定理2

合集下载

图论重要结论

图论重要结论

定理1: 图G= (V, E)中所有顶点的度的和等于边数m 的2倍,即:推论1 在任何图中,奇点个数为偶数。

推论2 正则图的阶数和度数不同时为奇数 。

定理2 若n 阶简单图G 不包含Kl+1,则G 度弱于某个完全 l 部图 H ,且若G 具有与 H 相同的度序列,则: 定理3设T 是(n, m)树,则:偶图判定定理: 定理4图G 是偶图当且仅当G 中没有奇回路。

敏格尔定理: 定理5 (1) 设x 与y 是图G 中的两个不相邻点,则G 中分离点x 与y 的最小点数等于独立的(x, y)路的最大数目; (2)设x 与y 是图G 中的两个不相邻点,则G 中分离点x 与y 的最小边数等于G 中边不重的(x, y)路的最大数目。

欧拉图、欧拉迹的判定: 定理6 下列陈述对于非平凡连通图G 是等价的:(1) G 是欧拉图;(2) G 的顶点度数为偶数; (3) G 的边集合能划分为圈。

推论: 连通非欧拉图G 存在欧拉迹当且仅当G 中只有两个顶点度数为奇数。

H 图的判定: 定理H 图,则对V(G)的任一非空顶点子集S定理8 (充分条件) 对于n ≧3的单图G ,如果G 定理9 (充分条件) 对于n ≧3的单图G ,如果G 中的任意两个不相邻顶点u 与v ,有:定理10 (帮迪——闭包定理) 图G 是H 图当且仅当它的闭包是H 图。

定理11(Chv átal ——度序列判定法) 设简单图G 的度序列是(d1,d2,…,dn), 这里,d1≦d2≦…≦m<n/2,或者 dm>m,或者dn-m ≧ n-m,则定理12 设G 是n 阶单图。

若n ≧3且则G 是H 图;并且,具有n 个顶点 条边的非H 图只有C1,n 以及C2,5.定理13 (Hall G 存在饱和X 每个顶推论:若G 是k (k>0)正则偶图,则G 存在完美匹配。

定理14 (哥尼,1931) 在偶图中,最大匹配的边数等于最小覆盖的顶点数。

二项式定理(2)

二项式定理(2)

(3) (4)
C11 C11 C11 C 11
1 3 5
11
= =
1024
1 2
; 。
21
Cn Cn Cn Cn
0 1 2 0 1 2
n n 1
C n 1 C n 1 C n 1 C n 1
小结回顾
1
动 画 音 乐
1 2 1 3 6 10 20 15 4 5 6 1 1 1 1
5
杨 辉
动 画 音 乐
杨辉,中国南宋时期杰出的数学家和数 学教育家。在 13 世纪中叶活动于苏杭一 带,其著作甚多。 他著名的数学书共五种二十一卷。著 有 《详解九章算法》 十二卷 (1261 年) 、 《日 用算法》二卷(1262 年)《乘除通变本末》 、 三卷(1274 年)《田亩比类乘除算法》二 、 卷 (1275 年) 、 《续古摘奇算法》 二卷 (1275 年) 。 杨辉的数学研究与教育工作的重点是在计算 技术方面, 他对筹算乘除捷算法进行总结和发展, 有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的 “纵横图”及有关的构造方法,同时“垛积术”是杨 辉继沈括“隙积术”后, 关于高阶等差级数的研 究。杨辉在“纂类”中,将《九章算术》246 个题 目按解题方法由浅入深的顺序,重新分为乘除、 分率、合率、互换、二衰分、叠积、盈不足、方 程、 勾股等九类。 我们将在二项式定理的学习中, 接触到杨辉三角。
5 10 10 5 1 1 7 1 1 6 15 20 15 6
7 21 35 35 21
8 28 56 70 56 28 8
9 36 84 126 126 84 36 9 1
8
1 10 45 120 210 252 210 120 45 10 1

角平分线定理2证明

角平分线定理2证明

角平分线定理2证明角平分线定理2是指在一个三角形中,如果一个角的平分线上某个点到另外两边的距离比另外一个点到两边的距离大,则该角的平分线所对应的两个小角的角平分线也相应地实现这个条件。

下面我们来证明这个定理。

设在三角形ABC中,点D和E分别是角BAC的平分线上的两个点,且满足AD > AE;点F和G分别是角BAC的平分线所对应的两个小角的角平分线上的两个点。

首先,连接BD、BE、CD、CE、AF和AG。

要证明FG是角BAC的平分线所对应的两个小角的角平分线,我们需要证明FG与AB和AC平分的两个小角分别相等。

根据角平分线的定义,我们可以得到以下等式:∠BDA = ∠ADE∠CDA = ∠AED∠CGA = ∠AGE∠CFA = ∠AFE接下来,我们要使用一些三角形的性质,来推导出角BFG和角BAG的等式,以及角CGF和角CAF的等式。

由于∠BDA = ∠ADE,且∠DEA是角DAE的平分线,根据角BDA和角ADE平分线定理,我们可以得到:∠BDA = ∠EDA由于∠CGA = ∠AGE,且∠AGE是角AEG的平分线,根据角CGA和角AGE平分线定理,我们可以得到:∠CGA = ∠EGA同样地,由于∠CFA = ∠AFE,且∠AFE是角AEF的平分线,根据角CFA和角AFE平分线定理,我们可以得到:∠CFA = ∠EFA再由于∠BFD = ∠DFA,且∠BFD是角BDF的平分线,根据角BFD和角DFA平分线定理,我们可以得到:∠BFD = ∠AFD类似地,由于∠CGE = ∠EGA,且∠CGE是角CTE的平分线,根据角CGE和角EGA平分线定理,我们可以得到:∠CGE = ∠AGE最后,由于∠CFE = ∠EFA,且∠CFE是角CEF的平分线,根据角CFE和角EFA平分线定理,我们可以得到:∠CFE = ∠AFE综上所述,我们可以得出以下结论:∠BDA = ∠EDA∠CGA = ∠EGA∠CFA = ∠EFA∠BFD = ∠AFD∠CGE = ∠AGE∠CFE = ∠AFE因此,根据角等于其对应的平分线所对应的两个小角之和的性质,我们可以得到:∠BDF + ∠BFD = ∠ADF∠CGE + ∠EGA = ∠CGA∠CFE + ∠EFA = ∠CFA进一步地,我们可以得到:∠BDF + ∠AFD = ∠ADF∠CGE + ∠AGE = ∠CGA∠CFE + ∠AFE = ∠CFA由于∠BDF = ∠AGE,∠AFD = ∠CGA,以及∠EFA =∠CFA,我们可以得到:∠ADF = ∠CGA∠CGA = ∠CFA从而可以得出结论:FG是角BAC的平分线所对应的两个小角的角平分线。

