自动控制系统双闭环直流调速系统稳态结构汇总

合集下载

7 双闭环直流调速系统结构及建模

7 双闭环直流调速系统结构及建模
28
自动化学科三个重要算法

自动控制理论:PID

频谱分析:FFT
滤波器设计 《数字信号处理-理论 算法与实现》 胡广书

29

一阶低通
30

一阶低通
31

二阶低通
32
6
3.1.2 稳态结构图与参数计算
图3-3 双闭环直流调速系统的稳态结构图 α——转速反馈系数 β——电流反馈系数
7
1. 稳态结构图和静特性



对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。 当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出。 当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。
* Un U n n n0
(3-3) (3-4)
U U i I d I dL
* i
* U d 0 Ce n I d R CeU n / I dL R Uc Ks Ks Ks
(3-5)
12
根据各调节器的给定与反馈值计算有关的 反馈系数: * 转速反馈系数 U nm nmax (3-6) * U 电流反馈系数 im I dm (3-7) 两个给定电压的最大值U*nm和U*im由设计 者选定。

13
3.2 转速、电流反馈控制直流调速系统 的数学模型与动态过程分析
3.2.1 转速、电流反馈控制直流调速系统的动态数学模型
图3-5 双闭环直流调速系统的动态结构图
14
1.起动过程分析


电流Id从零增长到Idm,然后在一段时间内维持其 值等于Idm不变,以后又下降并经调节后到达稳态 值IdL。 转速波形先是缓慢升速,然后以恒加速上升,产 生超调后,到达给定值n*。 起动过程分为电流上升、恒流升速和转速调节三 个阶段, 转速调节器在此三个阶段中经历了快速进入饱和、 饱和以及退饱和三种情况。

双闭环直流调速系统电路原理

双闭环直流调速系统电路原理

双闭环直流调速系统电路原理
一、双闭环直流调速系统简介
双闭环直流调速系统,通常称为DCS,是一种用于控制和调节电动机
转速的电子系统,它能够准确地检测电机的转速,以调整电机驱动器输出
功率,并为电机提供良好的调节性能、低噪声、低抖动和优异的精度。


通常由稳态调节器、反馈传感器、控制器、执行器等组成。

双闭环直流速系统,具有以下几个电路:1.平衡节回路:由半桥变流器、电流变换器、电流放大器、PID控制器、可变阻器等组成,以实现基
于比例环节的节;2.电压控制回路:由可前置增益电路、放大器、变速器、可谐滤波器以及PID控制器组成,以实现节;3.转矩控制回路:由电阻模块、电容模块、放大器和可谐滤波器组成,以实现节;4.转速控制回路:
由反馈传感器、放大器、可谐滤波器和PID控制器组成,以实现节;5.电
流控制回路:由电流放大器和可谐滤波器组成,以实现节;6.位置控制回路:由反馈传感器、放大器,可谐滤波器和专用控制器组成,以实现节;7.整回路:由电位器。

自动控制系统——双闭环直流调速系统

自动控制系统——双闭环直流调速系统

要求:1. 转速调节器ASR 具有抗干扰滤波能力,典型Ⅱ型系统设计。

2. 电流调节器ACR 具有很强的调节能力,按典型Ⅰ型系统设计。

3. 稳态指标:无静差。

4. 动态指标:电流超调量σi ≤15%;空载起动到额定转速时的转速超调量σn ≤10%。

基本参数如下:直流电动机:220V ,136A ,1460r/min ,Ce=0.127Vmin/r ,允许过载倍数λ=1.5。

晶闸管装置放大系数:Ks=35。

电枢回路总电阻:R=0.2。

时间常数:T l =0.03s ,Tm=0.18s 。

电流反馈系数:β=0.05V /A (≈10V/1.5Inom )。

转速反馈系数:α=0.007Vmin/r (≈10V/Nnom )。

一、电流调节器设计其中*i U 为电流给定电压,d I β-为电流负反馈电压,c U 为电力电子变换器的控制电压。

电流调节器参数选择1.确定时间常数1)三相桥式电路的平均失控时间为0.0017s T s =。

2)电流滤波时间常数本设计初始条件已给出,即0.002oi T s =。

3)电流环小时间常数之和0.0037i s oi T T T s ∑=+=。

2.选择电流调节器结构根据设计要求:稳态无静差,超调量5%i σ≤,可按典型I 型系统设计电路调节器。

电流环控制对象是双惯性型的,因此可用PI 型电流调节器其传递函数为:(1)()i i ACR i K s W s sττ+= 电磁时间常数0.03l T s =。

