线性规划问题及其数学模型

合集下载

线性规划

线性规划

• 4.2 两阶段法
• 两阶段法是处理人工变量的另一种方法。其具体做 法是在原约束条件中增加人工变量,构造一个新的 目标函数,其中人工变量的系数为-1,其余变量的 系数为0,这样就产生了如下的最优解有三种情形。 (1)这说明在辅助问题的最优解中,还有人工变量是基变量, 且取值不为0,此时原问题无可行解。 (2)且最优解中人工变量均为非基变量,则把它们划去后就得 到了原问题的一个基本可行解。 (3)但最优解中还有人工变量是基变量,其取值为0。这时, 只要选某个不是人工变量的非基变量进基,把在基中的人工 变量替换出来,则情形同(2)。 第二阶段:对于第一阶段的后两种情形,在第一阶段的最优单 纯形表中划去人工变量所在的列,并把检验数行换成原问题 目标函数(消去基变量以后)的系数,从而得到原问题的初 始单纯形表,再继续迭代求解。
2014-6-19 3
例2(运输问题)
• 设有某种物资要从A1,A2,A3三个仓库运往四个 销售点B1,B2,B3,B4。各发点(仓库)的发货 量、各收点(销售点)的收货量以及 到 的单位运 费如表1-2。问如何组织运输才能使总运费最少?
例3(配料问题)
• 在现代化的大型畜牧业中,经常使用工业生产的饲料。 设某种饲料由四种原料B1,B2,B3 ,B4混合而成,要 求它含有三种成份(如维生素、抗菌素等)A1,A2, A3的數量分別不少于25、36、40个单位(这些单位可 以互不相同),各种原料的每百公斤中含三种成份的数 量及各种原料的单价如表1-3.
1.2 线性规划的数学模型
一、一般形式 上述各例具有下列共同特征: 1.存在一组变量 ,称为决策变量,表示某一方案。通 常要求这些变量的取值是非负的。 2.存在若干个约束条件,可以用一组线性等式或线性 不等式来描述。 3.存在一个线性目标函数,按实际问题求最大值或最 小值。

第1章 线性规划

第1章 线性规划
投资项目 1 2 3 4 5 6 风险(%) 18 6 10 4 12 8 红利(%) 4 5 9 7 6 8 增长(%) 22 7 12 8 15 8 信用度 4 10 2 10 4 6
1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)

线性规划的数学模型

线性规划的数学模型

线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。

线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。

本文将介绍线性规划的数学模型及其应用。

数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。

线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。

通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。

例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。

这个问题可以通过线性规划来解决。

运输问题线性规划在运输问题中的应用也非常广泛。

运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。

线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。

资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。

线性规划问题及其数学模型

线性规划问题及其数学模型

第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。

例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。

表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。

由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。

若用z表达利润,这时z=2x1+3x2。

综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。

已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。

假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。

又设该制冰厂每年第3季度末对贮冰库进行清库维修。

问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。

按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。

,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。

第1章-线性规划模型-宋

第1章-线性规划模型-宋

第一章 线性规划模型线性规划(Linear Programming )是数学规划的一个重要组成部分,是最优化与运筹学理论中的一个重要分支和常用的方法,是最优化理论的基础性内容。

第一节 线性规划问题及其数学模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何利用有限的人力、物力、财力等资源,以便得到最好的经济效果。

例1 生产计划问题某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A 、B 两种原材料的消耗以及每件产品可获得的利润如下表所示。

问应如何安排生产计划使该工厂获利最多?解:设12,x x 分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。

由于资源的限制,所以有:机器设备的限制条件: 1228x x +≤原材料A 的限制条件: 1416x ≤(称为资源约束条件) 原材料B 的限制条件: 2412x ≤同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有120,0x x ≥≥(称为变量的非负约束)。

