期末考试八级数学答卷纸
新人教版八年级数学(下册)期末试卷及答案(A4打印版)
新人教版八年级数学(下册)期末试卷及答案(A4打印版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知13xx+=,则2421xx x++的值是()A.9 B.8 C.19D.184.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.计算1273-=___________.3.4的平方根是.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、A6、D7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±323、±2.4、﹣2<x<25、49 136、40°三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、22x-,12-.3、(1)见解析;(2)经过,理由见解析4、(1)y=x+5;(2)272;(3)x>-3.5、24°.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。
2024—2025学年最新人教新版八年级下学期数学期末考试试卷(含答题卡和参考答案)
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、已知△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2=b2﹣c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:52、下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等且互相平分的四边形是菱形C.对角线垂直且互相平分的四边形是矩形D.对角线垂直、相等且互相平分的四边形是正方形3、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 4、直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣15、一次函数y=﹣2x﹣4的图象上有两点A(﹣3,y1)、B(1,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定6、演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数7、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺8、一次函数y=ax+b的自变量和函数值的部分对应值如下表所示:x05y35则关于x的不等式ax+b>x的解集是()A.x<5B.x>5C.x<0D.x>09、如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN若MN=2,则OM=()A.3B.4C.5D.610、如图,矩形ABCD被直线OE分成面积相等的两部分,BC=2CD,CD=11DE,若线段OB,BC的长是正整数,则矩形ABCD面积的最小值是()A.B.81C.D.121二、填空题(每小题3分,满分18分)11、要使式子有意义,则a的取值范围是.12、已知一次函数y=(2﹣m)x﹣3m+9的图象经过第一、二、四象限,则m的取值范围为.13、如图,将矩形纸片ABCD沿AE折叠,顶点B落在CD边上点F处,若AB =3,BC=2,则DF=.14、如图是“赵爽弦图”,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,AH=6,那么EF等于.15、已知四边形ABCD是菱形,周长是40,如果AC=16,那么菱形ABCD的面积为.16、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:()﹣1+|2﹣|﹣(﹣1)2024.18、主题演讲比赛,比赛的成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,校团委随机抽取部分学生的比赛成绩,并将结果绘制成如图所示的两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)被抽取的学生共有人,B等级的学生有人;(2)本次演讲成绩的中位数落在等级,扇形图中D组对应扇形的圆心角为度;(3)若该校共有100名同学参加了此次演讲比赛,请估计比赛成绩不低于90分的学生共有多少名?19、如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AB和AC于点D,E,并且BE平分∠ABC.(1)求∠A的度数;(2)若CE=1,求AB的长.20、如图,在Rt△ABC中,∠ABC=90°,AB<BC,D是AC的中点,过点D作DE⊥AC交BC于点E,延长ED至F,使DF=DE,连接AE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BE=1,EC=4,求EF的长.21、如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.22、如图,O为坐标原点,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,半径为2的⊙O经过A、B两点.(1)写出A、B两点的坐标;(2)求此一次函数的解析式;(3)求圆心O到直线AB的距离.23、当排球和足球纳入中招考试体育加试后,这两种球的销量逐步提升.某体育用品商店看准时机,第一次购入30个排球和70个足球共花费4550元.第二次购入60个排球和40个足球共花费4100元.商店将排球和足球以50元/个和70元/个的价格出售,前两次进货很快销售一空.(1)求每个排球和足球的进价.(2)该商店准备第三次购入排球和足球共200个,根据市场需求,排球的购买个数不少于40个且不超过100个.购买时生产厂家对排球进行了优惠,规定购买排球不超过50个时保持原价,超过50个时超过的部分打八折.设第三次进货销售完的总利润为W元(利润=销售额﹣成本),其中购进排球x个.①求W与x的函数关系式.②商店为了回馈顾客,开展促销活动.将其中的m(m为正整数)个排球按30元/个,3m个足球按50元/个进行销售.若第三次进货销售完后,获得的最大利润不能低于3000元,求m的最大值.24、如图,在平面直角坐标系xOy中,四边形OABC的顶点是O(0,0),A(2,2),B(4,2),C(4,0),点P是x轴上一动点,连接OB,AP.(1)求直线OB的解析式;(2)若∠P AO=∠AOB,求点P的坐标;(3)当点P在线段OC(点P不与点C重合)上运动时,设P A与线段OB 相交于点D,以DA,DC为边作平行四边形ADCE,连接BE,求BE的最小值.25、如图,点E是正方形ABCD边BC上一动点(不与B、C重合),CM是外角∠DCN的平分线,点F在射线CM上.(1)当∠CEF=∠BAE时,判断AE与EF是否垂直,并证明结论;(2)若在点E运动过程中,线段CF与BE始终满足关系式CF=BE.①连接AF,证明的值为常量;②设AF与CD的交点为G,△CEG的周长为a,求正方形ABCD的面积.八年级下学期数学期末考试(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟11、a≥﹣112、2<m<3 13、14、2 15、96 16、4.8三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、2+218、(1)20,5 (2)C,72 (3)4019、(1)30°;(2).20、(1)证明略(2)21、(1)m=AB的表达式为y=﹣x+3 (2)22、(1)A(2,0),B(0,2);(2)y=﹣x+2;(3)圆心O到直线AB的距离为.23、(1)排球的进价为每个35元,足球的进价为每个50元;(2)①W=;②m的最大值为10.24、(1)直线OB的解析式为.(2)点P的坐标为(1,0)或(﹣2,0).(3)BE的最小值为.25、(1)AE⊥EF;(2)①=;②.。