二项式定理(2)

二项式定理(2)
2 3

9r
r
9
展开式中的有理项
r r 9
27 r 6
27 r 3 r 令 Z 即4 Z (r 0,19) 6 6
r 3或r 9
27 r 3 3 4 4 r 3 4 T4 (1) C9 x 84 x 6 27 r 9 9 3 3 r 9 3 T10 (1) C9 x x 6 3 4 原式的有理项为:T4 84 x T10 x
二项式定理(2)
复习回顾
1、二项式定理:
1 (a b) n Cn0 a n Cn a n1b Cn2 a n2b 2 Cnr a nr b r Cnnb n
注:展开式共有n+1项
2、通项:
Tr 1 C a b
r nr r n
注:区分二项式系数和项的系数
的通项是
16 r 2 s 2
C C (1) 2
s 5 r 6 s
5 s
x
由题意知:
16 r 2 s 2
6
r 2s 4 (r 06, s 05)
解得
r 0 s 2
2 3
1 5
r 2 s 1
2 6 4
r 4 s 0
所以 x 6 . 的系数为:
2
5
15 6 1 8 1 (2) T21 C ( x ) 15 x 2 x , 2x 4x 4 15 故第3项的系数为 . 4
例1

2 1 x 2x
9
的展开式中,求:
(1)第6项 (2)第3项的系数(3)含x9的项(4)常数项
0 4 C5 C6 (1)0 25 640 C C (1) 2 C C (1)2

正弦定理二

正弦定理二

a b c 正弦定理: (1)正弦定理 = = = 2R sinA sinB sinC
(2)正弦定理解两种类型的三角问题: 正弦定理解两种类型的三角问题:
(1)已知两角和任意一边,可以求出其他两边和一角; 已知两角和任意一边,可以求出其他两边和一角; 已知两角和任意一边 (2)已知两边和其中一边的对角,可以求出三角形的其 已知两边和其中一边的对角, 已知两边和其中一边的对角 他的边和角. 他的边和角.
角 化 为 边
因此三角形为等腰直角三角形. 因此三角形为等腰直角三角形.
变形: 变形:sinA b = sinB a
cos A a = cos B b
cos A b = cos B a
已知 ABC 中,满足
(a 2 + b 2 ) sin( A B) = (a 2 b 2 ) sin( A + B ) ,试判断 ABC
b sin A 2 sin 30o sin B = = =1 a 1 π
C b A a=bsinA B
又 B ∈ (0, π ) ,所以 B = 所以 2 即三角形ABC有一解 有一解. 即三角形 有一解
(1)已知ABC 中,A= 30°,a=1,b=2,则 ( A ) ) ° , , A,有一解 B,有两解 C,无解 D,不能确定 , , , , (2)已知ABC中,A=30°, a= 2 ,b=2,则 ) ° , (B) A,有一解 B,有两解 C,无解 D,不能确定 , , , , 1 (3)已知ABC 中,A=30°, a= 2 ,b=2,则 ) ° , ( ) A,有一解 B,有两解 C,无解 D,不能确定 , , , , (4)已知 ABC 中,A=30°,a=m ,c=10,有两解, ) ° ,有两解, 则m范围是 范围是 . 由正弦定理得: 解:(2)由正弦定理得 2 由正弦定理得 又 B ∈ (0, π )且a<b π 3π 所以 B = 或

4.3 圆周角定理 2_姜红霞

4.3 圆周角定理 2_姜红霞

A

B
3
‹# ›
例题赏析 7 回顾与复习 1
补充例题
例2、如图,AD是△ABC的高,AE是△ABC的外接圆 直径。求证:AB · = AE · AC AD A 分析:要证AB · = AE · AC AD AC AD O AE AB B D C △ADC∽ △ABE E 或△ACE∽ △ADB 题后思:1、证明题的思路寻找方法;
A

A
C
B

O
B
圆周角 顶点在圆上,它的两 边分别 与圆还有另一个交点, 像这样的角,叫做圆周角. C 圆周角也可以看作两条有公 共端点的弦所夹的角.
‹# ›
火眼金睛:
判别下列各图形中的角是不是圆周角
不是 图1
图2
不是
图3

不是
图4
不是
图5
‹# ›
2 师生合作 1
问题1、如图2,AB是⊙O的直径,C是⊙O上任一点, 那么你发现了些什么结论? C A B O 图2
‹# ›
挑战自我 6 回顾与复习 1
如图, AB是⊙O的直径,C是⊙O上任一点, CD⊥AB,垂足为D,图中有哪些成比例线段?

△ACD∽ △CBD ∽ △ABC 2
C O D
AC AD AB 2 CB BD AB
2
A

B
CD AD BD
‹# ›
自我练习 9 回顾与复习 1
∵AB为ΔABC外接圆的弦,并且过点O ∴弦AB是圆的直径
B O
‹# ›
例题赏析 5 回顾与复习 1
如图,AB是⊙O的直径,AC与BC是⊙O的两条弦,AB=10cm, ∠A=30º.求弦AC与BC的长

2.微积分基本定理

2.微积分基本定理
x Δx

a
x Δx
f ( t )dt f ( t )dt
a
x
( x)
oa
x
x x b x
5

a
x
f ( t )dt
x Δx
x
f ( t )dt f ( t )dt
a
x

x
x Δx
y
f ( t )dt , ( )由积分中值定理得o a
x x x b x

b
a
f ( x )dx f ( )(b a )
(a b).
证 因为 f ( x ) 连续, 故它的原函数存在,
设其为 F ( x ). 即设在 [a, b] 上 F ( x ) f ( x ).
根据牛顿 - 莱布尼茨公式, 有
a f ( x )dx F (b) F (a ).
定理2(原函数存在定理)
如果 f ( x )在[a , b]上连续, 则积分上限的函数
( x ) f ( t )dt
a
x
就是f ( x )在[a , b]上的一个原函数.
这就证明了上一章中所提出的任何连续 函数一定存在原函数.
7
定理2(原函数存在定理)
如果 f ( x )在[a , b]上连续, 则积分上限的函数
x
已知 F ( x ) 是 f ( x ) 的一个原函数,
又由于 ( x )
所以
a
f ( t )dt 也是 f ( x )的一个原函数 ,
x [a , b].
11
F ( x) ( x) C
F ( x) ( x) C
x [a , b].

