高中数学必修二圆与方程经典例题
高中数学必修2圆与方程典典范题.doc
第二节:圆与圆的方程典型例题一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
二、弓的方程(1)|标准方程(X —沙+(丁—亦=宀圆心(a“),半径为』;点M(x0,y0)与圆(x-«)2+(y-&)2=r2的位置关系:当(x0—a)2 +(y0—Z?)2>r2,点在圆外当(x0 -a)2 +(y0-Z?)2 = r2,点在圆上当(X。
-疔+(儿-硏<尸,点在圆内(2)一般方程/+Dx + Ey + F =0当+ E~ — 4F > 0时,方程表不圆,此时圆心为(-2 ,半径为r =丄J Q:+ E,-4F当D2+E2 -4F =0时,表示一个点;当D2 +E2 -4F < 0时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a, b, r;若利用一般方程,需要求出D, E, F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
例 1 已知方程x2 + y2 - 2(m - l)x - 2(2m + 3)y + 5m2 + 10m + 6 = 0.(1)此方程表示的图形是否一定是一个圆?请说明理山;(2)若方程表不的图形是是一个圆,当也变化时,它的圆心和半径有什么规律?请说明理由.答案:(1)方程表示的图形是一个圆;(2)圆心在直线y=2x+5上,半径为2. 练习:1•方程x2 + y2+2x-4y-6 = 0表示的图形是()A.以(1,-2)为圆心,JIT为半径的圆B.以(1,2)为圆心,JIT为半径的圆C.以(-1,-2)为圆心,JIT为半径的圆D.以(-1,2)为圆心,JIT为半径的圆2.过点A(l, -1), B(-l, 1)且圆心在直线x+y~2 = 0上的圆的方程是( ).A. (x-3)2+(y+l)2=4B. (.r+3)2+(y-1) 2 = 4C. (A—l)2+(y-l)2=4D. (.r+l)2+(y+l)2=43•点(1,1)在圆(x-a)2+(y + a)2 = 4的内部,则a的取值范围是( )A. —lvavl B . 0 < a < 1 C . 。
人教A版高中数学必修2第四章《圆与方程》测试题(含答案)
由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.
必修二圆的方程题型归纳非常完美
圆的方程题型一:圆的方程典例1、若圆C 的方程为222440x x y y +++-=,则该圆的圆心坐标为________. 【详解】圆的方程为222440x x y y +++-=,化为:22(1)(2)9x y +++=. 圆的圆心坐标为:(1,2)--.故答案为:(1,2)--.典例2、求满足下列条件的各圆的标准方程:(1)圆心在原点,半径长为3;(2)圆心为点()3,4C ,半径长是5(3)圆心为点(8,3)C -,且经过点(5,1)P【详解】(1)设圆的标准方程为222()()x a y b r -+-=,因为圆心在原点,即0,0a b ==,又由半径长为3,即3r =,圆的标准方程为229x y +=.(2)设圆的标准方程为222()()x a y b r -+-=,以为圆心为点()3,4C ,即3,4a b ==,半径长是5,即5r =,所以圆的标准方程为22(3)(4)5x y -+-=.(3)设圆的标准方程为222()()x a y b r -+-=,因为圆心为点(8,3)C -,即8,3a b ==-,又由圆经过点(5,1)P ,则22(85)(31)5r PC ==-+--=所以圆的标准方程为22(8)(3)25x y -++=.典例3、已知圆C 的圆心坐标为()3,0C ,且该圆经过点()0,4A .(1)求圆C 的标准方程;(2)若点B 也在圆C 上,且弦AB 长为8,求直线AB 的方程;(3)直线l 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线l 过一个定点,并求出该定点坐标.【详解】(1)圆以(3,0)为圆心,||5AB =为半径, 所以圆的标准方程为()22325x y -+=.(2)①k 不存在时,直线l 的方程为:0x =; ②k 存在时,设直线l 的方程为:4y kx =+,所以直线l 的方程为:724960x y +-=,综上所述,直线l 的方程为0x =或724960x y +-=.(3)设直线MN :y kx t =+,()11,M x kx t +,()22,N x kx t +,联立方程()()()22222126160325y kx t k x kt xt x y =+⎧⎪⇒++-+-=⎨-+=⎪⎩, 得()()()()()()2222216426410k t kt k kt t k --+--++-+=, ,所以直线l 的方程为:,所以过定点()6,12--. 题型二:直线与圆的位置关系 典例1、过原点O 作圆2268200x y x y +--+=的两条切线,设切点分别为P Q 、,则直线PQ 的方程是 ______.解:圆2268200x y x y +--+=可化为22(3)(4)5x y -+-=圆心(3,4)C ,半径为 过原点O 作C 的切线,切点分别为P ,Q ,∴直线PQ 可看作已知圆与以OC 为直径的圆的交线,以OC 为直径的圆的方程为()22325224x y ⎛⎫-+-= ⎪⎝⎭, 即22340x y x y +--=,两式相减得34200x y +-=, 即直线PQ 的方程为34200x y +-=,故答案为:34200x y +-=.典例2、已知圆C :x 2+y 2﹣4x =0.(1)直线l 的方程为30x y -=,直线l 交圆C 于A 、B 两点,求弦长|AB|的值;(2)从圆C 外一点P (4,4)引圆C 的切线,求此切线方程.【详解】(1)化圆C :x 2+y 2﹣4x =0为:(x ﹣2)2+y 2=4,知圆心(2,0)为半径为2, 故圆心到直线的距离2131d ==+,∴22223AB R d =-=; (2)当斜率不存在时,过P (4,4)的直线是x =4,显然是圆的切线;当斜率存在时,设直线方程为y ﹣4=k (x ﹣4).由24221kk -=+,解得34k =. 此时切线方程为3x ﹣4y+4=0.综上所述:切线方程为x =4或3x ﹣4y+4=0.典例3、已知0m >,0n >,若直线()()1120m x n y +++-=与圆222210x y x y +--+=相切,则m n +的取值范围为( )A .)222,⎡++∞⎣B .)222,⎡-+∞⎣C .2,222⎡⎤+⎣⎦D .(0,222⎤+⎦ 【详解】将圆的方程化为标准方程得()()22111x y -+-=,该圆的圆心坐标为()1,1,半径为1,由于直线()()1120m x n y +++-=与圆()()22111x y -+-=相切, 则()()22111m nm n +=+++,化简得1m n mn ++=, 由基本不等式可得212m n m n mn +⎛⎫++=≤ ⎪⎝⎭,即()()2440m n m n +-+-≥, 当且仅当m n =时,等号成立,0m >,0n >,0m n ∴+>,解得222m n +≥+. 因此,m n +的取值范围是)222,⎡++∞⎣.故选:A.【点睛】本题考查利用直线与圆相切求参数的取值范围,解题的关键就是利用基本不等式构造不等式求解,考查运算求解能力,属于中等题.典例4、函数211y x =-+ 与函数(2)y k x =-的图象有两个不同的公共点,则实数k 的取值范围是________. 【详解】由题意可知,函数211y x =-+的图象是以(0,1)为圆心,半径为1r =的上半圆.函数(2)y k x =-的图象是恒过点(2,0)的直线l .如图所示若使得函数211y x =-+ 与函数(2)y k x =-的图象有两个不同的公共点则需直线l 夹在半圆的切线1l 与过点(1,1)的直线2l 之间,即12l l k k k <≤ 直线2l 过点(1,1)与点(2,0)∴221101l k -==-- 又直线1l 为半圆22(1)1y x +-=(1)y ≥的切线∴圆心(0,1)到直线1l :1(2)l y k x =-的距离等于半径1r = 即112|(02)1|1()1l l k k --=+,解得143l k =-∴413k -<≤-故答案为:4(,1]3-- 典例5、已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A .32B .52C .522+D .322+【详解】由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=), 所以A 在以(1,1)C 为圆心,2为半径的圆上,又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,半径为2, 22(12))(13)5CD =+++=,∴AB 的最大值为22522CD ++=+.