10 预应力混凝土结构的受力性能 1
预应力混凝土
第一讲预应力定义:预应力混凝土是根据需要人为引入某一数值与分布的内应力,用以全部或部分抵消外荷载应力的一种加筋混凝土。
狭义定义:在混凝土构件承受外荷载之前,对其受拉区预先施加压应力,就成为预应力混凝土结构广义定义:预应力混凝土是其中已建立有内应力的混凝土,内应力的大小和分布能够抵消给定的外加荷载所引起的应力至预期的程度。
基本概念:应力概念(预计开裂程度):预应力混凝土是由于预加应力而使混凝土从一种脆性材料转变成为一种弹性材料。
这种概念:“以无拉应力设计准则”为基础的。
特点:1主要设计阶段为正常使用极限状态;2计算方法采用材料力学方法,符合胡克定律和叠加原理。
强度概念(抵抗破坏安全性):预加应力是为了使高强钢筋能够和混凝土结合,它是钢筋混凝土的扩大和改进。
特点:主要表现在提高了构件的抗裂和刚度性能,同时也提高了承载力,充分发挥了张拉对承载力的贡献。
荷载平衡概念(计算挠度):预加应力是为了实现预期的荷载平衡。
特点:使得预应力概念更深入了,给设计计算带来了大大的简化。
早期预应力实践存在的问题:使用的混凝土和钢筋材料的强度较低,对预应力损失的认识不够。
钢筋混凝土与预应力混凝土之间的主要区别钢筋混凝土是将钢筋和混凝土简单地结合在一起,并且任由它们自行地共同工作,而预应力混凝土则不然,它是将高强混凝土和高强钢材“能动”地结合在一起,这种结合是靠张紧钢材并将其锚固于混凝土,从而使混凝土受压来实现。
钢材是延性材料,现在用预加应力的办法使其能在高拉力下工作,混凝土在抗拉能力上是脆性材料,现在由于受到预压而有所改善,同时抗压能力并未真正受到损害。
因此预应力混凝土仍是两种现代高强度材料的一种理想结合。
为什么预应力混凝土能发挥高强钢筋的作用呢?原因在于钢材的弹性模量一般相差不大,而在正常使用状态时,普通钢筋混凝土拉应变不大,因此不能使用高强钢筋,即受到限制。
预应力混凝土是先将钢筋张拉一段应变,即先增加了应力,然后在外加荷载下还能增加一段应变,这样高强钢筋就能使用了。
10 预应力混凝土结构
10.2.2 预应力混凝土的材料
(1)预应力混凝土结构对钢筋的要求 ) ①高强度 预应力混凝土构件在制作和使用过程中, 高强度 由于种种原因,会出现各种预应力损失,为了在扣除预 应力损失后,仍然能使混凝土建立起较高的预应力值, 需采用较高的张拉应力,因此预应力钢筋必须采用高强 钢筋(丝); ②具有一定的塑性 为防止发生脆性破坏,要求预应 具有一定的塑性 方钢筋在拉断时,具有一定的伸长率; ③良好的加工性能 即要求钢筋有良好的可焊性,以 良好的加工性能 及钢筋“镦粗”后并不影响原来的物理性能; ④与混凝土之间有较好的黏结强度 有较好的黏结强度、先张法构件的 有较好的黏结强度 预应力传递是靠钢筋和混凝土之间的黏结力完成的,因 此需要有足够的黏结强度。
缺点: 需要增设施加预应力的设备,制作技术要求 缺点:
较高,施工工序长。某些构件如大跨度结构,有时会 产生反拱,影响正常使用。
4、 预应力混凝土的分类 、
按照使用荷载下对截面拉应力控制要求的不同, 预应力混凝土结构构件可分为三种: ①全预应力混凝土 指在全部荷载组合下构件截面上均不允许出现拉 应力。大致相当于裂缝控制等级为一级的构件。 ②有限预应力混凝土 指在短期荷载作用下,容许混凝土承受不超过其抗 拉强度的拉应力值;但在长期荷载作用下,混凝土不得 受拉的要求设计。相当于裂缝控制等级为二级的构件。 ③部分预应力混凝土 部分预应力混凝土是按在使用荷载作用下,容许出 现裂缝,但最大裂宽不超过允许值的要求设计。相当于 裂缝控制等级为三级的构件。
σl3=2△t (N/mm2)
减少此项损失的措施有: ①采用二次升温养护。先在常温下养护至混凝土强 度等级达到C7.5~C10,再逐渐升温至规定的养护温度, 这时可认为钢筋与混凝土已结成整体,能够一起胀缩而 不引起预应力损失; ②在钢模上张拉预应力钢筋。由于钢模和构件一起 加热养护,升温时两者温度相同,可不考虑此项损失。
预应力混凝土构件的极限承载力计算
预应力混凝土构件的极限承载力计算预应力混凝土构件是现代建筑领域中使用广泛的一种结构形式,它通过在混凝土中施加预先设定的拉应力,使得构件在承载荷载时具备更高的强度和抗裂性能。
预应力混凝土结构可以采用不同的构件形式,如梁、板、柱等。
在设计和施工过程中,我们需要进行极限承载力计算,以确保结构的安全可靠。
