东北大学大学物理上附加题5和6章参考答案(1)
东北大学大学物理上附加题4和14参考答案
(2)杆的最大摆角。 解:(1)选子弹和细杆为研究对象,应
O
h
用角动量守恒定律:
mv0
l 2
mv
l 2
J
J 1 Ml 2 3
Mg
3mv0 v
2Ml
6
(2)杆的最大摆角 选细杆和地球为研究对象,应用机械能 守恒定律:(势能零点如图)
O
EP 0 h
1 J 2 Mgh Mg 1 l1 cos
处于非稳定平衡状态,当其受到微小扰动时,细杆将在重
力作用下由静止开始绕铰链O转动。试计算细杆转动到
与竖直线成θ角时的角加速度和角速度。
解:细杆受重力和铰链对细杆的
约束力FN作用,由转动定律得:
1 mgl sin J
2
J 1 ml 2 3
3g sin
2l
m,l FN
mg
O
12
由角加速度的定义
9
M
d
M
R
0
g
2r 2
dr
2 gR3
3
2 3
g
m
R2
R3
2 gmR
3
10
M 2 gmR J 1 mR2
3
2
M J
2 gmR
3 1 mR2
4g
3R
2
t 0 0 3R0
4g
11
附4-5 一长为l 质量为m 匀质细杆竖直放置,其下端与一 固定铰链O相接,并可绕其转动。由于此竖直放置的细杆
解: 1 EK mc 2 m0c2 E E0 E0
E 2E0 m 2m0
m m0 2
3
2
vc
3 c
2
p mv 3m0c
大学物理(上册)参考答案
第一章作业题P211.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x,a 的单位为2sm -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2sm -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t = 2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即βωR R =2亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=⨯+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t sv -==0d d R bt v R v a btv a n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a = 第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t = 2 s时质点的 (1)位矢;(2)速度.解:2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)⎰⎰---===tttm k m k e k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-⋅-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为v m,方向竖直向下.2.13作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d, 同理, 12v v∆=∆,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2.15 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P883.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P1455.1; 5.2;5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大学物理(上)课后习题答案
第1章 质点运动学 P211.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。
⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v (6) 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。
1.9 质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s 2,x 的单位为m 。
质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。
解:由d d d d d d d d x a t x t x===v v v v 得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 1m s -=⋅v1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒==即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。
东北大学的大学的物理附加地的题目标准详解第4,14,5章作业标准详解.doc
