常用齿轮材料及其力学性能

合集下载

齿轮常用材料的选择及其热处理工艺分析

齿轮常用材料的选择及其热处理工艺分析

齿轮常用材料的选择及其热处理工艺分析介绍了齿轮常用材料及典型齿轮的热处理工艺,结合常用齿轮材料的性能特点,总结了齿轮材料选用原则及热处理工艺与提高其承载能力以及延长使用寿命之间的关系,旨在通过理论来指导实践。

标签:齿轮材料;热处理;性能;承载能力引言齿轮作为传动系统中应用非常广泛的零件,在工作时,所受应力往往是非常复杂的,一是需要承受齿轮齿根部的循环往复的弯曲应力,二还要考虑接触应力以及齿面之间的相互接触所带来的不良影响,同时具有较强的摩擦齿面,齿轮啮合时,它会吸收一定量的冲击载荷。

齿轮使用过程应避免齿面磨损太多,甚至以断齿、疲劳点蚀形式失效。

合适的热处理工艺能提高齿轮的耐磨性、承载能力和使用寿命,热处理后的齿轮具有高的弯曲疲劳强度和接触疲劳强度(抗疲劳点蚀),齿面具有较高的硬度和耐磨性,齿轮心部具有足够的强度和韧性[1]。

齿轮材料的选择以及相关的热处理工艺无论是对于齿轮的质量,又或者是齿轮的使用性能都会产生很大的影响。

比较常用的热处理工艺包括:表面淬火、碳氮共渗、渗碳、渗氮、回火、正火等。

而对于齿轮材料的选择,锻钢、铸钢、铸铁、有色金属、非金属材料等都是非常理想的选择。

1 齿轮材料及热处理工艺1.1 锻钢根据齿面的软硬程度,钢制齿轮包括软齿面齿轮和硬齿面齿轮,它们之间的分界线是布氏硬度为350HBS的时候,大于350HBS为硬齿面,反之则是软齿面。

1.1.1 软齿面齿轮软尺面齿轮,工艺路线:锻造毛坯→正火→粗车→调质、精加工。

常用材料;45#、35SiMn、40Cr、40CrNi、40MnB等。

软齿面齿轮的特点:性能优良,齿面本身的硬度、强度都理想,齿心的韧性好;热处理后切齿精度可达8级;制造简单、经济、生产率高,对精度要求不高。

1.1.2 硬齿面齿轮(1)采用中碳钢时的加工工艺过程为:锻造毛坯→常化→粗切→调质→精切→高、中频淬火→低温回火→珩齿或研磨剂跑合、电火花跑合。

常用材料:45、40Cr、40CrNi。

齿轮材料的选择原则是什么

齿轮材料的选择原则是什么

齿轮材料的选择原则齿轮的材料及其选择原则由轮齿的失效形式可知,设计齿轮传动时,应使齿面具有较高的抗磨损、抗点蚀、抗胶合及抗塑性变形的能力,而齿根要有较高的抗折断能力。

因此,对齿轮材料性能的基本要求为齿面要硬、齿芯要韧。

(一)常用的齿轮材料1(钢钢材的韧性好,耐冲击,还可通过热处理或化学热处理改善其力学性能及提高齿面的硬度,故最适于用来制造齿轮。

(1)锻钢除尺寸过大或者是结构形状复杂只宜铸造者外,一般都用锻钢制造齿轮,常用的是含碳量在0. 15%~0.6%的碳钢或合金钢。

制造齿轮的锻钢可分为:1)经热处理后切齿的齿轮所用的锻钢。

、对于强度、速度及精度都要求不高的齿轮,应采用软齿面(硬度?350 HBS)以便于切齿,并使刀具不致迅速磨损变钝。

因此,应将齿轮毛坯经过常化(正火)或调质处理后切齿。

切制后即为成品。

其精度一般为8级,精切时可达7级。

这类齿轮制造简便、经济、生产率高。

2)需进行精加工的齿轮所用的锻钢。

高速、重载及精密机器(如精密机床、航空发动机)所用的主要齿轮传动,除要求材料性能优良,轮齿具有高强度及齿面具有高硬度(如58~ 65 HRC)外,还应进行磨齿等精加工。