下面将从材料特性、预应力力的计算以及极限承载力计算等方面进行探讨。
首先,我们需要了解预应力混凝土构件所采用的材料特性。
混凝土具有良好的抗压性能,而钢材则具备良好的抗拉性能。
预应力混凝土中采用的钢筋一般为高强度钢束或钢丝,其具有较高的抗拉强度。
而混凝土的强度可通过试验获得。
在进行极限承载力计算时,我们需要明确混凝土和钢材的强度参数,并根据设计要求选择合适的数值。
其次,预应力力的计算是极限承载力计算的重要环节。
预应力力一般通过锚固装置施加在混凝土构件上。
锚固装置将钢筋的一端锚固在混凝土构件内,另一端通过张拉机械进行张拉,施加预应力力。
预应力力的大小与构件尺寸、混凝土强度、钢筋类型等因素有关。
在计算预应力力时,我们需要根据构件的受力状态和设计要求确定力的大小,并进行合理的布置。
然后,我们来谈一谈预应力混凝土构件极限承载力的计算方法。
极限承载力一般包括弯曲承载力、剪切承载力和挤压承载力等。
在计算弯曲承载力时,我们需要明确构件的几何形状、受力形式和荷载情况,并采用弯矩-曲率曲线确定构件的抗弯刚度。
在计算剪切承载力时,我们需要考虑构件的剪切破坏形式,并确定剪切抗力的大小。
在计算挤压承载力时,我们需要了解构件受力形式和材料特性,并根据约束条件和材料力学性质确定承载力的大小。
最后,我们需要强调一些在极限承载力计算中的注意事项。
首先,预应力混凝土构件考虑了预应力力的影响,因此在计算过程中需要综合考虑构件的普通混凝土部分和预应力部分。
其次,极限承载力计算需要基于合理的假设和边界条件,确保计算结果的准确性和可靠性。
同时,应考虑构件的变形和裂缝控制等问题,以确保结构的完整性。
预应力混凝土结构的受力性能-混凝土结构基本原理
pcI
混凝土应力: cpI
( con
lI ) Ap
A0
A0 A ( Ep 1) Ap
七、轴心受拉构件的分析
1. 先张法构件各阶段的受力分析
施工阶段——完成第二批损失
Ep Ep Ec
预应力筋应力: peII con lI lII Ep pcII
pcII( A Ap ) ( con lI lII Ep pcII) Ap
0
1.1con停2分钟
0.85con停2分钟
锚固端
锚固端
con
五、预应力损失值
3. 锚具变形和预应力筋回缩损失l1
由于锚具、垫块本身的变形, 其间裂缝的压紧及钢筋在锚具 中的滑移引起的损失
l1
a l
Ep
张拉端锚具的变形 和钢筋的内缩值, 见教材表10-2
预应力筋的弹性 模量
张拉端至锚固端 之间的距离
*直接张拉法:用千斤顶等机械工具 直接张拉预应力筋 *电热法:低电压强电流通过预应力 筋使其发热伸长,达设计要求时断 电 *连续配筋法:用旋转工作台将预应力筋缠绕于混凝土块体上或水池 壁上
*自张法:用自应力水泥制成混凝土,结硬时混凝土膨胀带动混凝土 中的预应力筋一起伸长,在混凝土中产生压力
*直接加压法:用千斤顶直接在构件两端加力使其获得预压力
混凝土中的有效预压应力
pcII
混凝土应力: pcII
( con
lI lII) Ap
A0
A0 A ( Ep 1) Ap
七、轴心受拉构件的分析
1. 先张法构件各阶段的受力分析
加载阶段——加载至混凝土中的应力为0
p con lI lII Ep pcII
Nt0
预应力筋应力: p con lI lII
预应力混凝土结构的受力性能
混凝土应力: c 0 s
N p0 (s con s lI s lII ) Ap
六、轴心受拉构件的分析
1. 先张法构件各阶段的应力分析
加载阶段----加载至混凝土开裂
s p s con s lI s lII
Ncr
钢筋应力: p s con s lI s lII E ft s
六、轴心受拉构件的分析
1. 先张法构件各阶段的应力分析
施工阶段----放松钢筋
E Es E
c
钢筋应力: p s con s lI Es pcI s
s pcI ( A Ap ) (s con s lI Es pcI ) Ap
spcI
混凝土应力: cpI s
(s con s lI ) Ap A0
A0 A (E 1) Ap Ac E Ap
六、轴心受拉构件的分析
1. 先张法构件各阶段的应力分析
施工阶段----完成第二批损失
E Es E
c
钢筋应力: p s con s lI s lII Es pcII s
六、轴心受拉构件的分析
2. 后张法构件各阶段的应力分析
施工阶段----穿钢筋