特勒根定理 (2)ppt课件

特勒根定理 (2)ppt课件

k 3
k 3
故: u1i1'u2i2 ' u1'i1 u2 'i2
10
+ +i1
i2 + +
i1' +
i2' +
3v -
u-1
NR 4Ω u-2
3v -
u' 1 NR 8Ω u' 2
-
-
3i1'4i2 i2' 3i1 8i2'i2
i1=-2A, i2=1A, i1‘=-1.8A代入
3(1.8) 41 i2' 3(2) 8i2'1 i2' 0.15A
特勒根定理
特勒根第一定理(功率守恒):
任意一个具有b条支路、n个节点的
集总参数网络,设它的各支路电压和电
流分别为uk 和 ik (k=1、2、3、…b),
且各支路电压和电流取关联参考方向,
则有
b
uk ik 0
k 1
1
特勒根第二定理(似功率守恒):
N
有向图相同 N’
支路电压 uk 支路电流 ik
6
uk 'ik = 4×3+0×(-2)+4×1+
k1 8×1+4×4+(-8)×5=0
这就验证了特勒根第二定理。
特勒根定理适用于任意集总参数电路
6
特勒根第二定理的证明:
设 N和N’两网络均有n个节点b条 支;。各支路电压、电流的参考方向 关联且相同。则N网络的KCL方程为
i12 i13 i1n 0 i21 i23 i2n 0 in1 in2 inn1 0 将上式分别乘以N’网络的相应电压, 7
i1'=2A, i2'=0A, i3'=-2A, i4'=2A, i5'=0A, i6'ik ' 4×2+0×0+4×(-2)+

高二数学余弦定理2

高二数学余弦定理2
2
2
c a 2ac cos B
2 2
2 2 2
同理可证 a
c a b 2ab cosC
2 2 2
b c 2bc cos A
1.余弦定理 :三角形任何一边的平方等于其他两边平方的和减去 这两边与它们夹角的余弦的积的两倍。
b2 c2 a2 2 2 2 cos A 即 a b c 2bc cos A 2bc
1.1.2 余弦定理 课件
1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,
a 即 sin A
=
b sin B
=
c sin C
=2R(R为△ABC外接圆半径)
2.正弦定理的应用: 从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角; 2.两边和其中一边对角,求另一边的对角,进而可求其它的边和 角。
∴b2+c2-a2=a2+c2-b2 ,∴a2=b2 ,∴a=b, 故此三角形是等腰三角形. 解法二:利用正弦定理将边转化为角. ∵bcosA=acosB 又b=2RsinB,a=2RsinA ,∴2RsinBcosA=2RsinAcosB ∴sinAcosB-cosAsinB=0 ∴sin(A-B)=0 ∵0<A,B<π ,∴-π <A-B<π ,∴A-B=0 即A=B 故此三角形是等腰三角形.
例1在Δ ABC中,已知a=7,b=10,c=6,求A、B和C.
b2 c2 a2 解:∵ cos A =0.725, ∴ A≈44° 2bc
a2 b2 c2 ∵cosC =0.8071, 2ab ∴ B=180°-(A+C)≈100.
c sin A (∵sinC= a ≈0.5954,∴
=

《概率论》 第二章 基本定理

《概率论》 第二章 基本定理
2 1 所以 P ( B A) 4 2
方法二
按乘法法则
1 1 A3 A2 3 P ( AB ) 2 A5 10
1 A3 3 P ( A) 1 , A5 5
P ( AB ) 3/10 1 由乘法法则 P ( B A) P ( A) 3/5 2
注 条件概率的计算方法: (1) 若问题比较简单,可根据实际意义,直接由定 义求P(B|A); (2) 当问题比较复杂时,可在原样本空间中先求出 P(AB)和P(A),再由乘法公式求出P(B|A).
1 2 2 1 207 C4 C 46 276 C C 4 46 , P ( A1 ) , P ( A ) 3 2 3 980 C 50 19600 C 50
C 43 P ( A3 ) 3 C 50
4 . 19600
故 P ( A1 A2 A3 ) P ( A1 ) P ( A2 ) P ( A3 )
定理2 若A,B为任意两事件,则
P ( A B ) P ( A) P ( B ) P ( AB ).
推广 三个事件和的情况
P ( A1 A2 A3 )
P ( A1 ) P ( A2 ) P ( A3 ) P ( A1 A2 ) P ( A2 A3 ) P ( A1 A3 ) P ( A1 A2 A3 ).
例如 同时抛掷一大一小两枚硬币,设事件 A={大硬币正面},B={小硬币正面} 则基本事件共有4种情况: {大正,小正},{大正,小反},{大反,小正},{大反,小反}
2 1 2 1 , P(B)= , 于是 P(A)= 4 2 4 2 1 P(AB)= 4
有P(AB) = P(A)P(B) ,可见, A、B相互独立.