检查对电源电压的抗扰性能:0.038.10.0037l i T s T s∑==,参照典型I 型系统动态抗扰性能指标与参数的关系表格,可知各项指标都是可以接受的。

3.计算电流调节器参数电流调节器超前时间常数:0.03i l T s τ==。

电流环开环增益:要求5%i σ≤时,应取0.5I i K T ∑=,因此10.50.5135.10.0037I i K s T s -∑=== ACR 的比例系数为135.10.030.20.4632350.05I i i s K R K K τβ⨯⨯===⨯ 4.检验近似条件电流环截至频率:1135.1ci I K s ω-==1)晶闸管整流装置传递函数的近似条件111196.1330.0017ci s s T sω-==>⨯ 满足近似条件。

双闭环直流调速系统

双闭环直流调速系统

引言在工业生产中,许多生产机械为了满足生产工艺要求,需要改变工作速度:例如,金属切削机床,由于工件的材料、被加工的尺寸和精度的要求不同,速度就不同。

另外轧钢机,因为轧制品种和材料厚度的不同,也要求采用不同的速度。

生产机械的调速方法可以采用机械的方法取得,但是机械设备的变速机构较复杂,所以在现代电力拖动中,大多数采用电气调速方法。

电气调速就是对机械的电动机进行转速调节,在某一负载下人为地改变电动机的转速。

直流电动机具有良好的起动、制动性能,适宜在较大范围内调速.在许多需要高性能可控电力拖动领域中得到广泛的应用。

近年来交流调速系统发展很快,然而直流拖动系统在理论上和实践上都比较成熟,而且从反馈闭环控制的角度来看,它是交流拖动控制系统的基础,所以应该很好地掌握直流调速系统。

目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。

我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。

但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要。

所以需要引入转速﹑电流双闭环控制直流调速系统,本文着重研究其控制规律﹑性能特点和设计方法。

首先介绍转速﹑电流双闭环调速系统的组成,接着说明该系统的静特性和动态特性,最后用工程方法设计转速与电流两个调节器。

在实际应用中,电动机作为把电能转换为机械能的主要设备,首先要具有较高的机电能量转换效率;其次应能根据生产机械的工艺要求控制和调节电动机的旋转速度。

电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。

因此,调速技术一直是研究的热点。

一 双闭环直流调速系统介绍1.1闭环调速系统的组成根据自动控制原理,反馈控制的闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。

调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统可以大大减少转速降落。

双闭环直流调速系统

双闭环直流调速系统
• 在这一阶段,ASR很快进入并保 持饱和状态,而ACR不饱和,以 确保电流环的调节作用。
第II阶段(t1-t2)
由静止状态开始启动时,转速和电流 随时间变化的波形
• 第II阶段是恒流升速阶段,电机在 最大电流Uin*下的电流调节系统, 基本上保持电流恒定,加速度恒定, 转速呈线性增长。
• 电机的反电动势E也按线性增长, 对电流调节系统来说,E是一个线 性渐增的扰动量,为了克服它的扰 动,Udo和Uc也必须基本上按线 性增长,才能保持恒定。ACR采用 PI调节器,Id应略低于Idm。
ASR饱和(AB段):当负载电流达到Idm时,对应于转速调节器的饱 和输出Uim*,这时,电流调节器起主要调节作用,系统表现为电流 无静差,得到过电流的自动保护。
比较:电流截止负反馈。
cf:带电流截至,转速负反馈无静差直流调速系统的静特性,Idcr和 IdbL均小于Idm
双环系统稳态参数计算
thank you
THANKS FOR YOU WATCHING
控制系统的动态性能指标
跟随性能指标:上升时间、超调量、调节时 间
抗扰性能指标 通常,调速系统的动态指标以抗扰性能为主,
而随动系统的动态指标以跟随性能为主。
*抗扰性能指标
(1)动态降落△Cmax% • 系统稳定运行时,由阶跃扰动所引起的输出量最大降落值△Cmax。 • 用输出量原稳态值C∞的百分数来表示。 • 调速系统突加额定负载扰动时的动态转速降落称为动态速降△nmax%
稳态时 :两个调节器均不饱和(输入 偏差为零,偏差的积分使调节器
有恒定的电压输出,输出没有达到饱 和值)
ASR饱和时 : U*i = U*im,
n
U
* n
反馈系数:

双闭环控制的直流调速系统PPT课件

双闭环控制的直流调速系统PPT课件


0 Id Idm
t

IdL 0 t1 t2 t3 t4 t
第Ⅱ阶段:恒流升速阶段(t1~t2)
n n
*



Id基本保持在Idm,电动机加速
到了给定值n*。
ASR调节器始终保持在饱和状
0 Id Idm
t
态,转速环仍相当于开环工作。 系统表现为使用PI调节器的电 流闭环控制
电流调节器的给定值就是ASR
2.2 转速、电流双闭环直流调速系统
双闭环问题的引入 双闭环调速系统的稳态结构与稳态
参数计算 双闭环直流调速系统的动态数学模 型与动态性能分析
* 知 识 回 顾 *
n
堵转电 流过大
* K p Ks (U n U com )
Ce (1 K )

( R K p Ks Rs ) I d Ce (1 K )
1、 原理图
I 内环 Un* Un n 外环 n
TG
~
TA
ASR
Ui*
Ui ACR Uc UPE Ud
Id
M
ASR-转速调节器
ACR-电流调节器
TA-电流互感器
转速、电流双闭环的优势: 将电流、转速调节器分开,分别用两个调节器; 转速环为外环,转速环的输出作为电流环的给定。
2、 稳态结构
转速无静差 系统(PI)
开 环
特性 太软
转速闭环 ( P)
加电流截 至负反馈
系统有 静差
考虑转速单闭环调速系统的局限性:
仅考虑了静态性能,没考虑启、制动过程(动态性能) 未考虑对负载扰动的电流控制问题
启、制动波形
•理想的启、制动波形

双闭环直流调速系统稳压控制

双闭环直流调速系统稳压控制

目录目录 (1)第一章双闭环调速系统的组成 (2)第一节系统电路原理图 (2)第二节系统的稳态结构图 (3)第三节系统的动态结构图 (5)第二章双闭环系统调节器的设计 (8)第一节电流调节器的设计 (9)第二节转速调节器的设计 (13)第三章系统的仿真 (18)参考文献 (19)总结 (19)第一章 双闭环调速系统的组成第一节 系统电路原理图转速、电流双闭环调速系统的原理图如图1-1所示,图中两个调节器ASR 和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。

电流环在内,称之为内环;转速环在外,称之为外环。

为了获得良好的静、动态特性,双闭环调速系统的两个调节器都采用PI 调节器,其原理图如图所示。

在图中标出了两个调节器输入输出电压的实际极性,它们都是按照触发装置GT 的控制电压U ct 为正电压的情况标出的,并考虑到运算放大器的倒相作用。

两个调节器输出都带有限幅,ASR 的输出限幅什im U 决定了电流调节器ACR 的给定电压最大值im U ,对就电机的最大电流;电流调节器ACR 输出限幅电压cm U 限制了整流器输出最大电压值,限最小触发角α。

图1-1双闭环直流调速系统电路原理第二节 系统的稳态结构图转速电流双闭环调速系统的稳态结构图如图1-2所示,PI 调节器的稳态特性一般存在两种状况:饱和—输出达到限幅值,不饱和—输出未达到限幅值。

当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入与输出的联系,相当于使该调节器开环。

当调节器不饱和时,PI 作用使输入偏差电压ΔU 在稳定时总是零。

在实际运行时,电流调节器是不会达到饱和状态的,因此对于静特性来说,只有转速调节器饱和与不饱和两种状况。

1、转速调节器不饱和稳态时,两个调节器的输入偏差电压都是零,因此di *i 0n *n I U U n n U U βαα=====式中α,β —— 转速和电流反馈系数由第一个关系式可得0*nn U n ==α从而得到图1-3静特性的CA 段。