钢筋应力: p s con 混凝土应力: c 0 s s
钢筋应力: p 0 s
混凝土应力: c 0 s
六、轴心受拉构件的分析
2. 后张法构件各阶段的应力分析
施工阶段----张拉钢筋完成第一批预 应力损失
钢筋应力: p s con s lI Es pcI s
sE IIl s Il s noc s p s 力应筋钢 :
spcII
混凝土结构设计 第一章材料的力学性能-习题 答案要点
第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为软钢,和硬钢。
2、对无明显屈服点的钢筋,通常取相当于残余应变为0.2%时的应力作为假定的屈服点,即条件屈服强度。
3、碳素钢可分为低碳钢、中碳钢和高碳钢。
随着含碳量的增加,钢筋的强度提高、塑性降低。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为普通低合金钢。
4、钢筋混凝土结构对钢筋性能的要求主要是强度、塑性、焊接性能、粘结力。
5、钢筋和混凝土是不同的材料,两者能够共同工作是因为两者之间的良好粘结力、两者相近的膨胀系数、混凝土包裹钢筋避免钢筋生锈6、光面钢筋的粘结力由胶结力、摩擦力、挤压力三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越高、直径越粗、混凝土强度越低,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括弹性应变和塑性应变两部分。
塑性应变部分越大,表明变形能力越大,延性越好。
9、混凝土的延性随强度等级的提高而降低。
同一强度等级的混凝土,随着加荷速度的减小,延性有所增加,最大压应力值随加荷速度的减小而减小。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力增加,钢筋的应力减小。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力减小,钢筋的应力增大。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力增大,钢筋的应力减小。
13、混凝土轴心抗压强度的标准试件尺寸为150*150*300或150*150*150 。
14、衡量钢筋塑性性能的指标有延伸率和冷弯性能。
15、当钢筋混凝土构件采用HRB335级钢筋时,要求混凝土强度等级不宜低于C20;当采用热处理钢筋作预应力钢筋时,要求混凝土强度不宜低C40 。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
(N)2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。
2022《混凝土结构基本原理》知识点与考试题型汇总
序号
内容
要求
题型
备注
1
钢筋与混凝土共同工作的原因是什么?
掌握
填空、选择
2
混凝土结构有哪些优、缺点?如何克服这些缺点?
理解
选择、判断
3
素混凝土梁与钢筋混凝土梁在受力性能和承载力方面的差异有哪些?
掌握
填空、选择,简答、分析
2 钢筋和混凝土材料的基本性能
序号
内容
要求
题型
备注
1
钢筋中的化学成分碳、硫、磷等对钢筋性能有哪些影响?
6
适筋梁正截面工作的三个阶段?注意各阶段末的特征
掌握
填空、选择、简答、分析
能画出M-f(弯矩-挠度)图(参考图4.9d)以及图4.10b
7
受弯构件正截面破坏形态有哪几种?各有何特点?如何防止?工程中要求设计为哪种梁?
掌握
填空、选择、简答、分析
8
何为界限破坏?最大配筋率与最小配筋率如何确定?
掌握
填空、选择、判断、简答、分析
理解
选择、判断、分析
3
影响裂缝宽度的因素主要有哪些?若构件的最大裂缝宽度不能满足要求,可采取哪些措施?哪些措施最有效?
理解
选择、判断、简答、分析
4
钢筋混凝土受弯构件的变形计算与匀质弹性材料受弯构件有何异同?为什么钢筋混凝土受弯构件的截面抗弯刚度要用B而不是EI?
理解
选择、判断、分析
5
受弯构件刚度Bs与B的含义是什么?为什么挠度计算时应采用B?
掌握
填空、选择、简答、分析、计算
计算简图、基本公式、适用条件及公式应用(参考例题4.9和4.11(2))
5受压构件正截面的性能与设计
序号
预应力混凝土结构.
