第二章第一节随机变量——概率论与数理统计(李长青)..
单因素试验的方差分析——概率论与数理统计(李长青版)
其次, 同一品种下数据表现出来的差异称为试验(随
机)误差, 这是由客观条件的偶然干扰造成, 与因素(品种) 无直接联系.
方差分析正是分析两类误差的有效工具.
本问题只考虑品种一种因素,故是单因素试验,即只有
一个因子,记为 A, 5个不同的品种就是该因子的5个不同 的水平,分别记为 A1 , A2 , A3 , A4 , A5 , 由于同一品种在不 同的田块上的亩产量不同,故可以认为一个品种的亩产 量 就是一个母体,在方差分析中,总是假定各母体相互独 立地服从同方差的正态分布,即第 j 个品种的亩产量是 一个随机变量,它服从正态分布:
nj
ns , 称为总平均,
它是从 s 个总体中抽得的样本的样本均值.
用样本值 xij 与总平均
x 之间的偏差平方和来反映
种子品种代 号 (水平)
重复试验序号及作物实测产量 1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系 统)误差.
H 0 : 1 2 s 0, H1 : 1 , 2 , , s 不全为零.
(二) 离差平方和分解 引入记号
nj
1 xj nj
s
x
i 1
ij
( j 1, 2,
, s) 水平Aj下的样本均值,
称为组内平均(或列平均)
《概率论与数理统计》第二章1234节
以不是数;而普通函数是定义在实数域上的。 2. 随机变量函数的取值在试验之前无法确定,有一定
的概率;而普通函数却没有。
三、随机变量的分类
离散型随机变量 随机变量 非离散型随机变量 连续型随机变量
其它
第二、三节
第二章
离散型随机变量及其分布律
U{ X = 2 }U{ 2 < X < x }
则 F(x) = P{X = - 1}+ P{X = 2} = 0.4
④当 x³
3 时,{X £
x}为必然事件,
F ( x) 1
则 F(x) = 0.1+ 0.3 + 0.6 = 1
所以
F ( x)
=
ìïïïïïíïïïïïî
0, 0.1, 0.4, 1,
两次,由于 P{X < 2} ? 0.003 很小,故怀疑“命中率
0.02”是否为真,即他的命中率不到0.02。
注:二项分布是最重要的离散型概率分布之一,当
n = 1 时,即为(0—1)分布;当 n很大,p很小时,
二项分布近似于下面介绍的泊松分布。
Ⅲ. 泊松分布 定义1. 设随机变量X 所有可能取的值为0,1,2,…,而
2. 二项分布
引例:某人打靶单发命中率为
击3次,求恰好命中2发的概率。 解 表示“第i次命中 ” 表示“恰好命中两次”
现独立重复射
由此可得: n重伯努利试验中,“事件 恰好发生k次”,即
的概率为:
定义2.如果随机变量 的分布律为
其中 布,记为
容易验证
则称 服从参数为 的二项分 由二项式定理
特别,当 时,二项分布为 这就是(0—1)分布,常记为
概论论与数理统计 第2章_PPT课件
1 2
分别表示两事件
发生的概率.
一般地,对任意实数集 I ,随机变量 X 在 I 上取值常写成 {X I} ,
它表示事件 {e | X (e) I} ,此时有
P{X I} P{e | X (e) I} .
§2.2 离散型随机变量及其分布
定 义 2.3 设 离 散 型 随 机 变 量 X 所 有 可 能 取 值 为 xi (i 1, 2, ) ,则称 X 取 xi 的概率
X ~ P() . 显然有下式成立:
(1) P{X k} 0 ( k 0,1, 2, );
(2) P{X k 0
k}
e
k 0
k
k!
e k
k0 k !
e
e
1.
定理 2.1(泊松定理)对二项分布 b(n, p) ,设 np , 0 ,
则
lim
n
Ckn
pk
(1
p)nk
k e (k
系.设一个随机试验只有两个结果 A 和 A ,且 P(A) p ,
现将试验独立进行 n 次,记 X 为 n 次试验中 A 出现的次
数,则 X ~ b(n, p) ,记 Xi 为第 i 次试验中 A 出现的次数,
1, 第i次试验中A 出现即Xi Nhomakorabea0,
第i次试验中A
不出现
,i
1, 2,
, n ,则 Xi ~ b(1, p) ,
对应数.这样随机试验的结果就是随机变化的变量,把随机试
验的结果数量化,便于应用数学知识研究随机现象,使对随机
现象的研究更深入和简单.
▪
例2.1 抛掷一枚硬币两次,观察出现正面(记为 H )
和反面 (记为T )的情况.
概率论与数理统计李长青版答案第一
概率论与数理统计李长青版答案第一p(a)=a所含样本点数/总体所含样本点数。
实用中经常采用“排列组合”的方法计算。
用数理统计方法去解决一个实际问题时,一般有如下几个公式:p(a)\ue0,p(b|a)=p(ab)/p(a) 、p(ab)=p(a)×p(b|a)=p(b)×p(a|b) 、p(a∪b)=p(a)+p(b)-p(ab)。
p(a)=a所含样本点数/总体所含样本点数。
实用中经常采用“排列组合”的方法计算·条件概率当p(a)\ue0,p(b|a)=p(ab)/p(a)乘法公式p(ab)=p(a)×p(b|a)=p(b)×p(a|b)计算方法“排列组合”的方法计算记法p(a)=a乘法法则p(a∪b)=p(a)+p(b)-p(ab)用数理统计方法回去化解一个实际问题时,通常存有如下几个步骤:创建数学模型,收集整理数据,展开统计数据推测、预测和决策。
这些环节无法截然分离,也不一定按上述次序,有时就是互相交叠的。
①模型的选择和建立。
在数理统计学中,模型是指关于所研究总体的某种假定,一般是给总体分布规定一定的类型。
建立模型要依据概率的知识、所研究问题的专业知识、以往的经验以及从总体中抽取的样本(数据)。
②数据的搜集。
存有全面观测、样本观测和精心安排特定的实验3种方式。
全面观测又称普查,即为对总体中每个个体都予以观测,测量所须要的指标。
样本观测又称抽检,就是所指从总体中提取一部分,测量其有关的指标值。
这方面的研究内容形成数理统计的一个分支学科。
叫做抽样调查。
③安排特定实验以收集数据,这些特定的实验要有代表性,并使所得数据便于进行分析。
这里面所包含的数学问题,构成数理统计学的又一分支学科,即实验设计的内容。
④数据整理。
目的就是把涵盖在数据中的有价值信息提取出。
一种形式就是制订适度的图表,例如图表,以充分反映暗含在数据中的粗略的规律性或通常趋势。
另一种形式就是排序若干数字特征,以刻画样本某些方面的性质,例如样本均值、样本方差等直观描述性统计数据量。
概率论与数理统计课件 2.2第二章 一维随机变量及其分布
随机变量
1 X 0
(取得红球) (取得白球)
其概率分布为 P( X 1) 3 10
P(X 0) 7 10
即X服从两点分布。
二项分布
P{ X k} Cnk pk qn k ,其中, q 1 p, k 0,1,2,, n
P(X k) b(k;n, p). X ~ B(n, p)
X
0
1
P
1-p
p
则称X服从参数为p 的二点分布或(0-1)分布,
△背景:样本空间只有两个样本点的情况 都可以用两点分布来 描述。
如:上抛一枚硬币。
例 设一个袋中装有3个红球和7个白球,现在从中
随机抽取一球,如果每个球抽取的机会相等,
并且用数“1”代表取得红球,“0”代表取得
白球,则随机抽取一球所得的值是一个离散型
有百分之一的希望,就要做百分之百的努力
例 设有同类设备80台,各台工作相互独立
的,发生故障的概率都是0.01,并且一台设备的 故障可由一个人来处理,试求
(1)一个人负责维修20台设备时,设备发 生故障而不能及时维修的概率;
(2)由三个人共同负责维修80台设备时, 设备发生故障而不能及时维修的概率。
利用概率测度的上下连续性,易知
分布函数的性质
分布函数的这三个性质称为随机变量 分布函数的特征性质。
柯尔莫哥洛夫存在性定理:
F (x) 1 是不是某一随机变量的分布函数? 1 x2
不是
因为 lim F(x) 0 x
1
函数
G(
x)
1
x2
1
(x 0) 可作为分布函数 (x 0)
分布函数是一种分析性质良好的函数, 便于处理,而且给定了分布函数就可以算出 各种事件的概率,因而引进分布函数使许多 概率问题得以简化为函数的运算,这样就能 利用数学分析的许多结果,这就是引入随机 变量的好处之一。
第二章第二节 离散型随机变量及其分布律——概率论与数理统计(李长青版)..
n
lim P{X k}
k
k!
e
X
近似地
( )
4、几何分布
在独立重复试验中, 事件 A发生的概率为 p, 若X
表示直到 A发生为止所进行的试验次数, 则
P{ X k} (1 p)k -1 p, k 1, 2,
若一个随机变量 X的分布律由上式给出, 则称 X
k
P( X k ) p (1 p), k 0,1,2,3
k
P( X 4) p ,
4
p 0.4
k
代入
0
1
2
3
4
pk 0.6 0.24 0.096 0.0384 0.0256
二、典型的离散型随机变量
1、两点分布、0﹣1分布 若随机变量 X 的可能取值只有x1, x2 两个, 它的 分布律为 P{ X x1} p, P{ X x2 } 1 p 称 X 服从参数 p 为 的两点分布. 特别地, 若随机变量 X 只可能取0或1两个值, 则 称 X 服从参数 p 为的0﹣1分布, 记为X~b(1, p),它的 分布律为 X 0 1 pk q p 其中
a k k 1 a ae k 0 k ! k 0 k !