人教新版八年级下册数学期末试卷和答案详解(PDF可打印)
2020-2021学年内蒙古乌海市八年级(下)期末数学试卷一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.92.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2 3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20 4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6 6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.38.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.211.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<112.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是.14.(3分)已知y=,则x y的值为.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN 折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间x(min)等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.2020-2021学年内蒙古乌海市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.9【考点】二次根式的性质与化简.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选:A.2.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件即可求出答案.【解答】解:由题意可知:,解得:x≤.故选:B.3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,进行计算即可解答.【解答】解:A、∵(32)2+(42)2=337,(52)2=625,∴(32)2+(42)2≠(52)2,∴以32,42,52不能构成直角三角形,故A不符合题意;B、∵72+242=625,252=625,∴72+242=252,∴以7,24,25能构成直角三角形,故B符合题意;C、∵82+132=233,172=289,∴82+132≠172,∴以8,13,17不能构成直角三角形,故C不符合题意;D、∵102+152=325,202=400,∴102+152≠202,∴以10,15,20不能构成直角三角形,故D不符合题意;故选:B.4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间【考点】勾股定理;坐标与图形性质.【分析】根据点P的坐标为(﹣2,3),勾股定理求出OP的长,得出点A的坐标,再判定出3<<4,即可得出﹣的范围.【解答】解:∵点P的坐标为(﹣2,3),∴OP=,∴A(﹣,0),∵9<13<16,∴3<<4,∴﹣4<,故选:A.5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6【考点】平行四边形的性质;三角形三边关系.【分析】平行四边形的两条对角线相交于平行四边形的两边构成三角形,这个三角形的两条边是3,5,第三条边就是平行四边形的一条边x,即满足,解得即可.【解答】解:∵平行四边形ABCD∴OA=OC=3,OB=OD=5∴在△AOB中,OB﹣OA<x<OB+OA即:2<x<8故选:B.6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件【考点】加权平均数.【分析】直接利用加权平均数求法进而分析得出答案.【解答】解:由题意可得,这一周小张平均每天投递物品的件数为:=(件),故选:C.7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.3【考点】命题与定理.【分析】根据矩形的判定、中位数和众数的判定、算术平方根的性质判断即可.【解答】解:①若=a,则a≥0,原命题是假命题;②的算术平方根是2,是真命题;③对角线相等的平行四边形是矩形,原命题是假命题;④一组数据5,6,7,8,9的中位数是7,但众数不是7,原命题是假命题;故选:B.8.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°【考点】菱形的性质.【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH ⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数【解答】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选:A.9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【考点】菱形的判定.【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.2【考点】一次函数的定义.【分析】直接利用一次函数的定义得出m的值进而得出答案.【解答】解:∵关于x的函数y=(m﹣1)x|m|﹣5是一次函数,∴|m|=1,m﹣1≠0,解得:m=﹣1.故选:B.11.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<1【考点】一次函数图象上点的坐标特征.【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m 的取值范围.【解答】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,∴当﹣1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m﹣1<0,解得m<,故选:A.12.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6【考点】轴对称﹣最短路线问题;正方形的性质.【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【解答】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选:D.二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是 4.4.【考点】方差;算术平均数.【分析】先根据平均数是5,求出a的值,然后利用方差的计算公式求解即可.【解答】解:因为3、4、3、a、8的平均数是5,所以3+4+3+a+8=25,解得a=7,故这组数据为3,4,3,7,8,所以这组数据的方差为×[(3﹣5)2+(4﹣5)2+(3﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.14.(3分)已知y=,则x y的值为.【考点】二次根式有意义的条件.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y 的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是﹣9.