实用标准文案第 4章刚体的转动作业一、教材:选择填空题 1~4;计算题: 13, 27,31二、附加题(一)、选择题1、有两个半径相同,质量相等的细圆环 A 和 B . A 环的质量分布均匀, B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则J A和J B的关系为[C]A、J A J BB、J A J BC、J A J BD、无法确定2、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的[ A ]A、角动量守恒,动能也守恒; B 、角动量守恒,动能不守恒C、角动量不守恒,动能守恒; D 、角动量不守恒,动量也不守恒E、角动量守恒,动量也守恒3、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 J0,角速度为0 .然后她将两臂收回,使转动惯量减少为 1 J 0 .此时她转动的角速度变为[ D ]3A、1B 、1C、3 0 D、3 03 0 3 04、如图所示,一静止的均匀细棒,长为L 、质量为 M ,可绕通过棒的端点且垂直于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 1 ML2.一质量为 m 、速率为3 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为1v, O2 俯视图则此时棒的角速度为[ B ]A、mvB 、 3mv C、5mv D、7mvML 2ML 3ML 4ML(二)、计算题1、质量分别为 m和 2m,半径分别为 r 和 2r 的两个均质圆盘,同轴地粘在一起,可绕通过盘心且垂直于盘面的水平1v 2v实用标准文案光滑轴转动,在大小盘边缘都绕有细绳,绳下端都挂一质量为 m 的重物,盘绳无相对滑动,如图所示,求: 1) 圆盘对水平光滑轴的转动惯量;2) 圆盘的角加速度。
解:( 1) J 1 mr 2 1 2m 2r 29mr22 22(2)T 2 mg ma 2mg T 1 ma 1T 2 2r T 2 r Ja 1 a 2 2g2rr19r2、一根长为 l ,质量为 M 的均质细杆,其一端挂在一个光滑的水平轴上,静止在竖直位置。
大学物理6-8单元课后习题答案(详解)
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理学(课后答案)第5-6章
第5章 机械振动一、选择题5-1 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A-,且向x 轴的正方向运动,代表这个简谐振动的旋转矢量图为[ ]分析与解 图中旋转矢量投影点的运动方向指向Ox 轴正向,同时矢端在x轴投影点的位移为2A-,满足题意,因而选(D)。
5-2 作简谐振动的物体,振幅为A ,由平衡位置向x 轴正方向运动,则物体由平衡位置运动到32Ax =处时,所需的最短时间为周期的几分之几[ ] (A) 1 /2 (B) 1/4 (C) 1/6 (D) 1/12分析与解 设1t 时刻物体由平衡位置向x 轴正方向运动,2t 时刻物体第一次运动到32A x =处,可通过旋转矢量图,如图5-2所示,并根据公式2t T ϕπ∆∆=得31226t T T T ϕπππ∆∆===,,因而选(C)。
5-3 两个同周期简谐振动曲线如图5-3(a)所示,1x 的相位比2x 的相位[ ]O O OO A Axxx(A) (B)(D)(C)A /2-A /2 A /2 -A /2A Aωωωωx习题5-1图习题5-2图(A) 落后2π(B) 超前2π(C) 落后π (D) 超前π分析与解 可通过振动曲线作出相应的旋转矢量图(b ),正确答案为(B )。
5-4 一弹簧振子作简谐振动,总能量为E ,若振幅增加为原来的2倍,振子的质量增加为原来的4倍,则它的总能量为[ ](A) 2E (B) 4E (C) E (D) 16E 分析与解 因为简谐振动的总能量2p k 12E E E kA =+=,因而当振幅增加为原来的2倍时,能量变为原来的4倍,因而答案选(B)。
5-5 两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个简谐振动的相位差为[ ](A) 60 (B) 90 (C) 120 (D) 180分析与解 答案(C )。
由旋转矢量图可知两个简谐振动的相位差为 120时,合成后的简谐运动的振幅仍为A 。
东北大学大学物理上附加题7和8章参考答案
0 N1 N 2 a
2R
2
0 N a 0 N a
2 1 2 2 2
2
2R
2R
L1L2
17
6
圆盘转动后相当于圆电流:
q qrdr dI ndq 2rdr . 2 2 πR R
若干个圆电流在圆心产生的磁感强度为:
B dB
0dI
2r
R
0 qrdr
2r R
2
0
0 q
2R
.
7
(2)细圆环的磁矩为:
dpm SdI r
磁感应强度。 解:在半圆环上取一线元 dl,其 所带电量为 dq ,作圆周运动所 形成的圆电流为dI:
dl
d dB
O