2.14 预应力混凝土结构构件2.14.1 一般规定1. 预应力混凝土结构的计算和验算预应力混凝土结构构件,除应根据设计状况进行承载力计算及正常使用极限状态验算外,尚应对施工阶段进行验算。
2. 预应力作用效应预应力混凝土结构设计应计入预应力作用效应;对超静定结构,相应的次弯矩、次剪力及次轴力等应参与组合计算。
对承载能力极限状态,当预应力作用效应对结构有利时,预应力作用分项系数γp 应取1.0,不利时γp 应取1.2;对正常使用极限状态,预应力作用分项系数γp 应取1.0。
对参与组合的预应力作用效应项,当预应力作用效应对承载力有利时,结构重要性系数γ0应取1.0;当预应力作用效应对承载力不利时,结构重要性系数γ0应按2.1.3(待查)节(《混凝土结构设计规范》第3.3.2条)确定。
3. 预应力筋的张拉控制应力预应力筋的张拉控制应力σcon 应符合下列规定:(1) 消除应力钢丝、钢绞线ptk con f 75.0≤σ (2.14-1)(2) 中强度预应力钢丝ptk con f 70.0≤σ (2.14-2)(3) 预应力螺纹钢筋pyk con f 85.0≤σ (2.14-3) 式中 f ptk ——预应力筋极限强度标准值;f pyk ——预应力螺纹钢筋屈服强度标准值。
消除应力钢丝、钢绞线、中强度预应力钢丝的张拉控制应力值不应小于0.4 f ptk ;预应力螺纹钢筋的张拉应力控制值不宜小于0.5 f pyk 。
当符合下列情况之一时,上述张拉控制应力限值可相应提高0.05 f ptk 或0.05 f pyk :(1) 要求提高构件在施工阶段的抗裂性能而在使用阶段受压区内设置的预应力筋;(2) 要求部分抵消由于应力松弛、摩擦、钢筋分批张拉以及预应力筋与张拉台座之间的温差等因素产生的预应力损失。
4. 施加预应力时所需的混凝土立方体抗压强度施加预应力时,所需的混凝土立方体抗压强度应经计算确定,但不宜低于设计的混凝土强度等级值的75%。
混凝土结构设计判断选择题(含答案)
一、判断题(请在你认为正确陈述的各题干后的括号内打“√”,否则打“×”。
每小题1分。
) 第1章 钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
( F )2.混凝土在三向压力作用下的强度可以提高。
( T ) 3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。
( T )4.钢筋经冷拉后,强度和塑性均可提高。
( F ) 5.冷拉钢筋不宜用作受压钢筋。
( T )6.C20表示f cu =20N/mm 。
( F )7.混凝土受压破坏是由于内部微裂缝扩展的结果。
( T ) 8.混凝土抗拉强度随着混凝土强度等级提高而增大。
( T )9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。
( F )10.混凝土受拉时的弹性模量与受压时相同。
( T )11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增长与应力不成正比。
( T )12.混凝土强度等级愈高,胶结力也愈大( T ) 13.混凝土收缩、徐变与时间有关,且互相影响。
( T )1. 错;对;对;错;对;2. 错;对;对;错;对;对;对;对;第3章 轴心受力构件承载力1.轴心受压构件纵向受压钢筋配置越多越好。
( F )2.轴心受压构件中的箍筋应作成封闭式的。
( T ) 3.实际工程中没有真正的轴心受压构件。
( T )4.轴心受压构件的长细比越大,稳定系数值越高。
( F )5.轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2/400mm N 。
( F )6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。
( F ) 1.错;对;对;错;错;错;第4章 受弯构件正截面承载力1.混凝土保护层厚度越大越好。
( F )2.对于'f h x ≤的T 形截面梁,因为其正截面受弯承载力相当于宽度为'f b 的3.板中的分布钢筋布置在受力钢筋的下面。
混凝土结构设计 第10章 预应力混凝土
10.3 预应力混凝土使用的材料和机具