【考点】一次函数图象上点的坐标特征.【分析】将点的坐标代入直线中可得出b=a﹣2,整理得到3b﹣a=﹣6,代入代数式求得即可.【解答】解:∵P(a,b)是直线y=x﹣2上的点,∴b=a﹣2,∴3b﹣a=﹣6,∴6b﹣2a+3=2×(﹣6)+3=﹣9.故答案为:﹣9.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=25°.【考点】作图—复杂作图;平行四边形的性质.【分析】利用平行四边形的性质求出∠ABC=50°,再利用角平分线的定义,平行线的性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知BE平分∠ABC,∴∠EBC=∠ABC=25°,∴∠AEB=∠EBC=25°,故答案为:25°.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为 2.5.【考点】三角形中位线定理.【分析】根据直角三角形斜边上的中线的性质求出DF,根据三角形中位线定理求出DE,计算即可.【解答】解:在Rt△AFB中,D为AB的中点,AB=7,∴DF=AB=3.5,∵DE为△ABC的中位线,BC=12,∴DE=BC=6,∴EF=DE﹣DF=2.5,故答案为:2.5.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据折叠的性质可以证明△DEM≌△DCN,得DM=DN,再根据折叠可得∠BNM =∠DNM=∠DNC,可证明△DMN是等边三角形,再根据等边三角形的性质即可求出AD的长.【解答】解:由折叠可知:点B与点D重合,∴∠EDN=90°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠EDM+∠MDN=∠CDN+∠MDN,∴∠EDM=∠CDN,∵∠E=∠C=90°,DE=DC,∴△DEM≌△DCN(ASA),∴DM=DN,由折叠,∠BNM=∠DNM,∠DNC=∠DNM,∴∠BNM=∠DNM=∠DNC=180°=60°,∴△DMN是等边三角形,∴DM=MN=5,点C恰好落在MN上的点F处可知:∠DFN=90°,即DF⊥MN,∴MF=NF=MN=,∴CN=ME=AM=,∴AD=AM+DM=.故答案为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b﹣kx+1>0的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.故答案为:x>﹣1.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是①②③.【考点】平行四边形的性质;全等三角形的判定.【分析】①根据等腰直角三角形的性质即可判断;②通过三角形全等和平行四边形的性质即可判断;③根据平行四边形的性质和线段的等量代换即可判断;④通过角的关系即可求得结果;【解答】解:∵∠DBC=45°,DE⊥BC,∴BD=BE,BE=DE,∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°,∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC(SAS),∴∠BHE=∠C,BH=CD,∵四边形ABCD是平行四边形,∴∠C=∠A,AB=CD,∴∠A=∠BHE,AB=BH,∴正确的有①②③;故答案为:①②③.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)先根据完全平方公式和分母有理数将式子展开,然后再合并同类项和同类二次根式即可;(2)根据二次根式的除法化简即可.【解答】解:(1)(﹣2)2++6=3﹣4+4+2+2=7;(2)(3﹣2+)÷2=﹣+===3﹣+2=4.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3584分析数据:补全下列表格中的统计量:平均数中位数众数808181得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为B;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?【考点】统计量的选择;用样本估计总体;频数(率)分布表.【分析】根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)(3)结果.【解答】解:(1)根据上表统计显示:样本中位数和众数都是81,平均数是80,都是B 等级,故估计该校学生每周的用于课外阅读时间的情况等级为B.(2)∵=160∴该校现有学生400人,估计等级为“B”的学生有160名.(3)以平均数来估计:×52=26∴假设平均阅读一本课外书的时间为160分钟,以样本的平均数来估计该校学生每人一年(按52周计算)平均阅读26本课外书.故答案为:5,4,81,81,B;23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可得DP=20米,然后分别在Rt△BDP和Rt△CDP中,利用锐角三角函数的定义求出BD,CD的长,进行计算即可解答.【解答】解:由题意得:DP=20米,在Rt△BDP中,∠BPD=60°,∴BD=DP•tan60°=20(米),在Rt△CDP中,∠CPD=45°,∴CD=DP•tan45°=20(米),∴BC=BD﹣CD=(20﹣20)米,∴标语牌的宽度BC为(20﹣20)米.24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意即可列出一元一次方程,即可求解.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,根据题意得到a的取值,再列出w关于a的一次函数.②根据一次函数的性质即可求解.【解答】解:(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意得:10a+15(a﹣2)=1570,解得:a=64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,依题意可得:,解得0≤a≤且x为整数,∴w=(83﹣64)(10+a)+(78﹣62)(50﹣a+15),=1230+3a,∴w与a之间的函数关系式为w=3a+1230.②∵3>0,∴w随a的增大而增大,=1230+3×33=1329(元).∴当a=33时,y最大∴购进甲种盲盒33个,购进乙种盲盒17个;才能使售完这二批盲盒获得总利润最大;最大利润是1329元.26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)联立两直线解析式求出A的坐标即可;(2)根据D在直线OA上,设出D坐标,表示出三角形COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;(ii)当四边形OP2CQ2为菱形时;(iii)当四边形OQ3P3C为菱形时;分别求出P坐标即可.【解答】解:(1)解方程组,得,∴A(6,3);(2)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴直线CD解析式为y=﹣x+6;(3)在直线l1:y=﹣x+6中,当x=0时,y=6,∴C(0,6),存在点P,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);(ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线CP1的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3);(iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);综上可知存在满足条件的点的P,其坐标为(6,0)或(3,3)或(3,﹣3+6).。