d l r d q q q dq dl r d d r r q dI dq d 2 2 2
r
4
B
0 IR
2
2 2
L
方向由O 指向M,M点的电势高。 (2)磁感应强度为
a L
0 I B 2x
I
a
M
ω
a L 0 I E i (v B ) d l x a dx 2x a a
O
0 I a L L a ln 2 a
方向垂直纸面向里。
2
整个电流板上的所有的 dI 在 P 点产生的磁感应强度 dB为方向相同。所以,可得:
0 d I a b 0 I B dB b d x 2x 2x a
0 I a b ln 2a b
3
半径为r的均匀带电半圆环,电荷为q,绕过圆 附7-2 心O的轴以匀角速度 转动,如图所示。求圆心O处的
东北大学2021 2021 第二学期 大学物理(上) 作业(1)
东北大学2021 2021 第二学期大学物理(上)作业(1)东北大学2021-2021第二学期大学物理(上)作业(1)2022-2022学年第二学期大学物理(第一部分)作业第一章粒子运动学作业一、教材:选择问题1-4填空;计算题:9,13,14,17 2。
附加问题(1),多项选择题1。
物体的运动规律是DV/dt??KVT,其中k是大于零的常数?当0时,初始速度为V0,那么速度V 和时间t之间的函数关系为【】12a、v?2kt?v0;212b、v??2公斤?v01kt21c、v?2?v0;1kt21d、v??2.v02、某质点作直线运动的运动学方程为x?3t?5t3?6(si),则该质点作[]a、加速度以匀速直线运动。
加速度沿X轴的正方向B以均匀加速度沿直线移动。
加速度沿X轴负方向C以可变加速度直线移动。
加速度沿X轴正方向D以可变加速度直线移动。
加速度沿X轴负方向3以可变加速度直线移动。
粒子在t中?在时间0从原点开始,以速度v0沿x轴移动2a??kv运动,其加速度与速度的关系为,k为正常计数这个粒子的速度V和距离x之间的关系是1[a、v?v0e?kxx;b、v?v0(1-2v2)02v?v1?xc、0;d、条件不足不能确定4.当粒子在平面上移动时,粒子的位置向量表是已知的22示式为r?ati?btj(其中a、b为常量),则该质点作[]a、匀速直线运动B、变速直线运动C、抛物线运动D、一般曲线运动(II)、计算问题1、已知质点沿x轴运动,其加速度和坐标的关系为二a=2+6x(si),且质点在x=0处的速率为10m/s,求该质点的速度v与坐标x的关系。
2.粒子沿半径为r的圆运动,其距离s在任何时候都是12间t变化的规律为s?bt?2ct(si)其中B和C大于零的常量,求在t时刻,质点的切向加速度at和法向加速度an各为多少?3.已知在x轴上以可变加速度直线运动的粒子的初始运动2速度是V0,初始位置是x0,加速度是a?CT2(其中C为常数),求出:1)粒子速度与时间之间的关系;2)质点运动方程。
大学物理第5章习题答案
r dx 2 d sin
arccos ( L L2 )22r 2 E E y 2 dE y 2 ( sin )d 900 4π 0 r
习题答案
L 2 0
第五章 静电场
arccos ( L L2 )22r 2 E E y 2 dE y 2 ( sin )d 900 4π 0 r
R
s
E dS EdS 4 r 2 E q / 0
s
.
r
r
E=
q 4 0 r 2
q dV kr 4r d r 4kr 3 d r kr 4
2 V 0 0 r
rR
kr 2 E er 4 0
习题答案
解:1)利用高斯定理 做一半径为r的同心球面为高斯面
e E S ES cos
第五章 静电场
z
解: e上 e下 0
e左 E y a 2 E2 a 2 e右 E y a E 2 a
2 2
o
x E ( E1 kx )i E2 j
E x E1 kx
y
e后 E x a 2 E1a 2
dq
r
x
O
x
z
xdq R cos 2 R 2 sin d dE 0 cos sin d 3 3 4 πε0 R 2 ε0 4 πε0 R
E0
2 ε0
2 0
cos sin d
4 ε0
习题答案
第五章 静电场
5-12 真空中两条平行的“无限长”均匀带电直线相 距为r,其电荷线密度分别为-和+.试求: (1) 在两直线构成的平面上,任意一点的场强. (2) 两带电直线上单位长度上的电场力.
东北大学大学物理附加题答案第4,14,5章作业答案-推荐下载
在水平面内转动。今有一质量为 1 m 、速率为 v 的子弹在水平面内沿棒的垂直方 2
向射向棒的中点,子弹穿出时速率减为 1 v ,当棒转动后,设棒上单位长度受到 2
的阻力正比于该点的速率(比例系数为 k)试求:(1)子弹穿出时,棒的角速
度0 为多少?(2)当棒以 转动时,受到的阻力矩 M f 为多大?(3)棒从
以速度v0从杆的中点穿过,穿出速度为v, 求:1)杆开始转动时的角速度;
2)杆的最大摆角。
解:(1)碰撞前后角动量守恒
mv0
l 2
3m v0 v
2Ml
1 3
Ml 2
(2)碰撞后机械能守恒
1 J2 Mg l 1 cos
2
arccos 1
2
mv
3m2 v0 v2
匀速直线运动的乙测得时间间隔为 5 s,则乙相对于甲的运动速度是( c 表示真空
0
变为
1 2
0
时,经历的时间为多少?