需精加工的齿轮目前多是先切齿,再做表面硬化处理,最后进行精加工,精度可达5级或4级。

这类齿轮精度高,价格较贵,所用热处理方法有表面淬火、渗碳、氮化、软氮化及氰化等。

所用材料视具体要求及热处理方法而定。

合金钢材根据所含金属的成分及性能,可分别使材料的韧性、耐冲击、耐磨及抗胶合的性能等获得提高,也可通过热处理或化学热处理改善材料的力学性能及提高齿面的硬度。

所以对于既是高速、重载,又要求尺寸小、质量小的航空用齿轮,就都用性能优良的合金钢(如20CrMnTi、20Cr2Ni4A等)来制造。

由于硬齿面齿轮具有力学性能高、结构尺寸小等优点,因而一些工业发达的国家在一般机械中也普遍采用了中、硬齿面的齿轮传动。

(2)铸钢铸钢的耐磨性及强度均较好,但应经退火及常化处理,必要时也可进行调质。

齿轮的强度计算

齿轮的强度计算
齿轮的强度计算
授课:大山 时间:4.11
一、齿轮材料及热处理
1.对齿轮材料性能的要求
齿轮的齿体应有较高的抗折断能力,齿面应有较
强的抗点蚀、抗磨损和较高的抗胶合能力,即要求:
齿面硬、芯部韧。
2.常表用1齿轮常材用料齿轮材料及其机械性能
钢材的韧性好,耐冲击,通过热处理和化学处理
可改善材料的机械性能,最适于用来制造齿轮。
式4和5适用钢制齿轮,若为钢对铸铁或铸铁对铸铁,则应将公式中
的系数335分别改为285和250。许用接触应力[H]按下式计算
[
H
]
H lim
SH
Hlim为试验齿轮的接触疲劳极限;其值可下图查出。SH为齿面接触
疲劳安全系数,其值由下表查出。
齿根弯曲疲劳强度计算
假定载荷仅由一对轮齿承担,按悬臂梁计算。齿顶啮合时,弯矩达最大值。
4. 正火 正火能消除内应力、细化晶粒、改善力学性能和
切削性能。机械强度要求不高的齿轮可用中碳钢正火 处理。大直径的齿轮可用铸钢正火处理。
5. 渗氮 渗氮是一种化学处理。渗氮后齿面硬度可达
60~62HRC。氮化处理温度低,轮齿变形小,适用于难以 磨齿的场合,如内齿轮。材料为:38CrMoAlA。
特点及应用: 调质、正火处理后的硬度低,HBS ≤ 350,属软齿
对于闭式传动,当齿面硬度不太高时,轮齿的弯曲强度通常是足
够的,故齿数可取多些,例如常取z1=24~40。当齿面硬度很高时,
轮齿的弯曲强度常感不足,故齿数不宜过多。
许用弯曲应力[F]按下式计算
F
F Lim
SF
Flim按下图查取
齿轮的弯曲疲劳极限Flim
SF—轮齿弯曲疲劳安全系数,按下表查取。

常用齿轮材料的选择及其热处理工艺总结

常用齿轮材料的选择及其热处理工艺总结

齿轮材料的选择及其热处理工艺1、齿轮材料的选择原则齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考:1)齿轮材料必须满足工作条件的要求。