由此得
ae
注 此处使用了 ex 的麦克劳林展开式:
k x 1 2 x e 1 x x 2! k 0 k !
1 k x k! ( x )
例4 设一汽车在开往目的地的道路上需经过四盏
同理可得
1 1 PX 3 , 2 8
3 1 1 P X 1 =C , 8 2 2
1 3 2
《概率论与数理统计》第二章随机变量及其分布知识点
第二章随机变量及其分布2.1随机变量为全面研究随机试验的结果,皆是随机现象的统计规律性,需要将随机试验的结果数量化,即把随机试验的结果与实数对应起来.2.1.1随机变量的定义定义一:设Ω为随机试验E 的样本空间,若对Ω中的每一个样本点ω都有一个确定的实数)(ωX 与之对应,则称)(ωX X =为定义在Ω上的随机变量.随机变量通常用大写字母X、Y、Z 或希腊字母ηξ,等表示,而表示随机变量所取的值时,一般用小写字母x,y,z 等表示.2.1.2引入随机变量的意义随机变量因其取值方式不同,通常分为离散型和非离散型两类.非离散型随机变量最重要的是连续型随机变量.2.1.3随机变量的分布函数定义二:设X 是一个随机变量,称+∞<<-∞≤=x x X P x F },{)(为X 的分布函数.对任意实数)(,2121x x x x <,随机点落在区间(21,x x ]内的概率为:)()(}{}{)(121221x F x F x X P x X P x X x P -=≤-≤=<<分布函数的性质:(1)1)(0≤≤x F (2)非减(3),0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x 事实上,由事件+∞≤-∞≤x x 和分别是不可能事件和必然事件(4)右连续)()(lim 00x F x F x x =+→2.2离散型随机变量及其概率分布2.2.1离散型随机扮靓及其概率分布定义三:设X 是一个随机变量,如果他的全部可能取值只有有限个或可数无穷多个,则称X 是离散型随机变量.设随机变量X 的全部可能取值为,,,,,n i x i ...21=X 取各个可能取值的概率n i x p x X P i i ,,,,...21)()(===,则称为随机变量X 的分布律,离散型随机变量X 的分布律也可以表示为:X X1X2...Xn ...P(X)P(x1)P(x2)...P(xn)...离散型随机变量X 的分布律满足:(1)),...(,...,2,1,0)(非负性n i x p i =≥(2))(1)(1规范性=∑+∞=i i x p 易得X 的分布函数为:)(}{}{)(∑∑≤≤===≤=xx i xx i i i x p x X P x X P x F 即,当i x x <时,0)(=x F ;当1x x <时,0)(=x F ;当21x x x <<时,)()(1x p x F =;当32x x x <<时,)()()(21x p x p x F +=;......当n n x x x <<-1时,)(.....)()()(21n x p x p x p x F +++=;......2.2.2常用离散型随机变量的分布1.两点分布(“0-1”分布)定义四:若一个随机变量X 只有两个可能取值21x x ,,且其分布为:10,1)(,)(21<<-====p p x X P p x X P 则称X 服从21x x ,处参数为p 的两点分布.2.二项分布若随机变量X 的全部可能取值为0,1,2,...,n,且其分布律为,,,,,n k q p C p k X P k n k k n ...,210,)(===-其中,0<p<1,q+p=1,则称为X 服从参数为n,p 的二项分布,或称X 服从参数为n,p 的伯努利分布,记为)(~p n B X ,3.泊松分布定义五:若一个随机变量X 的分布律为:...210,0,!)(,,,=>==-k k e k X P kλλλ则称X 服从参数为λ的泊松分布,记作)(~λP X .易见:(1)...210,0)(,,,=≥=k k X P (2)1!!}{00=====-+∞=-+∞=-+∞=∑∑∑λλλλλλe e k e k ek X P k k k k k 4.二项分布的泊松近似引言:对于二项分布B(n,p),当实验次数n 很大时,计算其概率很麻烦.例如:10001,5000(~B X 定理1:(泊松定理)在n 次伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与实验的次数有关),如果∞→n 时,λ→n np (λ》0为常数),则对于任意给定的k,有!)1(lim k ep p C kkn kk nn λλ--∞→=-(np =λ)2.3连续型随机变量及其概率密度2.3.1连续型随机变量及其概率密度定义六:设)(x F 为随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有⎰∞-=x dt t f x F )()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数或分布密度函数,简称概率密度.概率密度具有下列性质:(1)0)(≥x f (2)1)(=⎰+∞∞-dx x f 连续型随机变量的性质:(1)连续型随机变量X ,若已知其密度函数)(x f ,则根据定义,可求其分布函数)(x F ,同时,还可求得X 的取值落在任意区间(a,b]上的概率为⎰=-=≤<ba dxx f a F b F b X a P )()()(}{(2)连续型随机变量X 取任意指定值)(R a a ∈的概率为零,因为⎰∆-→∆→∆=<<∆-==axa x x dxx f a X x a P a X P )(lim }{lim }{00故对连续型随机变量X ,则有⎰=-=<<=≤≤ba dxx f a F b F b X a P b X a P )()()(}{}{(3)若)(x f 在点x 处连续,则)()('x f x F =2.3.2常用连续型随机变量的分布1.均匀分布定义七:若连续型随机变量X 的概率密度=)(x f 其他bx a ab <<⎪⎩⎪⎨⎧-,,01则称X 在区间(a,b)上服从均匀分布,记作),(~b a U X 易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 求得其分布函数:.;;,,,10)(b x b x a a x a b ax x F ≥<<≤⎪⎩⎪⎨⎧--=2.指数分布定义八:若随机变量X 的概率密度为⎩⎨⎧>=-其他,00,)(x e x f x λλ其中,0>λ是常数,则称X 服从参数λ的指数分布,简记为)(~λe X .易见:(1);0)(≥x f (2)1)(=⎰+∞∞-dx x f 易求出其分布函数:⎩⎨⎧>-=-其他。
《概率论与数理统计》第2章 随机变量及其分布
第二章 随机变量及其分布
注 意 点 (2)
第11页
对离散随机变量的分布函数应注意: (1) F(x)是递增的阶梯函数; (2) 其间断点均为右连续的; (3) 其间断点即为X的可能取值点; (4) 其间断点的跳跃高度是对应的概率值.
23 April 2012
第二章 随机变量及其分布
例2.2.1 已知 X 的分布列如下:
0,
x 0, x 0.
求 (1) 常数 k. (2) F(x).
解:
(1) k =3.
(2)
1 e3x , x 0,
F(x) 0,
x 0.