故选:C.题型三:圆与圆的位置关系典例1、已知圆221:2410C x y x y ++-+=,圆222:(3)(1)1C x y -++=,则这两个圆的公切线条数为( )A .1条B .2条C .3条D .4条 【详解】根据题意,圆221:2410C x y x y ++-+=,即22+1+24x y -=()()其圆心为12-(,),半径12r =, 圆222:(3)(1)1C x y -++=,其圆心为31-(,),半径21r =, 则有221212435C C r r =+=>+,两圆外离,有4条公切线;故选:D . 典例2、已知圆22()()8(0)x a y a a -+-=>与圆222x y +=有公共点,则a 的取值范围是________.【详解】因为圆22()()8(0)x a y a a -+-=>与圆222x y +=有公共点,所以两圆位置关系为外切、相交、内切,所以得到22222222a a ≤≤-++,因为0a >,故解得13a ≤≤,即a 的取值范围为[]1,3.故答案为:[]1,3.典例3、点A 、B 分别为圆M :x 2+(y -3)2=1与圆N :(x -3)2+(y -8)2=4上的动点,点C 在直线x +y =0上运动,则|AC|+|BC|的最小值为( )A .7B .8C .9D .10【详解】解:设M(0,3)关于直线的对称点为P(-3,0),且N(3,8) ∴故选A.题型四:轨迹问题典例1、设P ()1,0是圆O :224x y +=内一定点,过P 作两条互相垂直的直线分别交圆O 于A 、B 两点,则弦AB 中点的轨迹方程是_________.【详解】设AB 的中点为(,)M x y ,设11(,)A x y ,22(,)B x y .则12122,2x x x y y y =+=+. (1)由题意,A B 均在圆O 上则有:222211224,4x y x y +=+=. (2) 又由条件有BP AP ⊥,即0BP AP ⋅=.即BP AP ⋅=1122(1,)(1,)x y x y --⋅--=1212121()0x x x x y y +-++= (3)将(1)代入(3)中有:121212121x x y y x x x +=+-=- (4)将(1)中两式平方相加得:2222121244()()x y x x y y +=+++. 即222222112211224422x y x x x x y y y y +=+++++ (5)将(2),(4)代入(5)得:224482(21)x y x +=+-. 即弦AB 中点的轨迹方程是2222230x y x +--=.故答案为:2222230x y x +--= 典例2、在平面直角坐标系中,O 为坐标原点,已知()3,0A ,()0,3B ,动点M 满足,则OM 斜率k 的取值范围是( )A B C 3224⎤⎡-⎥⎢⎦⎣D 2334⎤⎡-⎥⎢⎦⎣解析:设点(,)M x y ,∵MB =,∴2222(3)4[(3)]x y x y +-=-+, 整理得:22(4)(1)8x y -++=,则点M 是以(4,)1-为圆心,2为半径的圆,当直线与圆相切时,圆心到直线的距离等于半径,故选:A 跟踪训练1、圆心为()2,3A -,半径等于5的圆的方程是( )A.22(2)(3)5x y -++=B.22(2)(3)5x y ++-=C.22(2)(3)25x y -++=D.22(2)(3)25x y ++-=解析:因为圆心(),a b 即为()2,3-,半径=5r ,所以圆的标准方程为:()()222325x y -++=,故选:C.【点睛】本题考查根据圆心和半径写出圆的标准方程,难度较易.2、已知圆C 的圆心在直线0x y -=上,过点(2,2)且与直线0x y +=相切,则圆C 的方程是______.【详解】根据题意,圆C 的圆心在直线0x y -=上,设圆C 的圆心为(,)a a ,半径为r . 又由圆C 过点(2,2)且与直线0x y +=相切,解得1a =,故圆心的坐标为(1,1),则222(2)(2)2r a a =-+-=, 则圆C 的方程为22(1)(1)2x y -+-=.故答案为:22(1)(1)2x y -+-=.3、方程22220x y ax y ++++=表示圆,则实数a 的取值范围是__________. 解:方程22220x y ax y ++++=表示圆,222420a ∴+-⨯> 24a ∴>22a a ∴<->或,即()(),22,a ∈-∞-+∞,故答案为:()(),22,-∞-+∞4的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是( )k由直线l 与圆221x y +=有公共点得D. 5、已知圆的方程为222880x y x y ++-+=,过点(1,0)P 作该圆的一条切线,切点为A ,那么线段PA 的长度为______.【详解】圆222880x y x y ++-+=,即22(1)(4)9x y ++-=,故(1,4)C -为圆心、半径3R =,6、已知圆C 的方程为222210x y x y ++-+=,当圆心C 到直线40kx y ++=的距离最大时,k 的值为( )A .15- B .-5 C .15 D .5解:因为圆C 的方程为222210x y x y ++-+=,配方可得22(1)(1)1x y ++-=, 所以圆的圆心为(1,1)C -半径1r =,直线40kx y ++=可化为4y kx =--,恒过定点(0,4)B -,当直线与BC 垂直时,圆心C 到直线40kx y ++=的距离最大,由斜率公式可得BC 的斜率为4150(1)--=---, 由垂直关系可得:(5)1k -⨯-=-,解得15k =-,故选:A . 7、知点(),P x y 在圆C :()()22111x y -+-=上,则2y x+的最小值是____________. 【详解】2y x +表示圆上的点和点()0,2-连线的斜率, 设直线2y kx +=,即20kx y --=,如图,当直线与圆相切时,此时直线的斜率最小,21211k k --∴=+ ,解得:43k =故答案为:438、若关于x 的方程222x x kx -+=+有且只有一个实数解,则实数k 的取值范围是____.解析:可设2122,2y x x y kx =-+=+,其中212y x x =-+可转化为()2211x y -+=,[]02x ,∈,可转化成直线与圆的位置关系问题,画出图形,再进行求解。
高中数学_必修二_圆与方程_经典例题 整理
习题精选精讲圆标准方程已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题.一、求圆的方程例1 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )(A)3)1()2(22=++-y x (B)3)1()2(22=-++y x(C)9)1()2(22=++-y x (D)9)1()2(22=-++y x二、位置关系问题例2 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+三、切线问题例3 (06重庆卷理) 过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31=(B)x y 3=或x y 31-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31=四、弦长问题例4设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .五、夹角问题例5 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( ) (A)21 (B)53 (C)23 (D) 0六、圆心角问题例6 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .七、最值问题例7 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )(A) 30 (B) 18 (C)26 (D)25八、综合问题例8 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ) (A)]4,12[ππ (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π圆的方程1. 