1.预应力混凝土材料 预应力混凝土材料 (1)对预应力钢筋的要求 ) 高强度; ①高强度; 与混凝土之间有足够的粘结强度; ②与混凝土之间有足够的粘结强度; 良好的加工性(可镦性); ③良好的加工性(可镦性); 具有一定的塑性(防止脆断)。 ④具有一定的塑性(防止脆断)。 *常用的预应力钢筋 常用的预应力钢筋
0 < σ c − σ pc < f tk
受拉边缘应力超过混凝土的抗拉强度, 受拉边缘应力超过混凝土的抗拉强度,虽然会产 生裂缝,但比钢筋混凝土构件( 生裂缝,但比钢筋混凝土构件(Np =0)的开裂明 ) 显推迟,裂缝宽度也显著减小。 显推迟,裂缝宽度也显著减小。
σ c − σ pc > f tk
10.2 施加预应力的方法
(2)常用锚具的形式 ) ①锥形锚;②镦头锚;③螺纹锚;④夹片锚等 锥形锚; 镦头锚; 螺纹锚;
10.4 张拉控制应力
1.张拉控制应力 1.张拉控制应力 σ con 张拉设备(千斤顶油压表)所控制的总张拉力N 张拉设备(千斤顶油压表)所控制的总张拉力 p,con除以预 总张拉力 应力筋面积A 得到的应力称为张拉控制应力 应力筋面积 p得到的应力称为张拉控制应力σcon。
1.先张法 先张法 (1)施工方法 )
(2)工艺特点 ) 锚具或夹具( ),依靠钢筋和混 采用工具式锚具或夹具 可重复使用), 采用工具式锚具或夹具(可重复使用),依靠钢筋和混 凝土之间的粘结力来传递预加应力,大多用于直线形预应力 凝土之间的粘结力来传递预加应力, 筋的张拉。 筋的张拉。 (3)适用场合 ) 适用于在预制构件厂批量生产、方便运输的中 适用于在预制构件厂批量生产、方便运输的中、小型预 制构件,如预应力梁板、轨枕、水管、电杆等。 制构件,如预应力梁板、轨枕、水管、电杆等。
10-预应力混凝土结构的基本原理与计算原则
第一页,共六十一页。
§10.1 预应力混凝土的基本原理 10.1.1 预应力混凝土的概念 一、普通钢筋(gāngjīn)混凝土的不足
跨度为5.2m的简支梁,截面尺寸(chǐ cun)为200×450mm2,作用均布活 荷载标准值qk=10kN/m,均布恒荷载gk=5kN/m。
Ⅱ级 310
2106mm2 405.6kN.m 38.1=L0
273
跨度增加两倍 20.8m
800×1900 80kN
5948.8kN.m
Ⅱ级 310
12650mm2 4867.2kN.m 88.8= L0
234
采用高强钢筋 5.2m
200×450 5kN
67.6kN.m
冷拉Ⅳ级 580
308mm2 50.7kN.m 32.2=L0
有限或部分预应力混凝土介于全预应力混凝 土和钢筋混凝土之间,有很大的选择范围,设 计者可根据结构的功能要求(yāoqiú)和环境条件,选 用不同的预应力值以控制构件在使用条件下的 变形和裂缝,并在破坏前具有必要的延性,因 而是当前预应力混凝土结构的一个主要发展趋势。
第二十三页,共六十一页。
10.3 预应力混凝土的材料
第二页,共六十一页。
L0 b×h 自重 gk M
fy As
MsБайду номын сангаас
[f]= L0 300 ss
[wmax]=0.3
5.2m 200×450
5kN 67.6kN.m
Ⅱ级 310
603mm2 50.7kN.m 16.4= L0
317 232MPa
0.25
跨度增加一倍 10.4m
400×900 20kN
混凝土柱的受力性能标准
混凝土柱的受力性能标准一、前言混凝土柱是建筑结构中常用的承载元件,其受力性能对整个结构的稳定性和安全性具有重要影响。
因此,制定混凝土柱的受力性能标准具有重要意义。
本文将从混凝土柱的材料、构造、荷载等方面进行阐述,制定一套全面、具体、详细的混凝土柱受力性能标准。
二、材料要求1.混凝土材料混凝土柱所使用的混凝土应符合GB/T 50080-2016《混凝土结构设计规范》中规定的相关要求,其强度等级不得低于C30。
2.钢筋材料钢筋应符合GB/T 1499.2-2018《混凝土用钢筋》的相关要求,其抗拉强度不得低于335MPa。
3.预应力钢筋材料预应力钢筋应符合GB/T 5224-2014《预应力混凝土用钢筋》的相关要求,其抗拉强度不得低于1860MPa。
三、构造要求1.截面形状混凝土柱的截面形状应为正方形、矩形或圆形,不得采用其他形状。
2.截面尺寸混凝土柱的截面尺寸应根据荷载大小和结构要求确定,其长宽比不得大于3。
3.钢筋布置混凝土柱的钢筋应按照设计要求布置,间距不得超过规范要求的最大间距。