23 April 2012
第20页
第二章 随机变量及其分布
第21页
例2.2.4
1 x,
设
X
~
p(
x)
1
x,
0,
1 x 0 0 x1
其它
第二章 随机变量及其分布
第8页
2.2.1 离散随机变量的分布列
设离散随机变量 X 的可能取值为: x1,x2,……,xn,……
称 pi=P(X=xi), i =1, 2, …… 为 X 的分布列. 分布列也可用表格形式表示:
X x1 x2 …… xn …… P p1 p2 …… pn ……
23 April 2012
第二章 随机变量及其分布 y
第35页
O
μ
x
23 April 2012
第二章 随机变量及其分布
第36页
正态分布的性质
(1) p(x) 关于 是对称的. 在 点 p(x) 取得最大值.
p(x)
σ 小
(2) 若 固定, 改变,
p(x)左右移动,
概率论与数理统计第二章随机变量课件
第二章 随机变量第一节 随机变量及其分布函数上一章中我们讨论的随机事件中有些是直接用数量来标识的,例如,抽样检验灯泡质量试验中灯泡的寿命;而有些则不是直接用数量来标识的,如性别抽查试验中所抽到的性别.为了更深入地研究各种与随机现象有关的理论和应用问题,我们有必要将样本空间的元素与实数对应起来.即将随机试验的每个可能的结果e 都用一个实数X 来表示.例如,在性别抽查试验中用实数“1”表示“出现男性”,用“0”表示“出现女性”.显然,一般来讲此处的实数X 值将随e 的不同而变化,它的值因e 的随机性而具有随机性,我们称这种取值具有随机性的变量为随机变量.定义2.1 设随机试验的样本空间为Ω,如果对Ω中每一个元素e ,有一个实数X (e )与之对应,这样就得到一个定义在Ω上的实值单值函数(e ),称之为随机变量( ).随机变量的取值随试验结果而定,在试验之前不能预知它取什么值,只有在试验之后才知道它的确切值;而试验的各个结果出现有一定的概率,故随机变量取各值有一定的概率.这些性质显示了随机变量与普通函数之间有着本质的差异.再者,普通函数是定义在实数集或实数集的一个子集上的,而随机变量是定义在样本空间上的(样本空间的元素不一定是实数),这也是二者的差别.本书中,我们一般以大写字母如X ,Y ,Z ,W ,…表示随机变量,而以小写字母如,…表示实数.为了研究随机变量的概率规律,并由于随机变量X 的可能取值不一定能逐个列出,因此我们在一般情况下需研究随机变量落在某区间(x 1,x 2]中的概率,即求P {x 1<X ≤x 2},但由于P {x 1<X ≤x 2}{X ≤x 2}{X ≤x 1},由此可见要研究P {x 1<X ≤x 2}就归结为研究形如P {X ≤x }的概率问题了.不难看出,P {X ≤x }的值常随不同的x 而变化,它是x 的函数,我们称这函数为分布函数.定义2.2 设X 是随机变量,x 为任意实数,函数F (x ){X ≤x }称为X 的分布函数( ).对于任意实数x 12(x 1<x 2),有P {x 1<X ≤x 2}{X ≤x 2}{X ≤x 1}(x 2)(x 1), (2.1)因此,若已知X 的分布函数,我们就能知道X 落在任一区间(x 12]上的概率.在这个意义上说,分布函数完整地描述了随机变量的统计规律性.如果将X 看成是数轴上的随机点的坐标,那么,分布函数F (x )在x 处的函数值就表示X 落在区间(-∞]上的概率.分布函数具有如下基本性质: 1°F (x )为单调不减的函数.事实上,由(2.1)式,对于任意实数x 12(x 1<x 2),有F (x 2)(x 1){x 1<X ≤x 2}≥0.2°0≤F (x )≤1,且)(lim x F x +∞→=1,常记为F (+∞)=1.)(lim x F x -∞→=0,常记为F (-∞)=0.我们从几何上说明这两个式子.当区间端点x 沿数轴无限向左移动(x →-∞)时,则“X 落在x 左边”这一事件趋于不可能事件,故其概率P {X ≤x }(x )趋于0;又若x 无限向右移动(x →+∞)时,事件“X 落在x 左边”趋于必然事件,从而其概率P {X ≤x }(x )趋于1.3°F (0)(x ),即F (x )为右连续. 证略.反过来可以证明,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数. 概率论主要是利用随机变量来描述和研究随机现象,而利用分布函数就能很好地表示各事件的概率.例如,P {X >a }=1{X ≤a }=1(a ){X <a }(0){}(a )(0)等等.在引进了随机变量和分布函数后我们就能利用高等数学的许多结果和方法来研究各种随机现象了,它们是概率论的两个重要而基本的概念.下面我们从离散和连续两种类别来更深入地研究随机变量及其分布函数,另有一种奇异型随机变量超出本书范围,就不作介绍了.第二节离散型随机变量及其分布如果随机变量所有可能的取值为有限个或可列无穷多个,则称这种随机变量为离散型随机变量.容易知道,要掌握一个离散型随机变量X 的统计规律,必须且只须知道X 的所有可能取的值以及取每一个可能值的概率.设离散型随机变量X 所有可能的取值为(1,2,…)取各个可能值的概率,即事件{}的概率P {}, 1,2,… (2.2)我们称(2.2)式为离散型随机变量X 的概率分布或分布律.分布律也常用表格来表示(表2-1):表2-1 X x 1 x 2 x 3 … …p 1 p 2 p 3 … …由概率的性质容易推得,任一离散型随机变量的分布律{},都具有下述两个基本性质: 1°≥0,1,2,…; (2.3) 2°11=∑∞=k kp. (2.4)反过来,任意一个具有以上两个性质的数列{},一定可以作为某一个离散型随机变量的分布律.为了直观地表达分布律,我们还可以作类似图2-1的分布律图.图2-1图2-1中处垂直于x 轴的线段高度为,它表示X 取的概率值.例2.1 设一汽车在开往目的地的道路上需通过4盏信号灯,每盏灯以0.6的概率允许汽车通过,以0.4的概率禁止汽车通过(设各盏信号灯的工作相互独立).以X 表示汽车首次停下时已经通过的信号灯盏数,求X 的分布律.解 以p 表示每盏灯禁止汽车通过的概率,显然X 的可能取值为0,1,2,3,4,易知X 的分布律为或写成P {}=(1),0,1,2,3.P {4}=(1)4.将0.4,10.6代入上式,所得结果如表2-3所示.表2-3(1)两点分布若随机变量X 只可能取x 1与x 2两值,它的分布律是P {1}=1(0<p <1),P {2},则称X 服从参数为p 的两点分布.特别,当x 1=0,x 2=1时两点分布也叫(0-1)分布,记作(0-1)分布.写成分布律表形式见表2-4.表2-4对于一个随机试验,若它的样本空间只包含两个元素,即={e 1,e 2},我们总能在上定义一个服从(0-1)分布的随机变量,,,1,0)(21e e e e e X X ==⎩⎨⎧==当当用它来描述这个试验结果.因此,两点分布可以作为描述试验只包含两个基本事件的数学模型.如,在打靶中“命中”与“不中”的概率分布;产品抽验中“合格品”与“不合格品”的概率分布等等.总之,一个随机试验如果我们只关心某事件A 出现与否,则可用一个服从(0-1)分布的随机变量来描述.(2)二项分布若随机变量X 的分布律为P {}kn C (1), 0,1,…, (2.5)则称X 服从参数为n ,p 的二项分布( ),记作().易知(2.5)满足(2.3)、(2.4)两式.事实上,P ()≥0是显然的;再由二项展开式知n k n k nk k nnk p p p p k X P )]1([)1(C}{0-+=-==-==∑∑=1.我们知道,P {}=kn k k n p p --)1(C 恰好是[(1)]n 二项展开式中出现的那一项,这就是二项分布名称的由来.回忆n 重贝努里试验中事件A 出现k 次的概率计算公式(k )kn C (1), 0,1,…,可知,若(),X 就可以用来表示n 重贝努里试验中事件A 出现的次数.因此,二项分布可以作为描述n 重贝努里试验中事件A 出现次数的数学模型.比如,射手射击n 次中,“中的”次数的概率分布;随机抛掷硬币n 次,落地时出现“正面”次数的概率分布;从一批足够多的产品中任意抽取n 件,其中“废品”件数的概率分布等等.不难看出,(0-1)分布就是二项分布在1时的特殊情形,故(0-1)分布的分布律也可写成P {}1(0,1)(1).例2.2 某大学的校乒乓球队与数学系乒乓球队举行对抗赛.校队的实力较系队为强,当一个校队运动员与一个系队运动员比赛时,校队运动员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提了三种方案: (1)双方各出3人;(2)双方各出5人;(3)双方各出7人.三种方案中均以比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案有利?解 设系队得胜人数为X ,则在上述三种方案中,系队胜利的概率为(1) P {X ≥2}=k kk k -=∑3323)6.0()4.0(C ≈0.352;(2) P {X ≥3}=k kk k -=∑5535)6.0()4.0(C ≈0.317;(3) P {X ≥4}=k kk k -=∑7747)6.0()4.0(C ≈0.290.因此第一种方案对系队最为有利.这在直觉上是容易理解的,因为参赛人数越少,系队侥幸获胜的可能性也就越大.例2.3 某一大批产品的合格品率为98%,现随机地从这批产品中抽样20次,每次抽一个产品,问抽得的20个产品中恰好有k 个(1,2,…,20)为合格品的概率是多少?解 这是不放回抽样.由于这批产品的总数很大,而抽出的产品的数量相对于产品总数来说又很小,那么取出少许几件可以认为并不影响剩下部分的合格品率,因而可以当作放回抽样来处理,这样做会有一些误差,但误差不大.我们将抽检一个产品看其是否为合格品看成一次试验,显然,抽检20个产品就相当于做20次贝努里试验,以X 记20个产品中合格品的个数,那么(20,0.98),即P {}=kk k -2020)02.0()98.0(C ,1,2, (20)若在上例中将参数20改为200或更大,显然此时直接计算该概率就显得相当麻烦.