例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。

总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。

2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。

大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。

中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。

尺寸较小而又要求不高时,可选用圆钢作毛坯。

齿轮表面硬化的方法有:渗碳、氨化和表面淬火。

采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。

3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。

4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。

5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。

6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30〜50HBS或更多。

当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。

因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。

齿轮材料的选择

齿轮材料的选择

齿轮材料的选择齿轮是机械传动中常见的零部件,其材料的选择对于齿轮的使用性能和寿命有着至关重要的影响。

合适的齿轮材料能够保证齿轮在工作过程中具有良好的强度、硬度、耐磨性和耐疲劳性,从而确保机械传动系统的稳定性和可靠性。

本文将就齿轮材料的选择进行探讨,以帮助工程师和设计师在实际应用中做出合理的材料选择。

首先,齿轮材料的选择应考虑工作条件和要求。

不同的工作条件对齿轮材料的性能提出了不同的要求,例如在高速、高负荷、高温或低温等特殊工况下,齿轮材料需要具有相应的耐磨性、耐疲劳性、耐腐蚀性和高温稳定性。

因此,在选择齿轮材料时,需要充分了解齿轮在实际工作条件下所承受的力学和热学环境,以便选择合适的材料。

其次,齿轮材料的选择还应考虑成本和加工性能。

在工程设计中,成本和加工性能也是影响材料选择的重要因素。

一些高性能的特种材料虽然具有优异的力学性能,但其成本较高,加工难度大,不适合大规模生产和广泛应用。

因此,工程师和设计师需要在考虑材料性能的基础上,综合考虑成本和加工性能,选择既满足要求又经济实用的齿轮材料。

最后,常见的齿轮材料包括钢、铸铁、铜合金、铝合金等。

钢是最常用的齿轮材料,具有良好的强度和硬度,适用于大多数工作条件。

铸铁具有良好的减震性和低成本,适用于低速、低负荷的工作条件。

铜合金具有良好的耐磨性和耐腐蚀性,适用于高速、高负荷的工作条件。

铝合金具有轻质、良好的热传导性和低噪音,适用于要求重量轻、噪音小的工作条件。

综上所述,齿轮材料的选择是一个复杂的工程问题,需要综合考虑工作条件、要求、成本和加工性能等因素。

在实际应用中,工程师和设计师应根据具体的工程要求和实际情况,选择合适的齿轮材料,以确保齿轮具有良好的工作性能和可靠性。

总之,齿轮材料的选择对于机械传动系统的性能和寿命有着重要的影响。

合理选择齿轮材料,可以提高齿轮的使用寿命,降低维护成本,确保机械传动系统的稳定性和可靠性。

因此,工程师和设计师在实际应用中应充分考虑工作条件、要求、成本和加工性能等因素,选择合适的齿轮材料,以满足工程设计的要求。

《机械设计基础》教学课件主题10 齿轮传动

《机械设计基础》教学课件主题10 齿轮传动

单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
1、轮齿折断 轮齿就好像一个悬臂梁,在外载荷作用下,在其轮齿根部产生的 弯曲应力最大。同时,在齿根部位过渡尺寸发生急剧变化,以及加工时 沿齿宽方向留下加工刀痕而造成应力集中的作用,当轮齿重复受载,在 脉动循环或对称循环应力作用下,弯曲应力超过弯曲疲劳极限时,在齿 轮根部会产生疲劳裂纹,如图(a)所示。随着裂纹的逐步扩展,最终 引起断裂,如图(b)所示。
轮齿折断都是其弯曲应力超过了材料相应的极限应力,是最危险 的一种失效形式。一旦发生断齿,传动立即失效。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
2、齿面点蚀 在润滑良好的闭式齿轮传动中,由于齿面材料在交变接触应力 作用下,因为接触疲劳产生贝壳形状凹坑(麻点)的破坏形式称为点 蚀。点蚀也是常见的一种齿面破坏形式。齿面上最初出现的点蚀随材 料不同而不同,一般出现在靠近节线的齿根面上,如图所示,最初为 细小的尖状麻点。当齿面硬度较低、材料塑性良好,齿面经跑合后, 接触应力趋于均匀,麻点不再继续扩展,这是一种收敛性点蚀,不会 导致传动失效。但当齿面硬度较高、材料塑性较差时,点蚀就会不断 扩大,这是一种破坏性点蚀,是一种危险的失效形式。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
3、齿面胶合 对于某些高速重载的齿轮传动(如航空发动机的主传动齿轮), 齿面间的压力大,瞬时温度高,油变稀而降低了润滑效果,导致摩擦增 大,齿面温度升高,将会使某些齿面上接触的点熔合,焊在一起,在两 齿面间相对滑动时,焊在一起的地方又被撕开。于是,在齿面上沿相对 滑动的方向形成伤痕,如图所示,这种现象称为胶合。
机械设计基础
主题10 齿轮传动
单元1 单元2 单元3 单元4 单元5 单元6

