aspen 换热器选型指导

合集下载

aspen使用入门第6讲plus换热器的模拟(60页)

aspen使用入门第6讲plus换热器的模拟(60页)

5.3 两股物流的换热器
功能:在两个物流之间换热
用途:当知道几何尺寸时,核算管壳式换热 器
HeatX输入规定
窗口名称
作用
Setup
规定简捷或详细的计算、流动方向、换热器压降、传热系数计算 方法和膜系数。
Options
规定热侧和冷侧不同的闪蒸收敛参数和有效相态,HeatX收敛参 数和模块规定报告选项。
1、简捷计算(shortcut) 简捷计算只能与设计或模拟选项配合。简捷
计算不考虑换热器的几何结构对传热和压降的影 响,人为给定传热系数和压降的数值。
使用设计(design)选项时,需设定热(冷)物 流的出口状态或换热负荷,模块计算达到指定换 热要求所需的换热面积。
使用模拟(simulation)选项时,需设定换热 面积,模块计算两股物流的出口状态。
常数 几何尺寸 用户子程序
Heat Transfer Coefficient (传热系数)
常数值
特定相态的值 幂率表达式 膜系数 换热器几何尺寸 用户子程序
Film Coefficient (膜系数)
常数值 特定相态的值 幂率表达式 由几何尺寸计算
Pressure Drop (压降)
出口压力 由几何尺寸计算
HeatX—详细计算 (2)
HeatX的简捷法核算与严格法核算比较
■ 用Setup Specifications页上的 Calculation Type(核算类型)字段来规 定简捷法或严格法核算。
■ 简捷法核算不需要换热器结构或几何尺寸 数据。
■ 对于严格法核算模型,可以用换热器几何 尺寸去估算:
Heater— 应用示例 (3)
流量为 1000 kg/hr、压力为 0.11 MPa、 含乙醇70%w、 水 30%w的饱和蒸汽在蒸汽冷凝器 中部分冷凝,冷凝物流的汽/液比 (摩尔)=1/3。求冷凝器热负荷。

基于Aspen EDR 的管壳式换热器的设计

基于Aspen EDR 的管壳式换热器的设计

2019年第38卷增刊1 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS收稿日期:2019-04-28;修改稿日期:2019-05-13。

第一作者及通信作者:孟雪(1988—),女,硕士,工程师,研究方向为化工设计。

E-mail :mengxuenanjing@ 。

引用本文:孟雪, 荆恒铸, 曹真真, 等. 基于Aspen EDR 的管壳式换热器的设计[J]. 化工进展, 2019, 38(s1): 275–277.Citation: MEGN Xue, JING Hengzhu, CAO Zhenzhen, et al. Design of shell and tube heat exchanger based on Aspen EDR[J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 275–277.·275·化 工 进展DOI :10.16085/j.issn.1000–6613.2019–0680基于Aspen EDR 的管壳式换热器的设计孟雪,荆恒铸,曹真真,李红明(河南心连心化学工业集团股份有限公司,河南 新乡 453731)摘要:管壳式换热器作为一种高效换热装置在石化领域得到广泛应用,但传统计算方法非常复杂,因此软件设计已逐步代替传统手算方法成为工程设计人员的主要设计手段。

本文通过对含氢气、一氧化碳、氮气等气体的合成气冷却器进行设计,探讨了管壳式换热器的选型原则,介绍了Aspen EDR 设计软件使用要点,详细阐述了Aspen EDR 软件设计和校核管壳式换热器的步骤,着重介绍了气体冷却器设计过程中换热器的参数选取及要点,并对设计过程中碰到的问题及调整优化方法进行了简单介绍。

设计结果表明,Aspen EDR 软件设计的结果不仅能达到工艺要求,而且计算过程快捷明了,极大简化了手工计算的过程,提高了设计效率。

运用aspen及其套件设计换热器

运用aspen及其套件设计换热器

运用aspen及其套件EDR设计换热器青海大学化工学院张鹏宇目录1.生产要求设定2.启动aspen设置前奏2.1确定合适的modle library 模块2.2建立流程图2.3输入工程标题2.4输入组分2.5选择物性方法2.6输入物流参数3.进行换热器选型3.1采用shortcut简捷计算3.2填写估计的总传热系数3.3模拟计算,列出简捷计算结果3.4按国家标准选型4.选择Detailed详细核算4.1设置冷热流体走程4.2使用Design Specification调整冷却水流率4.3设置壳程管程压降计算方式4.4设置总传热系数计算方式4.5填写冷热流体侧污垢系数4.6填写壳程管程数据4.7填写折流板及管嘴数据4.8运行计算,列出换热器详细计算结果4.8.1 exchanger details换热器详细数据4.8.2 pres drop 各程压力降及压力降分析4.8.3 流速探讨及分析5.用EDR 软件核算,出图5.1 数据传递5.2 EDR数据检查,核对补充5.3运行计算,列出换热器详细计算结果5.3.1 EDR换热器详细数据5.3.2 pres drop 各程压力降及压力降分析5.3.3 流速探讨及分析5.4列出换热器装配图5.5列出换热器布管图和设备数据5.6打印出图6.对比Aspen换热器详细计算,说明EDR其优缺点。

1.生产要求设定某生产过程中,需处理每年114000吨/年苯,现将苯从80度冷却至40度,冷却介质采用循环水。

循环水入口温度32.5度,出口温度取37.5度。

要求换热器裕度为10%~25%,换热器内流体流动阻力小于50Kpa.2.启动ASPEN设置前奏2.1选择合适的modle library 模块启动ASPEN,新打开一个空白的blank文件,该换热器用循环水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器。

Aspen第三讲要点

Aspen第三讲要点

Aspen第三讲————传热单元模型传热单元属换热器型(Heat Exchanger)共有七种模型,具体如下图所示。

一般用于改变单股物流的温度、压力和相态,比如加热器或冷却器。

Heater模型适用于简单加热,而不需要考虑使用什么样的加热介质时的换热设备类型,其连接图如下:Heater 模型(Block )需要设定两种参数:(1) 闪蒸指标(flash specification )所有模块的输入信息均相似进行定义出口流体的温度(Temperature)、压力(Pressure)、温度增量(temperature change)、蒸汽分率(vapor fraction)、过热度(Degree of superheating)、过冷度(Degree of subcooling)、热负荷(Heat duty)等选项需要指定具体数值,但不需要全部指定,通过点击下拉箭头任选2种进行指定即可。