八年级数学(上册)期末试卷及答案(A4打印版)
八年级数学(上册)期末试卷及答案(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .3 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.若m+1m =3,则m 2+21m=________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,依据尺规作图的痕迹,计算∠α=_______°.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 . 三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中2x =.3.已知:12x =-,12y =+,求2222x y xy x y +--+的值.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、B6、A7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、723、74、10.5、56.6、(10,3)三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、13xx-+;15.3、4、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(1)略(2)等腰三角形,理由略6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
人教版八年级下册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是多少厘米?A. 16B. 18C. 20D. 222. 下列哪个数是质数?A. 21B. 23C. 27D. 293. 一个正方形的边长是6厘米,那么这个正方形的面积是多少平方厘米?A. 36B. 48C. 54D. 604. 一个长方体的长、宽、高分别是8厘米、4厘米、2厘米,那么这个长方体的体积是多少立方厘米?A. 64B. 32C. 16D. 85. 下列哪个数是整数?A. 2.5B. 3.6C. 4.8D. 5.1二、判断题(每题1分,共5分)1. 一个等腰三角形的底边长等于腰长。
()2. 任何两个不同的质数相加的和都是质数。
()3. 一个正方形的对角线等于边长的根号2倍。
()4. 一个长方体的体积等于底面积乘以高。
()5. 任何两个不同的整数相乘的积都是整数。
()三、填空题(每题1分,共5分)1. 一个等腰三角形的底边长为10厘米,腰长为6厘米,那么这个三角形的周长是______厘米。
2. 下列哪个数是质数:______。
3. 一个正方形的边长是7厘米,那么这个正方形的面积是______平方厘米。
4. 一个长方体的长、宽、高分别是10厘米、5厘米、2厘米,那么这个长方体的体积是______立方厘米。
5. 下列哪个数是整数:______。
四、简答题(每题2分,共10分)1. 简述等腰三角形的定义及特点。
2. 简述质数的定义及特点。
3. 简述正方形的定义及特点。
4. 简述长方体的定义及特点。
5. 简述整数的定义及特点。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为12厘米,腰长为8厘米,求这个三角形的周长。
2. 一个正方形的边长为9厘米,求这个正方形的面积。
3. 一个长方体的长、宽、高分别是9厘米、6厘米、3厘米,求这个长方体的体积。
4. 一个等腰三角形的底边长为15厘米,腰长为10厘米,求这个三角形的周长。
阶段性八年级数学下学期期末考试原创卷B卷(江苏)(答题卡)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
21.(8分)
准考证号:
22.(8分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
23.(8分)
SS
24.(8分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
25.(9分)
26.(8分)
27.(9分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!。
2022—2023年人教版八年级数学(下册)期末试卷及答案(A4打印版)
2022—2023年人教版八年级数学(下册)期末试卷及答案(A4打印版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( ) A .2-B .2C .12D .12-2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y+-B .22y xC .3223y xD .222()y x y -4.在△ABC 中,AB=10,10,BC 边上的高AD=6,则另一边BC 等于( ) A .10 B .8C .6或10D .8或105a abA(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)-751-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等51的值( ) A .在1.1和1.2之间B .在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间8.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E 是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15°B.22.5°C.30°D.45°9.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.24B.14C.13D.2310.尺规作图作AOB∠的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS 二、填空题(本大题共6小题,每小题3分,共18分)181________.2.分解因式:22a4a2-+=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=________度.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M .如果CDM的周长为8,那么ABCD的周长是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.4.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.6.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、A6、A7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()2 2a1-3、如果两个角互为对顶角,那么这两个角相等4、455、36、16三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、20xy-32,-40.3、-7<x≤1.数轴见解析.4、略.5、(1)略;(2)略.6、(1)每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)至少需要用电行驶60千米.。
八级下册数学期末试卷及答案