V—M双闭环直流调速系统

V—M双闭环直流调速系统

摘要:直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。

本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。

此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统。

该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。

该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。

关键词: 直流电机 晶闸管 直流调速系统 ACR ASR 双闭环系统一、设计题目V —M 双闭环直流调速系统二、目的意义:本课程设计是自动化专业学生在学完专业课程“拖动控制系统”之后进行的一个实践性教学环节。

通过此环节,使学生能结合已完成的基础课、技术基础课和部分专业课对“拖动控制系统”课程的主要内容进行较为综合的实际运用,进一步培养学生应用已学到的理论知识来解决实际工程设计问题,并为毕业设计奠定基础。

双闭环拖动控制系统是工业生产中重要的拖动控制系统,应用很广泛,也是其他复杂控制的基础。

本专业学生应充分掌握双闭环控制系统的结构、系统构成、设备及器件选择、参数整定计算以及绘制系统电路原理图等内容,并且初步掌握设计的方法和步骤,同时增强独立查阅资料、分析问题和解决问题的能力以及刻苦钻研的工作作风。

本设计以直流电动机为被控对象,设计一套双闭环无静差拖动控制系统。

三、电动机参数和设计要求直流电动机参数:KWP N 28=,VU N 220=,AI N 136=,min/1460r n N =,Ω=2.0a R 。

V-M双闭环直流调速系统

V-M双闭环直流调速系统

V-M双闭环直流调速系统前⾔直流调速系统,特别是双闭环直流调速系统是⼯业⽣产过程中应⽤最⼴的电⽓传动装置之⼀。

⼴泛地应⽤于轧钢机、冶⾦、印刷、⾦属切削机床等许多领域的⾃动控制系统中。

它通常采⽤三相全控桥式整流电路对电动机进⾏供电,从⽽控制电动机的转速,传统的控制系统采⽤模拟元件,如晶体管、各种线性运算电路等,在⼀定程度上满⾜了⽣产要求。

V-M双闭环直流调速系统是晶闸管-电动机调速系统(简称V-M系统),系统通过调节器触发装置GT的控制电压Uc来移动出发脉冲的相位,即控制晶闸管可控整流器的输出改变平均整流电压Ud,从⽽实现平滑调速。

本次课设⽤实际电动机和整流装置数据对V-M双闭环直流调速系统进⾏设计,建模与仿真。

V-M双闭环直流调速系统建模与仿真1设计任务初始条件及要求1.1初始条件(1)技术数据:直流电动机:P N=27KW, U N=220V , I N=136A , n N=1500r/min ,最⼤允许电流I dbl=1.5I N ,三相全控整流装置:K s=40电枢回路总电阻R=0. 5Ω,电动势系数:C e= 0.132V.min/r系统主电路:T m=0.18s ,T l=0.03s滤波时间常数:T oi=0.002s , T on=0.01s,其他参数:U nm*=10V , U im*=10V , U cm=10V(2)技术指标稳态指标:⽆静差动态指标:电流超调量:δi≤5%,起动到额定转速时的超调量:δn≤10%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s1.2要求完成的任务1.技术要求:(1) 该调速系统能进⾏平滑的速度调节,负载电机不可逆运⾏,具有较宽的调速范围(D≥10),系统在⼯作范围内能稳定⼯作(2) 系统在5%负载以上变化的运⾏范围内电流连续2.设计内容:(1) 根据题⽬的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图(2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作⽤,(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB来进⾏调节器的参数调节。

双闭环直流调速系统

双闭环直流调速系统

双闭环直流调速系统姓名:学号:专业:电气工程及其自动化日期:2015年12月23日摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。

该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。

该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。

关键词:双闭环,转速调节器,电流调节器双闭环直流调速系统的设计双闭环直流调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 即分别引入转速负反馈和电流负反馈。

两者之间实行嵌套连接,且都带有输出限幅电路。

转速调节器ASR 的输出限幅电压*im U 决定了电流给定电压的最大值;电流调节器ACR 的输出限幅电压cm U 限制了电力电子变换器的最大输出电压dm U 。

由于调速系统的主要被控量是转速, 故把转速负反馈组成的环作为外环, 以保证电动机的转速准确跟随给定电压, 把由电流负反馈组成的环作为内环, 把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE ,这就形成了转速、电流双闭环调速系统。