(2)有效相态(valid phase)其中有蒸汽、液体、固体、汽-液、汽-液-液、液-游离水、汽-液-游离水等选项,同上,任选一种即可。

示例:例1: 20℃、0.41MPa、4000kg/hr流量的软水在锅炉中在压力不变的情况下,加热后全部成为饱和的水蒸气进入总管。

求所需的锅炉供热量。

解:第一步:建立换热模型,如下图所示:第二步:进行参数设定;首先是对整个单元进行Set up,如下图所示:在组分(component)中进行组分的定义,根据题意,所加热的组分是水(water)。

在物性(Properties)中,进行物性方法的选择,在本题中,涉及汽-液两相,较为复杂,我们选择“NRTL”物性方法。

在物流(Stream)中,根据题意,将已知条件如温度、压力、流量等信息输入。

在Block中进行该操作单元的相关设置:热焓值热负荷例2: 流量为100kg/hr、压力为0.2MPa、温度为20℃的丙酮通过一电加热器。

当加热功率分别为2kW、5kW、10kW和20kW,且压力不变时,求出口物流的状态。

换热器的选型和设计指南

换热器的选型和设计指南

换热器的选型和设计指南换热器是一种用于传递热量的设备,广泛应用于各个行业和领域,包括化工、石油、电力、食品等。

换热器的选型和设计至关重要,直接影响设备的热效率和工作效果。

本文将从选型和设计的角度,提供一些指南和建议。

一、换热器的选型指南1.确定换热器的功能:在选择换热器之前,需要明确所需的热交换功能,例如加热、冷却、蒸发、凝结等。

同时还需考虑所需的传热方式,如对流传热、辐射传热等。

2.确定换热器的工作参数:根据具体的应用需求,确定换热器的工作参数,包括流体的温度、压力、流量等。

这些参数将直接影响换热器的尺寸、型号和材料选择。

3.选择适当的换热器类型:根据应用需求和流体性质,选择合适的换热器类型,包括壳管式换热器、板式换热器、管束式换热器等。

每种类型都有其适用的特点和限制,需要根据具体场景进行选择。

4.评估换热器的热性能:除了换热器类型,还需评估不同换热器的热性能,包括传热系数、压降、能耗等。

通过对不同类型和厂家的换热器性能进行比较,选择性能最佳的产品。

5.考虑维护和清洁:换热器在使用过程中需要进行维护和清洁,因此需要选择易于维护和清洁的换热器类型和结构。

同时还需考虑清洗液的使用、清洗方法等。

二、换热器的设计指南1.确定换热面积:根据流体的热交换需求和换热器的热传递特性,计算和确定所需的换热面积。

换热面积的大小将直接影响换热器的尺寸和材料成本。

2.确定流体流动方式:根据流体的性质和热交换需求,确定流体的流动方式,包括并流、逆流等。

不同的流动方式将影响换热器的传热效果和压降。

3.选择合适的材料:根据工作环境和流体的性质,选择合适的材料,包括换热管的材料、壳体材料等。

需要考虑材料的耐腐蚀性、强度和耐高温性能。

4.考虑换热器的安全性:换热器设计时需考虑安全因素,包括避免流体泄漏、冲击和爆炸等。

需要确保换热器的结构强度和密封性能,以及安装和使用过程中的安全措施。

5.优化换热器设计:通过计算和模拟,优化换热器的设计,包括优化流体流动路径、调整管束布置、增加换热面积等,以提高换热器的热效率和运行性能。

aspenV10以上版本换热网络设计教程

aspenV10以上版本换热网络设计教程

aspenV10以上版本换热网络设计教程一、Aspen导入1.打开一个Aspen 模拟好的源文件2.激活Energy Saving3.等计算完后,打开Energy Saving页面4.启动Aspen Energy Analyzer点击Yes:之后就进入Aspen Energy Analyzer软件页面:5.计算最小温差设置最小传热温差范围和步长,点击Calculate:通过成本和最低传热温差图得最低点,并将最低点输入左下角DTmin:6.目标查看窗口数字1:物流名称,不需要的可以删除,比如流量太小或能量太少数字2:冷热物流符号,蓝色代表冷物流,红色代表热物流,箭头弯的代表有相变,点击弯箭头可显示该物流的区间能量变化数据。

数字3和4:代表进出口温度数字5:热容流率数字6:该物流总的能量数字8:该物流质量流量数字9:该物流比热7.自动设计换热网络右击Scenario1选择Recommended Designs:8.Recommend Designs参数设置窗口9.自动设计方案无法正常运行如果出现温差太小的问题,如图:则双击对应的流股,点击“Delete All”:再次点击“Recommend Designs”,可以显示自动设计的三个方案如左上侧。

各方案比较:分析三个方案的数据——可比较总费用、换热器面积、换热单元数、设备投资费用、冷热公用工程费用、操作费用,还可查看各参数目标值。

一般以年度总费用最小为目标,则选择方案。

由于新版本推荐出来的方案都带有黄色换热器,说明该换热方案不可行,点击下方或在该方案名称上右键“Enter Retrofit mode”,黄色换热器就会消失。

点击下方或在该方案名称上右键“enter Retrofit mode”会跳出现“options”对话框,可以直接关掉,也可以点击“Enter Retrofit Environment”:如果点击“Enter Retrofit Environment”,则左上方显示该方案在新的Scenario1 1目录内,可以对其编辑,进一步优化。