泰勒中值定理1和2的区别

泰勒中值定理1和2的区别

泰勒中值定理1和2的区别
泰勒中值定理是数学中有关函数性质的一种重要定理,定理1以及定理2都是泰勒中值定理的不同变种。

这两个定理都有其独特的性质,两者之间又有许多相似之处。

首先来看泰勒中值定理1,它是一种函数极限关系,它告诉我们,当函数f在某一端点p处可导时,其切线正比于函数f在该端点上的导数。

这个定理用来证明与函数连续性有关的定理,也可以用来证明偏导数的存在性、求导数的表达式以及微分的基本定理等。

泰勒中值定理2也是一种函数极限关系,它解释了一个函数在某点处的导数正比于该函数在某点处的曲线斜率。

定理2可以用来证明函数连续性、求极值点及拐点、求微分、积分以及克朗伊恩变换。

定理1与定理2的区别在于,前者表达的是函数f在端点p处的导数与其切线的正比关系,而后者则表达的是函数f在某点处的导数与曲线斜率的正比关系。

定理1和定理2之间也有些相似之处,比如它们都是建立在函数的极限上的,并且都具有实际的数学意义,同时都可以用来证明函数连续性,求导数等。

不过,定理1与定理2也有本质的区别,定理1关于函数f在某一端点p处的导数,而定理2则是关于函数f在某一点处的导数。

这意味着定理1只能在端点上讨论,而定理2可以在定点上讨论,从而更容易讨论广泛的函数性质。

此外,定理1可以用来证明偏导数的存在性、求出导数的表达式以及微分的基本定理,而定理2可以用来证
明拐点、极值点以及积分和克朗伊恩变换等问题。

总之,泰勒中值定理1和定理2都是数学领域中重要的定理,两者都有其独特的性质,但是它们之间也有着本质的不同,每一个定理都有其适用的范围,在使用上也有所不同。

数学定理【圆,三角形】

数学定理【圆,三角形】

数学定理【圆,三角形】1. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.2. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.3. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半; (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.4. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.5. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr . 6. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.7. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABGS S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+;②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).8. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (CcB b A a yC cy B b y A a C c B b A a x C c x B b x A a H CB AC B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.9. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心; (4)设I 为△ABC 的内心,,,,c AB b AC a BC ===A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.10. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O CB AC B A ++++++++外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.11. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R . 12. 三角形面积公式:C B A R R abc C ab ah S a ABCsin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 13. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a=++===。

定理2证明

定理2证明

定理2 如果G 是有 n 个结点的简单无向图,对于每一对不邻接结点u 和v ,满足d (u )+d (v ) ≥ n -1,那么G 中存在哈密顿通路,图G 是半哈密顿图。

证明 首先用反证法证明图G 是连通的。

假设图G 不连通,它至少有两个连通分支G 1=(V 1,E 1)和G 2 =(V 2,E 2)。

取任意结点v 1∈ V 1,v 2∈ V 2,因为G 是简单无向图,所以d (v 1)≤|V 1|-1,d (v 2)≤|V 2|-1,因而d (v 1)+ d (v 2)≤ |V 1|+|V 2|-2 = n -2,与已知条件矛盾,所以图G 是连通的。

然后证明G 中存在哈密顿通路。

设L :v 1 v 2⋯ v k 是G 的最长的基本通路,显然k ≤ n 。

因为L 是G 的最长的基本通路,所以v 1 和 v k +1的邻接点都在L 上。

(1) 若k =n ,则L 为G 中经过所有结点的通路,即为哈密顿通路。

(2) 若k <n ,说明G 中存在不在L 上的结点。

此时可以证明存在仅经过L 上的所有结点的基本回路,证明如下:第一种情况:若在L 上v 1和v k 相邻,则v 1 v 2⋯ v k v 1是经过L 上所有结点的基本回路。

第二种情况:若在L 上v 1和v k 不相邻,设v 1与L 上的结点 v j 1=v 2, v j 2, ⋯ v jm 相邻(m ≥2,否则d (v 1)+d (v k )≤1+k -2<n -1),这时v k 必与v j 2 ⋯ v jm 的邻接结点v j 2-1 ⋯ v jm -1之一相邻(否则d (v 1)+d (v k )≤m +k -2-(m -1)<n -1)。

设v k 与v jr -1(2≤r ≤m )相邻,在L 中添加边(v 1, v jr ),(v k ,v jr -1),如图1(a )所示。

删除边(v jr ,v jr -1)得基本回路C = v 1 v 2⋯ v jr -1v k v k -1⋯ v jr v 1,经过L 上的所有结点如图1(b)所示。

相似三角形的性质-性质定理1,2,3

相似三角形的性质-性质定理1,2,3
测量河宽
在无法直接过河测量宽度的情况下,可以在河的一侧选择两个点,并在另一侧 选择一个点,使得这三个点构成的两个三角形相似。通过测量已知距离和角度 ,可以计算出河的宽度。
解决实际问题
航海问题
在航海中,可以利用相似三角形的性质来测量海上目标物( 如岛屿)的距离和方位。通过观察目标物和两个已知点构成 的三角形,可以计算出目标物的距离和方位角。
证明过程
在 ΔABC 和 ΔDEF 中,分别作 AM 和 DN 垂直于 BC 和 EF,垂 足分别为 M 和 N。
又因为 SΔABC = (1/2) × BC × AM, SΔDEF = (1/2) × EF × DN ,代入上式得 (AM/DN)^2 = (AB/DE)^2。
由于 ΔABC ∽ ΔDEF,根据相似三 角形的定义,我们有 ∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
军事应用
在军事领域,相似三角形的性质可以用于计算炮弹的射程和 落点。通过测量炮弹的初速度和发射角度,可以预测炮弹的 飞行轨迹和落点位置。
建筑设计中的应用
建筑设计比例
在建筑设计中,相似三角形的性质可 以帮助建筑师保持建筑物的比例和美 感。通过相似三角形的缩放性质,建 筑师可以轻松地按比例放大或缩小建 筑物的设计。
例如,在 ΔABC 和 ΔDEF 中,如果已知 AB = 6, DE = 3, AC = 8, 那么根据性质定理2,我 们可以直接得出 DF = 4。
另外,性质定理2也可以用于证明其他几何定理或解决复杂的几何问题。例如,在证明勾股 定理时,可以通过构造相似三角形并应用性质定理2来证明。
04
性质定理3:相似三角形的面积比等于相 似比的平方
∠A = ∠A',∠B = ∠B',∠C = ∠C',并且AB/A'B' = BC/B'C' = CA/C'A',则称这两个三角形相似。

余弦定理(二)

余弦定理(二)