齿条常用材料

齿条常用材料

齿条常用材料
齿条常用的材料有:
1. 锻钢:根据齿条的硬度分为软齿面和硬齿面。

当齿面的硬度小于350时,齿条具有较好的强度及韧性,生产成本也较低,但精度方面相对较差;当齿面硬度超过350时,其硬度增加、耐冲击性也更好。

2. 铸钢:当齿轮直径大于400mm,结构复杂,锻造有难度时,可以选用铸钢为生产原料。

3. 铸铁:铸铁材质的抗胶合及抗点蚀能力较强,但抗冲击耐磨性较差,通常用于一些工作稳定、功率不大、低速或尺寸较大形状复杂的情况下的齿轮制造。

4. C45碳钢:此类齿条广泛应用于自动化机器人、龙门加工中心、激光切割机、铝型材、木工加工中心、桁架第七轴等领域,一般要求精度高、定位准确、运行稳定。

除了金属材质外,为满足一些较为特殊的需求,齿条的加工原料还可以选用布质、木质、塑料、尼龙等材料。

齿轮的强度计算

齿轮的强度计算

式(11-4)和(11-5)适用钢制齿轮, ) )适用钢制齿轮, 若为钢对铸铁或铸铁对铸铁, 若为钢对铸铁或铸铁对铸铁,则应将 公式中的系数335分别改为 和250。 分别改为285和 。 公式中的系数 分别改为 许用接触应力[ 按下式计算 许用接触应力 σH]按下式计算
[σ H ] =
σ H lim
3 2
一对齿轮啮合,其接触应力 一对齿轮啮合,其接触应力σH反映了大小齿轮在 节点处相互啮合引起的表面应力, 节点处相互啮合引起的表面应力, σH完全由两轮 的参数共同决定, 的参数共同决定,∴ σH1= σH2 注意:因两个齿轮的σ 注意:因两个齿轮的 H1= σH2 ,故按此强度准则设计齿 轮传动时,公式中应代入[σ 中较小者。 轮传动时,公式中应代入 H] 1和[σH] 2中较小者。 模数m不能成为衡量齿轮接触强度的依据。 模数 不能成为衡量齿轮接触强度的依据。 不能成为衡量齿轮接触强度的依据
含碳量为(0.15~0.6)%的碳素钢或合金钢。 含碳量为(0.15~0.6)%的碳素钢或合金钢。 (0.15~0.6)%的碳素钢或合金钢 锻钢 一般用齿轮用碳素钢,重要齿轮用合金钢。 一般用齿轮用碳素钢,重要齿轮用合金钢。
常用齿 常用齿 轮材料
耐磨性及强度较好,常用于大尺寸齿轮。 铸钢 耐磨性及强度较好,常用于大尺寸齿轮。 常作为低速、轻载、 铸铁 常作为低速、轻载、不太重要的场合的齿 轮材料; 轮材料; 适用于高速、轻载、 非金属材料 适用于高速、轻载、且要求降低 噪声的场合。 噪声的场合。
11章 齿轮的强度计算 章
1111-2 齿轮材料及热处理
1.对齿轮材料性能的要求 1.对齿轮材料性能的要求 齿轮的齿体应有较高的抗折断能力, 齿轮的齿体应有较高的抗折断能力,齿面应有较强 的抗点蚀、抗磨损和较高的抗胶合能力,即要求:齿 的抗点蚀、抗磨损和较高的抗胶合能力,即要求: 面硬、芯部韧。 面硬、芯部韧。 表11-1 常用齿轮材料及其机械性能 2.常用齿轮材料 2.常用齿轮材料 钢材的韧性好,耐冲击, 钢材的韧性好,耐冲击,通过热处理和化学处理可 改善材料的机械性能,最适于用来制造齿轮。 改善材料的机械性能,最适于用来制造齿轮。

常用齿轮材料的选择及其热处理工艺总结

常用齿轮材料的选择及其热处理工艺总结

齿轮材料的选择及其热处理工艺1、齿轮材料的选择原则齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考:1)齿轮材料必须满足工作条件的要求。