双闭环直流调速系统框图双闭环直流调速系统电路原理图一.本设计预设的参数直流电动机:220V,136A, 1500r/min, Ce=0.136Vmin/r晶闸管装置放大系数:K s=40电枢回路总电阻:R=0.5欧时间常数:T l=0.015s, T m=0.2s, 转速滤波环节时间常数T on取0.01s 电压调节和电流调节器的给定电压为8V系统稳态无静差,电流超调量σi≤5%; 空载启动到额定转速时的转速超调量σn≤10%。

第二章 闭环控制直流调速系统的稳态分析与计算

第二章 闭环控制直流调速系统的稳态分析与计算

带电流截止负反馈的转速单闭环直流调速系 统稳态分析(续)
U com
将电流截止负反馈环节画 在方框中,再和系统的其它部
- + Rs
Id
分连接起来,便得到带电流截
止负反馈的转速负反馈单闭环
R
调速系统的静态结构图
U
* n
- Ui ASR
+
+
PI
U ct
Ud0 -
Ks
+
E
n
1/Ce
图中 U i I d U com
图2-1 不同转速下的静差率
根据式(2-2)的定义,由于n0a n0b ,所以sa sb 。 对于同样硬度的特性,理想空载转速越低时,静差
率越大,转速的相对稳定度也就越差。例如:当理
想空载转速为1000r/min时,额定速降为10r/min, 静差率为1%;当理想空载转速为100r/min时,额 定速降同样为10r/min,则静差率却为10%。
的转速是无静差的,静
特性是平直的。
2、当 I d I dcr 时,A-B段 的静特性则很陡,静态 速降很大。
0
I dcr
B
I dbl
Id
图2-8 带电流截止负反馈的转速 负反馈单闭环调速系统的静特性
例题
带有电流截止负反馈的转速负反馈单闭环直流 调速系统如图所示:
图1-24 电流截止负反馈闭环直流调速系统的原理框图
要求 s 值越小时,系统能够允许的调速范
围也越小。
例题2-1
某直流调速系统电动机额定转速为 nN 1430 r / min 额定速降 nN 115 r / min,当要求静差率 s 30% 时,允许多大的调速范围?如果要求静差率 s 20% ,试求最低运行速度及调速范围。

直流电机双闭环调速--自动控制原理与系统

直流电机双闭环调速--自动控制原理与系统

直流电机双闭环调速--⾃动控制原理与系统⼀、单闭环调速系统存在的问题①⽤⼀个调节器综合多种信号,各参数间相互影响,②环内的任何扰动,只有等到转速出现偏差才能进⾏调节,因⽽转速动态降落⼤。

③电流截⽌负反馈环节限制起动电流,不能充分利⽤电动机的过载能⼒获得最快的动态响应,起动时间较长。

电流截⽌负反馈单闭环直流调速系统最佳理想起动过程最佳理想起动过程:在电机最⼤电流(转矩)受限制条件下,希望充分利⽤电机的允许过载能⼒,最好是在过渡过程中始终保持电流(转矩)为允许的最⼤值。

缺点:改进思路:为了获得近似理想的过渡过程,并克服⼏个信号综合在⼀个调节器输⼊端的缺点,最好的办法就是将主要的被调量转速与辅助被调量电流分来加以控制,⽤两个调节器分别调节转速和电流,构成转速、电流双闭环调速系统。

⼆、转速、电流双闭环调速系统的组成双闭环调速系统其原理图双闭环直流调速系统双闭环直流调速系统静态结构图静态结构图系统特点(1)两个调节器,⼀环嵌套⼀环;速度环是外环,电流环是内环。

(2)两个PI调节器均设置有限幅;⼀旦PI调节器限幅(即饱和),其输出量为恒值,输⼊量的变化不再影响输出,除⾮有反极性的输⼊信号使调节器退出饱和;即饱和的调节器暂时隔断了输⼊和输出间的关系,相当于使该调节器处于断开。