为此我们给出一个当n 很大而p (或1)很小时的近似计算公式.定理2.1(泊松()定理) 设λ(λ>0是一常数,n 是任意正整数),则对任意一固定的非负整数k ,有e lim (1)!k k k n knn n n C p p k λλ-→∞-=-.证 由λ,有().111121111!)1()(!)1()1(1C kn kkn k kn n kn k n n n n k n n k n n k k n n n p p ---⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=-+--=-λλλλλ对任意固定的k ,当n →∞时,11121111→⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅n k n n ,11,e 1→⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛---kn n n λλλ故e lim (1).!k kk n knn n n C p p k λλ--→∞-=由于λ是常数,所以当n 很大时必定很小,因此,上述定理表明当n 很大p 很小时,有以下近似公式,!e )1(C k p p k kn k k nλλ--≈- (2.6)其中λ.从表2-5可以直观地看出(2.6)式两端的近似程度.表2-5由上表可以看出,两者的结果是很接近的.在实际计算中,当n ≥20≤0.05时近似效果颇佳,而当n ≥100≤10时效果更好.!e k k λλ-的值有表可查(见本书附表3)二项分布的泊松近似,常常被应用于研究稀有事件(即每次试验中事件A 出现的概率p 很小),当贝努里试验的次数n 很大时,事件A 发生的次数的分布.例2.4 某十字路口有大量汽车通过,假设每辆汽车在这里发生交通事故的概率为0.001,如果每天有5000辆汽车通过这个十字路口,求发生交通事故的汽车数不少于2的概率.解 设X 表示发生交通事故的汽车数,则(),此处5000,0.001,令λ5, P {X ≥2}=1{X <2}=1-{}∑==1k k X P=1-(0.999)5000-5(0.999)4999≈1!e 50!e 51550----. 查表可得P {X ≥2}=1-0.00674-0.03369=0.95957.例2.5 某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.解 将一次射击看成是一次试验.设击中次数为X ,则(400,0.02),即X 的分布律为P {}=k400C (0.02)k (0.98)400, 0,1, (400)故所求概率为P {X ≥2}=1{0}{1}=1-(0.98)400-400(0.02)(0.98)399 =0.9972.这个概率很接近1,我们从两方面来讨论这一结果的实际意义.其一,虽然每次射击的命中率很小(为0.02),但如果射击400次,则击中目标至少两次是几乎可以肯定的.这一事实说明,一个事件尽管在一次试验中发生的概率很小,但只要试验次数很多,而且试验是独立地进行的,那么这一事件的发生几乎是肯定的.这也告诉人们决不能轻视小概率事件.其二,如果在400次射击中,击中目标的次数竟不到两次,由于P {X <2}≈0.003很小,根据实际推断原理,我们将怀疑“每次射击的命中率为0.02”这一假设,即认为该射手射击的命中率达不到0.02.(3)泊松分布若随机变量X 的分布律为P {} =e !k k λλ-,0,1,2,…, (2.7)其中λ>0是常数,则称X 服从参数为λ的泊松分布( ),记为(λ). 易知(2.7)满足(2.3)、(2.4)两式,事实上,P {}≥0显然;再由∑∞=-0!e k k k λλλ·e λ=1,可知∑∞==0}{k k X P =1.由泊松定理可知,泊松分布可以作为描述大量试验中稀有事件出现的次数0,1,…的概率分布情况的一个数学模型.比如:大量产品中抽样检查时得到的不合格品数;一个集团中生日是元旦的人数;一页中印刷错误出现的数目;数字通讯中传输数字时发生误码的个数等等,都近似服从泊松分布.除此之外,理论与实践都说明,一般说来它也可作为下列随机变量的概率分布的数学模型:在任给一段固定的时间间隔内,① 由某块放射性物质放射出的α质点,到达某个计数器的质点数;② 某地区发生交通事故的次数;③ 来到某公共设施要求给予服务的顾客数(这里的公共设施的意义可以是极为广泛的,诸如售货员、机场跑道、电话交换台、医院等,在机场跑道的例子中,顾客可以相应地想象为飞机).泊松分布是概率论中一种很重要的分布.例2.6 由某商店过去的销售记录知道,某种商品每月的销售数可以用参数λ=5的泊松分布来描述.为了以95%以上的把握保证不脱销,问商店在月底至少应进某种商品多少件?解 设该商店每月销售这种商品数为X ,月底进货为a 件,则当X ≤a 时不脱销,故有P {X ≤a }≥0.95.由于(5),上式即为∑=-ak kk 05!5e ≥0.95. 查表可知∑=-95!5e k kk ≈0.9319<0.95, ∑=-105!10e k kk ≈0.9682>0.95 于是,这家商店只要在月底进货这种商品10件(假定上个月没有存货),就可以95%以上的把握保证这种商品在下个月不会脱销.下面我们就一般的离散型随机变量讨论其分布函数.设离散型随机变量X 的分布律如表2-1所示.由分布函数的定义可知F (x ){X ≤x }=∑∑≤≤==xx kxx kk k px X P }{,此处的∑≤xx k 和式表示对所有满足≤x 的k 求和,形象地讲就是对那些满足≤x 所对应的的累加.例2.7 求例2.1中X 的分布函数F (x ). 解 由例2.1的分布律知 当x <0时,F (x ){X ≤x }=0;当0≤x <1时,F (x ){X ≤x }{0}=0.4;当1≤x <2时,F (x ){X ≤x }({0}∪{1}){0}{1}=0.4+0.24=0.64;当2≤x <3时F (x ){X ≤x }({0}∪{1}∪{2}) {0}{1}{2}=0.4+0.24+0.144 =0.784;当3≤x <4时F (x ){X ≤x }({0}∪{1}∪{2}∪{3}) =0.4+0.24+0.144+0.0864=0.8704;当x ≥4时F (x ){X ≤x }({0}∪{1}∪{2}∪{3}∪{4}) =0.4+0.24+0.144+0.0864+0.1296=1.综上所述F (x ){X ≤x }=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<.4,1,43,8704.0,32,784.0,21,64.0,10,4.0,0,0x x x x x x F (x )的图形是一条阶梯状右连续曲线,在0,1,2,3,4处有跳跃,其跳跃高度分别为0.4,0.24,0.144,0.0864,0.1296,这条曲线从左至右依次从F (x )=0逐步升级到F (x )=1.对表2-1所示的一般的分布律,其分布函数F (x )表示一条阶梯状右连续曲线,在(1,2,…)处有跳跃,跳跃的高度恰为{},从左至右,由水平直线F (x )=0,分别按阶高p 1,p 2,…升至水平直线F (x )=1.以上是已知分布律求分布函数.反过来,若已知离散型随机变量X 的分布函数F (x ),则X 的分布律也可由分布函数所确定:{}()(0).第三节 连续型随机变量及其分布上一节我们研究了离散型随机变量,这类随机变量的特点是它的可能取值及其相对应的概率能被逐个地列出.这一节我们将要研究的连续型随机变量就不具有这样的性质了.连续型随机变量的特点是它的可能取值连续地充满某个区间甚至整个数轴.例如,测量一个工件长度,因为在理论上说这个长度的值X 可以取区间(0,+∞)上的任何一个值.此外,连续型随机变量取某特定值的概率总是零(关于这点将在以后说明).例如,抽检一个工件其长度X 丝毫不差刚好是其固定值(如 1.824)的事件{1.824}几乎是不可能的,应认为P{1.824}=0.因此讨论连续型随机变量在某点的概率是毫无意义的.于是,对于连续型随机变量就不能用对离散型随机变量那样的方法进行研究了.为了说明方便我们先来看一个例子.例2.8 一个半径为2米的圆盘靶,设击中靶上任一同心圆盘上的点的概率与该圆盘的面积成正比,并设射击都能中靶,以X 表示弹着点与圆心的距离,试求随机变量X 的分布函数.解 1°若x <0,因为事件{X ≤x }是不可能事件,所以F (x ){X ≤x }=0.2°若0≤x ≤2,由题意P {0≤X ≤x }2,k 是常数,为了确定k 的值,取2,有P {0≤X ≤2}=22k ,但事件{0≤X ≤2}是必然事件,故P {0≤X ≤2}=1,即221,所以1/4,即P {0≤X ≤x }2/4.于是F (x ){X ≤x }{X <0}{0≤X ≤x }= x 2/4.3°若x ≥2,由于{X ≤2}是必然事件,于是F (x ){X ≤x }=1.综上所述F (x )=⎪⎩⎪⎨⎧≥<≤<,2,1,20,41,0,02x x x x 它的图形是一条连续曲线如图2-2所示.图2-2另外,容易看到本例中X 的分布函数F (x )还可写成如下形式:F (x )=t t f xd )(⎰∞-,其中 f (t )=⎪⎩⎪⎨⎧<<.,0,20,21其他t t这就是说F (x )恰好是非负函数f (t )在区间(-∞,x ]上的积分,这种随机变量X 我们称为连续型随机变量.一般地有如下定义.定义2.3 若对随机变量X 的分布函数F (x ),存在非负函数f (x ),使对于任意实数x 有F (x )=⎰∞-xx t f d )(, (2.8)则称X 为连续型随机变量,其中f (x )称为X 的概率密度函数,简称概率密度或密度函数( ).由(2.8)式知道连续型随机变量X 的分布函数F (x )是连续函数.由分布函数的性质F (-∞)=0,F (+∞)=1及F (x )单调不减,知F (x )是一条位于直线0与1之间的单调不减的连续(但不一定光滑)曲线. 