确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围.(1) 圆的标准方程:(x -a)2+(y -b)2=r 2,其中(a ,b)是圆心坐标,r 是圆的半径;(2) 圆的一般方程:x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0),圆心坐标为(2,2E D --),半径为r =2422F E D -+ 2. 直线与圆的位置关系的判定方法.(1) 法一:直线:Ax +By +C =0;圆:x 2+y 2+Dx +Ey +F =0.消元⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 一元二次方程⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆−−→−相离相切相交判别式000 (2) 法二:直线:Ax +By +C =0;圆:(x -a)2+(y -b)2=r 2,圆心(a ,b)到直线的距离为d =⎪⎩⎪⎨⎧⇔>⇔=⇔<→+++相离相切相交r d r d r d B A CBb Aa 22. 3. 两圆的位置关系的判定方法.设两圆圆心分别为O 1、 O 2,半径分别为r 1、 r 2, |O 1O 2|为圆心距,则两圆位置关系如下:|O 1O 2|>r 1+r 2⇔两圆外离;|O 1O 2|=r 1+r 2⇔两圆外切;|r 1-r 2|<|O 1O 2|<r 1+r 2⇔两圆相交;|O 1O 2|=|r 1-r 2|⇔两圆内切;0<|O 1O 2|<|r 1-r 2|⇔两圆内含.●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71B.-1<t <21C.-71<t <1 D .1<t <2 2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131C.|a |<51 D .|a |<1313.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是A.当a 2+b 2=r 2时,圆必过原点B.当a =r 时,圆与y 轴相切C.当b =r 时,圆与x 轴相切D .当b <r 时,圆与x 轴相交●典例剖析【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =02.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.4.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.5.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足·=0.(1)求m 的值;(2)求直线PQ 的方程.培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy 的最大值和最小值;(2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.“求经过两圆04622=-++x y x 和028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程。
高中数学圆的方程典型例题(含答案)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点 A(1,4)、B(3,2)且圆心在直线 y 0上的圆的标准方程并判断点 P(2,4)与圆的关系. 分析: 欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点 P 与圆的位置关系,只须看点 心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径, 则点在圆内.解法一:(待定系数法)设圆的标准方程为 (x a)2 (y b)2 r 2 . ∵圆心在 y 0 上,故 b 0. ∴圆的方程为 (x a)2 y 2 r 2.又∵该圆过 A(1,4)、 B(3,2)两点.22(1 a)216 r 2 22(3 a)24 r 2解之得: a 1, r 2 20.所以所求圆的方程为 (x 1)2 y 2 20 . 解法二:(直接求出圆心坐标和半径)42 因为圆过 A(1,4) 、 B(3 , 2)两点,所以圆心 C 必在线段 AB 的垂直平分线 l 上,又因为 k AB 4 21AB1 3 斜率为1,又 AB 的中点为 (2,3),故 AB 的垂直平分线 l 的方程为: y 3 x 2即 x y 1 0.又知圆心在直线 y 0上,故圆心坐标为 C( 1,0) ∴半径 r AC (1 1)2 42 20 . 故所求圆的方程为 (x 1)2 y 2 20 . 又点 P(2 ,4) 到圆心 C( 1,0)的距离为d PC (2 1)2 4225 r .∴点 P 在圆外.例2 求半径为 4,与圆 x 2 y 2 4x 2y 4 0相切,且和直线 y 0相切的圆的方程. 分析: 根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆 C :(x a)2 (y b)2 r 2.圆C 与直线 y 0相切,且半径为 4,则圆心 C 的坐标为 C 1(a, 4)或C 2(a, 4). 又已知圆 x 2 y 2 4x 2y 4 0的圆心 A 的坐标为 (2 ,1) ,半径为 3.P 与圆,故 l 的52t 3tt 2 (3t 5)2 .若两圆相切,则 CA 4 3 7或 CA 4 3 1.2 2 2 2 2 2(1)当C 1(a , 4)时, (a 2)2 (4 1)2 72,或 (a 2)2 (4 1)2 12 (无解),故可得 a 2 2 10.∴所求圆方程为 (x 2 2 10)2 (y 4)2 42,或 (x 2 2 10)2 (y 4)2 42.(2)当C 2 (a , 4)时, (a 2)2 ( 4 1)2 72,或(a 2)2 ( 4 1)2 12 (无解),故 a 2 2 6.∴所求圆的方程为 (x 2 2 6)2 (y 4)2 42 ,或 (x 2 2 6)2 (y 4)2 42. 说明: 对本题,易发生以下误解:由题意,所求圆与直线 y 0相切且半径为 4,则圆心坐标为 C(a,4) ,且方程形如 (x a)2 (y 4)2 42.又 2 2 2 2 2圆x 2 y 2 4x 2y 4 0,即(x 2)2 (y 1)2 3 2 ,其圆心为 A(2 , 1) ,半径为 3.若两圆相切,则 CA 4 3.故 (a 2)2 (4 1)2 72 , 解 之 得 a 2 2 10 . 所 以 欲 求 圆 的 方 程 为 (x 2 2 10)2 (y 4)2 42 , 或 2 2 2 (x 2 2 10)2 (y 4)2 42 .上述误解只考虑了圆心在直线 y 0 上方的情形,而疏漏了圆心在直线 y 0下方的情形.另外,误解中没有考虑两圆 内切的情况.也是不全面的.例3 求经过点 A(0 , 5) ,且与直线 x 2y 0和2x y 0都相切的圆的方程.分析: 欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点 A ,故只需确定圆心坐标.又圆与两已知直 线相切,故圆心必在它们的交角的平分线上.解: ∵圆和直线 x 2y 0与 2x y 0相切, ∴圆心 C 在这两条直线的交角平分线上, 又圆心到两直线 x 2y 0和 2x y 0 的距离相等.∴x 2y x 2y .∴ 5 5 .∴两直线交角的平分线方程是 x 3y 0或 3x y 0. 又∵圆过点 A(0 ,5) ,∴圆心 C 只能在直线 3x y 0 上. 设圆心 C(t ,3t)∵ C 到直线 2x y 0 的距离等于 AC化简整理得 t 2 6t 5 0 .解得: t 1或 t 5∴圆心是 (1 , 3) ,半径为 5 或圆心是 (5 ,15) ,半径为 5 5 . ∴所求圆的方程为 (x 1)2 (y 3)2 5或 (x 5)2 (y 15)2 125.说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过 定点且与两已知直线相切的圆的方程的常规求法.例 4、 设圆满足: (1)截 y 轴所得弦长为 2; (2)被 x 轴分成两段弧,其弧长的比为 3:1,在满足条件 (1)(2)的所有圆中, 求圆心到直线 l :x 2y 0 的距离最小的圆的方程.