⽽输出未达限幅时,调节器才起调节作⽤,使输⼊偏差电压在调节过程中趋于零,⽽在稳态时为零。

(3)电流检测采⽤三相交流电流互感器;(4)电流、转速均实现⽆静差。

由于转速与电流调节器采⽤PI调节器,所以系统处于稳态时,转速和电流均为⽆静差。

转速调节器ASR输⼊⽆偏差,实现转速⽆静差。

三、双闭环调速系统的静特性双闭环系统的静特性如图所⽰特点:1)n0-A 的特点①ASR不饱和。

②ACR不饱和。

或n0为理想空载转速。

此时转速n与负载电流⽆关,完全由给定电压所决定。

电流给定有如下关系??因ASR不饱和,,故。

n0A这段静特性从⼀直延伸到。

2)A—B段①ASR饱和。

双闭环直流电动机调速系统PPT课件

双闭环直流电动机调速系统PPT课件
转速、电流双闭环调速系统的组成
第1页/共62页
转速、电流双闭环调速系统的工作原理
• 电流调节环 • 速度调节环 • 双闭环系统起动过程分析 • 双闭环调速系统的动态抗扰动性能 • 双闭环调速系统中两个调节器的作用
第2页/共62页
五 单闭环调速系统的限流保护—电流截止负反馈
• 问题的提出 ➢ 起动的冲击电流——直流电动机全电压起动时,如果没有限流措施, 会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的 电力电子器件来说,更是不能允许的。
都要求把固定的直流电源电压变换为不同的电压等级,例如地铁列车、无 轨电车或由蓄电池供电的机动车辆等,它们都有调速的要求,因此,要把 固定电压的直流电源变换为直流电动机电枢用的可变电压的直流电源。 • 由脉冲宽度调制(Pulse Width Modulation)变换器向直流电动机供电 的系统称为脉冲宽度调制调速控制系统,简称PWM调速系统。 • 图4-34是脉宽调制型调速控制系统原理图及输出电压波形。
n E Ce
即可得到额定励磁下他励直流电动机动态结构图
IL(s)
Ud0(s) -
1 R
Id(s) -
TLs 1
R E(s) 1
TM s
Ce
n(s)
第25页/共62页
干扰量
的综I合L 点前移,化简得
IL(s)
R(TLs 1)
Ud0(s) -
1
n(s)
Ce Tms(TLs 1) 1
第26页/共62页
2、触发器和晶闸管整流装置数学模型及动态结构图 晶闸管触发导通后,在尚未关断之前,改变控制电压Uct的值,但整流电压 的瞬时波形和 角并不能立即跟随Uct的变化,通常把这个滞后时间称作整流装置的 失 控 时 间 , 用 Ts 来 表 示 。

转速﹑电流双闭环直流调速系统

转速﹑电流双闭环直流调速系统
图2-4双闭环直流调速系统的稳态结构框图
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。

闭环-转速电流双闭环直流调速系统

闭环-转速电流双闭环直流调速系统
《运动控制系统》
§2.2 转速、电流双闭环直流调速系统
一、双闭环调速系统的控制规律
转速单闭环系统被调节的是n,检测的误差是n, 要消除的也是扰动对n的影响。故不能控制电流(转 矩)的动态过程。
电流截止负反馈环节只能限制电流的冲击,不 能控制电流保持为某一所需值。
经常正、反转运行的调速系统,希望尽量缩短 启动、制动和反转过渡过程的时间,即要求系统动 态性能好,单闭环就不能满足要求了。
整个系统的本质由外环速度调节器来决定。即: 当ASR不饱和时,电流负反馈使静特性可能产生的 速降完全被ASR的积分作用所抵消了;一旦ASR饱 和,当负载电流过大,系统实现保护作用使n下降 过大时,转速环即失去作用,只剩下电流环起作用, 这时系统表现为恒流调节系统,静特性便会呈现出 很陡的下垂特性。
各变量的稳态工作点和稳态参数计算:
C
IdN
Idm
Id
BC段:描述ASR饱和后(ACR不饱和)的电流单闭环
系统的静特性,转速外环呈开环状态,表现为电流
无静差。
Id
U
* im
Idm
(n < n0 )
ASR的限幅值Uim由设计者选定——限定了最大电 流值Idm。
2、稳态参数:
转速调节器输出:
U
* i
Ui
Id
I dL
电流调节器输出:Uc
加快动态过程。 (4)电机过载/堵转时,限制Idlmax,起快速自动保护作用。
调节器的输出限幅作用
转速调节器ASR的输出限幅电压U*im决定
电流给定电压的最大值Idm;
电流调节器ACR的输出限幅电压Ucm限制 了电力电子变换器的最大输出电压Udm。
当ASR饱和时,相当于电流单闭环系统,实现 “只有电流负反馈,没有转速负反馈”

