为1到10的所有正整数, 模糊集“近似于 5”A可表示为:
A 0 /1 0 / 2 0.3 / 3 0.7 / 4 1/ 5 1/ 6 0.7 / 7 0.3 / 8 0 / 9 0 /10
或 A 0.3 / 3 0.7 / 4 1/ 5 1/ 6 0.7 / 7 0.3 / 8 或 A (0, 0, 0.3, 0.7,1,1, 0.7, 0.3, 0, 0)
2. 模糊集的包含关系 设X为非空论域, A, B为X上的两个经典集合。 AB
当且仅当属于A的元素都属于B. 易证AB当且仅当对任意xX有CA(x) CB(x).
11
X
定义 设X为非空论域, A, B为X上的两个模糊集合。 称A包含于B(记作AB), 如果对任意xX有A(x) B(x). 这时也称A为B的子集。
度值。 对于任意论域X中的模糊集合A可记为:
A A(x) / x xX
A A(x) xX x
模糊集“年轻”A可表示为
A
1
x x[ 0 , 25 ]
[1 ( x 25)2 ]1
x( 25,100 )
5 x
0
x x[100,200]
注意:当论域明确的情况下, 在序偶和Zadeh表示法 中, 隶属度为0的项可以不写出。而在向量表示法中, 应 该写出全部分量。
c
x
a
cb
0
x a c ac xab ab xab ab xac xac
0
x b
1 1 sin [x a b] b x a
A(x) 12 2 b a
2 a x a
1 1 sin [x a b] a x b
2 2 ba 2
0
xb
三. 模糊集上的运算 1. 几点说明