显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。

而工厂的目标是在不超过所有资源限量的条件下,如何确定产量12,x x 以得到最大的利润,即使目标函数1223z x x =+的值达到最大。

综上所述,该生产计划安排问题可用以下数学模型表示:例2 运输问题某公司经销某种产品,三个产地和四个销地的产量、销量、单位运价如下表所示。

问在保证产销平衡的条解:(1)决策变量:设(1,2,3;1,2,3,4)ij x i j ==为从产地i 运到销地j 的运量(2)目标函数:总运费最小3411min ij iji j z c x===∑∑(3)约束条件: 产量约束 销量约束 非负约束 模型为:二、线性规划问题的模型上述几例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。

它们具有以下共同的特征。

(1)每个问题都可用一组决策变量12(,,,)n x x x 表示某一方案,其具体的值就代表一个具体方案。

1.1 72线性规划问题及其数学模型

1.1 72线性规划问题及其数学模型
可行域
4 3 2
最优解
8 0 3 4
x1
无穷多最优解(多重最优解)
即可行域的范围延伸到无 例: max z=x1+x2
穷远,目标函数值可以无 穷大或无穷小。 ≤4 s.t. -2x1+ x2 一般来说,这说明模型有 x1 - x2 ≤2 错,忽略了一些必要的约 束条件。 ≥0, x2≥0 x1 x2
无穷 多个最优解
2.可行域为非封闭的无界区域
x2 x2 x2
z
z
x1 x1
Z
x1
唯一最优解
无穷多个最优解
无界解
3、可行域为空集
x2
空集 x1
无可行解
两个变量的LP问题的解的启示:
(1)可行域非空时,它是有界或无界凸多边形 (凸集) ,顶点个数只有有限个。 (2)求解LP问题时,解的情况有: 唯一最优解;无穷多最优解;无界解;无可行解。 (3)若可行域非空且有界则必有最优解, 若可行域无界,则可能有最优解,也可能无最优解。 (4)若最优解存在,则最优解或最优解之一一定是 可行域的凸集的某个顶点。 (5)若在两个顶点上同时取到最优解,则这两点的 连线上 任一点都是最优解
由图解法得到的结论:

求解线性规划问题最优解的方法:


确定可行域 = 凸集(凸多边形) 确定可行域顶点 = 求基可行解 寻找最优解, 如果最优解存在,则必在可行域的某一顶点 = 在基可行解中寻找
图解法优点: 直观、易掌握。有助于了解解的结构。
图解法缺点:
只能解决低维问题,对高维无能为力。
1.3 线性规划问题的标准型式
m i nZ
C
j 1
n j1
n
j
Xj

线性规划

线性规划
1.3 线性规划问题的标准型式
M1 : 目标函数: max z c 1 x 1 c 2 x 2 c n x n a 11 x 1 a 12 x 2 a 1 n x n b1 a x a 22 x 2 a 2 n x n b 2 21 1 约束条件: a x a x a x b m2 2 mn n n m1 1 x 1 , x 2 , , x n 0
24
第2节 应用举例

最终计算表(第3次计算)
c j→ CB 0.1 -0.3 0 XB x2 x4 x1 c j -z j b 10 50 30 0 x1 0 0 1 0 0.1 x2 1 0 0 0 0.2 x3 -1 1 1 0 0.3 x4 0 1 0 0 0.8 x5 -9/10 1/3 13/10 -0.74 -M x6 3/5 0 -1/5 -M + 0.06 -M x7 -3/10 1/3 1/10 -M + 0.12 -M x8 -1/5 0 2/5 -M -0.02 θ
27
第2节 应用举例

表1-7表明这些原材料供应数量的限额。加入到产品A、 B、D的原材料C总量每天不超过100kg,P的总量不超过 100kg,H总量不超过60kg。
表1-7
原材料名称 C P H 每 天 最 多 供 应 量 ( kg) 100 100 60 单 价 /(元 /kg) 65 25 35
29

第2节 应用举例

约束条件可表示为:
1 2 1 4 x1 x1 1 2 3 4 x2 x2 1 2 1 4 x3 x3 x1 x2 x3 x1 , , x 9 0 3 4 1 2 x4 x4 1 4 1 2 x5 x5 1 4 1 2 x6 x6 x7 x5 x6 x8 0 0 0 0 100 100 x 9 60

1-1线性规划问题及模型

1-1线性规划问题及模型
史新峰
西安邮电大学 现代邮政学院
Xi'an post and telecommunications university modern post College
第一章 线性规划与单纯形法
1.1线性规划问题及模型 运 筹 学
主要内容
01 线性规划问题

02 线性规划模型及特征


一 线性规划问题
二 线性规划模型
2.线性规划模型的一般形式
运 筹 学
二 线性规划模型
简写式
运 筹 学
n
max(或 min)Z c j x j j 1
s.t.
n
aij x j
(或 ,)bi
j1
xj 0
i 1,,m j 1,, n
二 线性规划模型
运向量式 筹 学
max(或 min ) Z CX
星期 需要人数 星期 需要人数


300

480


300

600


350

550

400
应如何安排每天的上班人数,使商场总的营业员最少。
一 线性规划问题
在上班 周 周 周 周 周 周 周 一二三四五六日
开始上班
周一
周二

周三

周四

周五 周六
周日
一 线性规划问题
解:设xj(j=1,2,…,7)为休息2天后星期一到星
期日开始上班的营业员,则这个问题的线性规划模型为
min Z x1 x2 x3 x4 x5 x6 x7
x1 x4 x5 x6 x7 300
x1

线性规划概念与数学模型

线性规划概念与数学模型

约束条件的图解:
每一个约束不等式在平面直角坐标系中都 代表一个半平面,只要先画出该半平面的边 界,然后确定是哪个半平面。
怎么画边界
?
怎么确定 半平面
以第一个约束条件(工时)
x1+2 x2 8 为例 说明约束条件的图解过程。
如果全部的劳动工时都用来生产甲 产品而不生产
乙产品,那么甲产品的最大可能产量为8吨,计算
D
条件的边界--
4
Q4
Q3
直线CD,EF: E
3
F
4x1 =16,4x2 =12
2
Q2 4x2 = 12
1
Q1
0
1
2
3
4
5
6
7
8
9
B
C
x1+4x2 = 8
4x1=16
三个约束条件及非负条件x1,x2 0所代表的公共部分
--图中阴影区,就是满足所有约束条件和非负条件的点的
集合,即可行域。在这个区域中的每一个点都对应着一个可
目标函数值递增的方向, 用箭头标出这个方向。 图中两条虚线 l1和l2就 分别代表 目标函数等值线 2x1+3x2=0 和 2x1+3x2=6, 箭头表示使两种产品的总 利润递增的方向。
5
l3
A4
E
B
3
l1 l2 2
1
1
2
D
F 4x1=12
Q2 4,2
x1+2x2 = 8
A
3
4
5
6
7
8
9
B
4x1=16 C
1 1
1 1
1 1
B1 1
4 , B2 1

线性规划问题及其数学模型

线性规划问题及其数学模型

6
例 : min z x1 2 x2 3x3
x1
x2 x3 7 x7
x1
x2 x3 2
3x1 x2 2 x3 7
x1, x2 0, x3无约x束 3 x4 x5
上页 下页 返回
解 :标准形为
max z x1 2x2 3(x4 x5 ) 0x6 0x7
供需平衡
上页 下页 返回
线性规划模型举例
(一) 运输问题 (二) 布局问题 (三) 分派问题 (四) 生产计划问题 (五) 合理下料问题
上页 下页 返回
线性规划模型的条件
• (1)要求解问题的目标函数能用数 值指标来反映,且为线性函数;
• (2)存在着多种方案; • (3)要求达到的目标是在一定约束
• “” 约束:加入非负松驰变量
例: max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3
8
4
x1
4 x2
x4 16 x5 12
x1, x2 , x3, x4 , x5 0
上页 下页 返回
• “” 约束: 减去非负剩余变量;
• xk可正可负(即无约束);
x 令 xk Mxak' x xk" xk' , xk" 0
i 1
每人只做一件工作
n xij 1
每人i 对每1,件2工,作只, n有
j 1
做与不做两种情况
xij 0 或 1 i, j 1,2,, n
上页 下页 返回
(四)生产组织与计划问题
(Ⅰ) 生产的机器最多 (Ⅱ) 总的加工成本最低 (Ⅲ)生产存储问题
上页 下页 返回
(四)生产组织与计划问题 应如何分配机

线性规划问题及其数学模型

线性规划问题及其数学模型

设 Q 为第i处设厂的规模,即年产产品数量(万吨),则有
i
Q 1 = y 11 + y 12 , Q 2 = y 21 + y 22 , Q 3 = y 31 + y 32
据每吨产品需3吨原料,有 (生产的产品全部+ x 31 = 3 ( y 11 + y 12 )
)
例8:厂址选择问题 甲、乙、丙三地,每地都生产一定数量的原料,也消耗一定 数量的产品(如下表)。已知制成每吨产品需3吨原料,各地之 间的距离为:甲—乙,150千米;甲—丙,100千米;乙—丙, 200千米。假定每万吨原料运输1千米的运价为5000元,每万吨 产品运输1千米的运价为6000元。由于地区差异,在不同地点设 厂的生产费用也不同。试问究竟在哪些地方设厂,规模多大, 才能使总费用最小?另外,由于其他条件限制,在乙处建厂的 规模(生产的产品数量)不能超过5万吨
解:设xij为第i年投资到第j个方向的资金
第一年年初: 第二年年初: 第三年年初: 第三年底:
x11 + x12 = 3
x12 ≤ 2 x23 ≤ 1.5 x34 ≤ 1
x21 + x23 = 1.2 x11
x31 + x34 = 1.5x12 +1.2x21
z = 1.6 x23 + 1.2 x31 + 1.4 x34
2 x2 + x3 + 3x5 + 2 x6 + x7 = 10000 x1 + x3 + 3x4 + 2 x6 + 3x7 + 4 x8 = 10000
x j ≥ 0 . j = 1, 2 , 3 , K ,8
例6:某厂在今后四个月内需租用仓库堆存货物。已知各个月所需 的仓库面积数如表1所示。又知,当租借合同期限越长时,场地租 借费用享受的折扣优待越大,有关数据如表2所示。租借仓库的合 同每月初都可办理,每份合同应具体说明租借的场地面积数和租借 期限。工厂在任何一个月初办理签约时,可签一份,也可同时签若 干份租借场地面积数和租借期限不同的合同。为使所付的场地总租 借费用最少,试建立一个线性规划模型。

线性规划问题及其数学模型

线性规划问题及其数学模型
就代表一个具体方案一般这些变量取值是非负 且连续的;
2要有各种资源和使用有关资源的技术数据 创造新价值的数据;
a i; jcj(i1 , m ;j1 , n)
共同的特征继续
3 存在可以量化的约束条件这些约束条件可 以用一组线性等式或线性不等式来表示;
4 要有一个达到目标的要求它可用决策变量 的线性函数称为目标函数来表示按问题的 不同要求目标函数实现最大化或最小化
约束条件:
a
21
x1
a22
x
2
a2n xn
b2
a
m
1
x1
am 2 x2
a mn xn
bn
x1 , x2 , , xn 0
线性规划问题的几种表示形式
M
' 1
:
n
目标函数:max z c j x j
j 1
约束条件:
n
aij x j
j 1
bi ,
i 1,2, ,m
x
j
0,
j 1,2, ,n
弛变量x6; 3 在第二个约束不等式≥号的左端减去剩
余变量x7; 4 令z′= -z把求min z 改为求max z′即可得到
该问题的标准型
例4的标准型
max z ' x1 2 x 2 3( x 4 x5 ) 0 x6 0 x7
x1 x2 ( x4 x5 ) x6
7
x1 x2 ( x4 x5 )
经第2工厂后的水质要求:
[0.8(2x1)(1.4x2 )] 2
700
1000
数学模型
目标函数 约束条件
min z 1000 x1 800 x2 x1 1
0.8 x1 x2 1.6 x1 2 x2 1.4 x1 , x2 0

第一章 线性规划

第一章 线性规划
对于标准形式的线性规划问题若约束方程系数矩阵中不存在现成的初始可行基则不能简单的用上述单纯形法而通常采用所谓的人工变量法
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品

乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两

线性规划问题

线性规划问题

线性规划问题线性规划是一种数学优化方法,用于解决线性约束下的最优化问题。

早在20世纪40年代,线性规划就被广泛应用于军事、经济、运输等领域。

随着计算机技术的发展,线性规划在实际问题中的应用变得更加广泛。

线性规划问题由目标函数、约束条件以及决策变量组成。

目标函数是我们要最小化或最大化的数值量,约束条件是问题的限制条件,决策变量是我们需要确定的变量。

线性规划的数学模型可以表示为:最小化(或最大化):C^T * X约束条件为:AX ≤ B, X ≥ 0其中,C是目标函数的系数向量,X是决策变量的向量,A是约束条件的系数矩阵,B是约束条件的右侧常数向量。

线性规划问题的求解方法主要有单纯形法和内点法。

单纯形法是一种迭代算法,通过不断移动基变量和非基变量来寻找最优解。

内点法则通过寻找内点来逼近最优解,相比于单纯形法,内点法在高维问题上更有优势。

线性规划问题的应用非常广泛。

例如,在生产计划中,我们需要考虑资源的有限性和生产过程中的约束条件,通过线性规划可以优化生产计划,使生产成本最低。

在供应链管理中,线性规划可用于优化货物的选择和运输方式,最大化利润。

在金融领域,线性规划可用于投资组合分配的优化,以达到风险最小化或收益最大化。

线性规划的应用也面临一些挑战。

首先,线性规划问题的求解可能非常耗时,特别是在高维情况下。

其次,线性规划的模型只适用于线性问题,无法处理非线性的问题。

最后,线性规划问题的结果可能依赖于输入参数的准确性,如果参数不准确,可能导致结果的偏差。

为了克服这些挑战,研究人员一直在不断改进线性规划算法。

一些改进包括使用启发式算法来加速求解过程,使用混合整数线性规划来处理离散决策变量,以及引入鲁棒线性规划来处理参数不确定性。

总之,线性规划是一种强大的数学工具,可以用于解决各种实际问题。

虽然线性规划问题存在一些挑战,但通过不断改进算法和方法,我们可以提高线性规划的求解效率和准确性,使其在实际应用中发挥更大的作用。

运筹学第四版第二章线性规划及单纯形法

运筹学第四版第二章线性规划及单纯形法

方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目

设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。

《线性规划》课件

《线性规划》课件
x1, x2, , xn≥0
其中,bi≥0 (i=1,2,,m)
不符合标准型的几个方面:
⑴目标函数为 min z=c1x1+c2x2++cnxn 令z=-z ,变为 max z= -c1x1- c2x2- -cnxn
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
⑴用一组变量表示某个 线性规划模型的一般形式
方案,一般这些变量取 如下:
值是非负的。
⑵存在一定的约束条件, 可以用线性等式或线性 不等式来表示。
max(min)z c1x1 c2 x2 cn xn a11x1 a12 x2 a1n xn (, )b1 a21x1 a22 x2 a2n xn (, )b2
σ j 3-6M –1+M –1+3M 0 -M 0 0 X4 3 -2 0 1 0 0 -1 10 X6 0 (1) 0 0 -1 1 -2 1 X3 -2 0 1 0 0 0 1 1 σ j 1 -1+M 0 0 -M 0 1-3M X4 (3) 0 0 1 -2 2 -5 12 X2 0 1 0 0 -1 1 -2 1 X3 -2 0 1 0 0 0 1 1
用单纯行法求解线性规划问题后,应回答下面 几个问题:
⑴是否解无界?上面的步骤已作出回答。
⑵是否无可行解?求解后,若人工变量都已取 0,则有可行解;否则,无可行解。
⑶唯一最优解还是无穷多最优解?在最后的单 纯形表中,若所有非基变量的检验数都严格小于0, 则为唯一最优解;若存在某个非基变量的检验数等 于0,则有无穷多最优解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回
一般线性规划问题的标准形化
• min Z=CX 等价于 max Z’ = -CX • “” 约束:加入非负松驰变量
例: 目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8 4x1 16 4x2 12 x 1、 x 2 0
上页
下页
返回
一般线性规划问题的标准形化
上页 下页 返回
目标函数最大 线性规划问题的标准形式 • 标准形式为: 约束条件等式 决策变量非负
Max Z c1 x1 c2 x2 ... cn xn a11 x1 a12 x2 ... a1n xn b1 a21 x1 a22 x2 ... a2 n xn b2 .......................................... a x a x ... a x b m2 2 mn n m m1 1 b1 , b2 ,...bm 0 x1 , x2 ,..., xn 0
上页
下页
返回
如何安排生产 使利润最甲

上页
下页
返回
什么是线性规划?
在工业、农业、国防、建筑、交通运输、科研、商业 等各种活动中,常常要求对资源进行统一分配、全面规划 和合理调度,以便从各种可能安排方案中找出最优的计划 或设计,用以指导生产。在这类问题中,一方面有期望达 到最优要求的目标(例如希望产值最高或消耗最少),另 一方面又要受到一定条件的限制(例如人力、物力、财力 的限制),如何安排才能使成效最高,消耗既定资源取得 的收益最大,或达到既定收益所消耗的资源最少。这可以 借助线性规划(Linear Programming,LP)来解决。
上页 下页 返回
第一节
线性规划问题 及其数学模型
线性规划问题的提出 线性规划的基本概念 线性规划的数学模型 线性规划问题的标准形式
继续
返回
•问题的提出
• 引例: 生产计划问题
设备 原材料 A 原材料 B 利润
甲 1 4 0 2
乙 2 0 4 3
资源限量 8 台时 16kg 12kg
上页 下页 返回
经上述分析,可将该问题表示为:
max z=7 x1十5 x2
3 x1十2 x2 ≤ 90 4 x1十6 x2 ≤ 200 7 x2 ≤ 210 x 1 ≥ 0 ,x 2 ≥ 0
这种数学表达方式,称为该问题的一种数学模型。
上页 下页 返回
例3:投资问题
某单位有一批资金用于四个工程项目的投资, 用于各工程项目时所得之净收益(投入资金的百 分比)如下表所示:
• 设xj为第j种天然饲料的使用量,则aij xj为第j 种天然饲料含有第i种营养成分的数量。则:
• 考虑到非负约束和目标要求,其数学模型为:
上页
下页
返回
线性规划三要素
线性规划(Linear Programming,LP)有:
• 一组有待决策的变量 (指模型中要求解的未知量) • 一个线性的目标函数 (指模型中要达到的目标的数学表达式) • 一组线性的约束条件 (指模型中的变量取值所需要满足的一切限制 条件)
x1
x2
上页
下页
返回
第2步 --定义目标函数
z ——利润
Max Z =
x1 +
x2
上页
下页
返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页
下页
返回
对我们有 何限制?
上页
下页
返回
第3步 --表示约束条件
x1 + 2 x2 8 4 x1 16 4 x2 12 x1、 x2 0
• min Z=CX 等价于 max Z’ = -CX • “” 约束:加入非负松驰变量 例: max z 2 x1 3 x2 0 x3 0 x4 0 x5
8 x1 2 x2 x3 4 x x4 16 1 4 x2 x5 12 x1 , x2 , x3 , x4 , x5 0
上页 下页 返回
x1 x 2 X ... xn
– 用矩阵表示
max Z CX max Z CX A—系数矩阵 AX b C—价值向量 AX b b—资源向量 X 0 X 0
0 0 a11 .....a 1 n a ..... a 11 1n 0 0 (P , P2 ,..., P ) 0 .............. 1 3 .............. ( P1 , P2 ,..., Pn ) 0 ... A a ...... ... a mn m1 0 a ......a mn m1 0 资源向量 C - 价值向量X - 决策变量向量
上页
下页
返回
例2(书)
某厂生产甲乙两种产品,已知制成一吨产品 甲需用资源A 3吨,资源B 4m3;制成一吨产品乙 需用资源A 2吨,资源B 6m3,资源c 7个单位。 若一吨产品甲和乙的经济价值分别为7万元和5万 元,三种资源的限制量分别为90吨、200m3和210 个单位,试决定应生产这两种产品各多少吨才能 使创造的总经济价值最高?
第一章 线形规划
本章学习重点
线性规划是运筹学中比较成熟的一个分支 ,它具有成熟而有效的求解方法,可以借助于 计算机进行求解,在军事、经济等领域中具有 广泛的应用。学习本章,要掌握线性规划的数 学模型(建模以及把不同形式的线性规划问题 化为标准形式的方法)、求解方法。