分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个, 其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到 符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一: 设圆心为 P(a ,b) ,半径为 r . 则P 到 x 轴、 y 轴的距离分别为 b 和 a由题设知:圆截 x 轴所得劣弧所对的圆心角为 90 ,故圆截 x 轴所得弦长为 2r . 2∴r 2b 2又圆截 y 轴所得弦长为 2.2∴r a 2 1 .又∵ P(a ,b) 到直线 x 2y 0的距离为22a 2 4b 24ab2 2 2 2a 2 4b 2 2(a 2 b 2 )2b当且仅当 a b 时取“ =”号,此时 d mina b这时有2b 2 a 2 1a 1 a1或b 1b1又r22b 22∴ 5d 22a 2b2故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 解法二:同解法一,得a 2bd.5∴ a 2b 5d .2 2 2∴ a2 4b2 4 5bd 5d2.将a2 2b2 1代入上式得:222b2 4 5bd 5d2 1 0 .上述方程有实根,故28(5d 2 1) 0,∴d 5.5将d 5代入方程得b 1.5又2b2 a2 1 ∴ a 1.由a 2b 1 知a 、b 同号.故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例 5 已知圆O:x2 y2 4,求过点P 2,4 与圆O相切的切线.解:∵点P 2,4 不在圆O 上,∴切线PT 的直线方程可设为y k x 2 4根据d r∴2k 4 221 k3解得k343所以y 3 x 2 44即3x 4y 10 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0 解决(也要注意漏解) .还可以运用2x0x y0y r 2,求出切点坐标x0、y0的值来解决,此时没有漏解.例6 两圆C 1:x 2 y 2 D 1x E 1y F 1 0与C 2:x 2 y 2 D 2x E 2yF 2 0相交于 A 、 B 两点,求它们的公共弦AB 所在直线的方程.分析: 首先求 A 、 B 两点的坐标,再用两点式求直线 AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求,可以采用“设而不求”的技巧.解: 设两圆 C 1、C 2 的任一 交点坐标为 (x 0 , y 0) ,则有:22 x 0 y 0 D 1xE 1y 0F 1 0①22 x 0 yD 2x0 E 2 yF 2 0②①-②得: (D 1 D 2)x 0 (E 1 E 2)y 0 F 1F 2 0 .∵ A 、 B 的坐标满足方程(D 1 D 2)x(E 1 E 2)yF 1F 2 0 .∴方程 (D 1 D 2 )x (E 1E 2)yF 1 F 2是过 A 、 B 两点的直线方程又过 A 、 B 两点的直线是唯一的.∴两圆C 1、 C 2的公共弦 AB 所在直线的方程为 (D 1 D 2)x (E 1 E 2)yF 1 F 2 0.说明: 上述解法中,巧妙地避开了求 A 、 B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲 线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了 对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例 7、过圆 x 2 y 2 1外一点 M(2,3) ,作这个圆的两条切线 MA 、 MB ,切点分别是 A 、B ,求直线 AB 的方程。
高中数学必修二第四章 章末复习题圆的相关试题(含答案)
章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。
【高中数学必修二】4.2.3直线与圆的方程的应用
几何
代数
几何
练习:教材132页练习中第3题、第4题
4.2.3 直线与圆的方程的应用
例1、如图是某圆拱桥的一孔圆拱的示意图。该圆拱 跨度AB=20米,拱高OP=4米,在建造时每隔4米需要 用一个支柱支撑,求支柱A2P2的长度
P2 P
A
A1
A2 O A3
A4
B
例1、如图是某圆拱桥的一孔圆拱的示意图。该圆拱 跨度AB=20米,拱高OP=4米,在建造时每隔4米需要 用一个支柱支撑,求支柱A2P2的长度
A(a,0) B(0, b) C (c,0)
D(0, d )
过四边形ABCD外接圆圆心Q分别作AC,BD,AD的垂 线,垂足分别为M,N,E,则M,N,E分别是线段AC, BD,AD的中点,由线段的中点坐标公式得: bd ac (0, b) y y xQ xM B Q N 2 2 a d xE yE ( a , 0 ) (c,0)C M 2 2 O A x N Q 所以, ac a 2 bd d 2 1 2 2 E QE ( ) ( ) b c 2 2 2 2 2 (0, d )D 又
因为P、B都在圆上, 所以它们的坐标(0, 4)、(10,0)满足 方程
解得:b=-10.5
r2=14.52
所以圆的方程为x2+(y+10.5)2=14.52
把点P2的横坐标x=-2代入这个圆的方程,得y=3.86(y>0)
答:支柱A2P2的长度约为3.86米
例2、已知内接于圆的四边形的对角线互相垂 直,求证圆心到一边的距离等于这条边所对 边长的一半
解:如图建立平面直角坐标系,圆心 在y轴上。设圆心的坐标是(0,b), 圆的半径是r,那么圆的方程是
高中数学圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1求过两点)4,1(A、)2,3(B且圆心在直线0=y上的圆的标准方程并判断点)4,2(P与圆的关系.例2求半径为4,与圆042422=---+y某y某相切,且和直线0=y相切的圆的方程.例3求经过点)5,0(A,且与直线02=-y某和02=+y某都相切的圆的方程.例4、设圆满足:(1)截y轴所得弦长为2;(2)被某轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y某l:的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例5已知圆422=+y某O:,求过点()42,P与圆O相切的切线.例6两圆0111221=++++FyE某Dy某C:与0222222=++++FyE某Dy某C:相交于A、B两点,求它们的公共弦AB所在直线的方程.例7、过圆122=+y某外一点)3,2(M,作这个圆的两条切线MA、MB,切点分别是A、B,求直线AB的方程。
练习:1.求过点(3,1)M,且与圆22(1)4某y-+=相切的直线l的方程.2、过坐标原点且与圆0252422=++-+y某y某相切的直线的方程为3、已知直线0125=++ay某与圆0222=+-y某某相切,则a的值为.类型三:弦长、弧问题例8、求直线063:=--y某l被圆042:22=--+y某y某C截得的弦AB 的长.例9、直线0323=-+y某截圆422=+y某得的劣弧所对的圆心角为例10、求两圆0222=-+-+y某y某和522=+y某的公共弦长类型四:直线与圆的位置关系例11、已知直线0323=-+y某和圆422=+y某,判断此直线与已知圆的位置关系.例12、若直线m某y+=与曲线24某y-=有且只有一个公共点,求实数m的取值范围.例13圆9)3()3(22=-+-y某上到直线01143=-+y某的距离为1的点有几个?练习1:直线1=+y某与圆)0(0222>=-+aayy某没有公共点,则a的取值范围是练习2:若直线2+=k某y与圆1)3()2(22=-+-y某有两个不同的交点,则k的取值范围是.3、圆034222=-+++y某y某上到直线01=++y某的距离为2的点共有().(A)1个(B)2个(C)3个(D)4个4、过点()43--,P作直线l,当斜率为何值时,直线l与圆()()42122=++-y某C:有公共点,如图所示.类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例14、判断圆02662:221=--++y某y某C与圆0424:222=++-+y某y某C的位置关系,例15:圆0222=-+某y某和圆0422=++yy某的公切线共有条。