4.预应力钢筋布置预应力混凝土柱的预应力钢筋应按照设计要求布置,其张拉应满足规范要求。
四、荷载要求1.设计荷载混凝土柱的设计荷载应根据建筑物所处地区的地震烈度、风速等环境因素确定。
同时,还应考虑实际使用情况下的荷载,如雪、风、温度等。
2.荷载组合混凝土柱的荷载组合应按照GB 50009-2012《建筑结构荷载规范》的规定进行组合。
五、抗震要求1.抗震性能等级混凝土柱的抗震性能等级应根据建筑物所处地区的地震烈度、重要性等级等因素确定。
2.抗震设计混凝土柱的抗震设计应按照GB 50011-2010《建筑抗震设计规范》的要求进行。
六、验收标准1.混凝土柱的尺寸、形状、钢筋布置符合设计要求。
2.混凝土柱的抗压强度符合设计要求。
3.混凝土柱的抗弯强度符合设计要求。
4.混凝土柱的抗剪强度符合设计要求。
5.混凝土柱的预应力钢筋张拉是否符合规范要求。
预应力混凝土受弯构件受力阶段及预应力损失—预应力混凝土受弯构件的受力破坏全过程
➢进行构件的正截面、斜截面抗裂性验算; ➢构件维持正常使用的变形验算。
预应力混凝土受弯构件概述 使用阶段计算的特点:
➢预应力损失大部分已经发生,有效预应 力减小; ➢外荷载最大,包括全部使用活载; ➢用换算截面几何特性; ➢计算方法:采用材料力学方法。
《钢筋混凝土结构》
预应力混凝土结构
预应力混凝土受弯构件概述
预应力混凝土受弯构件概述
❖预应力混凝土受弯构件根据受力特点可 分为三个阶段
施工阶段
预应力混凝土梁
使用阶段 破坏阶段
预应力混凝土受弯构件概述
❖施工阶段
该阶段指构件在制作、运输、安装施工中承受 不同的荷载作用的阶段。
❖ 构件全截面参与工作并处于弹性工作阶段。
1)加载至受拉边缘混凝土预压应力为零 (消压阶段)
构件在永存预加力Np 作用下,其下边缘混 凝土的有效预压应力为σpc,当构件加载至某一 特定荷载,其下边缘混凝土的预压应力恰被抵 消为零,此时在控制截面上所产生的弯矩M0即 为消压弯矩。
预应力混凝土受弯构件概述
pc M0 / W0 0
或: M0 pcW0
在消压状态后,预应力混凝土梁的受 力情况,同普通混凝土梁一样。但预应力 混凝土梁在外荷载作用下裂缝的出现被大 大推迟。
预应力混凝土受弯构件概述
a)
b)
c)
M
M0
M cr
p<
f pk
c <0
p<
f pk
c
=
0
p<
f pk
c=
f tk
预应力混凝土梁加载至开裂截面应力分布
预应力混凝土受弯构件概述 使用阶段计算内容:
预应力混凝土结构的受力性能课件
03 预应力混凝土结构的优势 与局限性
预应力混凝土结构的优势
高承载力
预应力混凝土结构由于预先施 加了压力,使得结构在承受外 部荷载时具有更高的承载能力。
抗裂性好
预应力能够有效地控制混凝土 结构的裂缝出现,提高结构的 整体性和耐久性。
节省材料
预应力混凝土结构可以减小截 面尺寸和构件的厚度,从而节 省建筑材料。
特点
具有高强度、高刚度、良好的耐 久性和抗震性能,能够满足各种 复杂结构和大型结构的需要。
预应力混凝土的制造过程
01
02
03
预应力筋的制备
选用高强度钢丝或钢绞线 作为预应力筋,经过矫直、 除锈、涂裹防腐材料等加 工制成成品。
混凝土制备
根据设计要求,选择适当 的骨料、水泥、水等原材 料,经过搅拌、运输、浇 筑等工序制成混凝土。
智能预应力混凝土结构
将传感器、执行器等智能元件嵌入预应力混凝土中,实现结构的自 感知、自适应和自调节功能。
预应力混凝土结构的智能化监测与维护
智能化监测系统
建立预应力混凝土结构的智能化 监测系统,实时监测结构的受力
状态、变形和损伤情况。
健康诊断与预警
通过智能化监测系统对预应力混凝 土结构进行健康诊断,及时发现潜 在问题和风险,进行预警。
与木结构比较
预应力混凝土结构具有更高的承载力和耐久性,但环保性能较差。
04 预应力混凝土结构的工程 实例
大跨度预应力混凝土桥梁
大跨度预应力混凝土桥梁是预应力混凝土结构的重要应用之一,能够满 足长跨度、大荷载的桥梁建设需求。
预应力技术能够提高桥梁的承载能力和跨越能力,减少结构自重,降低 材料消耗,从而降低桥梁的造价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、锚固损失l1 预应力筋张拉后锚固时,由于锚具受力后变形、垫板缝隙 的挤紧以及钢筋在锚具中的内缩引起的预应力损失记为l1。 对直线预应力筋:
a l1 E s l
a 1 1 1 5 4 6~8
ss
[wmax]=0.3