余弦定理(二)[学习目标] 1.熟练掌握余弦定理及变形形式,能用余弦定理解三角形.2.能应用余弦定理判断三角形形状.3.能利用正弦、余弦定理解决解三角形的有关问题.知识点一 正弦定理及其变形 1.a sin A =b sin B =csin C=2R . 2.a =2R sin A ,b =2R sin B ,c =2R sin C . 知识点二 余弦定理及其推论1.a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .2.cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.3.在△ABC 中,c 2=a 2+b 2⇔C 为直角,c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角.知识点三 正弦、余弦定理解决的问题思考 以下问题不能用余弦定理求解的是 .(1)已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角; (2)已知两角和一边,求其他角和边;(3)已知一个三角形的两条边及其夹角,求其他的边和角; (4)已知一个三角形的三条边,解三角形. 答案 (2)题型一 利用余弦定理判断三角形的形状例1 在△ABC 中,cos 2B 2=a +c 2c,其中a 、b 、c 分别是角A 、B 、C 的对边,则△ABC 的形状为( )A.直角三角形B.等腰三角形或直角三角形C.等腰直角三角形D.正三角形 答案 A解析 方法一 在△ABC 中,由已知得1+cos B 2=12+a2c, ∴cos B =a c =a 2+c 2-b 22ac,化简得c 2=a 2+b 2. 故△ABC 为直角三角形.方法二 原式化为cos B =a c =sin Asin C,∴cos B sin C =sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴sin B cos C =0,∵B ∈(0,π),sin B ≠0,∴cos C =0, 又∵C ∈(0,π),∴C =90°, 即△ABC 为直角三角形.跟踪训练1 在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ) A.直角三角形 B.等边三角形 C.等腰直角三角形 D.钝角三角形 答案 B解析 由余弦定理cos B =a 2+c 2-b 22ac,代入得12=a 2+c 2-ac 2ac ,∴a 2+c 2-2ac =0, 即(a -c )2=0,∴a =c .又∵B =60°,∴△ABC 是等边三角形. 题型二 正弦、余弦定理的综合应用例2 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3,求:(1)a 和c 的值; (2)cos(B -C )的值.解 (1)由BA →·BC →=2得,ca cos B =2, 又cos B =13.所以ca =6.由余弦定理得a 2+c 2=b 2+2ac cos B .又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13得a =2,c =3或a =3,c =2.因为a >c ,所以a =3,c =2. (2)在△ABC 中,B ∈(0,π), sin B =1-cos 2B =1-(13)2=223.由正弦定理得,sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-(429)2=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.跟踪训练2 在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B ;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)由b sin A =3a cos B 及正弦定理, 得sin B =3cos B ,即tan B =3,因为B 是三角形的内角,所以B =π3.(2)由sin C =2 sin A 及正弦定理得,c =2a . 由余弦定理及b =3,得9=a 2+c 2-2ac cos π3,即9=a 2+4a 2-2a 2,所以a =3,c =2 3. 题型三 利用正弦、余弦定理证明边角恒等式例3 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2c 2=sin (A -B )sin C.证明 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴2(a 2-b 2)=2ac cos B -2bc cos A , 即a 2-b 2=ac cos B -bc cos A ,∴a 2-b 2c 2=a cos B -b cos A c .由正弦定理得a c =sin A sin C ,b c =sin B sin C,∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C,故等式成立.跟踪训练3 在△ABC 中,若a cos 2C 2+c cos 2 A 2=3b 2,求证:a +c =2b .解 由题a (1+cos C )+c (1+cos A )=3b ,即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc=3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.忽略三角形中任意两边之和大于第三边例4 已知钝角三角形的三边BC =a =k ,AC =b =k +2,AB =c =k +4,求k 的取值范围. 错解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6,① ∵k 为三角形的一边长,∴k >0,② 由①②知0<k <6.错因分析 忽略隐含条件k +k +2>k +4,即k >2. 正解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0,∴k 2-4k -12<0,解得-2<k <6,① 由两边之和大于第三边得k +(k +2)>k +4,∴k >2,② 由①②可知2<k <6.误区警示 在解与三角形的边有关的问题时,一定要注意三角形两边之和大于第三边,两边之差小于第三边.跟踪训练4 若△ABC 为钝角三角形,三边长分别为2,3,x ,则x 的取值范围是( ) A.(1,5) B.(13,5)C.(5,13)D.(1,5)∪(13,5)答案 D解析 (1)若x >3,则x 对角的余弦值22+32-x22×2×3<0且2+3>x ,解得13<x <5.(2)若x <3,则3对角的余弦值22+x 2-322×2×x <0且x +2>3,解得1<x < 5.故x 的取值范围是(1,5)∪(13,5).1.在△ABC 中,b cos A =a cos B ,则△ABC 是( ) A.等边三角形 B.等腰三角形 C.直角三角形D.锐角三角形2.在△ABC 中,sin 2A -sin 2C -sin 2B =sinC sin B ,则A 等于( ) A.60° B.45° C.120° D.30°3.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.85B.58C.53D.354.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A.(8,10) B.(22,10) C.(22,10) D.(10,8)5.在△ABC 中,若b =1,c =3,C =2π3,则a = .6.已知△ABC 的三边长分别为2,3,4,则此三角形是 三角形.一、选择题1.在△ABC 中,有下列结论①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc ,则A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3. 其中正确的个数为( ) A.1 B.2 C.3 D.42.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.43.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.784.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b 等于( )A.10B.9C.8D.55.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且b 2=ac ,则B 的取值范围是( ) A.(0,π3] B.[π3,π) C.(0,π6] D.[π6,π)6.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.8-4 3 B.1 C.43 D.237.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.1548.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →等于( )A.-212B.-83C.-75D.-27二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =12a,2sin B =3sin C ,则cos A 的值是 .10.△ABC 为钝角三角形,a =3,b =4,c =x ,则x 的取值范围是 . 11.在△ABC 中,C =3B ,则c b的范围是 . 三、解答题12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA →·BC →=32,求a +c 的值.13.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,求证: cos C cos B =b -c cos Ac -b cos A当堂检测答案1.答案 B解析 由题b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac,整理得a 2=b 2,∴a =b . 2.答案 C解析 由正弦定理得a 2-c 2-b 2=bc ,结合余弦定理得cos A =b 2+c 2-a 22bc =-12,又A ∈(0,π),∴A =120°. 3.答案 D解析 由余弦定理BC 2=AB 2+AC 2-2·AB ·AC ·cos A 得72=52+AC 2-2·5·AC ·(-12),∴AC =3或-8(舍).∴sin B sin C =AC AB =35.4.答案 B解析 只需让3和a 所对的边均为锐角即可.故⎩⎪⎨⎪⎧12+32-a22·1·3>012+a 2-322·1·a>01+3>a 1+a >3,解得22<a <10.5.答案 1解析 由余弦定理得c 2=a 2+b 2-2ab cos C , ∴a 2+1+a =3,即a 2+a -2=0,解得a =1或a =-2(舍). 6.答案 钝角解析 4所对的角的余弦为22+32-422×2×3=-14<0,故该角为钝角,故该三角形为钝角三角形.课时精练答案一、选择题 1.答案 A解析 结合余弦定理可知:①中A 为钝角,正确;②中A =120°;③中C 为锐角,但另两个角未必是锐角;④中A 、B 、C 分别为30°、60°、90°,∴a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶1,故正确的结论为①. 2.答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 2+a 2+c 2-b 22a=a =2.3.答案 D解析 设顶角为α,底边长为a ,周长为5a ,故腰长为2a ,由余弦定理可得cos α=(2a )2+(2a )2-a 22(2a )(2a )=78.4.答案 D解析 由23cos 2A +cos 2A =0得23cos 2A +2cos 2A -1=0 ∴cos A =±15,∵A 为锐角,∴cos A =15,又a 2=b 2+c 2-2bc cos A , ∴49=b 2+36-2·b ·6×15,∴b =5或b =-135(舍).5.答案 A 解析 由余弦定理cos B =a 2+c 2-b 22ac =(a -c )2+ac 2ac =(a -c )22ac +12≥12,∵B ∈(0,π),∴B ∈(0,π3].6.答案 C解析 ∵C =60°,∴c 2=a 2+b 2-2ab cos 60°=a 2+b 2-ab . 又(a +b )2-c 2=4,∴c 2=a 2+b 2+2ab -4, 故-ab =2ab -4,∴ab =43.7.答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即72=14a 2+42-2×a 2×4·cos ∠AMB ,①在△ACM 中,AC 2=AM 2+MC 2-2AM ·MC ·cos ∠AMC , 即62=42+14a 2+2×4×a 2·cos ∠AMB ,②①+②,得72+62=42+42+12a 2,解得a =106.8.答案 B解析 由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC,解得BC =7,又cos B =AB 2+BC 2-AC 22AB ·BC =AB 2+BD 2-AD 22AB ·BD,解得AD =133, 又AD →,BC →的夹角大小为∠ADB ,cos ∠ADB =BD 2+AD 2-AB 22BD ·AD=(73)2+(133)2-222×73×133=-891, 所以AD →·BC →=|AD →|·|BC →|·cos ∠ADB =-83. 二、填空题9.答案 34解析 由2sin B =3sin C 及正弦定理可得2b =3c ,由b -c =12a 可得a =c ,b =32c , 由余弦定理可得cos A =b 2+c 2-a 22bc =34. 10.答案 (1,7)∪(5,7)解析 ①若x >4,则x 所对的角为钝角,∴32+42-x 22·3·4<0且x <3+4=7,∴5<x <7. ②若x <4,则4对的角为钝角,∴32+x 2-422·3·x<0且3+x >4,∴1<x <7. ∴x 的取值范围是(1,7)∪(5,7).11.答案 (1,3)解析 由正弦定理可得c b =sin C sin B =sin 3B sin B =sin (B +2B )sin B =sin B cos 2B +cos B sin 2B sin B=cos 2B +2cos 2B =4cos 2B -1.∵A +B +C =180°,C =3B ,∴0°<B <45°,∴22<cos B <1, ∴1<4cos 2B -1<3,∴1<c b<3.三、解答题12.解 (1)由cos B =34,B =(0,π2),得sin B =1-(34)2=74, 由b 2=ac 及正弦定理得sin 2B =sin A sin C ,于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B =sin B sin 2B =1sin B =477. (2)由BA →·BC →=32得ca ·cos B =32, 由cos B =34,可得ca =2,即b 2=2, 由余弦定理得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.13.证明 左边=a 2+b 2-c 22ab a 2+c 2-b 22ac=c (a 2+b 2-c 2)b (a 2+c 2-b 2), 右边=b -c ·b 2+c 2-a 22bc c -b ·b 2+c 2-a 22bc=c (a 2+b 2-c 2)b (a 2+c 2-b 2)=左边, 得证.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