例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。

总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。

2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。

大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。

中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。

尺寸较小而又要求不高时,可选用圆钢作毛坯。

齿轮表面硬化的方法有:渗碳、氨化和表面淬火。

采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。

3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。

4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。

5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。

6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。

当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。

因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。

粉末冶金齿条的材料选择与性能对比

粉末冶金齿条的材料选择与性能对比

粉末冶金齿条的材料选择与性能对比在现代工业生产中,粉末冶金技术广泛应用于齿轮、齿条等零件的制造中。

粉末冶金齿条具有高精度、高耐磨和优异的力学性能等特点,因此在机械制造和汽车工业等领域得到了广泛的应用。

粉末冶金齿条的性能主要取决于其材料的选择。

本文将对粉末冶金齿条的材料选择及其性能进行详细的对比分析。

在粉末冶金齿条的材料选择方面,常见的材料包括铁基、铜基和镍基材料。

这些材料具有不同的化学成分和物理性能,适用于不同的应用场景。

首先,铁基材料是制造粉末冶金齿条常用的材料之一。

铁基材料具有较高的强度和硬度,同时具备良好的耐磨性能。

常见的铁基材料包括高碳素钢、合金钢和不锈钢等。

高碳素钢具有优异的硬度和耐磨性,适用于制造高负荷和高速运转的齿条。

合金钢具有较高的韧性和抗疲劳性能,在高强度应用场景中表现出色。

不锈钢具有抗腐蚀能力强的特点,在潮湿和腐蚀性环境下具有较好的耐久性。

铁基材料广泛用于机械制造领域,特别是汽车和摩托车行业。

其次,铜基材料是另一种常见的粉末冶金齿条材料。

铜基材料具有良好的导热性和导电性,同时具备较高的塑性和可加工性。

常见的铜基材料包括铜合金和青铜等。

铜合金具有较高的抗腐蚀性和耐磨性能,在一些特殊应用场景中表现出色。

青铜具有良好的耐磨性和自润滑性能,适用于制造高速和高载荷齿条。

铜基材料通常用于制造电气设备和电子产品等领域。

最后,镍基材料在一些特殊应用场景中也被用于粉末冶金齿条的制造。

镍基材料具有优异的耐高温和耐腐蚀性能,适用于高温和腐蚀环境下的工作条件。

常见的镍基材料包括镍铝合金和镍铁合金等。

镍铝合金具有较高的耐磨性和高温强度,广泛用于航空航天和能源领域。

镍铁合金具有较高的硬度和强度,适用于制造高负荷和高速运转的齿条。

除了以上提到的常见材料外,还可以根据具体需求选择其他材料,如钛合金、铝合金等。

这些材料具有较低的密度和良好的耐腐蚀性,在航空航天和汽车领域中得到广泛应用。

总的来说,粉末冶金齿条的材料选择应根据具体的应用场景和技术要求进行。

常用铸造齿轮材料及其热处理工艺方法

常用铸造齿轮材料及其热处理工艺方法

常用铸造齿轮材料及其热处理工艺方法铸造齿轮因其加工性能好、耐磨性高、噪声低及成本低等优点,在机械制造行业得到广泛应用。

常用铸造齿轮材料主要包括铸铁及铸钢。

常用齿轮铸铁材料是灰铸铁和球墨铸铁,因铸铁中存在游离石墨和多孔性结构,故齿轮的耐磨性良好、噪声小。

与铸铁齿轮材料相比,铸钢材料具有较高强度、硬度和耐磨性能,可用于负荷较大的大型齿轮。

一、铸铁齿轮材料及其热处理铸铁齿轮常用材料为灰铸铁及球墨铸铁。

1.齿轮用灰铸铁灰铸铁抗拉强度低,脆性较高,抗弯及耐冲击能力很差,但它易于铸造,易切削,具有良好的耐磨性、缺口敏感性小、减振性及成本低特点,可用于低速、载荷不大的开式齿轮传动。

(1)齿轮用灰铸铁的牌号及力学性能齿轮用灰铸铁的牌号及抗拉强度见表1。

(2)灰铸铁齿轮表面硬度和耐磨性灰铸铁表面热处理前最好先正火处理。

表面热处理,如高中频感应淬火及化学热处理等,其中高中频感应淬火应用最多。

高中频感应淬火温度通常采用850~950℃加热淬火,由于铸铁导热性差,因此加热速度不易太快,单位功率要比同样的钢件小一些。

否则,会产生裂纹和熔化现象。

铸铁经高频感应加热后,淬火冷却介质一般采用水、PAG进行冷却。

回火温度一般在200~400℃,铸铁齿轮经淬火、回火后硬度为40~50HRC。

灰铸铁齿轮金相检验执行GB/T7216《灰铸铁金相检验》标准。

2.齿轮用球墨铸铁球墨铸铁的性能介于钢和灰铸铁之间,强度比灰铸铁高很多,具有良好的韧性和塑性,在冲击不大的情况下,可代替钢制齿轮。

齿轮制造主要使用珠光体和贝氏体球墨铸铁,牌号在QT500以上,热处理一般采用正火+回火。

(1)球墨铸铁牌号、基体组织、力学性能及其各热处理状态下的力学性能球墨铸铁牌号、基体组织、力学性能见表2。

(2)球墨铸铁热处理铸造齿轮毛坯的预处理一般采用退火、正火,也可进行正火+回火,或调质处理。

球墨铸铁齿轮的常用热处理工艺见表3。

(3)球墨铸铁金相检验执行GB/T9441《球墨铸铁金相检验》标准。

齿轮参考

齿轮参考

表8-4 齿轮的常用材料及其力学性能2. 许用应力齿轮的许用应力是根据试验齿轮的疲劳极限确定的,与齿轮材料和齿面硬度有关。

齿面接触疲劳许用应力[]minlim H H H S σσ= (8-16)齿根弯曲疲劳许用应力[]minlim F F F S σσ= (8-17)式中:σHlim ——试验齿轮材料的接触疲劳极限,MPa ; 由图8-29查取。

σFlim ——齿轮的弯曲疲劳极限,MPa ;由图8-30查取。

如果齿轮双向长期工作(经常正、反转动的齿轮),σFlim 应取正常值的70% 。

图8-29齿轮材料的接触疲劳强度极σHlim图8-30 齿轮材料的弯曲疲劳强度极σFlimS Hmin,S Fmin——齿面接触疲劳强度的最小安全系数和齿根疲劳弯曲强度的最小安全系数。

S Hmin和S Fmin的值查表8-5。

表8-5 最小安全系数齿轮精度等级的选择,应当根据齿轮的用途、使用条件、圆周速度和功率的大小,合理的确定齿轮的经济技术指标。

8.6.3 渐开线标准直齿圆柱齿轮传动的强度计算1. 齿轮的受力分析和计算载荷(1) 圆柱齿轮传动的受力分析。

在计算齿轮强度时必须首先分析作用在齿轮上的力,如果忽略齿轮齿面之间的摩擦力,在理想情况下,作用在齿面上的力是沿接触线均匀分布且垂直与齿面,常用集中力F n表示,F n称为法向力,由渐开线齿廓啮合特点(见8.2.2节)可知,在传动过程中F n是沿啮合线作用于齿面且保持方向不变。

图8-31表示一直齿圆柱齿轮传动在节点C处的受力情况。

不考虑摩擦力,作用在齿面上的法向力F n可分解为圆周力F t和径向力F r。

图8-31 直齿圆柱齿轮的受力分析各力的计算公式为αααcos2costan21111dTFFFFdTFtntrt====(8-18)式中:T1——为主动轮传递的扭矩,N·mm;d1——主动轮分度圆直径, mm;α——压力角。