603mm2 L 16.4= 0 317 232MPa 0.27
2106mm2 L 38.1= 0 273 264MPa 0.40
12650mm2 L 88.8= 0 234
308mm2 L 32.2= 0 161.5 453MPa 0.75
★产生上述问题原因主要是因为混凝土的抗拉强度太低,导致受 拉区混凝土过早开裂,截面抗弯刚度显著降低。 ★钢筋混凝土梁应用于大跨度结构时,如为增加刚度而加大截面 尺寸,会导致自重进一步增大,形成恶性循环。 ★如增加钢筋来提高刚度,则钢材的强度得不到充分利用,造成 浪费。 ★采用高强钢筋,按正截面承载力要求可减少配筋,截面抗弯刚 度基本与配筋面积成比例降低,故挠度变形控制难以满足。 ★一般,钢筋混凝土梁的经济适用跨度为5~8m,材料宜采用 C20~C30级混凝土,HPB235,HRB335和HRB400级钢筋。
预应力钢筋强度标准值和设计值(N/mm2)
种 消除应力钢丝 螺旋肋钢丝 刻痕钢丝 类 4~ 9 5、 7 二股 三股 钢绞线 七股 d=10.0 d=12.0 d=10.8 d=12.9 d=9.5 d=11.1 d=12.7 d=15.2 fptk 1470 1570 1670 1770 1470 1570 1720 1720 1860 1860 1860 1860 1820 1720 1470 fpy 1250 1180 1110 1040 1110 1040 1220 1220 1320 1320 1320 1320 1290 1220 1040
d 预应力钢丝、钢铰线的公称直径;
预应力钢筋外形系数;
' 相应的抗压强度标准值。 f tk' 与放张时混凝土立方体抗压强度 f cu
后张法
1、制作构件,预留孔道 2、穿钢筋 3、张拉钢筋,同时对混凝土施加预应力 4、锚固钢筋,灌孔
10.1.4 预应力混凝土材料 一、预应力钢筋 ◆由于预应力筋中预先施加的张拉应力会产生损失, 预应力钢筋的强度越高越好。 ◆为避免在超载情况下发生脆性破断,预应力筋还 必须具有一定的塑性。 ◆要求与混凝土有良好的粘结性能,通常采用‘刻 痕’或‘压波’方法来提高与混凝土粘结强度。
第十章
预应力混凝土结构的性能与计算
10.1 概述 10.1.1预应力混凝土的概念 一、钢筋混凝土的缺欠
qk=10kN/m
L0
跨度为5.2m的简支梁,截面尺寸为200×450mm,作 用均布活荷载标准值qk=10kN/m,均布恒荷载gk=5kN/m。
L0 b×h 自重 gk
弯矩设计值 钢筋
5.2m 200×450 5kN 67.6kN.m
锚具变形和钢筋内缩值 a( mm)
锚 具 类 别 带螺帽的锚具(包括钢丝束的锥形螺杆锚具、筒式锚具等) : 螺帽缝隙 每块后加垫板的缝隙 钢丝束的镦头锚具 钢丝束的钢制锥形锚具 有预压时 夹片式锚具 无预压时
减少锚固损失l1的措施
• 选择锚具变形小或是预应力钢筋内缩小的锚具、
夹具,并尽量少用垫板,因每增加一块垫板, 值就增加1mm。 • 增加台座长度。因l1值与台座长度成反比。采用 先张法生产的构件,当台座长度为100m以上时, l1可忽略不计。
f y
400 360 360n(d=6) 48Si2Mn(d=8.2) 45Si2Cr(d=10)
400
预应力钢筋的强度标准值
二、混凝土——预应力混凝土要求采用高强混凝土 ★可以施加较大的预压应力,提高预应力效率; ★有利于减小构件截面尺寸,以适用大跨度的要求; ★具有较高的弹性模量,有利于提高截面抗弯刚度,减少预 压时的弹性回缩; ★徐变较小,有利于减少徐变引起的预应力损失; ★与钢筋具有较大粘结强度,减少先张法预应力筋的应力传 递长度; ★有利于提高局部承压能力,便于后张锚具的布置和减小锚 具垫板的尺寸; ★强度早期发展较快,可较早施加预应力,加快施工速度, 提高台座、模具、夹具的周转率,降低间接费用 一般预应力混凝土构件的混凝土强度等级不应低于C30, 当采用高强钢丝时不宜低于C40。
dPx dP 1 dP 2 kPx dx Px d
张拉端
Px Px-dPx
锚固端
x
dx
Px
P
x dPx kdx d 0 0 Px
r
d r P' Px
d dP1 Px-dP1 dx
Px ln kx P Px P e ( kx )
0 c pc f tk
受拉边缘应力超过混凝土的抗拉强度,虽然会产 生裂缝,但比钢筋混凝土构件(Np =0)的开裂明 显推迟,裂缝宽度也显著减小。