由定义2.3知道,f (x )具有以下性质:1°f (x )≥0;2°⎰+∞∞-x x f d )(=1;3°P {x 1<X ≤x 2}(x 2)-F (x 1)=⎰21d )(x x x x f (x 1≤x 2);4°若f (x )在x 点处连续,则有F ′(x )(x ).由2°知道,介于曲线(x )与0之间的面积为1.由3°知道,X 落在区间(x 1,x 2]的概率P {x 1<X ≤x 2}等于区间(x 1,x 2]上曲线(x )之下的曲边梯形面积.由4°知道,f (x )的连续点x 处有f (x )=.}{)()(lim lim 00x x x X x P x x F x x F x x ∆∆+≤<=∆-∆+++→∆→∆ 这种形式恰与物理学中线密度定义相类似,这也正是为什么称f (x )为概率密度的原因.同样我们也指出,反过来,任一满足以上1°、2°两个性质的函数f (x ),一定可以作为某个连续型随机变量的密度函数.前面我们曾指出对连续型随机变量X 而言它取任一特定值a 的概率为零,即P {}=0,事实上,令Δx >0,设X 的分布函数为F (x ),则由{}⊂{a -Δx <X ≤a },得 0≤P {}≤P {a -Δx <X ≤a }(a )-F (a -Δx ). 由于F (x )连续,所以)(lim 0x a F x ∆-→∆(a ).当Δx →0时,由夹逼定理得P {}=0,由此很容易推导出P {a ≤X <b }{a <X ≤b }{a ≤X ≤b }{a <X <b }.即在计算连续型随机变量落在某区间上的概率时,可不必区分该区间端点的情况.此外还要说明的是,事件{}“几乎不可能发生”,但并不保证绝不会发生,它是“零概率事件”而不是不可能事件.例2.9 设连续型随机变量X 的分布函数为F (x )=⎪⎩⎪⎨⎧≥<≤<.1,1,10,,0,02x x Ax x 试求:(1)系数A ;(2)X 落在区间(0.3,0.7)内的概率; (3)X 的密度函数.解 (1)由于X 为连续型随机变量,故F (x )是连续函数,因此有1(1)=2101lim lim )(Axx F x x -→-→= ,即1,于是有F (x )=⎪⎩⎪⎨⎧≥<≤<.1,1,10,,0,02x x x x (2) P {0.3<X <0.7}(0.7)-F (0.3)=(0.7)2-(0.3)2=0.4; (3) X 的密度函数为f (x )′(x )=⎩⎨⎧<≤.,0;10,2其他x x由定义2.3知,改变密度函数f (x )在个别点的函数值,不影响分布函数F (x )的取值,因此,并不在乎改变密度函数在个别点上的值(比如在0或1上f (x )的值).例2.10 设随机变量X 具有密度函数f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,43,22,30,其他x x x kx (1) 确定常数k ;(2) 求X 的分布函数F (x );(3) 求P {1<X ≤72}. 解 (1)由⎰∞∞-x x f d )(=1,得x xx kx d )22(d 4330⎰⎰-+=1, 解得1/6,故X 的密度函数为f (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤.,0,43,22,30,6其他x x x x(2) 当x <0时,F (x ){X ≤x }=⎰∞-xt t f d )( =0;当0≤x <3时,F (x ){X ≤x }⎰∞-xtt f d )(⎰⎰∞-+0d )(d )(xt t f t t f 12d 620x t t x =⎰;当3≤x <4时,F (x ){X ≤x }⎰∞-xtt f d )(033()()()x f t dt f t dt f t dt -∞++⎰⎰⎰=233(2)23;624x t t x dt dt x +-=-+-⎰⎰当x ≥4时,F (x ){X ≤x }⎰∞-xtt f d )(⎰⎰⎰⎰∞-+++030434d )(d )(d )(d )(xt t f t t f t t f t t f=t tt t d )22(d 64330⎰⎰-+ =1.即F (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<.4,1,43,324,30,12,0,022x x x x x x x(3) P {1<X ≤7/2}(7/2)-F (1)=41/48.下面介绍三种常见的连续型随机变量. (1)均匀分布若连续型随机变量X 具有概率密度f (x )=⎪⎩⎪⎨⎧<<-.,0,,1其他b x a ab (2.9)则称X 在区间(a ,b )上服从均匀分布( ),记为().易知f (x )≥0且⎰⎰∞∞--=ba x ab x x f d 1d )(=1.由(2.9)可得 1°P {X ≥b }=⎰∞bx d 0 =0{X ≤a }⎰∞-ax d 00,即 P {a <X <b }=1-P {X ≥b }-P {X ≤a }=1;2°若a ≤c <d ≤b ,则P {c <X <d }=ab cd x a b dc--=-⎰d 1. 因此,在区间()上服从均匀分布的随机变量X 的物理意义是:X 以概率1在区间()内取值,而以概率0在区间()以外取值,并且X 值落入()中任一子区间()中的概率与子区间的长度成正比,而与子区间的位置无关. 由(2.8)易得X 的分布函数为F (x )=⎪⎩⎪⎨⎧≥<≤--<.,1,,,,0b x b x a a b ax a x (2.10) 密度函数f (x )和分布函数F (x )的图形分别如图2-3和图2-4所示.图2-3 图2-4在数值计算中,由于四舍五入,小数点后第一位小数所引起的误差X ,一般可以看作是一个服从在[-0.5,0.5]上的均匀分布的随机变量;又如在()中随机掷质点,则该质点的坐标X 一般也可看作是一个服从在()上的均匀分布的随机变量.例2.11 某公共汽车站从上午7时开始,每15分钟来一辆车,如某乘客到达此站的时间是7时到7时30分之间的均匀分布的随机变量,试求他等车少于5分钟的概率.解 设乘客于7时过X 分钟到达车站,由于X 在[0,30]上服从均匀分布,即有f (x )=⎪⎩⎪⎨⎧≤≤.,0,300,301其他x显然,只有乘客在7∶10到7∶15之间或7∶25到7∶30之间到达车站时,他(或她)等车的时间才少于5分钟,因此所求概率为P {10<X ≤15}{25<X ≤30}⎰⎰+15103025d 301d 301x x 1/3. (2)指数分布若随机变量X 的密度函数为f (x )=⎩⎨⎧≤>-.00,,0,e x x x λλ (2.11) 其中λ>0为常数,则称X 服从参数为λ的指数分布( ),记作(λ).显然f (x )≥0,且x x x f x d e d )(0⎰⎰∞∞-∞-=λλ=1.容易得到X 的分布函数为F (x )=⎩⎨⎧≤>--.00,,0,e 1x x x λ指数分布最常见的一个场合是寿命分布.指数分布具有“无记忆性”,即对于任意>0,有P {X >>s }{X >t }. (2.12)如果用X 表示某一元件的寿命,那么上式表明,在已知元件已使用了s 小时的条件下,它还能再使用至少t 小时的概率,与从开始使用时算起它至少能使用t 小时的概率相等.这就是说元件对它已使用过s 小时没有记忆.当然,指数分布描述的是无老化时的寿命分布,但“无老化”是不可能的,因而只是一种近似.对一些寿命长的元件,在初期阶段老化现象很小,在这一阶段,指数分布比较确切地描述了其寿命分布情况.(2.12)式是容易证明的.事实上,(){,}{}{}{}{}1()ee {}.1()es t t λsP X s X s t P X s t P X s t X s P X s P X s F s t P X t F s λλ-+->>+>+>+>==>>-+====>--(3)正态分布若连续型随机变量X 的概率密度为f (x )=222)(e π21σμσ--x , -∞<x <+∞, (2.13)其中μ,σ(σ>0)为常数,则称X 服从参数为μ,σ的正态分布( ),记为(μ,σ2).显然f (x )≥0,下面来证明⎰∞∞-x x f d )(=1.令σux -,得到.d eπ21d e π2122)(222t x t x ⎰⎰∞∞--∞∞---=σμσ记t t d e22⎰∞∞--,则有I 2=⎰⎰∞∞-∞∞-+-ds d e222t s t .作极坐标变换:θθ,得到I 2=22π22r redrd πθ∞--∞=⎰⎰,而I >0,,即有.π2d e22=⎰∞∞--t t于是.1π2π21d e 21222)(=⋅=--∞∞-⎰x x σμσπ 正态分布是概率论和数理统计中最重要的分布之一.在实际问题中大量的随机变量服从或近似服从正态分布.只要某一个随机变量受到许多相互独立随机因素的影响,而每个个别因素的影响都不能起决定性作用,那么就可以断定随机变量服从或近似服从正态分布.例如,因人的身高、体重受到种族、饮食习惯、地域、运动等等因素影响,但这些因素又不能对身高、体重起决定性作用,所以我们可以认为身高、体重服从或近似服从正态分布.参数μ,σ的意义将在第四章中说明(x )的图形如图2-5所示,它具有如下性质:图2-5 图2-61°曲线关于μ对称;2°曲线在μ处取到最大值,x 离μ越远,f (x )值越小.这表明对于同样长度的区间,当区间离μ越远,X 落在这个区间上的概率越小;3°曲线在μ±σ处有拐点; 4°曲线以x 轴为渐近线;5°若固定μ,当σ越小时图形越尖陡(图2-6),因而X 落在μ附近的概率越大;若固定σ,μ值改变,则图形沿x 轴平移,而不改变其形状.故称σ为精度参数,μ为位置参数. 由(2.13)式得X 的分布函数F (x )=t xt d eπ21-2)(22⎰∞--σμσ. (2.14)特别地,当μ=0,σ=1时,称X 服从标准正态分布N (0,1),其概率密度和分布函数分别用)(x ϕ,Φ(x )表示,即有22e π21)(x x -=ϕ, (2.15)Φ(x )=t xt d eπ2122⎰∞--. (2.16)易知,Φ(-x )=1-Φ(x ).