上页 下页 返回
线性规划的地位与研究进程
上页 下页 返回
第三步:确定目标函数 max z=0.15x1+0.1x2+0.08x3+0.12x4 数学模型 max z = 0.15x1 + 0.1x2 + 0.08x3 + 0.12x4 x1 - x2 - x3 - x4 ≤ 0 x2 + x3 - x4 ≥ 0 x1 + x2 + x3 + x4 = 1 xj ≥0,j=1,2,…,4
• 作为一门科学的线性规划,最早可以追溯到 20 世 纪 30 年代末,前苏联数学家康德洛维奇等人关于 生产 组 织和 运 输 问题 研 究 所作 的 开 拓性 工 作 。 1947年,美国数学家G.B.Dantzig以及美国空军的 SCOOP研究小组提出了线性规划问题的一般性解法 即单纯形法,奠定了线性规划的理论基础。50年代 后,随着电子计算机的介入,线性规划的应用越 来越普遍,在生产、管理、军事等方面发挥着重 要的作用。 • 线性规划目前仍然还在发展,主要是:大型线性 规划问题,线性规划解法研究等。
上页 下页 返回
– 用向量表示
max Z CX n Pj x j b i 1 x 0 j 1,2,...n j 其中:
未知数 向量
C (c1 , c 2 ,...c n ) a1 j a2 j Pj ... amj b1 b 2 b ... bm
上页
下页
返回
线性规划模型的一般形式
Max(min) z c1 x1 c2 x2 ... cn xn a11 x1 a12 x2 ... a1n xn (, )b1 a x a x ... a x (, )b 21 1 22 2 2n n 2 ................................................... a x a x ... a x (, )b m2 2 mn n m m1 1 x1 , x2 ,..., xn (, )0
设备 原材料 A 原材料 B 利润 甲 1 4 0 2 乙 2 0 4 3 资源限量 8 台时 16kg 12kg
上页
下页
返回
该计划的数学模型
目标函数
约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x 1、 x 2 0
x1
x2
上页 下页 返回
工程项目
收益(%)
A 15
B 10
C 8
D 12
由于某种原因,决定用于项目A的投资不大于 其它各项投资之和;而用于项目B和C的投资不小 于项目D的投资。试确定使该单位收益最大的投 资分配方案。
上页
下页
返回
第一步:确定变量 x1、 x2 、 x3 、 x4 分别表示用于项目A、 B、C、D的投资百分数。 第二步:确定约束条件 x1- x2 - x3 - x4≤0 x2 + x3 - x4≥0 x1 + x2 + x3 + x4 =1 xj ≥0,j=1,2,…,4
•基本概念
决策变量(Decision variables ) 它是决策变量的函数 目标函数(Objective function) 约束条件(Constraint conditions ) 指决策变量取值时受到 可行域(Feasible region) 的各种资源条件的限制 ,通常表达为含决策变 最优解(Optimal solution) 量的等式或不等式。
上页 下页 返回
线性规划研究的内容
• 在现有的资源条件下,如何充分利用资 源,使任务或目标完成得最好(求极大 化问题)。
• 在给定目标下,如何以最少的资源消耗 ,实现这个目标(求极小化问题)。
上页
下页
返回
• 第1步 -确定决策变量
•设
x1 ——甲的产量 x 2 ——乙的产量
是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 定和控制。
相关文档
最新文档