ASpen换热器教程

ASpen换热器教程

Jump Start: Activated Energy Analysis in Aspen Plus®and Aspen HYSYS®A Brief Tutorial (and supplement to training and online documentation)Jack Zhang, Product Management, Aspen Technology, Inc.Katherine Hird, Product Marketing, Aspen Technology, Inc.Table of Contents Introduction (1)Setting Up an Energy Analysis Project (2)Generating Process Revamp Solutions (10)Performing Multiple Revamp Solutions (12)Introducing Heat Exchanger Changes to Process Flowsheet (14)Analyzing and Fine-Tuning Heat Integration Results (16)Viewing Heat Exchanger Network Diagram and Composite Curves (17)Adding and Comparing Multiple Heat Integration Projects (19)Obtaining Heat Transfer Coefficients from Activated EDR (20)Filtering Streams by Pinch (22)Conclusions (23)Additional Resources (23)IntroductionIn today’s business climate, profitability is of pinnacle importance. One of the challenges facing industrial plants in reaching profitability is the minimization of annual costs related to utility consumption. In order to achieve a reductionin utility costs, many plants choose to perform an integration of heat exchanger networks. The specific network of heat exchangers that make best use of the available in-house heating and cooling is constructed using pinch calculations. However, these calculations can be daunting for simple plant setups with little equipment, and only increase in difficulty with a higher sophistication of plant design.To respond to this challenge, Aspen Technology has introduced an innovative approach to reduce energy use and greenhouse gas outputs in its Activated Energy Analysis offering. Activated Energy Analysis works inside of Aspen HYSYS and Aspen Plus, with no need to operate another program concurrently.Using Activated Energy Analysis, a summary of annual process energy and greenhouse gas consumptions and expenditures, along with potential savings through process upgrades and redesign, are provided. Activated Energy Analysis generates extensive revamp scenarios that can be implemented to reduce fresh utility dependence, and shows details relevant to the optimization including required capital cost, annual reduction in utility cost, and payback period for investment.The basic steps towards best utilizing Activated Energy Analysis will be described in this guide, as will advanced techniques. Some features denoted in this guide are only available in the V8.8 or later release of Activated Energy Analysis, but all basic workflow is included in Activated Energy Analysis V8.0 and higher.As a reminder, it is free for current AspenTech customers to upgrade to the latest version of the aspenONE® Engineering suite. Simply contact AspenTech support via to do so.This document is not meant to be used as a stand-alone reference document. AspenTech recommends that a range of other resources be referenced to give the user a comprehensive view of how to use Activated Energy Analysis. These may include:•AspenTech support website ()•AspenTech courseware available in on-line and in-person versions•AspenTech business consultants•Additional Jump Start Guides, available on a variety of related topicsThis guide covers how to utilize Activated Energy Analysis to analyze and optimize energy in Aspen Plus and Aspen HYSYS. It assumes that the user has Aspen HYSYS or Aspen Plus V8.0 or higher installed on her or his computer and a functional process design completed.Setting Up an Energy Analysis ProjectAfter completing a process design in Aspen HYSYS or Aspen Plus, the maximum energy saving opportunity can be achieved through Activated Energy Analysis. Begin this process by clicking any empty blue space on the Energy Panel found in the Activation Dashboard. Clicking on the empty space, as demonstrated in Figure 1a, will bring up the energy configuration page, as shown in Figure 1b.Figure 1a.Utilizing the Energy Panel to launch the energy configuration page.Figure 1b. The energy configuration page to specify parameters.The energy configuration page provides areas to specify parameters of the project before activating energy analysis. Areas that can be customized include: process type, approach temperature, carbon fee, and scope, as well as the utility assignments table. The process type can be customized by clicking the drop down menu and selecting the correct process type, as shown in Figure 2a. Approach temperature is defaulted based on the process type, but this value and the carbon fee value can be customized by entering specified amounts, as seen in Figure 2b. The desired flowsheets and sub-flowsheets included in Activated Energy Analysis can be specified by selecting the “Define Scope” button and using the check boxes on the “Energy Analysis Scope” window that appears, select the regions of the flowsheet that should be analyzed as seen in Figure 2c. In this example, only the Preheat Train (TPL1) was chosen to be analyzed.Figure 2a.Specifying process type parameters utilizing the energy configuration form.Figure 2b.Specifying approach temperature and carbon fee in the energy configuration form.Figure 2c.Specifying the energy analysis scope using the energy analysis form.Once the parameters for your analysis have been set, run the targeting step utilizing Activated Energy Analysis. This can be completed in a few different ways. The first way is to select the “Analyze Energy Savings” button at the bottom of the Energy Configuration Page, as shown in Figure 3. Additionally, this step can be run by either scrolling or clicking on the “off” button at the bottom right corner of the blue Energy Panel of the Activation Dashboard, also shown in Figure 3.Figure 3. Launching Activated Energy Analysis through the energy analysis form or Energy Panel.Once Activated Energy Analysis is turned on, it will go through a series of calculation steps, outlined on the top of blue energy panel as “Loading Analysis” and “Calculating…”, shown in Figure 3. Once these steps are completed, the available energy savings of the process are reported. An overall report of the available energy savings is displayed on the blue Energy Panel of the Activation Dashboard, as highlighted in Figure 4.Figure 4. An overview of potential energy savings highlighted in the energy panel and the Savings Summary form.The number reported on the left hand side of the Energy Panel is the potential amount of energy that could be saved and the number reported on the right hand side is the percent, as compared to the current energy expenditures, that the energy could be reduced. These values are calculated using the difference between the actual utility consumption onthe flowsheet and the utilities target, calculated by pinch technology. More detailed savings are reported in the “Savings Summary” tab shown in Figure 4. The savings summary tab can be shown as both the duty and cost savings by selecting the corresponding radio button. The savings are displayed for the total, heating and cooling utilities, and the carbon emissions. The graphs at the top of the “Savings Summary” tab display the current actual utility, or carbon of the process, compared to the target, or ideal utility or carbon emission of the process. The table below highlights each of these parameters in table format to numerically organize potential savings.For ease of use, the user can right click on the Energy Analysis tab and select “New Vertical Tab Group” to view the Energy Analysis results side-by-side with simulation. This new feature is shown in Figure 5 below.Figure 5. The energy analysis form can be viewed side-by-side with the simulation for ease of use.Click on the utilities tab under the Energy Analysis parent tab to view more detailed information of each utility’s target and consumption amounts. Figure 6 shows the information presented in the Utilities tab.Figure 6. Utilities tab displays detailed utilities information for activated energy analysis.The utilities are listed with