(完整版)双闭环直流调速系统

(完整版)双闭环直流调速系统

第一章 调速系统的方案选择直流电动机具有良好的起动、制动性能,宜于在宽范围内平滑调速,在许多调速和快速正反向的电力拖动领域中得到了广泛的的应用。

近年来,虽然高性能的交流调速技术发展很快,交流调速系统已逐步取代直流调速系统。

然而直流拖动控制系统不仅在理论上和实践上都比较成熟,目前还在应用;而且从控制规律的角度来看,直流拖动控制系统又是交流拖动控制系统的基础。

直流电动机的稳态转速可以表示为n =U−IRK e ∅ (1-1)式中:n ——转速(r/min );U ——电枢电压(V );I ——电枢电流(A );R ——电枢回路总电阻(Ω);∅——励磁磁通(Wb ); K e ——由电机结构决定的电动势常数。

由上式可以看出,有三种调速电动机的方法:1. 调节电枢供电电压U ;2. 减弱励磁磁通∅;3. 改变电枢回路电阻R 。

对于要求在一定范围内无级平滑调速系统来说,以调节电枢供电电压的方式为最好。

改变电阻只能有级调速;减弱磁通虽然能够调速,但调速范围不大,往往只是配合调压方案,在额定转速以上作小范围的弱磁升速。

因此,采用变压调速来控制直流电动机。

1.1 直流电动机的选择直流电动机的额定参数为:额定功率KW P N 67=,额定电压V U N 230=,额定电流A I N 291=,额定转速min 1450r n N =,电动机的过载系数2=λ,电枢电阻Ω=2.0a R 1.2 电动机供电方案的选择电动机采用三相桥式全控整流电路供电,三相桥式全控整流电路输出的电压脉动较小,带负载容量较大,其原理图如图1所示。

三相桥式全控整流电路的特点:一般变压器一次侧接成三角形,二次侧接成星型,晶闸管分为共阴极和共阳极。

1)有两个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各有一个晶闸管,且不能为同一相的晶闸管。

2)对触发脉冲的要求:按VT1—VT2—VT3—VT4—VT5—VT6的顺序,相位依次差60。

;共阴极组VT1、VT3、VT5的脉冲依次差120。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1设计目的
1进一步对自动控制系统这门学科进行理解。

2掌握双闭环直流调速系统的设计过程。

3体会参数设计的过程。

2 直流调速系统的理论设计
2.1系统组成及要求
本控制系统采用转速、电流双闭环结构,其原理图图1,双闭环直流调速系统稳态结构图图2和动态结构框图图3如下所示。

图1双环调直流速系统原理图
图2双闭环直流调速系统稳态结构图
图3双闭环直流调速系统动态结构框图
某晶闸管供电的双闭环直流调速系统,整流装置采取三相桥式电路,基本数据如下: 直流电机220V ,136A ,1460r/min ,r
V C e m in/132.0⋅=,允许过载倍数5.1=λ;
晶闸管装置放大倍数s k =40; 电枢回路总电阻R=0.5Ω;
时间常数s T l 03.0=,s
T m 18.0=;
电流反馈系数A V /05.0=β(N
I V 5.1/10≈),转速反馈系数
()N n V r V /10m in/007.0≈⋅=α。

设计要求:设计电流调节器,要求电流超调量%5≤σ;
设计转速调节器,要求转速无静差,空载起动到额定转速时的转速超调量
%10≤σ,并校验转速超调量的要求是否得到满足;
2.2电流调节器设计
2.2.1.确定时间常数
(1)整流装置滞后时间常数s T 三相桥式电路的平均失控时间s T s 0017.0=; (2)电流滤波时间常数oi T 三相桥式电路每个波头的时间是3.33ms ,为了基本滤平波
F F F R C i
i
i μτ75.01075.010
4003
.063
=⨯=⨯=
=
-,取F μ75.0 F F F R T C oi oi μ2.0102.010
40002.0446
30=⨯=⨯⨯==
-,取F μ2.0 按照上述参数,电流环可以达到的动态跟随性能指标为%5%3.4<=i σ(见表2),满足设计要求。