热力学第二定律.

热力学第二定律.

S f

2 dQ 1T
系统熵的变化量与熵流之差定义为熵产,用“Sg”表示
Sg S2 S1 S f
(S2 S1) S f Sg
熵流是由于系统与外界的发生热交换而引起的,其取 值可正可负可为零,而熵产是过程不可逆性的度量, 可逆过程熵产为零,不可逆过程熵产大于零,任何过 程的熵产不可能小于零。
• (2)若把此热机当制冷机使用,同样由克劳修斯积分 判断
Q Q1 Q2 2000 800 0.585 kJ / K 0
T T1 T2 973 303
工质经过任意不可逆循环,克劳修斯积分必小于零, 因此循环不能进行。
• 若使制冷循环能从冷源吸热800kJ,假设至少 耗功Wmin,根据孤立系统熵增原理有△Siso=0:
因为工质恢复到原来状态,所以工质熵变
△SE=0
对热源而言,由于热源放热,所以
SH
Q1 T1

2000 973
2.055 kJ / K
• 对冷源而言,冷源吸热
S L

Q2 T2

800 303

2.64 k J
/K
代入得:
Siso (2.055) 2.64 0 0.585 kJ / K 0
2 Q
1T
对于微元过程:
ds

(
dq T
) re v
或 dS

dQ
( T
) re v

mds
由于熵是状态参数,所以不论过程是否可逆,熵 变只由初终状态决定。
可逆与不可逆的情况
S2

S1

2 1
Q
T

勾股定理 (2)

勾股定理 (2)

毕达哥拉斯定理一、毕达哥拉斯定理的定义勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。

二、毕达哥拉斯定理的由来早在中国商代就由商高发现.据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”.勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方,即;勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一.勾股定理其实是余弦定理的一种特殊形式.我国古代著名数学家商高说:“若勾三,股四,则弦五.”它被记录在了《九章算术》中.商高是公元前十一世纪的中国人.当时中国的朝代是西周,处于奴隶社会时期.在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.周公问商高:“天不可阶而升,地不可将尽寸而度.”天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:“故折矩以为勾广三,股修四,经隅五.”即我们常说的勾三股四弦五.早见于商高的话中,所以人们就把这个定理叫做“商高定理”.欧洲人则称这个定理为毕达哥拉斯定理.毕达哥拉斯(PythAgorAs)是古希腊数学家,他是公元前五世纪的人.希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,因而国外一般称之为“毕达哥拉斯定理”.并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺.因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”.所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了.三、思维的勾股定理平方后等于负1的数称为虚数,用表示.的3倍记为、7倍记为,它们都是虚数.1与-1的平方都是1,平方为-1的数原本是没有的,虚数是在‘如果有的话’的前提下提出的概念.由实数和虚数组合成的数叫做复数,复变函数是专门研究复数的数学分支.假设在宇宙的最初(如同霍金所提倡的)时间是虚数,由于加速度为距离除以时间的平方,所以当时间为虚数时,力的符号变为负(反方向).难以逾越的高墙反过来变成了深深的堑壕,在力学上势能(位置能)的符号发生了变化,封闭着能量的口袋在一瞬间消失,从而揭开了宇宙大爆炸的序幕,在此瞬间里时间由虚变实,变成了通常的膨胀.关于大爆炸以前的虚时间难于讲解,示意图也画不出来的,普通的时间尚无法看见,更别提看见虚时间了.我们的意识在一定程度上能够推定时间的经过,如果这时间是虚时间的话将会怎样呢?谁也说不出来.霍金为了避开奇点用数学公式表示了时间的连续性,但是他却回避不了大爆炸前的虚时间的提出,消除了宇宙创生于奇点的困惑.接下来,笔者用比较易懂的狭义相对论的公式,再对虚时间进行一些讲解.狭义相对论认为,光速是不变的,长度及时间随测量方法的不同而不同,时间与长度具有同等的资格.因此狭义相对论的公式是四维公式.设x、y、z为三维空间坐标的互相垂直的三个轴,t为时间.为了使时间成为用长度表示的维,把时间与光速c的乘积ct作为代表第四维的轴.假定光从A点出发沿直线(按狭义相对论观点)到达B点,所需时间为t,则AB间的直线距离为ct.一般地说,时间轴与x、y、z轴中的任何一个轴都不是互相垂直的,长度ct中含有各个轴的成份,光走过的距离ct相当于以x、y、z为三边的立方体的对角线之长,满足三维勾股定理(如图),.也可以写成.如果将相对论的时间记述为三维空间里的一维时间的话,与之和总应该为零.请注意:在数学处理上必须不带任何区别地看待时间与空间.四维几何学很难用我们的常识去理解,在四维几何学里从一开始就把ct 作为一个独立的坐标,而不是光传播于x、y、z三维空间里…….四维空间中的距离并不一定为零,而是一个定数,四个维的平方之和表示四维超立方体对角线的平方(称为扩张的勾股定理),即在四维几何学中,时间与空间之间存在下述关系:,是个定值,与光从A到B的过程有关.这个公式是四维时空间里的物理学公式.在原来的勾股定理中,各边的平方均为正值,只有与时空间有关的时间项的平方为负值,也就是把看作是加上一个负的项.四、毕达哥拉斯定理的证明法.唐初规定它为国子监明算科的教材之一,故改名《周髀算经》.首十一.故折矩,以为句广三,股修四,径隅五.既方之,外半其一矩,环识从何而来.于是商高以勾股定理的证明为例,解释数学知识的由来.边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表).“故折矩①,以为句广三,股修四,径隅五.”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五).“②既方之,外半其一矩,环而共盘,得成三四五.”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形.“两矩共长③二十有五,是谓积矩.”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和.因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方.(二)(欧几里德(Euclid)射影定理证法)如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:(1) (2) (3)由公式(2)(3)得:;即,这就是勾股定理的结论.图1(三) 爱因斯坦的证明方法至今未见到爱因斯坦12岁时对毕氏定理证明的详细内容,但是按照材料,不难正确地推论出他的方法如下所示.专注到三角形的相似性,从直角三角形的一个顶点向斜边作垂线,设交点为D(见图1).两直角三角形的相似,完全取决于它们的一个锐角,如果有一锐角相等,二者相似;否则,不相似.在图1中,△ABC、△DBC、△DCA彼此都是相似的,因为它们有一锐角是相等的.△ABC与△DBC因相似,二者的两对应边长之比相等,即(1)对△ABC与△ACD,同理有(2)(1) +(2),得到:(3)(四)、(达芬奇的证法)达芬奇的证法三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.我们将f(x)函数求导,得到f'(x),众所周知f'(x)函数记录的其实就是【f(x)函数在每一个瞬间的变化状态】。即,在x=x1这一瞬间f(x)进行了程度为f'(x1)的变化,在x=x2这一瞬间f(x)进行了程度为f'(x2)的变化……。函数由f(a)变化到f(b)的过程,其实就是f'(x)函数在(a,b)区间中记录的变化状态的依次累加,就是对f'(x)函数在(a,b)区间的值进行积分的过程。那么,将这一过程中所有的变化状态的值一起取一个平均,这个平均值的数值一定在f'(x)的某一点上出现过(即f'(ξ)),因为f(x)连续,则其导数也连续。这个平均值乘上变化的区间(a到b)的长度就等于这个变化的变化量【
(AB)^2+(AC)^2=(m+a)^2+n^2+(m-a)^2+n^2=2(m^2+a^2+n^2)
∴(AB)^2+(AC)^2=2((AD)^2+(CD)^2)
西姆松定理
证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥BC于F,PD⊥AB于D,分别连FE、FD、BP、CP.
易证P、B、D、F和P、F、C、E分别共圆,
证明1:
(以下为向量式)
设BF=xAF 则EF=(EB+xEA)/(1+x) (定比分点向量公式)
又EF*DC=EF*(DE+EC)=0
所以(EB+xEA)(DE+EC)=0
拆开 EB*DE+EB*EC+xEA*DE+xEA*EC=0
由垂直 所以只有 EB*DE+xEA*EC=0
由相交线定理 所以x=1(EA*EC=EB*ED)(这是代数式,上式为向量式,故成立)
定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
证明:过圆心O作AD与BC的垂线,垂足为S、T,连接OX,OY,OM,SM,MT。
蝴蝶定理
∵△AMD∽△CMB
∴AM/CM=AD/BC
∵AS=1/2AD,CT=1/2BC
∴AM/CM=AS/CT
2
中线定理即为斯台沃特定理在中点时的结论,可由斯台沃特定理直接得出,但是斯台沃特定理不容易理解,昏头昏脑。
除图示给出的方法外,lonelystar在此给出另外的两种常规证明方法
第一种
以中点为原点,在水平和竖直方向建立坐标系,
设:A(m,n),B(-a,0),C(a,0),
则:(AD)^2+(CD)^2=m^2+n^2+a^2
(1)若m是斐波那契数,则命题对m也成立。
(2)若m不是斐波那契数,设n1是满足F(n1)< m < F(n1 +1)的最大正整数。
设m'=m-F(n1),则m'=m-F(n1)<F(n1+1)-F(n1)=F(n1-1),即m'<F(n1-1)。
m'<m,所以由归纳假设,m'可以表示成不连续的斐波那契数之和,即m'=F(n2)+F(n3)+...+F(nt),其中n2>n3>...>nt,且是不连续的整数。又m'<F(n1-1),所以n2<n1-1,即n2与n1也是不连续的整数。
证明一
证明二:
如图,若L、M、N三点共线,连结BP,CP,则因PL垂直于
BC,PM垂直于AC,PN垂直于AB,有B、L、P、N和
P、M、C、
L分别四点共圆,有
∠NBP = ∠NLP
= ∠MLP= ∠MCP.
故A、B、P、C四点共圆。
若A、P、B、C四点共圆,则
∠NBP= ∠MCP。因PL垂直于BC,PM垂直于AC,PN垂直于AB,
中线定理(pappus定理),又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。
定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。
即,对任意三角形△ABC,设I是线段BC的中点,AI为中线,则有如下关系:
AB^2+AC^2=2BI^2+2AI^2
或作AB^2+AC^2=2(1/2BC)^2+2AI^2
又∵∠A=∠C
∴△AMS∽△CMT
∴∠MSX=∠MTY
∵∠OMX=∠OSX=90°
[1]
∴∠OMX+∠OSX=180°
∴O,S,X,M四点共圆
同理,O,T,Y,M四点共圆
∴∠MTY=∠MOY,∠MSX=∠MOX
∴∠MOX=∠MOY ,
∵OM⊥PQ
∴XM=YM
齐肯多夫定理表示任何正整数都可以表示成若干个不连续的斐波那契数(不包括第一个斐波那契数)之和。这种和式称为齐肯多夫表述法。[1]
定义
帕斯卡定理指圆锥曲线内接六边形其三对边的交点共线,与布列安桑定理对偶,是帕普斯定理的推广。该定理由法国数学家布莱士·帕斯卡于16岁时提出,是射影几何中的一个重要定理。
定义的推广
本定理可推广为:圆锥曲线内接六边形的三双对边(所在直线)的交点共线。
证明
引理1:两圆交于A、B,分别过A、B的直线交两圆于C、D,E、F,则CE//DF.
有B、L、P、N和P、M、C、L四点共圆,有
∠NBP = ∠NLP
= ∠MCP
= ∠MLP.
故L、M、N三点共线。
密克定理是几何学中关于相交圆的定理。1838年,奥古斯特·密克叙述并证明了数条相关定理。许多有用的定理可由其推出。
定理陈述
三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别是C1 和C2, C2和C3, C3和C1的另一交点。设A为C1的点,直线MA交C2于B,直线PA交C3于C。那么B, N, C这三点共线。
这一
斯图尔特定理
如图,设a,b和c是三角形的边长,d是切氏线的长度;该线段将a边分为长度为m和n的两段。那么,Stewart定理说明
mb^2+nc^2=a(d^2+mn).
阿波罗尼乌斯定理(Apollonius' theorem)是它的一种特殊情况,d是三角形的中线。
2
设θ是m和d的夹角,θ'是n和d的夹角。θ+θ'=π,cos θ′ = −cos θ。那么,根据余弦定理:
】。即所谓的必有一
,使f'(ξ)*(b-a)=f(b)-f(a)。即,【a,b区间上f(x)函数的变化量】=【a,b区间内f(x)函数变化状态的平均值乘以区间长度】。这是代数理解方式。[1]
蝴蝶定理
蝴蝶定理最先是作为一个征求初等几何学证明的问题,刊载于1815年的一份欧洲通俗杂志《男士日记》上。由于该定理的几何图形形象奇特,貌似蝴蝶,便以蝴蝶来命名。
初等证明2
证明
画图即证。
引理2:两三角形的对应边都平行,则对应点的连线共点。
证法1.利用相似三角形,采用同一法证明。
证法2.直接应用笛沙格定理。
正式证明:
考察下图即得。
评注:
帕斯卡定理的证法有很多。
还有,反演,射影变换,射影对应等证法。
此法是十分别致,而且十分的初等。
婆罗摩笈多定理
定理:若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边
在PBDF圆内,∠DBP+∠DFP=180度,在ABPC圆内∠ABP+∠ACP =180度,∠ABP=∠DBP
于是∠DFP=∠ACP ①,在PFCE圆内 ∠PFE=∠PCE
② 而∠ACP+∠PCE=180°
③ ∴∠DFP+∠PFE=180° ④ 即D、F、E共线. 反之,当D、F、E共线时,由④→②→③→①可见A、B、P、C共圆.
拉格朗日中值定理的几何意义