解:(1)以子弹和棒组成的系统为研究对象。取子弹和棒碰撞中间的任一状态分析受力,
子弹与棒之间的碰撞力 f 、 f ' 是内力。一对相互作用力对同一转轴来说,其力矩之和为
零。因此,可以认为棒和子弹组成的系统对转轴的合外力矩为零,则系统对转轴的角动量
守恒。
mv 2
J 1 mL2 3
L 2
解上述两式得: 0
m 2
v 2
L 2
J0
3v 8L
(2)设在离转轴距离为 l 得取一微元 dl ,则该微元所受的阻力为: df kvdl kldl
该微元所受的阻力对转轴的力矩为:
[实用参考]东北大学大学物理上附加题.ppt
2 0
S 2
1
S 2
2
S 0
1 2 2 0
可得:
1 2
2 r 1
2
1
r r
0 0
这样填充介质后,极板间电压变为:
1 r
2
U
Ed
E2d
2 0
板间电压变为多少?(提示:两种情况都需计算)
解: 第一种情况
D1 1 0 r E1
E1
1 0 r
D2 2 0E2
E2
2 0
σ1
+σ0
σ2
E1
E2
D1
D2
板间电压: U E1d E2d
E1 E2
14
E1 E2
E1
1 0 r
E2
120 V
(2)离球心 r=1.0 10-2m 处的电势
V1
q
4 0
1 r
1 R1
1 R2
300 V
3)把点电荷移开球心, 导体球壳的电势是否变化?
不变
13
附6-3 两金属板间为真空,电荷面密度为±0,电压U0 =300V。若保持电量不变,一半空间充以的电介质r = 5,
原点。设电荷线密度为=Ax,A为正的常量,求x轴上
坐标为x=l+b处的电场强度大小。
dx
解: 建坐标系如图所示, 在坐标
x
为x处取一线元dx, 视为点电荷, O
l
电量为dq:
P bx
新编基础物理学上册5-6单元课后答案
第五章5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。
分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N = 5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量. 分析 根据简谐振动频率公式比较即可。
大学物理上册作业答案5-8
一、选择题 1.A 2. C 3. A 4. D 5. B 6. A 7. C 8. E 9. D 10. C 二、填空题
2 2 v0 v0 , 2s 2 gs
;
1.
3.
6k mA
8.
g / r
5-6. 一半径为R的半圆细环上均匀分布电荷Q,求环心处的电场强度。 解:如图所示,取线元 dl ,则在O点产生的 电场强度大小
y
dl
dq Qd dE 2 2 4 0 R 4 0 R 2
由对称性分析可得
dEx
dE
o
dE y
x
E Ey
Q 4 2 0 R
0
sin d 2
Q 2 2 0 R 2
方向沿y轴正方向。
5-15
解1. 由高斯定理 得
1 E dS
E 4r
解:在球体内取高斯面,由高斯定理得
2 v v r L ε E dS E 2rL
Q
R 0
2
0
r L
2
v E
r v er 2 2R 0
5-25
第6章 静电场中的导体和电介质
一、选择题 1. B 2. C 3. BD 4. C 5. D 6. BD 7. B 8. C 9. B 10. C 二、填空题
第8章 电磁感应 电磁场
一、选择题 1.CE 2. B 3. D 4. D 5. E 6. B 7. C 8. C 9. B 10. C 二、填空题
;
8-4
8-10
8-15
8-18
;
课后习题选择题:
6-3
6-15
解:由高斯定理得
东北大学大学物理上第五章 静电场
Q2 Q1
Fn Fi F3
Q3 r2 r3 q0 ri
Qi rn
F1 F2
n Fn Fi F F1 F2 q0 q0 q0 q0 i 1 q0
r1
Qn
Fi 1 Qi Ei ei 2 q0 4π 0 ri
1 q E i 2 4πε0 ( x r0 2)
E E E
q 4πε0
x r0
1 2p 1 2r0q E i 3 4πε0 x 4πε0 x 3
2 xr0 i 2 2 2 ( x r0 4)
26
(2)轴线中垂线上一点的电场强度
第五章 静电场
5-1 电荷的量子化 电荷守恒定律 一、电荷和电性力
1.电荷的性质 实验证明 ,自然界中只存在两种电荷,分别称为正电荷 和负电荷。
2.电性力
带同号电荷的物体互相排斥,带异号电荷的物体互相
吸引,这种相互作用称为电性力。
2
二、电荷的量子化
1.电荷的量子化 物体所带的电荷量不可能连续地取任意量值,而只能取 电子或质子电荷量的整数倍的值 (q=±ne)。电荷量的这种 只能取分立的、不连续量值的性质, 称为电荷的量子化。 2.电子电荷的绝对值e 电子电荷的绝对值 e 称为元电荷或称为电荷的量子。
电场对另一个电荷的作用来传递的。这种传递虽然很快
(约3×108m/s),但是仍需要时间,这种观点称为近距离作 用观点或称为场观点。
12
2.电场是物质 (1) 物质间的作用必须借助于物质 (实物或场 ),作用的传递
需要时间。
(2) 任何带电体 ( 电荷 ) 周围都存在一种“特殊”的物质 —— 电场,这是客观存在的。 (3)电荷间的相互作用是通过电场这种特殊物质传递的。 (4)电场是一种物质,具有能量等物质属性。
新编基础物理学上册5-6单元课后答案
第五章5-1有一弹簧振子,振幅 A 2.0 10 2 m,周期T 1.0 s,初相 3 / 4.试写出它的振动位移、速度和加速度方程。
分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
、2解:振动方程为:x Acos[ t ] Acos[ t ]代入有关数据得:x 0.02 cos[2 t 3 ]( SI )4振子的速度和加速度分别是:v dx / dt0.04si n[2 t 34](SI) 4a d2x/dt20.082 cos[2 t3-](SI)45-2若简谐振动方程为x 0.1 cos[20 t / 4]m,求(1) 振幅、频率、角频率、周期和初相;(2) t=2s时的位移、速度和加速度.分析通过与简谐振动标准方程对比,得出特征参量。