高中数学圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1、 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.例2、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3 在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例3 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.例4两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.例5、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
类型三:弦长、弧问题例6、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例7、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为例8、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例9、已知直线0323=-+y x 和圆422=+y x ,判断此直线与圆的位置关系.例10、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.例11 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?类型五:圆与圆的位置关系例12、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例13:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
类型六:圆中的对称问题例14、圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是例15 自点()33,-A 发出的光线l 射到x 轴上, 被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程.类型七:圆中的最值问题例16:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例17 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.例18:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .类型八:轨迹问题例19、基础训练:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.例20、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.例21 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.例22 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.高中数学圆的方程典型例题类型一:圆的方程例1 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5y 2x 52y -x +=.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x . 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 例2、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 类型二:切线方程、切点弦方程、公共弦方程例3 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得 43=k 所以 ()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例4 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的. ∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例5、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高中数学圆的方程典型例题(含答案)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高中数学第四章圆与方程4.1.1圆的标准方程练习(含解析)新人教A版必修2
4.1.1圆的标准方程A组1.圆(x-2)2+(y+3)2=2的圆心和半径分别为()A.(-2,3),1B.(2,-3),3C.(-2,3),D.(2,-3),答案:D2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2) ()A.是圆心B.在圆上C.在圆内D.在圆外解析:∵(3-2)2+(2-3)2=2<4,∴点P在圆内.答案:C3.函数y=的图象是()A.一条射线B.一个圆C.两条射线D.半圆弧解析:y=可化为x2+y2=9(y≥0),所以y=的图象是半圆弧.答案:D4.已知一圆的圆心为点A(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52解析:设该直径的两个端点分别为P(a,0),Q(0,b),则A(2,-3)是线段PQ的中点,故P(4,0),Q(0,-6),圆的半径r=|PA|=.所以圆的方程为(x-2)2+(y+3)2=13.答案:A5.若P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0解析:由题意知圆心为C(1,0).由圆的几何性质,得AB⊥CP,k CP=-1,∴k AB=1.∴直线AB的方程为y+1=x-2,即x-y-3=0.答案:A6.与圆(x-2)2+(y+3)2=16同心,且过点P(-1,1)的圆的方程是.解析:由已知得,所求圆的圆心为(2,-3).又该圆过点P(-1,1),则所求圆的半径r==5.所以,所求圆的方程为(x-2)2+(y+3)2=25.答案:(x-2)2+(y+3)2=257.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为.解析:设圆心(0,b),圆的方程为(x-0)2+(y-b)2=1,把(1,2)代入得12+(2-b)2=1,∴b=2.∴圆的方程为x2+(y-2)2=1.答案:x2+(y-2)2=18.已知点A(8,-6)与圆C:x2+y2=25,P是圆C上任意一点,则|AP|的最小值是.解析:由于82+(-6)2=100>25,故点A在圆外,从而|AP|的最小值为-5=10-5=5.答案:59.已知圆心在x轴上的圆C与x轴交于两点A(1,0),B(5,0),求圆的标准方程.解:线段AB的垂直平分线方程为x=3,又圆心在x轴上,所以圆心坐标为(3,0),半径r=2,所以圆的标准方程为(x-3)2+y2=4.10.已知圆C的标准方程为(x-5)2+(y-6)2=a2(a>0).(1)若点M(6,9)在圆上,求半径a;(2)若点P(3,3)与Q(5,3)有一点在圆内,另一点在圆外,求a的取值范围.解:(1)∵点M(6,9)在圆上,∴(6-5)2+(9-6)2=a2,即a2=10.又a>0,∴a=.(2)∵|PC|=,|QC|==3,|PC|>|QC|,故点P在圆外,点Q在圆内,∴3<a<.11.求圆(x+2)2+(y-6)2=1关于直线3x-4y+5=0的对称图形的方程.解:设圆心坐标为(a,b),则有解得故圆的方程为(x-4)2+(y+2)2=1.B组1.已知圆(x-a)2+(y-1)2=2a(0<a<1),则原点O在()A.圆内B.圆外C.圆上D.圆上或圆外解析:将O(0,0)代入圆的方程可得a2+1>2a(0<a<1),即原点在圆外.答案:B2.若圆心在x轴上,半径为的圆C位于y轴左侧,且与直线x+2y=0相切,则圆C的方程是()A.(x-)2+y2=5B.(x+)2+y2=5C.(x-5)2+y2=5D.(x+5)2+y2=5解析:如图,设圆心C(a,0),则圆心C到直线x+2y=0的距离为,解得a=-5或a=5(舍去),∴圆心是(-5,0).即圆的方程是(x+5)2+y2=5.答案:D3.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆C挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.D.