在(a,b)上可导,[a,b]上连续是拉格朗日中值定理成立的充分条件。
理解——这个定理说的是什么
1.在满足定理条件的前提下,函数f(x)上必有【一点的切线】与【f(x)在x=a,b处对应的两点((a,f(a))和(b,f(b))点的连线平行)。f'(ξ)=[f(b)-f(a)]/(b-a),等号后为x=a,b对应两点的连线斜率,等号前为f(x)上一点的导数的值,也就是f(x)上一点的斜率,两斜率相等,两线平行。这是几何上的理解方式。
c^2=m^2+d^2-2mdcosθ,
b^2=n^2+d^2-2ndcosθ'=n^2+d^2+2ndcosθ;
第一式两边乘以n,第二式两边乘以m,相加消去参数θ,即得
mb^2+nc^2=nm^2+mn^2+(m+n)d^2=a(d^2+mn)。
泰博定理
泰博定理:取平行四边形的边为正方形的边,作四个正方形(同时在平行四边形内或外皆可)。正方形的中心点所组成的四边形为正方形;取正方形的两条邻边为三角形的边,作两个等边三角形(同时在正方形内或外皆可)。这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一等边三角形;给定任意三角形ABC,BC上任意一点M,作两个圆形,均与AM、BC、外接圆相切,该两圆的圆心和三角形内接圆心共线。
古尔亭定理
以平面图形绕同一平面上的任何一条与该图形不相交的直线旋转一周所产生的体积,等于图形的面积乘以其重心相应半径所画的圆周长
定理
拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。
如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得
f'(ξ)*(b-a)=f(b)-f(a)
相关文档
最新文档