八年级下册数学期末试卷及答案一、选择题〔此题共10 小题,总分值共 30分〕1.二次根式21、12 、 30 、 x+2 、40x 2、x2y 2中,最简二次根式有〔〕个。
A、1 个B、2 个C、3 个D、4 个2. 假设式子x 2有意义,那么 x 的取值范围为〔〕.x3A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且 x≠3 3.如果以下各组数是三角形的三边,那么不能组成直角三角形的一组数是〔〕A. 7, 24,25 B . C . 3, 4,5 D .4、在四边形ABCD中, O是对角线的交点,能判定这个四边形是正方形的是〔〕(A〕 AC=BD,AB∥CD, AB=CD 〔 B〕AD∥BC,∠ A=∠C(C〕 AO=BO=CO=DO,AC⊥BD 〔 D〕 AO=CO, BO=DO,AB=BC5、如下左图,在平行四边形ABCD中,∠ B=80AE平分∠ BAD交BC于点 E, CF∥ AE交°,于点,那么∠ 1=〔〕AE Fy y1A.40° B .50°C.60°〔2, 2〕y2 D .80°〔- 1,1〕6、表示一次函数y =+与正比例函数y=( 、n是常数且≠0) 图象是〔〕mx n mnx m O mn x〔第 7 题〕7. 如下图,函数y1x 和y2 1 x4的图象相交于〔- 1,1〕,〔 2,2〕两点.当y1y233时, x 的取值范围是〔〕A.x<- 1B.— 1<x< 2 C .x> 2D.x<- 1 或x> 2S212x2 x228 、在方差公式x1 x x n x 中,以下说法不正确的选项是n〔〕A. n是样本的容量B.x n是样本个体C.x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8 月“书香校园〞活动中全班同学的课外阅读数量〔单位:本〕,绘制了如图折线统计图,以下说法正确的选项是〔〕〔 A〕极差是47〔B〕众数是42〔 C〕中位数是58〔D〕每月阅读数量超过40 的有 4 个月本数某班学生 1~ 8 月课外阅读数量70折线统计图8358587536422812345678月份〔第 9 题〕〔第 10 题〕10、如上右图,在△ABC中, AB=3,AC=4, BC=5,P 为边 BC上一动点, PE⊥ AB于 E,PF⊥ AC 于 F, M为 EF中点,那么 AM的最小值为【】A.B.C.D.二、填空题〔此题共 10 小题,总分值共30 分〕31〔第 12 题〕11.48 -+ 3( 3 1) -3 0 - 3 2 =312.边长为 6 的大正方形中有两个小正方形,假设两个小正方形的面积分别为S1,S2,那么S1+S2的值为〔〕13.平行四边形 ABCD的周长为 20cm,对角线 AC、 BD相交于点 O,假设△ BOC的周长比△ AOB的周长大2cm,那么 CD=cm。
2022—2023年人教版八年级数学上册期末测试卷及答案【A4打印版】
2022—2023年人教版八年级数学上册期末测试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .95.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是( )A .90B .120C .135D .1809.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm10.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.计算1273-=___________. 3.若28n 是整数,则满足条件的最小正整数n 为________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD 的面积是_______。
初中八年级数学(上册)期末试卷及答案(A4打印版)
初中八年级数学(上册)期末试卷及答案(A4打印版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3二、填空题(本大题共6小题,每小题3分,共18分)1.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:24x -=__________. 4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:222221412()x x x x x x x x -+-+÷-+,且x 为满足﹣3<x <2的整数.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、B6、D7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、03、(x+2)(x-2)4、2≤a+2b ≤5.5、56、40°三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、-53、(1)见解析;(2)k =84、(1)证明略;(2)证明略;(3)10.5、(1)2;(2)60︒ ;(3)见详解6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
最新人教版八年级数学(上册)期末试卷及答案(A4打印版)
最新人教版八年级数学(上册)期末试卷及答案(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.下列四个图形中,线段BE 是△ABC 的高的是( )A. B.C. D.8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)13x x,则x=__________2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、B6、D7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、1或5.3、3m ≤.4、a+c5、706、8三、解答题(本大题共6小题,共72分)1、x=32、22x -,12-.3、8k ≥-且0k ≠.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、24°.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
八年级数学试卷答题卡模板A3
请在各题目的答题区域内作答,超出黑色内框限定区域的答案无效!
27:(本题 8 分,其中第(1)小题 5 分,第(2)小题 3 分) (1)
请在各题目的答题区域内作答,超出黑色内框限定区域的答案无效!
29:(本题 10 分,其中第(1)(2)小题每题 2 分,第(3)(4)小 题每题 3 分)
24、(本题 6 分)
解方程: 2 1 1 x2 x 1
请在各题目的答题区域内作答,超出黑色内框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色内框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色内框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色内框限定区域的答案无效!
4.在草稿纸、试题卷上答题无效; 5.请勿折叠答题卡。保持字体工整、笔迹清晰、卡面
清洁。
<—此方框为缺考考生标记,由监考员用 2B 铅笔填涂
贴条形码区
(色墨水签字笔书写)(每题 4 分,共 48 分)
1 2 3 4 5
6 7 8 9 10
11 12
二、填空题(请用 2B 铅笔填涂)(每题 4 分,共 32 分)
13.
14.
15.
16.
17.
18.
19.
20.
三、解答题(请用 0.5 毫米黑色墨水签字笔书写) 21、
请在各题目的答题区域内作答,超出黑色内框限定区域的答案无效!