(-∞,-4)∪(4,+∞)解析:(法一)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=x+,即ax-4y+2a=0,令d==1,化简后,得3a2=16,解得a=±.再进一步判断便可得到正确答案为C.(法二)(数形结合法)如图,在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=,再由图直观判断,故选C.答案:C4.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为.解析:设圆心坐标为(a,0),易知,解得a=2.所以圆心为(2,0),半径长为,所以圆C的方程为(x-2)2+y2=10.答案:(x-2)2+y2=105.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程是.解析:将直线方程整理为(x+1)a-(x+y-1)=0,可知直线恒过点(-1,2),从而所求圆的方程为(x+1)2+(y-2)2=5.答案:(x+1)2+(y-2)2=56.一束光线从点A(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上,则最短路程是.解析:由题意,得最短路程即为A'(-1,-1)与圆上点的最近距离,故d min=|A'C|-1=5-1=4.答案:47.已知点A(1,2)和圆C:(x-a)2+(y+a)2=2a2,试分别求满足下列条件的实数a的取值范围:(1)点A在圆的内部;(2)点A在圆上;(3)点A在圆的外部.解:(1)∵点A在圆的内部,∴(1-a)2+(2+a)2<2a2,即2a+5<0,解得a<-.故a的取值范围是.(2)将点A(1,2)坐标代入圆的方程,得(1-a)2+(2+a)2=2a2,解得a=-.(3)∵点A在圆的外部,∴(1-a)2+(2+a)2>2a2,即2a+5>0,解得a>-.故a的取值范围是.8.若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,求当半径最小时圆的方程.解法一:设圆心坐标为(a,-2a+3),则圆的半径r==.当a=时,r min=.故所求圆的方程为.解法二:易知,圆的半径的最小值就是原点O到直线y=-2x+3的距离.如图,此时r=.设圆心为(a,-2a+3),则,解得a=,从而圆心坐标为.故所求圆的方程为.。
高中数学必修二圆与方程经典例题
习题精选精讲圆标准方程已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题.一、求圆的方程例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(22=-++y x (C)9)1()2(22=++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2243546+++=d r ==3,∴所求的圆方程为9)1()2(22=++-y x ,故选(C).点评:一般先求得圆心和半径,再代入圆的标准方程222)()(r b y a x =-+-即得圆的方程.二、位置关系问题例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( )(A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+解 化为标准方程222)(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线1=+y x 与已知圆没有公共点,∴线心距a r a d =>-=21,平方去分母得22212a a a >+-,解得1212-<<--a ,注意到0>a ,∴120-<<a ,故选(A).点评:一般通过比较线心距d 与圆半径r 的大小来处理直线与圆的位置关系:⇔>r d 线圆相离;⇔=r d 线圆相切;⇔<r d 线圆相交.三、切线问题例3 (06重庆卷理) 过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31=(B)x y 3=或x y 31-=(C)x y 3-=或x y 31-= (D)x y 3=或x y 31=解 化为标准方程25)1()2(22=++-y x ,即得圆心)1,2(-C 和半径25=r . 设过坐标原点的切线方程为kx y =,即0=-y kx ,∴线心距251122==++=r k k d ,平方去分母得0)3)(13(=+-k k ,解得3-=k 或31,∴所求的切线方程为x y 3-=或x y 31=,故选(A).点评:一般通过线心距d 与圆半径r 相等和待定系数法,或切线垂直于经过切点的半径来处理切线问题.四、弦长问题例4 (06天津卷理) 设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .解 由已知圆4)2()1(22=-+-y x ,即得圆心)2,1(C 和半径2=r . ∵线心距112++=a a d ,且222)2(r AB d =+,∴22222)3()11(=+++a a ,即1)1(22+=+a a ,解得0=a .点评:一般在线心距d 、弦长AB 的一半和圆半径r 所组成的直角三角形中处理弦长问题:222)2(r AB d =+.五、夹角问题例5 (06全国卷一文) 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( )(A)21 (B)53(C)23 (D) 0解 已知圆化为1)1()1(22=-+-y x ,即得圆心)1,1(C 和半径1=r .设由)2,3(P 向这个圆作的两条切线的夹角为θ,则在切线长、半径r 和PC 构成的直角三角形中,522cos=θ,∴5312cos 2cos 2=-=θθ,故选(B). 点评:处理两切线夹角θ问题的方法是:先在切线长、半径r 和PC 所构成的直角三角形中求得2θ的三角函数值,再用二倍角公式解决夹角θ问题.六、圆心角问题例6 (06全国卷二) 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .解 由已知圆4)2(22=+-y x ,即得圆心)0,2(C 和半径2=r .设)2,1(P ,则2-=PC k ;∵⊥PC 直线l 时弦最短,从而劣弧所对的圆心角最小,∴直线l 的斜率221=-=PCk k . 点评:一般利用圆心角及其所对的弧或弦的关系处理圆心角问题:在同圆中,若圆心角最小则其所对的弧长与弦长也最短,若弧长与弦长最短则所对的圆心角也最小.七、最值问题例7 (06湖南卷文) 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )(A) 30 (B) 18 (C)26 (D)25解 已知圆化为18)2()2(22=-+-y x ,即得圆心)2,2(C 和半径23=r .设线心距为d ,则圆上的点到直线014=-+y x 的最大距离为r d +,最小距离为r d -,∴262)()(==--+r r d r d ,故选(C).点评:圆上一点到某直线距离的最值问题一般转化为线心距d 与圆半径r 的关系解决:圆上的点到该直线的最大距离为r d +,最小距离为r d -.八、综合问题例8 (06湖南卷理) 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( )(A)]4,12[ππ (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π解 已知圆化为18)2()2(22=-+-y x ,即得圆心)2,2(C 和半径23=r .∵圆上至少有三个不同的点到直线0:=+b y a xl 的距离为22,∴2222222=-≤++=r b a b a d ,即0422≤++b ab a ,由直线l 的斜率bak -=代入得0142≤+-k k ,解得3232+≤≤-k ,又3212tan-=π,32125tan+=π,∴直线l 的倾斜角的取值范围是]125,12[ππ,故选(B).点评:处理与圆有关的任何问题总是先通过圆的标准方程,进而以“圆心半径线心距”的七字歌得到正确而迅速地解决.圆的方程1. 确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围. (1) 圆的标准方程:(x -a)2+(y -b)2=r 2,其中(a ,b)是圆心坐标,r 是圆的半径; (2) 圆的一般方程:x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0),圆心坐标为(2,2ED --),半径为r =2422FE D -+2. 