c pc f tk
10.1.2 典型的预应力结构
★ 预应力混凝土核安全壳
★ 预应力混凝土看台建筑
★ 预应力混凝土高耸结构
10.2.2 夹具和锚具
图 螺丝端杆锚具
图 JM12 锚具
(a) 张拉端 (b) 分散式固定端 (c) 集中式固定端 图 镦头锚具
图 锥塞式锚具
图 夹片式锚具
10.3 张拉控制应力
con
Ap
N p ,con Ap
N p ,con ——张拉设备(千斤顶油压表)所控制的总张拉力
——预应力筋的面积
r
)l 2 f
lf
aE p 1000 con (
rc
)
(m)
x l1 2 con l f ( )(1 ) rc lf
减少摩擦损失l2的措施
一端张拉
两端张拉
超张拉
1.1 con 停2min 0.85 con 停2min con
3、热养护损失l3 预应力筋中的应力随温度的增高而降低,产生预应力损 失l3。而降温时,混凝土达到了一定的强度,与预应力筋之 间已具有粘结作用,两者共同回缩,已产生预应力损失l3无 法恢复。 设养护升温后,预应力筋与台座的温差为t ℃,取钢 筋的温度膨胀系数为0.00001/℃,则有,
Ⅱ级 310
跨度增加一倍 10.4m 400×900 20kN 513.96kN.m
Ⅱ级 310
跨度增加两倍 20.8m 800×1900 80kN 5948.8kN.m
Ⅱ级 310
采用高强钢筋 5.2m 200×450 5kN 67.6kN.m
冷拉Ⅳ级 580
M
fy 配筋面积 As L [f]= 0 300
M > Mcr
构件出现裂缝,但最大裂缝宽度控制在容许范围内
10.2.1 施加预应力的方法
机械张拉法 电热法 自应力法
先张法 后张法
先张法
1、在台座上穿钢筋 2、张拉钢筋 3、浇筑混凝土并养护 4、切断钢筋,对混凝土施加预应力
传递长度:
ltr
pe
f
' tk
d
pe 放张时预应力钢筋的有效预应力值;
x
dx
r Px
d dP1 Px-dP1 dx
P 张拉端 Px
d
预应力筋轴线
锚固端 Px-dPx
P ' p ' dx Px d
x
dx
r
d r P' Px-dP2 Px dx
d dP1 Px-dP1 dx
dP2 P Px d
Px dP2
P
d
预应力筋轴线
考虑孔道每米长度 局部偏差的摩擦系 数,教材表10-3
1 e
( kx )
)
Px dP2
Px-dP2 dx dP2+dP1 Px
预应力钢筋与孔 道壁间的摩擦系 数,教材表10-3
Px-dPx d Pxd
1 l 2 con 1 (x ) e
2 con (
r
)l f
2 con (
r
)l f
x l1 2 con l f ( )(1 ) rc lf
摩擦损失引起钢筋的变形为:
d
a
l1
Ep
dx
lf
a d
0 0
l1
Ep
dx
con
Ep
(
天津电视塔、南京电视塔
10.1.3 预应力混凝土的分类 1、全预应力混凝土 在使用荷载下,截面不出现拉应力,
c-pc≤0
对于受弯构件有M≤M0
M0为消压弯矩
2、有限预应力混凝土 在使用荷载下,截面出现拉应力,但未 达到混凝土的抗拉强度,
c-pc≤( ftk
对于受弯构件有M0≤M ≤ Mcr 3、部分预应力混凝土 使用荷载大于开裂荷载,即,
当
(x ) 0.3
l 2 con (x )
对于曲线预应力筋张拉锚固时,由于锚具变形和钢筋内缩 a(mm),使预应力筋有回缩的趋势,从而产生反向摩擦力以阻 止其内缩。
反向摩擦力只在一定的影响长度lf(m)内发生,即在距张拉端lf处, 预应力筋的内缩值为零。 设反向摩擦和正向摩擦相同,因此在张拉和锚固时产生的摩擦 损失为前述摩擦损失的2倍,即
1、冷拉低合金钢筋 通常将Ⅳ级热轧钢筋经冷拉后作为预应力筋,抗拉强度可达 580MPa。但随着近年来高强钢丝和钢绞线的大量生产,这种预 应力筋的应用已很少。 2、中高强钢丝 中高强钢丝是采用优质碳素钢盘条,经过几次冷拔后得到。中 强钢丝的为800~1200MPa,高强钢丝的强度为1470~1860MPa。 钢丝直径为3~9mm。为增加与混凝土粘结强度,钢丝表面可采 用‘刻痕’或‘压波’,也可制成螺旋肋。 3、钢绞线 钢绞线是用2、3、7股高强钢丝扭结而成的一种高强预应力筋, 其中以7股钢绞线应用最多。强度可高达1860MPa。 4、热处理钢筋 用热轧中碳低合金钢经过调质热处理后制成的高强度钢筋,直 径为6~10mm,抗拉强度为1470MPa。