22、计算(本题共 2 小题,每题 5 分,共 10 分)
(1)
26、(本题共 8 分,其中第(1)题 5 分,第(2)小题 3 分) (1)
(2) 28:(本题 8 分)
(2)
(2)
2022—2023年人教版八年级数学上册期末考试卷及参考答案
2022—2023年人教版八年级数学上册期末考试卷及参考答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若=﹣a , 则a的取值范围是()A. ﹣3≤a≤0B. a≤0C. a<0D. a≥﹣32. 将抛物线平移, 得到抛物线, 下列平移方式中, 正确的是()A. 先向左平移1个单位, 再向上平移2个单位B. 先向左平移1个单位, 再向下平移2个单位C. 先向右平移1个单位, 再向上平移2个单位D. 先向右平移1个单位, 再向下平移2个单位3.等腰三角形的两边长分别为3和6, 则这个等腰三角形的周长为()A. 12B. 15C. 12或15D. 184. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)5.若+ = (b为整数), 则a的值可以是()A. B. 27 C. 24 D. 206.如图, PA.PB是⊙O切线, A.B为切点, 点C在⊙O上,且∠ACB=55°, 则∠APB等于()A. 55°B. 70°C. 110°D. 125°7.已知正多边形的一个外角为36°, 则该正多边形的边数为( ).A. 12B. 10C. 8D. 68.甲骨文是我国的一种古代文字, 是汉字的早期形式, 下列甲骨文中, 不是轴对称的是()A. B. C. D.9.如图, △ABC中, BD是∠ ABC的角平分线, DE ∥ BC, 交AB 于 E, ∠A=60º, ∠BDC=95º, 则∠BED的度数是()A. 35°B. 70°C. 110°D. 130°10.如图, 已知是的角平分线, 是的垂直平分线, , , 则的长为()A. 6B. 5C. 4D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若2x=5, 2y=3, 则22x+y=________.2. 已知菱形ABCD的面积是12cm2, 对角线AC=4cm, 则菱形的边长是______cm.3. 当直线经过第二、三、四象限时, 则的取值范围是________.4. 如图, 将三个同样的正方形的一个顶点重合放置, 那么的度数为__________.5. 如图, OP平分∠MON, PE⊥OM于点E, PF⊥ON于点F, OA=OB, 则图中有__________对全等三角形.6. 如图, 在矩形ABCD中, BC=20cm, 点P和点Q分别从点B和点D出发, 按逆时针方向沿矩形ABCD的边运动, 点P和点Q的速度分别为3cm/s和2cm/s, 则最快_________s后, 四边形ABPQ成为矩形.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)11322xx x-=---(2)311xx x-=-2. 先化简, 再求值: , 其中x满足.3. 已知关于x的一元二次方程.(1)求证: 方程有两个不相等的实数根;(2)如果方程的两实根为, , 且, 求m的值.4. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB, CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.5. 如图, 某市有一块长为米, 宽为米的长方形地块, 规划部门计划将阴影部分进行绿化, 中间修建一座雕像, 求绿化的面积是多少平方米?并求出当时的绿化面积?6. 因魔幻等与众不同的城市特质, 以及抖音等新媒体的传播, 重庆已成为国内外游客最喜欢的旅游目的地城市之一. 著名“网红打卡地”磁器口在2018年五一长假期间, 接待游客达20万人次, 预计在2020年五一长假期间, 接待游客将达28.8万人次. 在磁器口老街, 美食无数, 一家特色小面店希望在五一长假期间获得好的收益, 经测算知, 该小面成本价为每碗6元, 借鉴以往经验: 若每碗卖25元, 平均每天将销售300碗, 若价格每降低1元, 则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象, 店家规定每碗售价不得超过20元, 则当每碗售价定为多少元时, 店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.D3.B4.D5.D6.B7、B8、D9、C10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.752.3. .4.20°.5.36.4三、解答题(本大题共6小题, 共72分)1、(1)无解;(2).2. ;.3.(1)略(2)1或24.(1)略;(2).5、(5a2+3ab)平方米, 63平方米6、(1)年平均增长率为20%;(2)每碗售价定为20元时, 每天利润为6300元.。
最新部编版八年级数学上册期末试卷及答案【A4打印版】
最新部编版八年级数学上册期末试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( )A .大于零B .等于零C .小于零D .不能确定2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.如图,等边△ABC 的边长为4,AD 是边BC 上的中线,F 是边AD 上的动点,E 是边AC 上一点,若AE=2,则EF+CF 取得最小值时,∠ECF 的度数为( )A .15°B .22.5°C .30°D .45°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为_______cm .3.因式分解:a 2-9=_____________.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,一棵大树在一次强台风中于离地面3m 处折断倒下,树干顶部在距离根部4m 处,这棵大树在折断前的高度为__________m .三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.4.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF∥AB,(2)求∠DFC的度数.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、A6、D7、D8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、223、(a+3)(a ﹣3)4、113y x =-+5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、4x =2、22mm -+ 1. 3、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.4、(1)略;(2)105°5、(1)略(2)90°(3)AP=CE6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