直线与圆的位置关系的判定方法.(1) 法一:直线:Ax +By +C =0;圆:x 2+y 2+Dx +Ey +F =0.消元⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 一元二次方程⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆−−→−相离相切相交判别式000 (2) 法二:直线:Ax +By +C =0;圆:(x -a)2+(y -b)2=r 2,圆心(a ,b)到直线的距离为d=⎪⎩⎪⎨⎧⇔>⇔=⇔<→+++相离相切相交r d r d r d B A C Bb Aa 22. 3. 两圆的位置关系的判定方法.设两圆圆心分别为O 1、 O 2,半径分别为r 1、 r 2, |O 1O 2|为圆心距,则两圆位置关系如下:|O 1O 2|>r 1+r 2⇔两圆外离; |O 1O 2|=r 1+r 2⇔两圆外切;|r 1-r 2|<|O 1O 2|<r 1+r 2⇔两圆相交; |O 1O 2|=|r 1-r 2|⇔两圆内切; 0<|O 1O 2|<|r 1-r 2|⇔两圆内含.●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71B.-1<t <21C.-71<t <1 D .1<t <2解析:由D 2+E 2-4F >0,得7t 2-6t -1<0,即-71<t <1.答案:C 2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131C.|a |<51 D .|a |<131 解析:点P 在圆(x -1)2+y 2=1内部⇔(5a +1-1)2+(12a )2<1⇔ |a |<131.答案:D 3.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是 A.当a 2+b 2=r 2时,圆必过原点B.当a =r 时,圆与y 轴相切 C.当b =r 时,圆与x 轴相切D .当b <r 时,圆与x 轴相交解析:已知圆的圆心坐标为(a ,b ),半径为r ,当b <r 时,圆心到x 轴的距离为|b |,只有当|b |<r 时,才有圆与x 轴相交,而b <r 不能保证|b |<r ,故D 是错误的.故选D .答案:D●典例剖析【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.剖析: 利用圆的性质:半弦、半径和弦心距构成的直角三角形.解:因圆与y 轴相切,且圆心在直线x -3y =0上,故设圆方程为(x -3b )2+(y -b )2=9b 2.又因为直线y =x 截圆得弦长为27,则有(2|3|b b -)2+(7)2=9b 2,解得b =±1.故所求圆方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =0 解析:曲线关于x +y =0成轴对称图形,即圆心在x +y =0上.答案:A2.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条解析:分别以A 、B 为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求.答案:B3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.解析:圆心(-21,3)在直线上,代入kx -y +4=0,得k =2.答案:24.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.解析:圆心(0,0)到直线3x -4y -10=0的距离d =5|10|-=2.再由d -r =2-1=1,知最小距离为1.答案:15.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足·=0.(1)求m 的值;(2)求直线PQ 的方程.解:(1)曲线方程为(x +1)2+(y -3)2=9表示圆心为(-1,3),半径为3的圆. ∵点P 、Q 在圆上且关于直线x +my +4=0对称,∴圆心(-1,3)在直线上.代入得m =-1.(2)∵直线PQ 与直线y =x +4垂直,∴设P (x 1,y 1)、Q (x 2,y 2),PQ 方程为y =-x +b .将直线y =-x +b 代入圆方程,得2x 2+2(4-b )x +b 2-6b +1=0.Δ=4(4-b )2-4×2×(b 2-6b +1)>0,得2-32<b <2+32.由韦达定理得x 1+x 2=-(4-b ),x 1·x 2=2162+-b b .y 1·y 2=b 2-b (x 1+x 2)+x 1·x 2=2162+-b b +4b .∵OP ·=0,∴x 1x 2+y 1y 2=0,即b 2-6b +1+4b =0.解得b =1∈(2-32,2+32).∴所求的直线方程为y =-x +1. 培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy的最大值和最小值;(2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解:(1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设xy =k ,即y =kx ,由圆心(2,0)到y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值.由1|02|2+-k k =3,解得k 2=3.所以k max =3,k min =-3.(2)设y -x =b ,则y =x +b ,仅当直线y =x +b 与圆切于第四象限时,纵轴截距b 取最小值.由点到直线的距离公式,得2|02|b +-=3,即b =-2±6,故(y -x )min =-2-6.(3)x 2+y 2是圆上点与原点距离之平方,故连结OC ,与圆交于B 点,并延长交圆于C ′,则(x 2+y 2)max =|OC ′|=2+3,(x 2+y 2)min =|OB |=2-3. 8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可. 因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =3124--=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2,即x -y +1=0.又圆心在直线y =0上,因此圆心坐标是方程组x -y +1=0, y =0半径r =22)40()11(-+--=20,所以得所求圆的标准方程为(x +1)2+y 2=20. 因为M 1到圆心C (-1,0)的距离为22)03()12(-++=18,|M 1C |<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C |=22)04()12(-++=25>20,所以M 2在圆C 外.“求经过两圆04622=-++x y x 和028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程。
高中数学必修二圆的一般式方程
3
)2+(y+
4
3
)2=
50
9
2、从圆x2+y2=9外一点P(3,2)向该圆引切线,求切线方程。 x=3和5x+12y-39=0
圆心:两条弦的中垂线的交点
半径:圆心到圆上一点
方法二:待定系数法
解:设所求圆的方程为:
( x a) ( y b) r
2 2
2
因为A(5,1),B (7,-3),C(2,8)都在圆上
(5 a ) 2 (1 b) 2 r 2 a2 2 2 2 (7 a ) (3 b) r b 3 (2 a) 2 (8 b) 2 r 2 r 5
解
设 P( x1 , y1 ) , Q( x2 , y2 )
P
O Q
x2 y 2 m 0 x y 1 0
1 m x1 x2 2
2x 2x (1 m) 0
2
1 m 同理y1 y2 2
OP OQ
x1 x2 y1 y2 0 (2)
1、求圆心C在直线 x+2y+4=0 上,且过两定点A(-1 , 1)、 B(1,-1)的圆的方程。
2
2
( D E 4 F 0)
2
思 方程Ax Bxy Cy Dx Ey F 0 考 什么时候可以表示圆? 2 2 A C 0, B 0, D E 4 AF 0.