人们已事先编制了Φ(x )的函数值表(见本书附录).一般地,若(μ,σ2),则有σμ-X (0,1).事实上,σμ-X 的分布函数为P {Z ≤x }=}{x X P ≤-σμ{X ≤μ+σx }=t t xd e π21222)(σμσμσ--+∞-⎰,令σμ-t ,得P {Z ≤x }=s xs d eπ2122⎰∞--=Φ(x ),由此知σμ-X (0,1).因此,若(μ,σ2),则可利用标准正态分布函数Φ(x ),通过查表求得X 落在任一区间(x 12]内的概率,即P {x 1<X ≤x 2}=⎭⎬⎫⎩⎨⎧-≤-<-σμσμσμ21x X x P =⎭⎬⎫⎩⎨⎧-≤--⎭⎬⎫⎩⎨⎧-≤-σμσμσμσμ12x X P x X P=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫⎝⎛-Φσμσμ12x x . 例如,设(1.5,4),可得P {-1≤X ≤2}=⎭⎬⎫⎩⎨⎧-≤-≤--25.1225.125.11X P=Φ(0.25)-Φ(-1.25)=Φ(0.25)-[1-Φ(1.25)]=0.5987-1+0.8944=0.4931.设(μ,σ2),由Φ(x )函数表可得P {μ-σ<X <μ+σ}=Φ(1)-Φ(-1)=2Φ(1)-1=0.6826,P {μ-2σ<X <μ+2σ}=Φ(2)-Φ(-2)=0.9544, P {μ-3σ<X <μ+3σ}=Φ(3)-Φ(-3)=0.9974.我们看到,尽管正态变量的取值范围是(-∞,∞),但它的值落在(μ-3σ,μ+3σ)内几乎是肯定的事,因此在实际问题中,基本上可以认为有-μ|<3σ.这就是人们所说的“3σ原则”.例2.12 公共汽车车门的高度是按成年男子与车门顶碰头的机会在1%以下来设计的.设男子身高X 服从μ=170(),σ=6()的正态分布,即(170,62),问车门高度应如何确定?解 设车门高度为h (),按设计要求P {X ≥h }≤0.01或P {X <h }≥0.99,因为(170,62),故P {X <h }=⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-<-617061706170h h X P ≥0.99, 查表得 Φ(2.33)=0.9901>0.99.故取6170-h =2.33,即184.设计车门高度为184()时,可使成年男子与车门碰头的机会不超过1%.例2.13 测量到某一目标的距离时发生的随机误差X (单位:米)具有密度函数f (x )=3200)20(2eπ2401--x .试求在三次测量中至少有一次误差的绝对值不超过30米的概率.解 X 的密度函数为f (x )=222402)20(3200)20(e π2401eπ2401⨯----⨯=x x ,即(20,402),故一次测量中随机误差的绝对值不超过30米的概率为P {≤30}{-30≤X ≤30}=⎪⎭⎫⎝⎛--Φ-⎪⎭⎫⎝⎛-Φ402030402030 =Φ(0.25)-Φ(-1.25)=0.5981-(1-0.8944)=0.4931.设Y 为三次测量中误差的绝对值不超过30米的次数,则Y 服从二项分布b (3,0.4931),故P {Y ≥1}=1-P {0}=1-(0.5069)3=0.8698.为了便于今后应用,对于标准正态变量,我们引入了α分位点的定义. 设(0,1),若z α满足条件P {X >z α}=α,0<α<1, (2.17)则称点z α为标准正态分布的上α分位点,例如,由查表可得z 0.05=1.6450.001=3.16.故1.645与3.16分别是标准正态分布的上0.05分位点与上0.001分位点.第四节 随机变量函数的分布我们常常遇到一些随机变量,它们的分布往往难于直接得到(如测量轴承滚珠体积值Y 等),但是与它们有函数关系的另一些随机变量,其分布却是容易知道的(如滚珠直径测量值X ).因此,要研究随机变量之间的函数关系,从而通过这种关系由已知的随机变量的分布求出与其有函数关系的另一个随机变量的分布.例2.14 设随机变量X 具有表2-6所示的分布律,试求X 2的分布律.“X 2=9”等价,所以P {X 2=0}{0}=0.1, P {X 2=2.25}{1.5}=0.3, P {X 2=9}{3}=0.1.事件“X 2=1”是两个互斥事件“1”及“1”的和,其概率为这两事件概率和,即P {X 2=1}{1}{1}=0.2+0.3=0.5.于是得X 2的分布律如表2-7所示.解 先求Y 的分布函数(y ),由于(X )2≥0,故当y ≤0时事件“Y ≤y ”的概率为0,即(y ){Y ≤y }=0,当y >0时,有(y ){Y ≤y }{X 2≤y }{≤X ≤y }=x x f yyX d )(⎰-.将(y )关于y 求导,即得Y 的概率密度为(y )=()()[]⎪⎩⎪⎨⎧≤>-+.0,0,0,21y y y f y f y XX例如,当(0,1),其概率密度为(2.15)式,则2的概率密度为(y )=⎪⎩⎪⎨⎧≤>--.0,0,0,e π21221y y y y此时称Y 服从自由度为1的χ2分布.上例中关键的一步在于将事件“Y ≤y ”由其等价事件“≤X ≤y ”代替,即将事件“Y ≤y ”转换为有关X 的范围所表示的等价事件,下面我们仅对(X ),其中g (x )为严格单调函数,写出一般结论.定理2.2 设随机变量X 具有概率密度(x ),-∞<x <+∞,又设函数g (x )处处可导且g ′(x )>0(或g ′(x )<0),则(X )是连续型随机变量,其概率密度为(y )=⎩⎨⎧<<'.,0,)()]([其他βαx y h y h f X (2.18)其中α(g (-∞),g (+∞)),β(g (-∞),g (+∞)),h (y )是g (x )的反函数.我们只证g ′(x )>0的情况.由于g ′(x )>0,故g (x )在(-∞∞)上严格单调递增,它的反函数h (y )存在,且在(α,β)严格单调递增且可导.我们先求Y 的分布函数(y ),并通过对(y )求导求出(y ).由于(X )在(α,β)上取值,故 当y ≤α时,(y ){Y ≤y }=0; 当y ≥β时,(y ){Y ≤y }=1; 当α<y <β时,(y ){Y ≤y }{g (X )≤y }{X ≤h (y )}=⎰∞-)(d )(x h X x x f .于是得概率密度(y )=[()](),,0,X f h y h y x .αβ'<<⎧⎨⎩其他对于g ′(x )<0的情况可以同样证明,即(y )=[()][()],,0,fX h y h y x .αβ'<<⎧⎨⎩其他将上面两种情况合并得(y )=(())(),,0,fX h y h y x .αβ'⎧<<⎨⎩其他注:若f (x )在[a ,b ]之外为零,则只需假设在(a ,b )上恒有g ′(x )>0(或恒有g ′(x )<0),此时α{g (a ),g (b )},β{g (a ),g (b )}.例2.16 设随机变量(μ,σ2).试证明X 的线性函数(a ≠0)也服从正态分布. 证 设X 的概率密度(x )=,21222)(σμ--x e π-∞<x <+∞.再令(x ),得g (x )的反函数(y )=y ba-. 所以h ′(y )=1.由(2.18)式(X )的概率密度为(y )=⎪⎭⎫ ⎝⎛-a b y f a X 1, -∞<y <+∞, 即(y )=22)(2)]([21σμσa a b y a +--eπ,-∞<y <+∞,即有(a μ,(a σ)2).例2.17 由统计物理学知分子运动速度的绝对值X 服从麦克斯韦()分布,其概率密度为f (x )=⎪⎩⎪⎨⎧≤>-,0,0,0,42232x x a x a x e π其中a >0为常数,求分子动能221mX (m 为分子质量)的概率密度. 解 已知(x )=221mx (x )只在区间(0,+∞)上非零且g ′(x )在此区间恒单调递增,由。
概率论与数理统计 第二章第一节
V
n
pn V
(2)各小块是否放出粒子是相互独立的。 在这两条假定下,7.5秒内体积为 V 的某放射性物质放出 k 个粒 子,可近似地看作在V 的 个独立的小块中,恰有 k 块放出粒子 ( 块不放出粒子)。 按独立试验序列来近似计算
nk
n
k k n PX k Cn pn qn k
9
练习
• 零件共有100个其中有5个不合格品,安装机器时从中 任取一个,若取得不合格品就扔了再取下一个,在取 得合格品以前已取出的不合格品数 X是一个随机变量, 写出X 所可能取的值。 • X=0,1,2,3,4,5
10
§2.2 离散型随机变量及其分布
• 定义2.2.1 若随机变量 X 所有可能的取值是有限个或无限可列 个,则称 X为离散型随机变量。 • 掷骰子的例子。 • 一般说来,如果离散型随机变量X 所可能取的值为 x k k=1,2,…,n ,也就有了相应的取值 x k 的概率, • (2.21) • 由概率的定义,pk 满足如下的两个条件:
(qn 1 pn k
P{X k} lim C p q
n k n k n nk n
k
k!
e
(k 0,1,2,
p n V
V
n
V
C p q
k n
k n
nk n
n! k nk ( ) (1 ) k! (n k )! n n 1 n(n 1) (n k 1) k k k k! n 1 n
特别:
两点分布
P
1-p
p
17
几种重要的离散型随机变量的概率分布
• 1.二项分布 • 若随机变量 X的概率分布为
概率论与数理统计第二章课件PPT
例2 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 .
X ~ B (3, 0.8),
P( X k)C (0.8) (0.2) , k 0,1,2,3
k 3 k
3k
P{X 1} =P{X=0}+P{X=1} =(0.2)3+3(0.8)(0.2)2
X
p
1
0
1
2
3 0.1
a b 0.2 0.3
求a,b满足什么条件。