解: (1)可用比较法求解•根据x Acos[ t ] 0.1 cos[ 20 t / 4] 得:振幅A0.1 m,角频率20 rad / s,频率/210s 周期T 1/0.1 s,/ 4 rad(2)t 2s时,振动相位为:20 t / 4 (40/ 4) rad由x A cos , A sin2,a A cos2x得x0.0707m, 4.44 m/s, a279m/s25-3质量为2kg的质点,按方程x 0.2 sin[ 5t ( /6)]( SI )沿着x轴振动.求:(1)t=0时,作用于质点的力的大小;(2 )作用于质点的力的最大值和此时质点的位置分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
2解:(1)跟据f ma m x,x 0.2 sin[ 5t ( /6)]将t 0代入上式中,得:f 5.0 N2(2)由f m x可知,当x A 0.2 m时,质点受力最大,为 f 10.0 N 5-4为了测得一物体的质量m将其挂到一弹簧上并让其自由振动,测得振动频率1 1.0Hz ;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为2 2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量分析根据简谐振动频率公式比较即可。
东北大学 大学物理 附加题
2
a 0.0144 cos( 0.5 - ) -0.12 m s 3
2
2
2
t 0.5 s
av v vf v d v v 2 v d v v0 2 0 v0 3 3 av0 av0 1 7 v0 3v0 3v0 8 24
O
v0
2v0
v
(5)速率在v0/2到v0之间分子的平均速率
v0
v0
25
附13-1 一定量的单原子分子理想气体,从初态A出发, 沿图示直线过程变到另一状态B,又经过等容、等压过 程回到状态A。求: (1)A→B,B→C,C→A,各过程中系统对外所做的功、 内能的增量以及所吸收的热量。 (2)整个循环过程中系统对外所做的总功以及从外界吸收 的总热量。 p/105Pa B 3 设气体的量为ν摩尔。 2 A: pA,VA,TA; A C 1 B: pB,VB,TB; V/10-3m3 C: pC,VC,TC; 2 O 1 26
5 - Dn - 1 0
5 D 5080 nm n -1
18
附11-3 一玻璃片(n=1.50)表面附有一层油膜(n=1.30),今 用一波长可连续变化的单色光束垂直照射油膜上,观察 到当波长为 1=400nm时,反射光干涉相消;当波长增
加到 2=560nm时,反射光再次干涉相消,中间无其他
5
(2)当物体第一次运动到x=5cm处时,旋转矢量旋过的 角度为π 。如图所示。
t1
角度为 2 。如图所示。
3
t1 = s 1
《大学物理》章节试题及答案(五)
《大学物理》章节试题及答案第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41r e εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1Lr Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r rq εe E 20d π41d '= 整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-= 代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1xθe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+= 考虑到z >>d ,简化上式得()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-= 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度k E 403π41zQ ε= 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E +E =i +j (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即0==DEFG OABC ΦΦ.而()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有22a E ABGF CDEO -=-=ΦΦ 同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E因此,整个立方体表面的电场强度通量3ka ==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示). 分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2Sπ4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场rrεqe E 20π4d d =由电场叠加可解得带电球体内外的电场分布()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()4202πd π41π4r εk r r kr εr r E r==⎰()r εr e E 04=球体外(r >R )()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2 由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()rr RrεkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和.