the hot utilities at the top of the table and the cold utilities listed at the bottom. This table displays information about the actual and target consumption and savings potential for each utility. The energy cost savings in both absolute and relative terms are also listed for each utility, along with the approach temperature, which can be customized by entering a value into the table. Additionally, there is a column with a “Status” for each utility. This column indicates if the utilities are sufficient to calculate the heating and cooling target.The “Carbon Emissions” tab displays a table with more detailed information about the carbon emissions of each utility in the process, as shown in Figure 7.Figure 7. Carbon Emissions tab displays detailed carbon emission information for activated energy analysis.It displays the information about the actual and target carbon emissions and savings potential associated with each utility. Additionally, the carbon emission cost savings in both absolute and relative terms are listed for each utility used in the process.The “Exchangers” tab on the Activated Energy Analysis form, shown in Figure 8 displays all the heat exchangers being analyzed in the process, including heaters, coolers, and process-process heat exchangers.Figure 8. Exchangers tab displays detailed exchanger information for activated energy analysis.This form displays the key information of the exchangers on the flowsheet. Hovering the mouse over the “Hot Side Fluid” and “Cold Side Fluid” text will display the hot side process pinch and cold side process pinch temperatures, respectively. The energy inefficiency of the process can be viewed through the recoverable duty column which gives the duty for each exchanger. This information is pertinent when deciding design change solutions later in the workflow.Note: For Aspen Plus users, only utilities defined in the Utilities Object Manager will be considered in the targeting process for utility switching. For Aspen HYSYS users, all utilities defined in the Process Utilities Manager will be considered. Undesired utilities need to be removed from the Process Utilities Manager in Aspen HYSYS if they are unavailable for selection.This table shows a listing of the heat exchangers included in the heat integration, each exchanger’s duty, temperatures, area, heat transfer coefficients, and hot and cold fluids. In version 8.4 or higher of Activated Energy Analysis, a column titled “Ideas for Changes” appears. In this column, if a light bulb appears, Activated Energy Analysis has detected a simple design change (i.e. changing the temperature of a heat exchanger inlet stream) that could lead to more efficient energy usage in the process. Additionally, heat transfer coefficients obtained from rigorous Aspen Exchanger Design and Rating models can be used to improve the accuracy of the heat exchangers being used in the heat integration model. See the Obtaining Heat Transfer Coefficients from the Activated EDR section later in this guide to learn more.Generating Process Revamp SolutionsTo help achieve the saving potential given by Activated Energy Analysis, revamp solutions can be generated fromthe “Design Changes” tab of the Activated Energy Analysis form, as shown in Figure 9. These solutions include the modification, addition, or relocation of heat exchangers in the process. For the addition and relocation of heat exchangers, the user can specify how many addition and relocation options they want presented, by selecting from the range of 1-5 for both change types in the “Design Changes” tab, as highlighted in Figure 9.Figure 9. The Design Changes tab specifying the number of retrofit solutions suggested.Revamp solutions are generated by clicking the “Find Design Changes” button which will launch the 3 types of design solutions to be produced, resulting in Figure 10.Figure 10.Selecting the “Find Design Changes” button will produce the available retrofit solutions.Once the retrofit analysis is complete, the table in the “Final Design Changes” tab is populated with retrofit solutions. The three types of retrofit options explored in more detail are:1. Modify Exchangers: This retrofit option will modify existing exchangers by adding surface areas to save energy. This option will produce one solution. The top gird shows the summary of this retrofit solution.2. Add Exchangers: This retrofit option will add a new heat exchanger to the existing heat exchanger network, one at a time. Users can select 1-5 solutions to be produced. The second grid in Figure 10 shows the possible solutions for this retrofit option, with each row representing a different solution or proposed heat exchanger to be added.3. Relocate Exchangers: This retrofit option will relocate one existing heat exchanger to a different location within the process. Users can select 1-5 solutions to be produced. The third grid in Figure 10 shows the possible solutions for this retrofit option, with each row representing a different solution or proposed heat exchanger to be added.The desired retrofit option can be chosen by clicking the hyperlink of the solution type, which will launch the details of the Energy Analysis Environment, as shown in Figure 11.Figure 11.The detailed Energy Analysis Environment.Select the radio button of the desired solution.Performing Multiple Revamp SolutionsMultiple heat exchanger operations can be performed at once (i.e. a heat exchanger addition following previous heat exchanger relocation) by opening the first revamp solution and then selecting the second revamp from the ribbon in the Energy Analysis environment.For example, if the heat exchanger addition solution is opened, the Energy Analysis Environment and form shown in Figure 12 opens. Clicking one of the retrofit options, highlighted in the ribbon, will add another second revamp solution to the previously existing solution.Figure 12. Performing Multiple Revamp SolutionsAfter instituting the second revamp solution, the scenario form will update. Figure 13 shows a scenario in which the process has added a new heat exchanger followed by the addition of a second heat exchanger.Figure 13. Multiple revamp solutions generatedThe top table in Figure 13 now includes four rows that display the specs for the base case design, the initial revamp, the process after two revamps, and the target. This table can be used to track energy savings as more revamps are included.Introducing Heat Exchanger Changes to Process FlowsheetThis section will demonstrate using Aspen HYSYS. The workflow shown is the same in Aspen Plus, and then save for simulation.Since Activated Energy Analysis is included in Aspen HYSYS and Aspen Plus, heat exchanger modifications, additions, or relocations can be added to the process flowsheet immediately after being created using the specifications provided. Figure 14 shows a crude preheat train modeled in Aspen HYSYS.Figure 14. Crude preheat train flowsheet in Aspen HYSYSAfter running Activated Energy Analysis to obtain a revamp solution, such as the heat exchanger addition case shown in Figure 15, use the “Location of Heat Exchanger” column in the design change table to determine where the new heat exchanger model should be placed on the flowsheet.Figure 15. Heat exchanger solution selection and locationThen, using the “Heat Exchanger Details” table found on the same form, locate the new load for the heat exchangers in the process. Highlighted in Figure 16, Design Load represents the new heat exchanger duties after adding a revamp scenario, while the base load was the load that existed for the initial simulation.Figure 16. New heat exchanger duty specificationsAdd a heat exchanger model to the flowsheet using the model palette in either Aspen HYSYS or Aspen Plus. Then, connect the appropriate streams as shown in Figure 15. Figure 17 shows the crude preheat train with the new heat exchanger addition. The shell side of the heat exchanger has been attached to the stream “PA_3_1”, which previously was a feed to E-113, and the tube side of the heat exchanger has been attached to the stream “crude46”, which was previously a feed to E-106.Figure 17. Crude preheat train flowsheet in Aspen HYSYS with heat exchanger additionThe updated duties for the heat exchangers listed in the table in Figure 16 were then input to all the corresponding heat exchanger models. After converging the simulation with the new heat exchanger duties, the flowsheet is then indicative of the revamp solution. The Activated Energy Analysis panel will update with new saving potentials if opened after updating the flowsheet.Analyzing and Fine-Tuning Heat Integration ResultsWhen finished generating revamp solutions for the process, the scenarios can be compared on one form by selecting the Compare Scenarios option from the ribbon.Figure 18. Comparing scenarios within a projectThe Result Comparison form allows for the quick comparison of revamp solutions for a given heat integration project. Viewing Heat Exchanger Network Diagram and Composite CurvesA copy of Aspen Energy Analyzer can be opened directly from within Activated Energy Analysis. This allows the user to see a detailed heat exchanger network (HEN) diagram and the composite curves used in generating the heat integration. The HEN diagram shows heat exchanger pairings, and approach temperatures for the streams.To access this feature, click the Details button from the ribbon, shown in Figure 19.Figure 19. Details option to open HEN diagram and composite curvesAspen Energy Analyzer then opens directly to the heat exchanger network diagram. An example HEN diagram is shown in Figure 20.Figure 20. HEN Diagram from Aspen Energy AnalyzerAt the bottom of the Aspen Energy Analyzer program, a tab labeled “Performance” is selected. To access the composite curves for the heat integration, select the “Targets” tab adjacent to the “Performance” tab.Figure 21. Accessing composite curves and example composite curves chartAdding and Comparing Multiple Heat Integration ProjectsIn version 8.4 and higher of Activated Energy Analysis, if there are multiple sections of a flowsheet requiring separate analysis (for example, hierarchies), multiple heat integration projects can be completed, and then compared. To do this, while in the Energy Analysis environment, click the Add Project option from the ribbon, shown below, and then set up the new project using the same steps used for the initial project.Note: In order to best use the multiple project feature to study the impact of process changes on energy saving opportunities, the energy dashboard should be deactivated and multiple project analysis then carried out directly inside the Energy Analysis environment.After setting up multiple heat integration projects, they can be compared by clicking the “Compare Projects” button, also on the ribbon. This brings the user to a project comparison form where energy and greenhouse gas saving and reduction potentials can be viewed.Figure 22. Adding a heat integration projectFigure 23. Project comparison formObtaining Heat Transfer Coefficients from Activated EDRIn version 8.4 of Aspen HYSYS or Aspen Plus or higher, Activated EDR can be used to size rigorous heat exchangers. The heat exchanger parameters obtained from Activated EDR can be used to improve heat integration using Activated Energy Analysis on the Saving Potential form, in the Heat Exchanger Details table. The value for the overall heat transfer coefficient can either be calculated in Aspen Energy Analyzer by default, be taken from simulation, or specified directly by the user.Figure 24. Choosing heat exchanger parameter optionsSimulation values and default values remain the same unless heat exchangers are sized using Activated EDR. To do this, return to the Simulation environment, and click the blank area of the EDR Exchanger Feasibility panel from the Activation dashboard, as shown in Figure 25.Figure 25. Initializing Activated EDRThe Exchanger Summary Table will appear showing the heat exchangers and their status as either rigorous or available to convert, as shown in Figure 26. Click a “Convert to Rigorous” button next to a heat exchanger to make it a rigorous model.Figure 26. Converting a heat exchanger to RigorousAfter a heat exchanger has been sized, return to the Saving Potential form in the Energy Analysis environment, and choose “Simulation” on the dropdown. The heat transfer coefficient and heat exchanger area should change to the values obtained from rigorous sizing.(For more information on using Activated EDR or in Aspen HYSYS and Aspen Plus, refer to the Activated EDR webpage, available here.Filtering Streams by PinchIn version 8.4 or higher of Activated Energy Analysis, the Heat Exchanger Details table on the Saving Potential form can be reduced to show streams that are either above, below, or across the pinch line. This enables visualization of process stream location relative to the pinch point and aids in development of process changes that maximize energy saving opportunities. To do this, click the “Hot Side Fluid” or “Cold Side Fluid” column in the table, and then choose an option, as shown in Figure 27.Figure 27. Sorting heat exchanger details table by pinch locationAs shown, sorting this table to only show streams below the pinch reduces the table to that in Figure 28.Figure 28. Reduced heat exchanger details table sorted below the pinchConclusionsActivated Energy Analysis is a tool capable of calculating process energy reliance and greenhouse gas emission, as well as reducing these values through more cost effective utility selection and process revamp. Located within Aspen HYSYS and Aspen Plus, Activated Energy Analysis allows users to generate changes and then implement them directly to simulation to view performance. Activated Energy Analysis, when used in conjunction with the other members of the Activated Analysis family, becomes an even more powerful process optimization tool. Activated Analysis can be implemented to new processes or existing ones to dramatically improve performance.As a reminder, it is free for current AspenTech customers to upgrade to the latest version of the aspenONE® Engineering suite. Simply contact AspenTech support via to do so.Additional ResourcesPublic Website:/products/aspen-hysys.aspx/products/aspen-plus.aspx/Products/Activated-Energy-Analysis//products/aspen-hx-net.aspxSupporting Documents:Activated Energy Analysis Demo File in Aspen HYSYS - Crude Preheat TrainActivated Energy Analysis Demo File in Aspen Plus - Ethylene Separation ProcessOnline Training:/products/aspen-online-trainingAspenTech YouTube Channel:/user/aspentechnologyincAbout AspenTechAspenTech is a leading supplier of software that optimizes process manufacturing—for energy, chemicals, engineering and construction, and other industries that manufacture and produce products from a chemical process. With integrated aspenONE® solutions, process manufacturers can implement best practices for optimizing their engineering, manufacturing, and supply chain operations. As a result, AspenTech customers are better able to increase capacity, improve margins, reduce costs, and becomemore energy efficient. To see how the world’s leading process manufacturers rely on AspenTech to achieve their operational excellence goals, visit .Worldwide HeadquartersAspen Technology, Inc.20 Crosby DriveBedford, MA 01730United Statesphone: +1–781–221–6400fax: +1–781–221–6410info@Regional HeadquartersHouston, TX | USAphone: +1–281–584–1000São Paulo | Brazilphone: +55–11–3443–6261Reading | United Kingdomphone: +44–(0)–1189–226400 Singapore | Republic of Singapore phone: +65–6395–3900Manama | Bahrainphone: +973-13606-400For a complete list of offices, please visit aspen®© 2015 Aspen Technology, Inc. AspenTech®, aspenONE®, the aspenONE® logo, the Aspen leaf logo, and OPTIMIZE are trademarks。

aspen物性数据导入htri

aspen物性数据导入htri
Aspen提供换热器计算 物性数据
1 建一个简单换热器
• 在aspen里选取简单换热器模型,它只有一 股物流,如果换热器两侧物性数据都没有, 可以选择两侧物流都有的换热器换热器模 型。基础工作我就不说了,建好的换热器 见下图。 • 本例模拟水再沸器,组分选水,热力学模 型NRTL-RK。
进口 物流
换热 器定义
物性集设定
气相所需 物性集定义
液相物性 集定义
Hale Waihona Puke Hcurve设定点Hcurve选项, 新建一个ID
选取变量,本例 选气相分率
数据点设置,一 般10个就够了
压力选项,可以 指定进口或出口 压力,也可以是 线性变化
点这个,选中ps2和ps-3,然后 运行。
查看结果
点results, 查看结果。

石化年产15万吨丙烯腈项目-换热器选型说明书

石化年产15万吨丙烯腈项目-换热器选型说明书
144sw6强度校核18e0404强度校核固定管板换热器设计计算计算单位中航一集团航空动力控制系统研究所设计计算条件管程设计压力035mpa设计压力035mpa设计温度壳程圆筒内径di400mm管箱圆筒内径di400mm材料名称q245r材料名称q245r简图计算内容壳程圆筒校核计算前端管箱圆筒校核计算前端管箱封头平盖校核计算后端管箱圆筒校核计算后端管箱封头平盖校核计算管板校核计算21前端管箱筒体计算计算单中航一集团航空动力控制系统研究所计算所依据的标准gb15032011计算条件筒体简图计算压力035mpa设计温度40000mm材料q245r试验温度14800mpa设计温度14775mpa试验温度24500mpa钢板030mm腐蚀300mm焊接接头系数100厚度及重量计算计算厚度047mm有效470mm22厚度名义厚度800mm重量2656kg压力试验时应力校核压力试验类型液压试验试验压力用户输入mpa压力试验允许通过22050mpa试验压力5382mpa校核条件校核结果合格压力及应力计算最大允许工作压力343180mpa设计温度1507mpa14775mpa校核23条件结论合格前端管箱封头计算计算单位中航一集团航空动力控制系统研究所计算所依据的标准gb15032011计算条件椭圆封头简图计算压力035mpa设计温度40000mm曲面深度10000mm材料q245r板材设计温度许用应力14775mpa试验温度许用应力14800mpa钢板负偏030mm腐蚀裕量300mm焊接接头系数100压力试验时应力校核压力试验类型液压试验试验压力12500或由用户输入mpa压力试验允许通过的应力22050mpa试验压力eheh5350mpa校核条件校核结果合格厚度及重量计算24形状系数10000计算厚度047mm有效厚度470mm最小厚度300mm名义厚度800mm结论满足最小厚度要求重量1307kg压力计算最大允许工作压力pweh345185mpa结论合格后端管箱筒体计算计算单中航一集团航空动力控制系统研究所计算所依据的标准gb15032011计算条件筒体简图计算压力035mpa设计温度40000mm材料q245r板材试验温度许用应力14800mpa设计温度许用应力14775mpa25试验温度24500mpa钢板负偏030mm腐蚀裕量300mm焊接接头系数100厚度及重量计算计算厚度047mm有效厚度470mm名义厚度800

南京工业大学ASPEN学习第五章换热器设计教程

南京工业大学ASPEN学习第五章换热器设计教程
第 30 页
HeatX—详细计算
压降 ( Pressure Drop )
• 分别指定热侧和冷侧的出口压力
( Outlet pressure )
• 根据几何结构计算
( Calculated from geometry )
第 31 页
HeatX—详细计算 总传热系数方法 ( U methods )
• 常数 ( Constant )
第 10 页
HeatX—计算类型
计算栏目中有三个选项: 1、简捷计算 Short-cut 2、详细计算 Detailed 3、Hetran 精确计算 Hetran Rigorous 输出Hetran软件(换热器设计专用软件)的输 入文件供其精确计算。 下部的下拉式选择框中也有三个选项: 1、设计 Design 2、核算 Rating 3、模拟 Simulation 两组选项按下述方式配合使用:
从 中 任 选 两 项
第 6 页
Heater — 模型参数
2、有效相态 ( Valid Phase ) (1)蒸汽 (2)液体 (3)固体 (4)汽—液 (5)汽—液—液 (6)液—游离水 (7)汽—液—游离水
第 7 页
HeatX 模型
HeatX 模型用于模拟下述结构的管-壳式换热 器: 逆流/并流(Countercurrent / Cocurrent) 弓形折流板壳程(Segmental Baffle Shell) 圆盘型折流板壳程(Rod Baffle Shell) 光管/低翅片管(Bare/Low-finned Tubes)
第 17 页
HeatX — 换热器设定
11. 传热面积 (Heat transfer area) 12. 热负荷 (Exchanger duty) 13. 几何条件 (Geometry) 在详细计算时采用。

ASPEN板式换热器选型

ASPEN板式换热器选型

ASPEN PLUS换热器设计说明ASPEN PLUS与换热器设计程序的界面本章讲述的是如何使用ASPEN PLUS 自带的换热器设计程序界面(HXINT)在ASPEN PLUS运行与换热器设计程序包之间传输加热/冷却曲线的数据。

本章的主题包括:§生成物性数据§开始运行HTXINT§选择加热/冷却曲线的结果§生成界面文件§在换热器设计程序包中使用界面程序关于换热器设计程序界面用户可以使用HTXINT程序从一个ASPEN PLUS 运行程序中选择加热/冷却曲线数据,并将这些数据传输到某个能被下列换热器设计程序包读取的文件中:§B-JAC中的HETRAN§HTFS的TASC, ACOL, 以及APLE§HTFS的M-系列程序, 包括M-TASC, M-ACOL, 以及M-APLE§HTRI的ST, CST, ACE, PHE以及RKH用户还可以扩展由加热/冷却曲线所得到的默认数据,使其包括换热器设计程序包所需要的所有物性数据。

完成一次ASPEN PLUS 运行之后,在开始运行设计程序之前要先运行HTXINT。

HTXINT将通过一系列提示给用户以指引,为换热器设计程序选择加热/冷却曲线。

HTXINT是一个用于调用ASPEN PLUS 摘要文件工具的应用程序。

在模拟中生成物性数据HTXINT所使用的物性数据来自加热/冷却曲线,许多ASPEN PLUS单元操作模型都可以生成这种曲线。

在使用HTXINT时,用户必须先使用ASPEN PLUS 生成所需的加热/冷却曲线,对于每个想要的单元模块都要生成加热/冷却曲线(一条或多条)。

关于指定加热/冷却曲线的详细细节,请参见第10章“要求加热/冷却曲线计算”一节。

在模块的Hcurve上就可以:1.在“Property Sets”栏下选择“HXDESIGN”2.选择所需采样点的数目。

从ASPEN导入HTRI

从ASPEN导入HTRI

从ASPEN导入HTRI一、简单换热器(只有一个流股)1、建立流程模拟(如B2)2、导入流股特性曲线(只需导入第一个和第三个;也可全部导入,较为省事)3、运行后另存为*.Sum文件最好导出在D盘或E盘根目录下,而且是英文名称。

本例导出文件名为het.sum4、从ASPEN导入5、进入E盘输入htxint het7、选择HTRI8、选择met(单位制)9、写入输出文件名称(直接回车默认为het.Dat)9、选择换热器名称(本例只有B2)10、选择物流号(本例只有一股物流进出)11、选择Y12、选择Y13、输入不超过70字符的描述(随意输入)14、输入不超过70字符的名称(随意输入)15、输入不超过12字符的冷流体物流名称16、是否选择热流股(本例只有冷流股,故选n)17、是否选择另一界面(n)18、数据导入完成,在E盘生成het.dat文件19、打开HTRI,选择换热器类型(本例列管换热器)导入het.dat文件20、热流体缺失21、选择22、点击23、选择PROII,选择热力学方程,然后点击“done”24、点击“compoments”25、选择water26、点击“add”27、选择相态为“液”,数量为“1”28、输入完成,进入下界面,输入热流股质量、温度、压力等参数完成。

二、简单换热器(两个流股)1、建立流程模拟2、添加冷热物流曲线3、运行后导出heater.sun文件4、从ASPEN导入(4~15步过程同上述)16、是否选择另一流股(Y)17、选择B10换热器18、选择另一流股(冷端流股)19、完成20、从HTRI导入heater.dat数据,可见冷热流股都已经导入完成。

AspenPlus在换热器工艺选型物性计算中的应用

AspenPlus在换热器工艺选型物性计算中的应用

开发 所必 须 的 ,准 确可 靠 的物性 数据 是换 热 器热力 计算 的基础 。近 十几年 来 ,物性 数据 愈来 愈 受到 重 视 .国内外许 多学 者都 在进行 物 性数 据 的收集 评 选 工 作 【 ,提 出 了 许 多 比 较 准 确 的 物 性 推 算 模 型 。 目前 获得 介 质物 性 的 方法 主 要有 查 询 物性 手 册 、利用计 算 机软件 模拟 等 。常用 的化 工 软件 有 pro一11及 Aspen Plus。Aspen Plus软 件 [ 叼 提 供 了 完备 的物性数 据 、齐全 的单 元操 作模 型 、严 格 的热 力 学模 型和 先进 的计算 方法 ,可 进行 各种 类 型 的流 程 模 拟 。笔 者 应 用 Aspen Plus软件 对 饱 和 湿 空气 、 烟气 等 的物性 进行 模拟 计算 ,主要包 括换 热 器传 热
13%,满足 工程要 求 ,可以 为换热 器设 计提供 参 考依据
关 键 词 换 热 器 热 物 性 密 度 黏 度 导 热 系数 Aspen Plus
中 图分 类 号 TQ 050.1
DOI:10.16759 ̄.cnki.issn.1007—7251.2016.06.004
Application of Plus Aspen in Physical Property Calculation for Technique Lectotype of H eat Exchanger
Yao Liying Chang Chunmei Ta n g Hai Yao Weiyi
Abstract: The therm al physical properties of the saturated m oist air.the f lue gas and the mixed feeding of the hydrogen heat exchanger are cal culated by applying the Plus Aspen software, including the density, viscosity, t her m al conductibity coeficient,specific heat capacity and etc.Then the results are compa red with the reported values or the measured values.It shows that the deviation between the calculated values from the Plus Aspen and the reported values is less than 1 3% which meets the engineering requirements SO that it S of great preference for the design of the heat exchanger.

AspenPlus换热器模拟

AspenPlus换热器模拟

AspenPlus换热器模拟Aspen Plus 换热器模拟1.概述在Aspen plus 中换热器主要有以下几种:概述换热器模块Heater HeatX MHeatX Hetran Aerotran加热器/冷却器双物流换热器多物流换热器管壳式换热器空冷换热器确定出口物流的热和相态条件在两个物流之间换热在多股物流之间换热与BJAC 管壳式换热器的接口程序与BJAC 空气冷却换热器的接口程序在本次模拟中选取Heatx换热器,HeatX有两种简捷法和严格法计算模型。

简捷法(Shortcut)计算不需要换热器结构或几何尺寸数据,可以使用最少的输入量来模拟一个换热器。

Shortcut模型可进行设计模拟两种计算,其中设计计算依据工艺参数和总传热系数估算出传热面积。

严格法(Detailed)可以用换热器几何尺寸去估算传热膜系数、总传热系数、压降、对数平均温差校正因子等。

严格法核算模型对HeatX提供了较多的规定选项,但也需要较多的输入。

Detailed模型不能进行设计计算。

可以将HeatX 的Shortcut和Detailed结合完成换热器设计计算。

首先依据给定的设计条件用Shortcut 估算传热面积,然后依据Shortcut的计算结果用Detailed 进行核算。

在使用HeatX 模型前,首先要弄清下面这些问题:(1)HeatX能够模拟的管壳换热器类型逆流和并流换热器;弓形隔板TEMA E, F, G, H, J和X壳换热器;圆形隔板TEMA E和F 壳换热器;裸管和翅片管换热器。

(2)HeatX能够进行的计算全区域分析;传热和压降计算;显热、气泡状气化、凝结膜系数计算;内置的或用户定义的关联式。

(3)HeatX不能进行进行的计算机械震动分析计算;估算污垢系数。

(3)HeatX需要的输入规定,必须提供下述规定之一换热器面积或几何尺寸;换热器热负荷;热流或冷流的出口温度;在换热器两端之一处的接近温度;热流或冷流的过热度/过冷度;热流或冷流的气相分率(气相分率为0 表饱和液相);热流或冷流的温度变化。

运用aspen及其套件设计换热器

运用aspen及其套件设计换热器

运用aspen及其套件EDR设计换热器青海大学化工学院张鹏宇目录1.生产要求设定2.启动aspen设置前奏2.1确定合适的modle library 模块2.2建立流程图2.3输入工程标题2.4输入组分2.5选择物性方法2.6输入物流参数3.进行换热器选型3.1采用shortcut简捷计算3.2填写估计的总传热系数3.3模拟计算,列出简捷计算结果3.4按国家标准选型4.选择Detailed详细核算4.1设置冷热流体走程4.2使用Design Specification调整冷却水流率4.3设置壳程管程压降计算方式4.4设置总传热系数计算方式4.5填写冷热流体侧污垢系数4.6填写壳程管程数据4.7填写折流板及管嘴数据4.8运行计算,列出换热器详细计算结果4.8.1 exchanger details换热器详细数据4.8.2 pres drop 各程压力降及压力降分析4.8.3 流速探讨及分析5.用EDR 软件核算,出图5.1 数据传递5.2 EDR数据检查,核对补充5.3运行计算,列出换热器详细计算结果5.3.1 EDR换热器详细数据5.3.2 pres drop 各程压力降及压力降分析5.3.3 流速探讨及分析5.4列出换热器装配图5.5列出换热器布管图和设备数据5.6打印出图6.对比Aspen换热器详细计算,说明EDR其优缺点。

1.生产要求设定某生产过程中,需处理每年114000吨/年苯,现将苯从80度冷却至40度,冷却介质采用循环水。

循环水入口温度32.5度,出口温度取37.5度。

要求换热器裕度为10%~25%,换热器内流体流动阻力小于50Kpa.2.启动ASPEN设置前奏2.1选择合适的modle library 模块启动ASPEN,新打开一个空白的blank文件,该换热器用循环水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器。

运用ASPEN B-JAC 设计管壳式换热器

运用ASPEN B-JAC 设计管壳式换热器

运用ASPEN B-JAC 设计管壳式换热器周奇【摘要】描述了运用ASPEN B-JAC换热器计算软件进行管壳式换热器设计的步骤,讨论了换热器管程壳程优化设计的要点以及利用ASPEN B-JAC进行换热器设计优化过程中应注意的问题,为管壳式换热器的优化设计提供了参考.【期刊名称】《化工设计通讯》【年(卷),期】2010(036)002【总页数】5页(P42-46)【关键词】Aspen B-jac;管壳式换热器;设计;优化【作者】周奇【作者单位】东华工程科技股份有限公司,安徽,合肥,230024【正文语种】中文【中图分类】TQ051.5ASPEN B-JAC是Aspen Tech公司开发的换热器计算软件。

该设计软件界面友好,主要设计过程包括工艺参数及物性的输入,计算结果的校核,优化换热器设计等几个步骤。

下面本文简要描述运用ASPEN BJAC软件计算的步骤,并结合B-JAC软件,探讨管壳式换热器设计优化过程中应注意的一些问题。

主要输入换热器位号、名称等描述信息,输入的信息将在TEMA数据表中显示。

主要输入以下内容:选择换热器冷热物流的换热类型。

如无相变应选择no phase change、热虹吸再沸器应选择Thermosiphon、釜式再沸器选择pool boiling、饱和蒸汽加热器可以选择Saturated steam condensation。

选择冷热物流的流动通道,对于管壳式换热器可根据以下原则选择:压力较高的物流宜走管程,减小壳体壁厚。

腐蚀性、对材料有特殊要求的物流宜走管程。

不洁净和易结垢的物流宜走管程(U型管除外),以便清洗。

若必须走可壳程,推荐采用正方形管子排列,并采用可拆式结构(如浮头式、U型管式)。

饱和蒸汽宜走壳程,因为饱和蒸汽污垢热阻较小,给热系数较大一般与流速无关,而且冷凝液容易排出。

被冷却的流体宜走壳程,便于散热。

流量小而粘度大的物流宜走壳程,因走壳程容易实现湍流,获得较高的给热系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Aspen 11.1 安装很容易
1、先在硬盘上建立一个目录,将Aspen_CRACK目录中的license.dat文件拷贝到所建
的目录中。

2、运行CD1内的Setup程序进行安装。

3、单击Next 直到出现以下画面
选择All Products选项,单击Next。

4、出现以下画面
选择Standard Install 单击Next 出现以下画面:
5、
选择要安装的模块,ASPEN PLUS 必选,第一次安装时和online,web(网络组件)相关的模块不要选择。

单击Next出现以下画面:
6、
选择Aspen License Manager 单击Next进行安装。

7、出现插入CD2选项框时,选择CD2内文件所在的位置。

8、安装完成后重启。

9、指定license.dat文件的位置。

完成安装。

10、建议:
最好是装在xp上,因为D版的2000可能会引起MODEL library不能使用。

11、问题
计算时,请在setup窗口的accounting内随意输入一些信息即可。

启动AspenPlus 后建立模型后,
要在Setup-Specifications-Accounting,中输入使用者姓名等信息就可以正常使用(信息可以任意输入)。

希望你成功。

Aspen11.1 SP1的安装方法
首先安装Aspen11.1,成功后,直接运行SP1的Setup文件,会自动检测已经安装的模块和版本号,
继续安装即可。

安装完成后,可以继续使用原有License,也可以使用新的,都可以正常使用。

在安装Aspen11.1时,AspenPlus是必须安装的,其它模块根据需要安装。

安装过程中,
选择单机运行那种方式。

安装后重启,自动运行授权管理器,选取License文件所在目录确定即可(最好将License文件拷贝到硬盘上)。

打开任意以前可以运行的文件,在Input界面中,
选择Setup-Specifications-Accounting,输入使用者姓名等信息(可任意输入,
只要输入一种信息就行),现在,可以运行了。

祝好运!。

相关文档
最新文档