2022—2023年部编版八年级数学(上册)期末试卷及答案(完美版)
2022—2023年部编版八年级数学(上册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .39.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为( )A .40海里B .60海里C .70海里D .80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x =,则x=__________2.因式分解:22ab ab a -+=__________.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在△ABC 中,AC=BC=2,∠C=900,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,AD 的垂直平分线交AB 于点F ,则DF 的长为 _________.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.解不等式组:3221152x x x x -<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、A5、D6、A7、B8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、()21a b -3、13k <<.4、4-5、956、(-10,3)三、解答题(本大题共6小题,共72分)1、4x =2、(1)42,(2)13+-3、31x -<<4、(1)略;(2)S 平行四边形ABCD =245、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2023-2024学年新疆和田地区八年级(上)期末数学试卷+答案解析
2023-2024学年新疆和田地区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,不是轴对称图形的是( )A. B. C. D.2.下列运算中,正确的是( )A. B. C. D.3.如图,,,,求的度数( )A.B.C.D.4.下列四个图形中,线段BE是的高的是( )A. B.C. D.5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去.( )A. ①B. ②C. ③D. ①和②6.已知点与点关于x轴对称,则( )A. B. C. D. 47.若是一个完全平方式,则k 的值为( )A. 6B.C. 12D.8.如图,有A ,B ,C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A. 在边AC ,BC 两条高的交点处B. 在边AC ,BC 两条中线的交点处C. 在边AC ,BC 两条垂直平分线的交点处D. 在,两条角平分线的交点处9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪拼成一个矩形.通过计算这两个图形的面积验证了一个等式,这个等式是( )A. B.C.D.10.如图,在中,AD 平分,,垂足为点若的面积为16,,则DE 的长为( )A. 2B. 3C. 4D. 6二、填空题:本题共6小题,每小题3分,共18分。
11.化简:______.12.如果分式的值为零,那么______.13.十二边形的内角和为______度.14.计算______.15.若,,则______.16.如图,在中,,,的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则的最小值为______.三、计算题:本大题共1小题,共7分。
八级上册数学期末考试试卷及答案
八年级数学期末试卷一、选择题:本大题共8 小题,每题 2 分,共 16 分.在每题给出得分 评卷人的四个选项中,恰有一项是切合题目要求的,请将正确选项的代号填入....题前括号内.【 】 1. 计算 (a 2 ) 3 的结果是A .a 5B .a 6C . a 8D . 3 a 2【 】 2. 若正比率函数的图像经过点(- 1, 2),则这个图像必经过点A .( 1,2)B .( - 1,- 2)C .( 2,- 1)D .( 1,- 2)【 】 3. 以下图形是轴对称图形的是A .B .C .D .【 】 4. 如图,△ ACB ≌△ A ’CB ’,∠ BCB ’=30°,则∠ ACA ’的度数为A .20°B .30°A AC . 35°D .40°B【 】 5. 一次函数 y=2x - 2 的图象不经过 的象限是...A .第一象限B .第二象限BCC .第三象限D .第四象限(第4题)】 6. 从实数2,14 中,精选出的两个数都是无理数的为 【 ,0, ,13B . ,4C . 2,4 D .2 , A .,03【 】 7. 若 a0 且 a x 2 , a y3,则 a x y 的值为千 Ms/A .- 1B . 1C .233 321 D .2O610 分【】 8. 明显骑自行车去上学时,经过一段先上坡后下坡的路,在这t/(第 8题)段路上所走的行程s(单位:千 M )与时间 t(单位:分)之间的函数关系如下图.下学后假如按原路返回,且来回过程中,上坡速度同样,下坡速度同样,那么他回来时,走这段路所用的时间为A .12 分B .10分C .16分D .14分得分评卷人二、填空题:本大题共 10 小题,第 9~ 14 题,每题 2 分,第 15~ 18 题,每题 3分,共 24 分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:2x31x2=.810.一次函数y(2 k4) x 5中, y 随 x 增大而减小,则 k 的取值范是.11.分解因式:m2n mn2=.A12.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直均分线,D 交 AC 于点 D,交 BC 于点 E. 已知∠ BAE=16°,则∠ C 的度数为.BEC12(第13.计算:(1)2009-(- 3)0+ 4 =.14.当s t1时,代数式 s22st t 2的值为.y215.若x25( y16)20 ,则x+y=.B O x16.如图,直线y kx b经过点A( 1,2)和点B( 2,0),直线y2x A(第 16 题)过点 A,则不等式2x kx b0 的解集为.17.