解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εe E 012=n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为n rx xεσe E E E 220212+=+=在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则nnεσx r εσe e E 02202/112≈+=上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为r E 03ερ=所以 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ根据几何关系a r r =-21,上式可改写为a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布. 解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4rεQ E =r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布. 解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30 C · m.求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1) 0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角. 解 由点电荷电势的叠加2000P π4cos π4π4r εθp r εq r εq V V V =-+=+=-+-+ (1) 若o 0=θ V 1023.2π4320P -⨯==rεp V (2) 若o45=θ V 1058.1π445cos 320o P -⨯==rεp V (3) 若o90=θ 0π490cos 20oP ==r εp V5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大? 分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势. 解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV5 -26 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势变化曲线如图(b)所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4 π40R r r εQ Q R r R rεQ R r r r>+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-== 5 -28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E 可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰ 当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.5 -29 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 带电圆环激发的电势220d π2π41d xr rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V-1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为rεeV 0π4=将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r εeV E 2π41202RK0=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:。
东北大学大学物理上5-6习题课
R2
qA
设球A带电为qA
QA= 3.010-8C,QB= 2.010-8C,
- qA q A - QA VA 0 4 0 R1 4 0 R2 4 0 R3
R1 R2Q A qA R1 R2 R2 R3 - R1 R3 2.12 10 - 8 C
q A - QA
5- 1
电荷密度均为+的两块“无限大”均匀带电的平
行平板如图(a)放置,其周围空间各点电场强度E(设电场 强度方向向右为正、向左为负)随位置坐标 x 变化的关系 曲线为图(b)中的 ( B )
( A) E
y
O
E ( B ) 0 2 0 - a
0
a x
-a O
a
x
O
-a
a x
qA
B
R1 R3
- qA
q A - QA VB 4 0 R3 -7.92 10 V
2
A
R2
qA
6-11 将带电量为Q导体板A从远处移至不带电的导体板 B附近,两导体板几何形状完全相同,面积均为S,移近 后两导体板距离为d。d
S
(1)忽略边缘效应求两导体板间的电势差; (2)若将B接地, 结果又将如何? 解:(1)静电平衡时应有:
V x
a
0 0 E1 d l a E2 d l a d x a
当x>a时: d l - d li - - d x i d xi
0 0 V x E3 d l a E2 d l a d x a
dq dE 2 4 0 r
E
r
0
(2)球面外(r>R)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原点。设电荷线密度为=Ax,A为正的常量,求x轴上
坐标为x=l+b处的电场强度大小。
dx
解: 建坐标系如图所示, 在坐标
x
为x处取一线元dx, 视为点电荷, O
l
电量为dq:
P bx
dq d x Axd x
dq在P点产生的电场强度为:
1 dq
1 Ax d x
d E 4π ε0 l b x2 4π ε0 l b x2
S 2
1
S 2
2
S
0
1 2 2 0
可得:
1 2
2 r 1
2
1
r r
0 0
这样填充介质后,极板间电压变为:
1 r
2
U
Ed
E2d
2 0
d
2 0 (1 r )0
120 V
(2)离球心 r=1.0 10-2m 处的电势
V1
q
4 0
1 r
1 R1
1 R2
300 V
3)把点电荷移开球心, 导体球壳的电势是否变化?