如果小齿轮传递的功率为P1(kW),转速为n1(r/min),则11611055.9nPT⨯=(8-19)(2) 计算载荷。

第十一章-齿轮传动思维导图

第十一章-齿轮传动思维导图

齿数z
主要参数
11-7 圆柱齿轮材料和 参数的选取与计算方法
齿宽系数及齿宽
圆周力
径向力 斜齿轮圆柱齿轮的受力分析
轴向力
圆周力、径向力与直齿圆柱齿轮的方向相同
对主动轮:用左、右手法则来判 断,从动轮方向与主动轮相反
轴向力
斜齿圆柱齿轮传动的作用力方向
11-/s,采用油池润滑
精度等级
11-4 直齿圆柱齿轮传动 的作用力及计算载荷
直齿圆柱齿轮传动的受力分析
直齿圆柱齿轮传动的作用力方向
圆周力:“主反从同” 径向力:由作用点指向各自的轮心
直齿圆柱齿轮传动的计算载荷
法向力Fn为名义载荷
齿面最大接触应力可近似用赫兹公式计算
11-5 直齿圆柱齿轮传 动的齿面接触强度计算
齿面接触强度(简化后) 齿面接触疲劳强度的校核公式 齿面接触疲劳强度的设计公式
第十一章齿轮传动
11-1 齿轮的失效形 式和设计计算准则
失效形式
轮齿折断(闭式硬齿面齿轮传动的主要失效形式) 齿面点蚀(闭式软齿面齿轮传动的主要失效形式) 齿面胶合(主要出现在高速重载的闭式齿轮传动) 齿面磨损(开式齿轮传动的主要失效形式) 齿面塑性变形(重载软软齿面齿轮传动的主要失效形式)
设计计算准则
多级传动且大齿轮直径不等时, 采用惰轮蘸油润滑
v>12m/s,采用油泵喷油润滑
减少摩擦磨损,散热和防锈蚀
开式,半闭式,低速齿轮传动采用人工定 期润滑,用润滑油或润滑脂
润滑目的 润滑方式
闭式齿轮传动的润滑方式由圆周速度v决定
查表 润滑油牌号和粘度
功率损耗 传动效率
齿轮传动的效率
11-11 齿轮传动 的润滑和效率
11-2 齿轮材料及热处理

常用的齿轮材料是各种牌号的优质碳素钢

常用的齿轮材料是各种牌号的优质碳素钢

常用的齿轮材料是各种牌号的优质碳素钢、合金结构钢、铸钢和铸铁等。

齿轮毛坯一般多采用锻件或轧制钢材,当齿轮较大(例如直径大于400~600mm)而轮坯不易锻造时,可采用铸钢;开式低速传动可采用灰铸铁;球墨铸铁有时可代替铸钢。

列出了常用的齿轮材料及其热处理后的硬度。

齿轮常用的热处理方法有以下几种:1.表面淬火一般用于中碳钢和中碳合金钢,例如45钢、40Cr等。

表面淬火后轮齿变形不大,可在不磨齿的情况下达到7级精度,齿面硬度可达52~56HRC。

由于齿面接触强度高,耐磨性好,而齿芯部未淬硬仍有较高的韧性,故能承受一定的冲击载荷。

表面淬火的方法有高频淬火和火焰淬火等。

2.渗碳淬火渗碳钢为含碳量0.15%~0.25%的低碳钢和低碳合金钢,例如20、20Cr等。

渗碳淬火后齿面硬度可达56~62HRC,齿面接触强度高、耐磨性好,而齿芯部仍保持有较高的韧性,常用于受冲击载荷的重要齿轮传动。

通常渗碳淬火后变形较大,需要磨齿。

3.调质调质一般用于中碳钢和中碳合金钢。

例如45、40Cr、35SiMn等。

调质处理后齿面硬度一般为220~260HBS。

因硬度不高,故可在热处理以后精切齿形,且在使用中易于跑合。

4.正火正火能消除内应力、细化晶粒、改善力学性能和切削性能。

机械强度要求不高的齿轮可用中碳钢正火处理。

大直径的齿轮可用铸钢正火处理。

5.渗氮渗氮是一种化学热处理。

渗氮后不再进行其他热处理,齿面硬度可达60~62 HRC。

因氮化处理温度低,齿的变形小,因此适用于难以磨齿的场合(例如内齿轮)。

氮化层一般不厚且较脆,故不宜用于有冲击的场合。

常用的渗氮钢为38CrMoAlA。

上述五种热处理中,调质和正火后的齿面硬度较低(HBS≤350),为软齿面齿轮;其他三种的齿面硬度较高,为硬齿面齿轮。

软齿面工艺过程较简单,适用于一般传动。

当大小齿轮都是软齿面时,考虑到小齿轮齿根较薄,且受载次数较多,弯曲强度较低,一般应使小齿轮齿面硬度比大齿轮高20~50HBS。

常用齿轮材料及其力学性能

常用齿轮材料及其力学性能

常用齿轮材料及其力学性能
为了保证齿轮工作的可靠性,提高其使用寿命,齿轮的材料及其热处理应根据工作条件和材料的特点来选取。

对齿轮材料的基本要求是:应使齿面具有足够的硬度和耐磨性,齿心具有足够的韧性,以防止齿面的各种失效,同时应具有良好的冷、热加工的工艺性,以达到齿轮的各种技术要求。

常用的齿轮材料为各种牌号的优质碳素结构钢、合金结构钢、铸钢、铸铁和非金属材料等。

一般多采用锻件或轧制钢材。

当齿轮结构尺寸较大,轮坯不易锻造时,可采用铸钢;开式低速传动时,可采用灰铸铁或球墨铸铁、低速重载的齿轮易产生齿面塑性变形,轮齿也易折断,宜选用综合性能较好的钢材;高速齿轮易产生齿面点蚀,宜选用齿面硬度高的材料;受冲击载荷的齿轮,宜选用韧性好的材料。

对高速、轻载而又要求低噪声的齿轮传动,也可采用非金属材料、如夹布胶木、尼龙等。

常用的齿轮材料及其力学性能列于下表。

钢制齿轮的热处理方法主要有以下几种:
根据热处理后齿面硬度的不同,齿轮可分为软齿面齿轮(≤350HBS)和硬齿面齿轮(>350HBS)。

一般要求的齿轮传动可采用软齿面齿轮。

为了减小胶合的可能性,并使配对
的大小齿轮寿命相当,通常使小齿轮齿面硬度比大齿轮齿面硬度高出30~50HBS。

对于高速、重载或重要的齿轮传动,可采用硬齿面齿轮组合,齿面硬度可大致相同。

常用齿轮材料及其力学性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.10齿轮常用材料及许用应力
为了保证齿轮工作的可靠性,提高其使用寿命,齿轮的材料及其热处理应根据工作条件和材料的特点来选取。

对齿轮材料的基本要求是:应使齿面具有足够的硬度和耐磨性,齿心具有足够的韧性,以防止齿面的各种失效,同时应具有良好的冷、热加工的工艺性,以达到齿轮的各种技术要求。

常用的齿轮材料为各种牌号的优质碳素结构钢、合金结构钢、铸钢、铸铁和非金属材料等。

一般多采用锻件或轧制钢材。

当齿轮结构尺寸较大,轮坯不易锻造时,可采用铸钢;开式低速传动时,可采用灰铸铁或球墨铸铁、低速重载的齿轮易产生齿面塑性变形,轮齿也易折断,宜选用综合性能较好的钢材;高速齿轮易产生齿面点蚀,宜选用齿面硬度高的材料;受冲击载荷的齿轮,宜选用韧性好的材料。

对高速、轻载而又要求低噪声的齿轮传动,也可采用非金属材料、如夹布胶木、尼龙等。

常用的齿轮材料及其力学性能列于下表。

钢制齿轮的热处理方法主要有以下几种:
根据热处理后齿面硬度的不同,齿轮可分为软齿面齿轮(≤350HBS)和硬齿面齿轮(>350HBS)。

一般要求的齿轮传动可采用软齿面齿轮。

为了减小胶合的可能性,并使配对的大小齿轮寿命相当,通常使小齿轮齿面硬度比大齿轮齿面硬度高出30~50HBS。

对于高速、重载或重要的齿轮传动,可采用硬齿面齿轮组合,
齿面硬度可大致相同。

常用齿轮材料及其力学性能。

相关文档
最新文档