如图,小量角器的零度线在大批角器的零度线上,且小量角器的中心在大批角器的外缘边上.假如它们外缘边上的公共点P 在小量角器上对应的度数为 66°,那么在大批角器上对应的度数为__________ °(只要写出 0°~ 90°的角度).(第 17 题)18.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出个 .三、解答题:本大题共10 小题,共 60 分.解答时应写出文字说明、证明过程或演算步骤.得分评卷人(19~20 题,第 19 题 6 分,第 20 题 5 分,共 11 分)19.()化简:1.(2)分解因式: x3 2 x2x .1( a 2b)( a 2b)b( a 8b)220.如图,一块三角形模具的暗影部分已损坏.( 1)假如不带残留的模具片到商铺加工一块与本来的模具△ABC 的形状和大小完整同样的模具△ A B C ,需要从残留的模具片中胸怀出哪些边、角?请简要说明原因.(2)作出模具△A B C的图形(要求:尺规作图,保存作图印迹,不写作法和证明).AB C(第 20 题)得分评卷人(第 21题 5 分,第 22题 5分,共 10分)21.已知x25x14 ,求 x 1 2x 12x 11的值.22.如图,直线l1:y x 1与直线 l 2:y mx n 订交于点 P(1,b) .( 1)求b的值;x y 10( 2)不解对于x, y 的方程组请你直接写出它的解.mx y n0yl1b PO1xl2(第 22题)得分 评卷人(第 23题 5分,第 24题 6分,共 11分)23.如图,在平面直角坐标系 xoy 中, A( 15), ,,,C( 4,3) .B( 10)( 1)在图中画出 △ ABC 对于 y 轴的对称图形 △ A 1B 1C 1 ;( 2)写出点 A 1,B 1,C 1 的坐标.yA6C4 2-5BO5x-2( 第 23题)24.如图,四边形 ABCD 的对角线 AC 与 BD 订交于 O 点,∠ 1=∠2,∠ 3=∠ 4.求证: ( 1) △ ABC ≌△ ADC ;( 2) BO=DO .BA132OC4D(第 24 题)26.已知线段AC 与 BD 订交于点 O,连接 AB 、DC, E 为 OB 的中点, F 为 OC 的中点,连接 EF (如下图).(1)增添条件∠ A=∠D ,∠ OEF =∠ OFE,求证: AB=DC.(2)分别将“∠ A=∠D ”记为①,“∠ OEF =∠OFE ”记为②,“ AB=DC ”记为③,若增添条件②、③,以①为结论组成另一个命题,则该命题是_________命题(选择“真”或“假”填入空格,不用证明).ADOE FB C(第 26 题)得分评卷人(第 27题8分)27.如图,在平面直角坐标系xOy 中,已知直线AC 的解读式为 y 1 x2,直线AC交2x 轴于点C,交y轴于点A.( 1)若一个等腰直角三角形OBD 的极点 D 与点 C 重合,直角极点 B 在第一象限内,请直接写出点 B 的坐标;( 2)过点 B 作 x 轴的垂线l,在 l 上能否存在一点 P,使得△在,恳求出点 P 的坐标;若不存在,请说明原因;( 3)试在直线AC 上求出到两坐标轴距离相等的全部点的坐标yAO AOP 的周长最小?若存.BC(D)x得分评卷人(第28题8分)28.元旦时期,甲、乙两个家庭到300km 外的景色区“自驾游”,乙家庭因为要携带一些旅行用品,比甲家庭迟出发(从甲家庭出发时开始计时),甲家庭开始出发时以60km/h 的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的行程y甲(km)、 y 乙( km )与时间 x(h)之间的函数关系对应图象,请依据图象所供给的信息解决以下问题:(1)因为汽车发生故障,甲家庭在途中逗留了h;(2)甲家庭抵达景色区共花了多少时间;(3)为了能相互照料,甲、乙两个家庭在第一次相遇后商定两车的距离不超出15km ,请经过计算说明,按图所表示的走法能否切合商定.y/kmD E300C八年级数学(参照答案)82161B2D3A4B5B6D7C8D(109 14215 18324)91x510 k< 211 m n(m n) 12 37°13 0 141 4415 9 162< x< 117 48° 18 7 (1060)191 (a2b)( a12b) b (a 8b)2a 24b 21ab4b24 2a 21ab62x32x2x=x( x2x1)3=x( x1)25201BCBC32 A B C521x 12x 1x 121= 2x2x2x1(x22x1)12= 2x2x2x1x22x113= x25x14x25x14= (x25x) 1 14 1 155 221(1, b)y x1x1b 1 123x1,522.y23122 A1(1,5),B1(1,0) , C1 (4,3)5 24:( 1)ABC ADC12AC AC34ABCADC3 2ABCADCAB=A D41= 2BO=DO625 (1)2( 2),AOBOA OBOC OD,OC=ODCD,CD,CD E22261OEF = OFEOE=OF1EOBFOC OB=OC2 A= DAOB= DOCAOBDOC 4AB=DC5 26271 B(2 2)22OBDl,OClAClP.31x2y=1,x=2y2P(21)43Qm1 m 21 m1 m22 m 2 m62 42m m4 7 34 4Q4 4833(2 )28111 2y 乙 =50x 252 x=5y=225C 5 225B2603BDy=kx+b5kb 225,k 55, 2k b 60.b50.BD y=55x 50 5y=300x=7011706h1137B DBy 乙 y= 5x+25= 5×2+25=15 ≤ 15D y — y 乙 =5x 25=75≤ 15 811。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011~2012学年度第一学期期末考试八年级数学答卷纸
注意事项: 得分: 1.本答题纸共4页,28题.全卷满分120分,考试时间为120分钟.
2.答题前,请务必将自己的班级、姓名、考试号填写在答题..纸.的指定位置. 3.请在答题纸上作答......,考试结束后只收答题纸.....
. 学校
班级
姓名
学号
第25题
图③
B
C
A 图④
B
C
A
图①
B
C
A 图②
B
C
A 金额w (元)
O
批发量m (kg )
300 200 100
20 40 60
24.(本题8分)(1)请将表和图①中的空缺部分补充完整;
25.(本题8分)尺规作图,并保留痕迹.
26.(满分8分)
27.(满分8分)
28.(满分8分)⑴①求点C 的坐标;②求△OBC 的面积.
⑵试探索:AQ +PQ 是否存在最小值?
若存在,求出这个最小值;若不存在,说明理由.
O M N
A B
y O C
x
图1
图2
A
P
Q B
y O
C x
E N
第一课件网系列资料。