2
[观察]:圆的标准方程与圆的一般 方程在形式上的异同点.
圆的标准方程
2 2 ( x a ) ( y b) r 2
(2) x y 2ax y a 0表示圆, 1 a R, a 则a的取值范围是 _____ 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●典例剖析
【例2】一圆与y轴相切,圆心在直线x-3y=0上,且直线y=x截圆所得弦长为2 ,求此圆的方程.
剖析:利用圆的性质:半弦、半径和弦心距构成的直角三角形.
点评:一般通过线心距 与圆半径 相等和待定系数法,或切线垂直于经过切点的半径来处理切线问题.
四、弦长问题
例4(06天津卷理)设直线 与圆 相交于 两点,且弦 的长为 ,则 .
解由已知圆 ,即得圆心 和半径 .
∵线心距 ,且 ,∴ ,即 ,解得 .
点评:一般在线心距 、弦长 的一半和圆半径 所组成的直角三角形中处理弦长问题: .
点评:处理与圆有关的任何问题总是先通过圆的标准方程,进而以“圆心半径线心距”的七字歌得到正确而迅速地解决.
圆的方程
1.确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围.
(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标,r是圆的半径;
习题精选精讲圆标准方程
已知圆心 和半径 ,即得圆的标准方程 ;已知圆的标准方程 ,即得圆心 和半径 ,进而可解得与圆有关的任何问题.
一、求圆的方程
例1(06重庆卷文)以点 为圆心且与直线 相切的圆的方程为( )
(A) (B)
(C) (D)
解已知圆心为 ,且由题意知线心距等于圆半径,即 ,∴所求的圆方程为 ,故选(C).
点评:一般通过比较线心距 与圆半径 的大小来处理直线与圆的位置关系: 线圆相离; 线圆相切; 线圆相交.
三、切线问题
例3(06重庆卷理)过坐标原点且与圆 相切的直线方程为( )
(A) 或 (B) 或
(C) 或 (D) 或
解化为标准方程 ,即得圆心 和半径 .
设过坐标原点的切线方程为 ,即 ,∴线心距 ,平方去分母得 ,解得 或 ,∴所求的切线方程为 或 ,故选(A).
(2)圆的一般方程:x2+y2+Dx+Ey+F=0 (D2+E2-4F>0),圆心坐标为( ),半径为r=
2.直线与圆的位置关系的判定方法.
(1)法一:直线:Ax+By+C=0;圆:x2+y2+Dx+Ey+F=0.
一元二次方程
(2)法二:直线:Ax+By+C=0;圆:(x-a)2+(y-b)2=r2,圆心(a,b)到直线的距离为d= .
八、综合问题
例8(06湖南卷理)若圆 上至少有三个不同的点到直线 的距离为 ,则直线 的倾斜角的取值范围是( )
(A) (B) (C) (D)
解已知圆化为 ,即得圆心 和半径 .
∵圆上至少有三个不同的点到直线 的距离为 ,∴ ,即 ,由直线 的斜率 代入得 ,解得 ,又 , ,∴直线 的倾斜角的取值范围是 ,故选(B).
七、最值问题
例7(06湖南卷文)圆 上的点到直线 的最大距离与最小距离的差是( )
(A)30(B)18(C) (D)
解已知圆化为 ,即得圆心 和半径 .
设线心距为 ,则圆上的点到直线 的最大距离为 ,最小距离为 ,∴ ,故选(C).
点评:圆上一点到某直线距离的最值问题一般转化为线心距 与圆半径 的关系解决:圆上的点到该直线的最大距离为 ,最小距离为 .
六、圆心角问题
例6(06全国卷二)过点 的直线 将圆 分成两段弧,当劣弧所对的圆心角最小时,直线 的斜率 .
解由已知圆 ,即得圆心 和半径 .
设 ,则 ;∵ 直线 时弦最短,从而劣弧所对的圆心角最小,∴直线 的斜率 .
点评:一般利用圆心角及其所对的弧或弦的关系处理圆心角问题:在同圆中,若圆心角最小则其所对的弧长与弦长也最短,若弧长与弦长最短则所对的圆心角也最小.
3.两圆的位置关系的判定方法.
设两圆圆心分别为O1、O2,半径分别为r1、r2,|O1O2|为圆心距,则两圆位置关系如下:
|O1O2|>r1+r2 两圆外离;
|O1O2|=r1+r2 两圆外切;
|r1-r2|<|O1O2|<r1+r2 两圆相交;
|O1O2|=|r1-r2| 两圆内切;
0<|O1O2|<|r1-r2| 两圆内含.
A.|a|<1 B.a< C.|a|< D.|a|<
解析:点P在圆(x-1)2+y2=1内部 (5a+1-1)2+(12a)2<1 |a|< .答案:D
3.已知圆的方程为(x-a)2+(y-b)2=r2(r>0),下列结论错误的是
A.当a2+b2=r2时,圆必过原点B.当a=r时,圆与y轴相切
C.当b=r时,圆与x轴相切D.当b<r时,圆与x轴相交
点评:一般先求得圆心和半径,再代入圆的标准方程 即得圆的方程.
二、位置关系问题
例2(06安徽卷文)直线 与圆 没有公共点,则 的取值范围是( )
(A) (B)
(C) (D)
解化为标准方程 ,即得圆心 和半径 .
∵直线 与已知圆没有公共点,∴线心距 ,平方去分母得 ,解得 ,注意到 ,∴ ,故选(A).
解:因圆与y轴相切,且圆心在直线x-3y=0上,故设圆方程为(x-3b)2+(y-b)2=9b2.
又因为直线y=x截圆得弦长为2 ,则有( )2+( )2=9b2,解得b=±1.故所求圆方程为
(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
五、夹角问题
例5(06全国卷一文)从圆 外一点 向这个圆作两条切线,则两切线夹角的余弦值为( )
(A) (B) (这个圆作的两条切线的夹角为 ,则在切线长、半径 和 构成的直角三角形中, ,∴ ,故选(B).
点评:处理两切线夹角 问题的方法是:先在切线长、半径 和 所构成的直角三角形中求得 的三角函数值,再用二倍角公式解决夹角 问题.
●点击双基
1.方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示圆方程,则t的取值范围是
A.-1<t< B.-1<t< C.- <t<1D.1<t<2
解析:由D2+E2-4F>0,得7t2-6t-1<0,即- <t<1.答案:C
2.点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值范围是