a b 0.4, a 0, b 0
一旦知道一个离散型随机变量X的分布律后,我们便可求得X
所生成的任何事件的概率。特别地,对任意 a ,有 b
P a X b P X x P X x i i a x b a x b 1 1 pk
解
用泊松定理 取 =np=(400)(0.02)=8, 故 近似地有 P{X2}=1- P{X=0}-P {X=1}
=1-(1+8)e-8=0.996981.
泊松分布(Poisson distribution)
定义2 设随机变量X的可能取值为0,1,2,…,n,…,而X 的分布律为
pk P X k
路口1
路口2
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
1 1 1 P(X=3)= P( A1 A2 A3 ) =1/8 2 2 2
即
X
p
0
1
2
3
1 2
1 4
《概率论与数理统计》教学课件(共8章)第2章 随机变量及其概率分布
显然,p1+p2+p3+p4=1。
2.1 离散型随机变量
2.1.2 离散型随机变量的分布律
(2) X为直到取得白球时的取球次数。因为每次取出的黑球仍放回去,所以X的所有可能取值是一
切正整数1, 2, …,n, ….由于是放回抽样,故每次抽球的试验是独立的。由独立事件的概率乘法公式,得
X的分布律:
p1=P{X=1}=25, p2=P{X=2}=35×25=265,
概率论与数理统计
第2章 随机变量及其概率分布
2.1 离散型随机变量 2.2 连续型随机变量 2.3 分布函数 2.4 随机变量函数的分布
2.1 离散型随机变量
2.1.1 随机变量的概念
在第1章中,我们讨论了随机事件及其概率.为了全面研究随机试验的结果,我们引入随机变量这 一十分重要的概念。我们所讨论的随机事件几乎无一例外地可用随机变量来描述,用随机变量描述随 机现象是概率论中最重要的方法。
P{X>6}=P{X=7}+P{X=8}+P{X=9} =C97(0.2)7(0.8)2+C98(0.2)8(0.8)+(0.2)9 ≈0.0003.
这一结果表明,供应6个人的需电量,超负荷的可能性仅为0.03%。也就是说,平均在大约55.6h 中,可能有一分钟超负荷。
2.1 离散型随机变量
2.1.3 几种常见的概率分布律
称X=X(ω)为该试验的一个随机变量。
本书中,用大写字母X, Y, Z, W等表示随机变量,用小写字母x, y, z, w等表示实数。
随机变量的取值随着试验的结果而定,因而在试验之前,只能知道它可能取值的范围,而不能预
知它取哪一个值。且试验的所有结果的出现都有一定的概率,因而随机变量的取值也有一定的概率。
《概率论与数理统计》第二章随机变量及其分布共26页word资料
第二章随机变量及其分布........................................................................................................ - 1 - 第一节随机变量及其分布函数...................................................................................... - 2 - 一随机变量概念........................................................................................................ - 2 -二随机变量的分布函数............................................................................................ - 3 -基础训练2.1 ................................................................................................................ - 6 - 第二节离散型随机变量及其概率分布............................................................................ - 6 - 一离散型随机变量及其概率分布............................................................................ - 6 -二常见的几种离散型随机变量及其分布................................................................ - 9 -基础训练2.2 .............................................................................................................. - 13 - 第三节连续型随机变量及其概率分布.......................................................................... - 13 - 一连续型随机变量及其分布的概念与性质.......................................................... - 14 -二常见的几种连续型随机变量及其分布.............................................................. - 17 -基础训练2.3............................................................................................................. - 22 - 第四节随机变量函数的分布.......................................................................................... - 22 - 一离散型随机变量函数的分布.............................................................................. - 22 -二连续型随机变量的函数分布.............................................................................. - 23 -基础训练2.4............................................................................................................. - 26 - 综合训练二........................................................................................................................ - 26 - 内容小结及题型分析二.................................................................................................... - 26 - 拓展提高二........................................................................................................................ - 26 - 阅读材料二........................................................................................................................ - 26 - 数学实验二........................................................................................................................ - 26 -第二章随机变量及其分布【本章导读】本章主要讲述随机变量与分布函数,一维离散型随机变量、连续型随机变量的概率分布,常见分布及函数的分布.【本章用到的先修知识】级数的运算,变限积分,分段函数的积分,无穷积分.【本章要点】随机变量的概念,分布函数,分布律,概率密度,常见随机变量的分布,函数的分布.在上一章中,我们用样本空间的子集,即基本事件的集合来表示随机试验的各种结果.这种表示的方式对全面讨论随机试验的统计规律性及数学工具的运用都有较大的局限. 在本章中,我们将介绍概率论中另一个重要的概念:随机变量. 随机变量的引入,使概率论的研究由个别随机事件扩大为随机变量所表征的随机现象的研究. 这样,不仅可更全面揭示随机试验的客观存在的统计规律性,而且可使我们用高等数学的方法来讨论随机试验.第一节 随机变量及其分布函数一 随机变量概念在第一章里,我们主要研究了随机事件及其概率,读者可能会注意到在随机现象中,有很大一部分问题与实数之间存在着某种客观的联系. 例如,在产品检验问题中,我们关心的是抽样中出现的废品数;在车间供电问题中,我们关心的是某时间段正在工作的车床数;在电话问题中关心的是某一段时间内的话务量等. 对于这类随机现象,其试验结果显然可以用数值来描述,并且随着试验的结果不同而取不同的数值。
概率论与数理统计第二章_PPT课件
3,4,5
1.随机变量的定义
设E是一个随机试验,S是其样本空间.我们称样本空
间上的函数 X X e e S
为一个随机变量,如果对于任意的实数 x,集合
e : X e x X x
X (e)
e
都是随机事件.