不变
13
附6-3 两金属板间为真空,电荷面密度为±0,电压U0 =300V。若保持电量不变,一半空间充以的电介质r = 5,
l
1 b
x 2
l 0
A l A bl
ln
4π ε0 b 4π ε0 b
4
附5-3 电荷以线密度 均匀地分布在长为l的直线上,
求带电直线的中垂线上与带电直线相距为R的点的场强。
解:如图建立坐标,带电线上任一电荷元dx在P点产
生的场强为:
dE
1
4π ε0
dx
R2 x2
r
R2 )
EIII
q1 q2
4 0 r 2
r0 (r
R2 )
7
电势的分布:
UIII
E r
III
dr
r
q1 q2 dr
4 0 r 2
q1 q2
4 0 r
(r
R2 )
UII
E R2
r II
dr R2 EIII
dr
R2 r
附6-1 一个半径为R的不带电金属球壳外有一点电荷q, q距球心为2R。(1)求球壳内任一点P处的电势;(2)求球 壳上电荷在球心处产生的电场强度大小.
解:静电平衡时有: q R
金属球壳是等势体,
其内部场强出为零。
O
____ q __
q
_ 2R
VO Vq Vq Vq
板间电压变为多少?(提示:两种情况都需计算)
解: 第一种情况
D1 1 0 r E1
E1
1 0 r
D2 2 0E2
E2
2 0
σ1
+σ0
σ2
E1
E2
D1
D2
板间电压: U E1d E2d
E1 E2
14
E1 E2
E1
1 0 r
E2
2 0
q1
4 0 r 2
dr
q1 q2
4 0 R2
1
4 0
q2 R2
q1 r
(R2
r
R2 )
UI
E R1
rI
dr
E R2
R1 II
dr R2 EIII
dr
1
4 0
q2 R2
q1 R1
(r
R1 )
8
附加题
1
附5-1 电荷面密度分别为 的两块“无限大”均匀
带电平行平板,处于真空中.在两板间有一个半径为R 的半球面,如图所示.半球面的对称轴线与带电平板正 交.求通过半球面的电场强度通量e
E 2 ε0 2 ε0 ε0
e
ε0
R 2
2
附5-2 长为 l 的带电细棒,沿 x 轴放置,棒的一端在
)1/ 2
dx
l 4 0 R( R 2
l2 4
)1/ 2
6
附5-4 在半径为R1和R2的两个同心球面上分别均匀 带电q1和q2,求在0<r<R1, R1<r<R2, r>R2三个区域内的电 势分布。
解:利用高斯定理求出场强:
EI 0(r R1)
EII
q1
4 0 r 2
r0 (R1
E
EqO
q
4 0 2R2
q
16 0 R2
10
附6-2点电荷q = 4.0 10- 10 C处在不带电导体球壳的中心, 壳的内外半径分别为R1=2.0 10-2m , R2=3.0 10-2m。 求1)导体球壳的电势2)离球心 r=1.0 10-2m 处的电势 3) 把点电荷移开球心,导体球壳的电势是否变化?
, r
R1
V2
R2 r
E2
d
r
q
R2 E3 d r 4 0 R2 , R1 r R2
V3
r
E3
dr
q
4 0r
,r
R2
12
(1)导体球壳的电势
V2
q
4 0 R2
4 1010 4 3.14 8.85 1012 3 102
er
根据坐标对称性分析, 电场强度的方向是y轴 的方向。
5
d
Ey
1 4π ε0
dx
R2 x2
n
E
d
Ey
l
2l 2
1 4π ε0
dx
R2 x2
sin
dx
L 2
R
L 2
40 (R2
x2 )3/2
l
4 0 R( R 2
l2 4
E1
q
4 0r 2
,r
R1
E2 0, R1 r R2
q
E3 4 0r 2 , r R2
q
q -q
R2 R1
11
V1
R1 r
E1
d
r
R2 E R1 2
d
r
R2 E3 d r
q
4 0
1 r
1 R1
1 R2
3
整个带电棒在P点产生的电场强度为:
E
dE
l
0
1 4π ε0
l
Ax d x
b x2
A 4π ε0
l
0
l
b-
l
x l b x2
b dl
b
-
x
Al b 4π ε0 l
1 b
l
x 0
A 4π ε0
1 ln 2
q q q q
4 0 2R 4 0R 4 0R 8 0R
9
(1)球壳内任一点P处的电势:
VP
VO
q
8 0R
q R
O
____ q __
q
_ 2R
(2)球壳上电荷在球心处产
生的电场强度E'大小为:
E EqO 0