图4 含给定滤波与反馈滤波的PI 型电流调节器
2.3转速调节器设计
2.3.1确定时间常数 (1) 电流环等效时间常数
I
K 1
,已知5.0=∑i I T K ,则 s s T K i I
0074.00037.0221
=⨯==∑ (2) 转速滤波时间常数on T :根据所用测速发电机纹波情况,取s T on 01.0=。

(3) 转速环小时间常数n T ∑:按小时间常数近似处理,取
s s s T K T on I
n 0174.001.00074.01
=+=+=
∑ 2.3.2选择转速调节器结构
按设计要求转速无静差,转速调节器应含有积分环节;又根据动态设计要求,选用

=
Ω

=
=468
40
7.
11
K
R
K
R
n
n
,取KΩ
470;
F
F
F
R
C
n
n
n
μ
τ
185
.0
10
185
.0
10
470
087
.0
6
3
=

=

=
=-,取F
μ
2.0;
F
F
F
R
T
C on
on
μ1
10
1
10
40
01
.0
4
4
6
3
=

=


=
=-,取F
μ1
图5 含给定滤波与反馈滤波的PI型转速调节器
2.3.6校核转速超调量
当h=5时,由表3查得,%
6.
37
=
n
σ,不能满足设计要求。

实际上,由于表3是线性系统计算的,而突出阶跃给定时,ASR饱和,不符合线性系统的前提,应该按ASR 退饱和的情况重新计算超调量,当h=5时,由表4查得%
2.
81
/
max
=

b
C
C代入公式,可得
m
n
N
b
b
b
n T
n
T
n
Z
C
C
n
n
C
C
*
max
*
max)
)(
(2
)
(∑

-

=



σ
%
10
%
31
.8
18
.0
0174
.0
1460
132
.0
5.0
136
5.1
%
2.
81
2<
=





=
能满足设计要求。

表3 典型II型系统阶跃输入跟随性能指标
h 3 4 5 6 7 8 9 10
t r/ T t s/ T
k 52.6%
2.4
12.15
3
43.6%
2.65
11.65
2
37.6%
2.85
9.55
2
33.2%
3.0
10.45
1
29.8%
3.1
11.30
1
27.2%
3.2
12.25
1
25.0%
3.3
13.25
1
23.3%
3.35
14.20
1 表4典型II型系统动态抗扰性能指标与参数的关系
h 3 4 5 6 7 8 9 10
C max/C b t m/ T
t v/ T 72.2%
2.45
13.60
77.5%
2.70
10.45
81.2%
2.85
8.80
84.0%
3.00
12.95
86.3%
3.15
16.85
88.1%
3.25
19.80
89.6%
3.30
22.80
90.8%
3.40
25.85
3 系统仿真
使用MATLAB的Simulink工具箱对其进行计算机仿真研究,根据实验原理图在Matlab 软件环境下查找器件、连线,接成图6和图7所示的线路图。

具体步骤:
a、点击图标,打开Matlab软件,在工具栏里根据提示点击,再点击matlab help,打开一个对话框,点击里的new model,创建一个文件头为的新文件。

b、点击工具栏的,打开元器件库查找新的元器件。

根据上面的步骤查找器件,连线,即可画出原理图如下:
图6 MATLAB中电流环的仿真模型
图7MATLAB中转速环的仿真模型
运行之后,分别得到如下波形图9和图10
图9电流环的仿真结果
图10转速环空载起动的仿真结果
从图9图10 的仿真结果分析可知与理想的电动机起动特性相比,仿真的结果与理论设计具有差距。

但是基本满足设计要求此时5.8=n K 5.41
=n τ
4结论
由于在启动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,即电流上升阶段、恒流升速阶段和转速调节阶段。

从启动时间上看,第二阶段恒流升速是主要的阶段,因此双闭环系统基本上实现了电流受限制下的快速启动,利用了饱和非线性控。

相关文档
最新文档