随机变量的特点:
R
S
1). X的全部可能取值是互斥且完备的
2). X的部分可能取值描述随机事件
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:
1 , 2 , 3 , . 实例3 设某射手每次射击打中目标的概率是0.8, 现该射手射了30次,则随机变量 X 记为“击中目标 的次数”,则 X 的所有可能取值为:
0 ,1 ,2 ,3 , ,3 . 0
( 5 ) 对 于 随 机 变 量 , 我 们 常 常 关 心 的 是 它 的 取 值 .
( 6 )我 们 设 立 随 机 变 量 ,是 要 用 随 机 变 量 的 取 值 来 描 述 随 机 事 件 .
实例2 掷一个硬币, 观察出现的面 , 共有两个 结果: e1(反面朝 ), 上
e2 (正面朝 ), 上 若用 X 表示掷一个硬币出现正面的次数, 则有
1 ,2 ,3 , . 注意 X(e) 的取值是可列无穷个!
实例7 某公共汽车站每隔 5 分钟有一辆汽车通 过, 如果某人到达该车站的时刻是随机的, 则
X(e) 此人的等车,时间
是一个随机变量. 且 X(e) 的所有可 能取值为: [0,5].
实例8 设某射手对目标进行射击,如果我们以目标 中心为坐标原点,考查射击点的平面位置(坐标), 为了便于研究,我们引入两个变量X,Y,其中
若用 X 表示该家女孩子的个数时 , 则有
概率论与数理统计 第二章随机变量及其分布剖析PPT课件
射手射击击中目标.
这种对应关系在数学上表现为一种实值函数.
w.
X(w) R
对于试验的每一个样本点w,都对应着一个实数 X(w),而X(w)是随着实验结果不同而变化的一个 变量。
机
随机变量的定义
设 随 机 实 验 E的 样 本 空 间 , 若 对 每 一 个 样 本 点
, 都 有 唯 一 的 实 数 X()与 之 对 应 ,则 称 X()为 随 机 变 量 , 简 记 为 X.
P (X k ) ( 1 p )k 1 p , (k 1 ,2 , )
则称随机变量X服从以p为参数的几何分布,
记作
X ~G(p) 。
超几何分布
设N个元素分为两类,有M个属于第一类,N-M
个属于第二类。现在从中不重复抽取n个,其 中包含的第一类元素的个数X的分布律为
P(Xk)CM kC C N n N n kM, (k0,1, ,l) 其中l=min{M,n}, 则称随机变量X服从参数为 的超几何分布,记作 X~H(N,M,n)
由泊松定理,n重贝努里试验中稀有事件 出现的次数近似地服从泊松分布.
例5. 某车间有5台车床,由于种种原因(由 于装、卸工作等),时常需要停车.设各 台车床的停车或开车是相互独立的. 若车床在任一时刻处于停车状态的 概率是1/3,求车间中恰有一台车床处 于停车状态的概率。
解:X:处于停车状态的车床数
密度函数 f (x)在某点处a的高度,并不反映 X取值的概率. 但是,这个高度越大,则X 取a附近的值的概率就越大. 也可以说,在 某点密度曲线的高度反映了概率集中在该 点附近的程度.
f (x)
o
x
例1 :某型号电子管的寿命X(小时)的概率密度为
概率论与数理统计第二章_随机变量及其分布
概率论与数理统计第⼆章_随机变量及其分布第⼆章随机变量及其分布⼀、学习要求、重点难点1、随机变量的概念、类型、引⼊随机变量的意义;2、离散型随机变量的概率分布,⼏种常⽤的离散型分布;3、连续型随机变量的概率分布,⼏种常⽤的连续型分布;4、分布函数的概念及计算;5、随机变量函数的分布;6、随机变量的⼏种数字特征:期望、⽅差等的概率及其计算;7、⼆元随机变量的概念及相关计算;8、⼤数定理及中⼼极限定理。
⼆.内容提要随机变量及其分布通过随机事件及其概率的讨论,使我们对随机现象的统计规律有了初步的认识。
但是⼀个随机现象常常涉及很多事件,如果孤⽴地、静⽌地去研究某个事件,很难对随机现象的整体有所了解。
为此,可引⼊随机变量的概念,这样就能⾮常⽅便地研究随机现象的各种可能结果,以及各种可能结果能以多⼤的概率发⽣等问题。
引⼈随机变量的基本思想就是为了更好地研究随机现象,对随机现象的结果(即样本空间中每⼀个样本点)进⾏量化处理,这样⼀来对随机现象的研究就转为对随机变量的研究。
第⼀节随机变量⼀、随机变量及其类型1.概念⼀般地,设A 为某个随机事件,则⼀定可以通过如下⽰性函数使它与数值发⽣联系每⼀个随机试验的结果⾃然地对应着⼀个实数,⽽在后两个例⼦中,这种对应关系是⼈为地建⽴起来的。
这样⼀来,随机事件的研究就可化为对随机变量的研究。
因此事件的运算就可化为数值的运算。
特别是进⾏了这样⼀步数学抽象以后,许多随机试验就可统⼀起来概括成各种数学模型加以研究。
例如,统计上“正态模型”、“指数模型”、“贝努利实验模型”等可以概括现实⽣活中⼤批实际问题,我们通过对这些典型的数学模型的研究就能更加深⼊研究随机现象,对随机现象的研究成果具有很强的现实和理论意义。
由此可见,⽆论哪⼀种性质,所谓随机变量,不过是随机试验的结果(即样本点)和实数之间的⼀⼀对应关系。
这与数学分析中函数的概念本质上是⼀致的。
只不过在函数概念中,f(x)的⾃变量x 为实数,⽽随机变量的概念中,随机变量)(ωξ的⾃变量为样本点ω,因为对每个试验结果ω都有函数)(ωξ与之对应,所以)(ωξ的定义域是样本空间,值域是实数域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量及其分布
第一节 随机变量
一、随机变量的引入
概率论与数理统计是从数量的侧面来研究随机 现象的统计规律性的一门学科,为了全面研究随机 试验的结果,揭示随机现象的统计规律性,需要将 随机试验的结果数量化,以便于数学上的推导和计 算。为此建立了随机变量的概念。
二、随机变量的定义ຫໍສະໝຸດ 定义1 设 E是随机试验,其样本空间为. 若对 于每一个样本点 ,都有唯一的实数值 X()与 之对应, X: →R 则称定义在样本空间上的单值实函数 X() 为随机变量,简记为 X.
1, 若正面出现, A 0, 若反面出现.
这样便把非数量样本空间数量化了。
例2 袋中有3个黑球,2个白球,从中任意取出3个球, 观察取出的3个球中黑球的个数. 我们将3个黑球分别记作 1,2,3号,2个白球分别记作4,5号,则该试验的样本 空间为
(1, 2,3) (1, 2, 4) (1, 2,5) (1,3, 4) (1,3,5) (1, 4,5) (2,3, 4) (2,3,5) (2, 4,5) (3, 4,5)
样本空间为
={1,2,3,4,5,6}
由于样本点本身已经是数量表示,这时我们可以做 一个恒等变换
X ( )
即
X (1) 1, X ( 2) 2, X ( 3) 3,
X (4) 4, X (5) 5, X (6) 6.
若记取出的黑球数为 X ,则 X 的可能取值为1,2,3. 如下表表示:
样本点
(1,2,3) (1,2,4) (1,2,5) (1,3,4) (1,3,5)
黑球数X
3 2 2 2 2
样本点
(1,4,5) (2,3,4) (2,3,5) (2,4,5) (3,4,5)
黑球数X
1 2 2 1 1
例3
抛掷骰子,观察出现的点数。
X
1 2
R
X(1) X(2) 随机变量常用大写英文字母 X, Y, Z, …或小写英 文字母x, y, z, …或小写希腊字母ξ, η, ζ , …表示。
注 随机变量X与高等数学中的实函数有本质
的区别: 1º X的定义域是样本空间,而不一 定是实数集; 2º X的取值是随机的,它的每一个可
能取值都有一定的概率; 3º 随机变量是随机事件的数量化. 即 对于任意实数 x, {X≤ x }是随机事件. 4º 对于随机变量,我们常常关心它的取值.
三、随机变量举例
例1 抛掷一枚均匀硬币,观察出现正面或是反面
若以数“1”表示正面,数“0”表示反面,那么我
们就可以将试验结果与数值联系起来,即可以通过如 下示性函数与数值发生联系: