方程式赛车转向系统设计毕业设计论文 精品

合集下载

方程式赛车动力系统设计(本科毕业设计)

方程式赛车动力系统设计(本科毕业设计)

一、设计步骤设计背景:本文基于扬州大学力行车队的方程式赛车进行研究,阐述 FSAE赛车动力系统匹配现状与发展的相关问题。

通过对方程式赛车的电机参数、传动比、电池组容量进行匹配设计,借以寻找一种有效的动力系统优化思路。

在保证赛车动力系统运行水平的基础上,持续改进系统功能及其运行策略,最终进一步提高FSAE 赛车动力系统的运行能力,使得所设计以及制造的方程式赛车能够满足FSAE赛事比赛的要求。

主要内容如下:(1)参考对比国内高校方程式赛车电动汽车的整车布置方式,设计本文所要求设计的扬州大学电动方程式赛车的布置方式;(2)以本校电动赛车基本参数和设计目标为基础进行动力系统参数设计,对电机、传动装置及能源系统进行结构设计和总体性能计算;(3)使用CATIA软件进行系统建模,对电机、电池、控制器以及驱动桥的位置进行合理布置,做好动力系统的总布置图;(4)按照设计任务书中对赛车的动力性和经济性的要求,对赛车的动力系统进行参数匹配,最终确定整车动力系统组成部分的选型。

在Optimum Lap软件中建立赛道模型,通过软件分析方程式赛车的比赛工况;(5)基于CRUISE软件进行赛车的性能仿真,对影响赛车的经济性与动力性的几个因素进行分析,验证所设计的动力系统各部分参数的准确性;二、设计思路图1-3 整体设计技术路线三、设计内容赛车的设计是从赛车的总布置开始,涉及车架、车身、底盘、传动、转动、可靠性和稳定性测试等多方面内容[13]。

纯电动赛车与传统的燃油赛车相比,由于动力源的差异,所以纯电动赛车没有发动机和油箱,代之以动力电池系统以及电机驱动系统。

FSEC纯电动方程式赛车是本着对传统车辆的加速、制动和操纵性能进行创新设计,赛车的总布置是一个穿插赛车设计始末的过程,总布置的确定对赛车的性能有着重要的影响。

三、系统布置整个赛车的组成结构如图2-2所示,主要有驱动系统、能源系统、车架车身、底盘系统等基本结构要素。

图 2-2 整车部分系统布置四、控制系统由于FSAE赛车实质上就是一辆纯电动汽车,因此赛车的动力系统也与纯电动汽车相似,都是由电机和电机控制器组成。

FSAE赛车转向系统的研究与设计

FSAE赛车转向系统的研究与设计

FSAE赛车转向系统的研究与设计大学生方程式大赛(FSAE)是为热爱赛车的在读大学生举办的一项竞赛。

汽车的转向系统是用来保持或者改变行驶方向的机构。

本文从该角度分析了赛车转向系统的作用、基本构成、要求和总体性能。

标签:FSAE赛车;齿轮齿条式转向器;设计一、研究意义FSAE旨在通过学生亲手设计制造一辆满足大赛要求的赛车,来提高学生对汽车设计知识的拓展应用能力和实际加工动脑动手能力。

大赛赛道设有转向半径较小的急转弯道和间距不等的障碍道,需要赛车转向系统灵敏、轻便、高效。

FSAE 赛车的转向系统设计能使车手在比赛时更好地高速避障、入弯出弯及紧急转向保证行车安全。

二、FSAE转向系统概述转向系统是用来保持或者改变车辆行驶方向并在车辆转向行驶时保证各转向轮之间有协调的转角关系的机构。

FSAE大赛规定仅使用机械转向系统,即依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。

转向器作为改变汽车行驶方向及保持汽车稳定直线行驶的关键零部件,其性能至关重要。

转向系统的技术状况,对于保证行驶安全、减轻驾驶员劳动强度和延长车辆使用寿命均有很重要的作用。

如何改善赛车转向系统的操纵稳定性、灵敏性、可靠性和轻便性,应作为设计工作的重点。

另外,合适的转向器对转向系统也很重要。

比赛还规定:转向系統必须安装有效的转向限位块,以防止转向连杆结构反转;限位块可安装在转向立柱或齿条上,并且必须防止轮胎在转向行驶时接触悬架、车身或车架部件;转向系统的自由行程不得超过7°;方向盘必须安装在快拆器上,保证车手在正常驾驶坐姿并配戴手套时可以操作快拆器;方向盘轮廓必须为连续闭合的近圆形或近椭圆形。

三、FSAE赛车转向系统设计初始参数:1.转向盘总圈数≤3.02.转向盘直径≤200mm3.最大转向盘操纵力≤100N4.转向盘在上下方向的最大调节量≥50mm转向系统的设计要求:(1)保证汽车有较高的机动性;(2)汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑;(3)传给转向盘的反冲要尽量小;(4)转向后转向盘应自动回正,并使汽车保持直线行驶状态;(5)发生车祸时,当转向盘和转向轴由于车架和车身变形后移时,转向系统最好有保护机构防止伤到乘员。

大学生方程式赛车设计——转向系统

大学生方程式赛车设计——转向系统

赛车转向系统是用于改变或保持赛车行驶方向的专门机构。

起作用是使赛车在行驶过程中能按照车手的操纵要求而适时地改变其行驶方向,并在受到路面传来的偶然冲击及赛车意外地偏离行驶方向时,能与行驶系统配合共同保持赛车继续稳定行驶。

因此,转向系统的性能直接影响着赛车的操纵稳定性和安全性。

对赛车的行驶安全至关重要,因此赛车转向系统的零件都称为保安件。

赛车转向系统和制动系统都是赛车安全必须要重视的两个系统。

当转动赛车方向盘时,车轮就会转向。

为了使车轮转向,方向盘和轮胎之间发生了许多复杂的运动。

最常见的赛车转向系统的工作原理包括:齿条齿轮式转向系统和循环球式转向系统。

当赛车转向时,两个前轮并不指向同一个方向。

要让赛车顺利转向,每个车轮都必须按不同的圆圈运动。

由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。

如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。

转向拉杆具有独特的几何结构,可使内车轮的转向度大于外车轮。

赛车转向系统分为两大类:机械转向系统和动力转向系统。

a机械转向系统:完全靠车手手力操纵的转向系统。

b动力转向系统:借助动力来操纵的转向系统。

动力转向系统又可分为液压动力转向系统和电动助力动力转向系统。

机械转向系以车手的体力作为转向能源,其中所有传力件都是机械的。

机械转向系由转向操纵机构、转向器和转向传动机构三大部分组成(如图)。

车手对转向盘施加的转向力矩通过转向轴输入转向器。

从转向盘到转向传动轴这一系列零件即属于转向操纵机构。

作为减速传动装置的转向器中有级减速传动副。

经转向器放大后的力矩和减速后的运动传到转向横拉杆,再传给固定于转向节上的转向节臂,使转向节和它所支承的转向轮偏转,从而改变了赛车的行驶方向。

这里,转向横拉杆和转向节属于转向传动机构。

转向操纵机构由方向盘、转向轴、转向管柱等组成,它的作用是将车手转动转向盘的操纵力传给转向器。

机械转向器(也常称为转向机)是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。

大学生方程式汽车转向系统的设计

大学生方程式汽车转向系统的设计

大学生方程式汽车转向系统的设计摘要本篇论文开篇先简要地介绍了转向系统的作用以及中国大学生方程式汽车大赛,然后较为详细地介绍现阶段国内外高校对大学生方程式汽车的研究情况,最后引出这篇论文的研究内容,即大学生方程式汽车转向系统的设计。

在第二章中,则较为详细地介绍了转向系统的结构,并着重介绍了与转向系统相关的理论知识,为后文做铺垫。

第三章为本论文的核心部分。

在立足于第二章的知识理论和参考其他各类相关资料的基础上,对整个转向系统进行设计计算。

第四章为建模部分,根据第三章设计计算出来的参数,把整个系统用三维软件CATIA画出。

文中将展示转向系统各零部件的三维图以及整个系统的装配图。

第五章为总结与展望部分,本章会客观的陈述本论文采用的方法,完成的内容,达成的效果等,并提出期望。

关键词:大学生方程式汽车、转向系统、CATIADesign of the Steering System of Formula Student AutomobileAbstractThis paper begins with a more detailed introduction of the current domestic and foreign universities on the undergraduate formula car research, and finally leads to the research content of this paper, namely undergraduate formula car steering system design. In the second chapter, the structure of steering system is introduced in detail, and the theoretical knowledge related to steering system is introduced emphatically.The third chapter is the core part of this thesis. The fourth chapter is the modeling part. According to the parameters calculated in the third chapter, the whole system is drawn with 3d software CATIA. The fifth chapter is the summary and prospect part. This chapter will objectively state the methods adopted in this paper, the completed content, the achieved effect and so on, and put forward the expectation.Keywords: Formula student car、steering system、CATIA目录1 前言 (1)1.1 背景 (1)1.2 国内外现状 (1)1.3 主要设计内容 (1)1.4本章小结 (2)2 转向系统结构及其理论 (3)2.1转向系统分类 (3)2.2转向系统结构 (3)2.2.1操纵机构 (3)(1)万向节 (4)2.2.2传动机构 (4)2.2.3转向器的分类及其优缺点 (5)(1)蜗杆曲柄式转向器 (5)(2)齿轮齿条式转向器 (5)(3)循环球式转向器 (8)2.2.4转向器的另一种分类 (8)2.3理论基础 (8)2.3.1转向系传动比 (8)(1)转向系力传动比 (8)(2)转向系角传动比 (8)(3)两者之间的关系 (8)2.3.2转向时车轮运动规律 (8)2.3.3转向特性 (8)2.3.4阿克曼转向 (10)2.3.5轮跳转向 (10)2.3.6转向系效率 (11)2.3.7传动间隙 (11)2.3.8齿轮齿条转向器变速比 (11)2.3.9轮胎的侧偏现象 (12)2.4传动方式 (12)2.5分析问题 (12)2.6本章小结 (12)3设计计算部分 (14)3.1本校赛车参数 (14)3.2方向盘设计 (15)3.3方向盘快拆 (15)3.4万向节的选取 (16)3.5转向轴的设计 (16)3.6前轮最大转向角度 (16)3.7转向系内外车轮转角关系 (17)3.8转向系的力传动比 (17)3.9校核转向系载荷 (17)3.10转向横拉杆直径的确认 (18)3.11齿轮齿条的设计计算 (18)3.11.1初步估算主动齿轮轴的直径 (18)3.11.2斜齿轮齿条转向器参数的选取 (18)3.11.3齿条模数、齿条压力角 (19)3.11.4齿条单向行程 (19)3.11.5齿轮分度圆直径 (19)3.11.6齿条的齿数计算 (19)3.11.7齿条宽度 (19)3.11.8齿轮齿条参数整合 (20)3.12齿轮齿条转向器的材料选取和强度校核 (20)3.12.1材料选择 (20)3.12.2齿轮接触疲劳强度校核 (20)3.12.3齿轮弯曲疲劳强度校核 (21)3.13齿轮齿条式转向器的受力分析与计算 (21)3.14转向横拉杆设计 (22)3.15转向传动机构的臂、杆与球头的设计 (23)3.16转向梯形的设计 (23)3.17图解法确定断开点 (24)3.18本章小结 (25)4.转向系统的三维建模与装配 (26)4.1方向盘建模 (26)4.2快拆建模 (26)4.3快拆花键轴建模 (26)4.4快拆轴建模 (27)4.5杆端轴承外螺纹M8建模 (27)4.6M8杆端轴承建模 (27)4.7M8球建模 (28)4.8M8球环建模 (28)4.9万向节十字轴建模 (28)4.10万向节主体建模 (29)4.11转向机壳体建模 (29)4.12转向齿条建模 (29)4.13下转向传动轴建模 (30)4.14转向机固定座建模 (30)4.15转向机固定耳盘建模 (30)4.16转向机固定上盖建模 (30)4.17转向机接头转接器建模 (31)4.18转向机装配 (31)4.19转向拉杆建模 (31)4.20转向横拉杆建模 (31)4.21转向系统装配 (32)4.22本章小结 (32)5.总结与展望 (33)5.1总结 (33)5.2展望 (33)致谢 (34)参考文献 (35)附录一 (36)附录二 (46)1前言转向系统是汽车的重要的子系统。

大学生F1方程式赛车整车设计毕业论文-精品

大学生F1方程式赛车整车设计毕业论文-精品

大学生F1方程式赛车整车设计毕业论文-精品2020-12-12【关键字】方案、目录、建议、情况、道路、思路、方法、环节、条件、动力、前提、成绩、空间、领域、文件、质量、模式、行动、计划、传统、地方、问题、战略、系统、有效、继续、充分、整体、现代、平稳、均衡、平衡、合理、良好、公平、快速、加大、配合、沟通、执行、保持、提升、统一、发展、建立、提出、发现、了解、研究、合力、措施、规律、特点、位置、关键、支撑、安全、稳定、信心、理想、思想、成果、要素、基础、需要、素质、环境、工程、项目、倾向、重点、能力、需求、载体、方式、作用、标准、规模、结构、水平、主体、任务、反映、速度、关系、设置、增强、分析、简化、倾斜、营造、借鉴、形成、拓展、保护、推广、满足、整合、管理、鼓励、保证、维护、确保、帮助、带动、支持、发挥、教育、解决、优化、调整、改善、完善、方向、促进、加强、适应、实现、提高、转变、协调、改进、减轻、多方面、创造力、中心、核心、重要性摘要本文基于汽车理论课程实践所做的BAJA赛车模型,并结合FSAE赛车比赛规则和赛道的布置特点,进行拓展设计一款大学生F1方程式赛车。

从赛车底盘角度出发,本文侧重于汽车车架的设计,因为车架是整车的重要组成部分,它不仅承受着来自路面的各种复杂载荷,同时也是其他总成的安装载体。

通过有限元法对车架结构进行分析,对提高整车的各种性能有重要的意义。

本文根据《中国FSC大赛规则(2012)》要求,首先利用UG6.0软件对赛车车架进行结构设计,建立起多个车架的三维模型,然后将设计出来的多个车架以及BAJA模型的车架导入到有限元软件中,对车架进行静力学分析,通过对比静力和应力分布图分析选出更优秀的车架。

同时对Formula SAE赛车的发动机系统、车轮系统、传动系统、悬架系统、转向系统、制动系统等进行选型和整体布置,然后根据所选的总成参数对整车动力性能进行匹配以及整车动力性能进行分析,从而设计出一款符合大赛要求同时性能优异的赛车。

开题报告-fsae赛车转向系统设计及性能分析大学论文

开题报告-fsae赛车转向系统设计及性能分析大学论文

附件一毕业设计任务书设计(论文)题目FSAE赛车转向系统设计及性能分析学院名称汽车与交通工程学院专业(班级)车辆工程姓名(学号)指导教师系(教研室)负责人一、毕业设计(论文)的主要内容及要求(任务及背景、工具环境、成果形式、着重培养的能力)背景:中国汽车工业已处于大国地位,但还不是强国。

从制造业大国迈向产业强国已成为中国汽车人的首要目标,而人才的培养是实现产业强国目标的基础保障之一。

中国大学生方程式汽车大赛(以下简称"FSAE")是中国汽车工程学会及其合作会员单位,在学习和总结美、日、德等国家相关经验的基础上,结合中国国情,精心打造的一项全新赛事。

FSAE活动由各高等院校汽车工程或与汽车相关专业的在校学生组队参加。

FSAE要求各参赛队按照赛事规则和赛车制造标准,自行设计和制造方程式类型的小型单人座休闲赛车,并携该车参加全部或部分赛事环节。

比赛过程中,参赛队不仅要阐述设计理念,还要由评审裁判对该车进行若干项性能测试项目。

在比赛过程中,参赛队员能充分将所学的理论知识运用于实践中。

同时,还学习到组织管理、市场营销、物流运输、汽车运动等多方面知识,培养了良好的人际沟通能力和团队合作精神,成为符合社会需求的全面人才。

大学生方程式赛车活动将以院校为单位组织学生参与,赛事组织的目的主要有:一是重点培养学生的设计、制造能力、成本控制能力和团队沟通协作能力,使学生能够尽快适应企业需求,为企业挑选优秀适用人才提供平台;二是通过活动创造学术竞争氛围,为院校间提供交流平台,进而推动学科建设的提升;大赛在提高和检验汽车行业院校学生的综合素质,为汽车工业健康、快速和可持续发展积蓄人才,增进产、学、研三方的交流与互动合作等方面具有十分广泛的意义。

任务:调研国内外赛车转向系统结构及原理,遵循FSAE竞赛规则完成赛车转向系统设计,转向梯形优化,系统建模与转向性能分析。

工具环境:CATIA/UG AutoCAD ADAMS Visio MATLAB Office办公软件等成果形式:①翻译相关外文文献不少于5000字②优化设计说明书一份③赛车转向系统三维模型一份能力培养:培养和锻炼学生搜集相关资料,综合运用所学汽车设计知识解决实际问题的能力、提高学生软件应用能力、独立完成赛车转向系统设计及相关问题的能力,为从事本专业有关工作打下坚实基础。

大学生方程式赛车(总体设计)毕业设计(论文) 精品

大学生方程式赛车(总体设计)毕业设计(论文) 精品

河南科技大学毕业设计(论文)题目大学生方程式赛车设计(总体设计)大学生方程式赛车设计(总体设计)摘要本次毕业设计为期二个多月,进行了方程式赛车的总体设计。

在设计中,主要运用了对比分析的方法,各项参数通过优化设计和UG、MATLAB等进行优化。

初期阶段,我们根据2011年大学生方程式汽车大赛规则确定了赛车整体布置方案,并进行论证与分析,初步确定赛车主要参数。

通过计算与对比,确定发动机型号,初选传动系最大传动比、最小传动比。

中期阶段,我们设计中使用UG6.0三维软件对各个零部件总成进行建模和整体装配,并进行悬架、转向的运动干涉分析。

利用发动机动力特性曲线特点,用MATLAB软件绘制出赛车驱动力-行驶阻力平衡图、加速度曲线图等,并详细计算赛车燃油经济性。

最后阶段,利用UG7.5进行导出赛车总体布置二维工程图,并制成总体参数表,并将第一代赛车与第二代赛车进行对比分析。

对于考虑到的实际生产中可能发生变化的悬架、车架和转向部件,预留方案。

通过本次毕业设计,了解和掌握了对汽车进行总体设计的步骤和方法,巩固了本专业的所学的专业知识,增强了搜集资料、整合资料的能力,这些将为我毕业以后从事汽车设计工作打下良好的基础。

关键词:FSAE,总体参数,参数确定,总布置、赛车动力性、燃油经济性ABSTRACTFor two months, My graduation design is the overall design of the formula racing. we used the contrast analysis method mainly in the design, through optimizing the parameters optimization design and optimization of UG MATLAB, etc.Initial stage, we according to 2011 auto contest rules determine college equation overall layout of the car, and the demonstration and analysis, the main parameter is determined primarily racing. Through calculation and comparison, sure engine type, primaries drivetrain maximum transmission ratio, minimum transmission.The intermediate stage, we design UG6.0 3d software used in various parts of assembly for modeling and whole assembly, and suspension, steering movement interference analysis. Use of engine power characteristic curve characteristic, MATLAB software mapped drive car driving forces - resistance balance figure, acceleration curve, and etc, and detailed calculation racing fuel economy.The final stages UG7.5 are derived by car, general layout, and two-dimensional engineering graphics overall parameter table, and made the first generation and the second generation racing cars are compared and analyzed. For considering the actual production of may change suspension, frame and steering parts, obligate scheme.Through the graduation design, I understand and master the overall design of car of the steps and method, the professional knowledge of professional knowledge, enhance the data collection and integration of information, these ability after my graduation will be engaged in car design lay a good foundation for the job.KEY WORDS:FSAE, general parameters, parameter identification, general arrangement,the car power, fuel economy特殊符号m a 汽车总质量kgV 最高车速km/hL 轴距 mmB1 前轮距 mmB2 后轮距 mmR 最小转弯半径mmhg 满载时质心高度mmhgˊ空载时质心高度mmD 轮胎直径mmB 轮胎宽度mmP 轮胎气压MPA 汽车迎风面积F 滚动阻力系数C空气阻力系数Do i驱动桥主减速比g i变速器传动比F汽车行驶使的空气阻力w1g i变速器Ⅰ挡传动比F车轮与路面的附着力ϕm汽车总质量au汽车行驶速度aP发动机最大功率emaxT发动机转矩eP为克服滚动阻力所消耗的功率fϕ轮胎与路面的附着系数η传动系效率tQ是百公里油耗s目录第一章FSAE赛车总体概况 (1)§1.1 FSAE赛车起源 (1)§1.2 FSAE赛车现状 (2)§1.2.1国际赛车概况 (2)§1.2.2国内赛车概况 (2)§1.2.3我校赛车概况 (2)§1.3 FSAE赛车总体设计概述 (3)§1.3.1汽车设计的规律、决策与设计过程 (3)§1.3.2 FSAE赛车主要技术要求 (3)§1.3.3 第二代赛车设计目标 (4)§1.3.4 FSAE赛车项目意义 (5)第二章FSAE赛车总体设计 (7)§2.1 总体设计目标 (7)§2.2 赛车目标参数的初步确定 (8)§2.2.1 发动机选择 (9)§2.2.2 轮胎的选择 (10)§2.2.3 传动系最小传动比的确定 (11)§2.2.4 传动系最大传动比的确定 (11)§2.3 赛车发动机选型 (12)§2.4 赛车主要设计参数的确定 (13)§2.4.1 尺寸参数 (13)§2.4.2 质量参数 (14)§2.4.3 性能参数 (15)§2.5 赛车各系统设计 (17)§2.5.1 悬架系统设计 (18)§2.5.2 转向系统设计 (19)§2.5.3 制动系统设计 (19)§2.5.4 电器系统设计 (21)§2.5.5 车身设计 (23)§2.5.6 车架设计 (23)第三章赛车动力性与燃油经济性 (25)§3.1 汽车的动力性 (25)§3.1.1 动力性的评价指标 (25)§3.1.2驱动力—行驶阻力图 (25)§3.1.3 汽车的加速能力 (28)§3.1.4 动力特性图 (29)§3.1.5 功率平衡 (31)§3.2 燃油经济性 (32)第四章赛车总体布置 (34)§4.1整车布置的基准线(面)-零线的确定 (34)§4.2各部件的布置 (34)§4.3总体设计参数表 (37)第五章结论 (39)参考文献 (40)致谢 (42)第一章FSAE赛车总体概况Formula SAE 赛事1980年在美国举办第一次比赛以来,现在已经成为汽车工程学会的学生成员举办的一项国际赛事,其目的是设计、制造一辆小型的高性能方程式赛车,并使用这辆自行设计和制造的赛车参加比赛。

方程式赛车的转向系统(s)

方程式赛车的转向系统(s)

大学生方程式赛车转向系统设计1、概述汽车产品的质量检测具有重大的社会意义。

转向器作为汽车的一个重要部件,对其综合性能进行检测直接关系到人民的生命财产安全。

根据汽车安全性统计,,全世界每年因交通事故死亡的人数超过20万,加之几倍于死者的受伤者以及物质上的损失,其直接或间接的危害是难以估计的。

在我国,因为交通管理技术落后、路况差、车辆性能差,加之各类车辆混合行驶,交通事故时有发生。

近年来,我国交通事故死亡人数居世界前几位,每万辆车平均事故居大国中第一位。

交通事故己成为一个严重的社会问题。

概括交通事故的原因,不外乎人、汽车和环境三个因素。

显而易见,提高汽车的安全性能是减少交通事故的关键措施之一,因此,汽车工业发达的国家都非常重视汽车安全性的研究。

目前汽车工业己成为我国的支柱产业之一,所以,为了提高汽车的质量,保证行驶的安全性,在大力发展我国的汽车工业的同时,这就要求生产厂家对每一批产品必须进行质量检测,而其中转向器是汽车维持驾驶员给定方向稳定行驶能力(即操纵稳定性)的基本保障,所以汽车转向器综合性能试验成了汽车性能测试中的一个重要项目。

因为汽车转向器属于汽车系统中的关键部件,它在汽车系统中占有重要位置,因而它的发展同时也反映了汽车工业的发展,它的规模和质量也成为了衡量汽车工业发展水平的重要标志之一。

近年来随着我过汽车工业的迅猛发展,作为汽车的重要安全部件—汽车转向器的生产水平也有了很大的提高。

在汽车转向器生产行业里,70年代推广循环球转向器,80年代开发和推广了循环球变传动比转向器,到了90年代,驾驶员对汽车转向器性能的要求有了进一步的提高,要求转向更轻便,操纵更灵敏。

随着汽车的高速比和超低压扁轮胎的通用化,过去的采用循环球转向器和循环球变传比转向器只能相对的解决转向轻便性和操纵灵敏性问题,现在虽然转向器以向动力转向发展,但大部分汽车还应用机械型转向器,如何改进转向器的设计,使之更加适合驾驶者,是最重要的,因此还需不断改进。

毕业论文-梦想4.0号赛车行驶系设计

毕业论文-梦想4.0号赛车行驶系设计

毕业设计说明书中北大学“梦想4.0号”赛车行驶系设计学生姓名:李元伟学号:**********学院:机械与动力工程学院专业:车辆工程指导教师:***2017年6月中北大学“梦想4.0号”赛车行驶系设计摘要随着2010年我国开始举办大学生方程式赛车比赛以来,越来越多的高校开始了对FSAE赛车的研究、制造与调试。

到2017年,我国大学生方程式汽车大赛由刚开始的20多支车队发展到了80多支。

为了我校行知车队在2017年10月襄阳举办的第八届中国大学生方程式汽车大赛中取得优异的成绩,本文对新一季的“梦想4.0号”赛车的行驶系统进行了设计与优化。

根据2017年方程式大赛规则,结合以往设计经验,对“梦想4.0号”赛车悬架和车架进行设计计算。

在悬架方面,对悬架类型进行了选型,选定车轮定位参数以进行了悬架几何设计和刚度与阻尼的计算。

在车架方面,基于人机工程学和赛车总布置要求,对车架进行了设计。

然后利用CATIA软件对悬架总成和车架进行了三维建模。

利用ADAMS/Car对车轮定位参数以及侧倾中心高度进行了仿真,分析各参数随轮跳的变化规律,找出其不合理的性能参数,用ADAMS/insight对其进行多目标优化。

并用ADAMS/Car 对车轮中心刚度、乘适刚度、侧倾刚度和传动比进行仿真,仿真结果和理论设计计算进行对比,验证理论计算的正确性。

用ANSYS软件对悬架关键零部件摇臂进行了有限元仿真分析,验证其强度是否符合要求。

对于车架的分析,本文用ANSYS对车架进行多种工况下的强度分析,以及进行了扭转刚度、弯曲刚度的仿真分析与计算,结果表明“梦想4.0号”赛车车架符合强度与刚度要求。

关键词:大学生方程式赛车,悬架系统,车架,仿真分析,有限元Design of the running system of"dream4.0"racing carat North Central UniversityabstractSince2010,our country began to hold the formula racing competition,more and more colleges and universities began to study,manufacture and debug the FSAE racing car.By 2017,our university formula automobile competition had developed from more than20 teams in the beginning to more than80.n order to achieve the excellent results of the eighth Chinese college students'Formula One car race held in Xiangyang in October2017,this paper designed and optimized the driving system of the"Dream4.0"racing car in the new season.According to the formula competition rules of2017,combined with the past design experience,the design and calculation of the suspension and frame of"dream No.4"racing car were carried out.In the aspect of suspension,the type of suspension is selected,and the parameters of wheel alignment are selected to do the geometric design of suspension and the calculation of stiffness and damping.In the frame,based on the ergonomics and the general layout requirements of the car,the frame was designed,and then the3D modeling of the suspension assembly and the frame was carried out by using CATIA software.The wheel alignment parameters and the roll center height are simulated by using ADAMS/Car.The change rules of each parameter with wheel jump are analyzed,and the unreasonable performance parameters are found.The multi-objective optimization is carried out by using ADAMS/insight.The ADAMS/Car is used to simulate the wheel center stiffness,ride stiffness,roll stiffness and transmission ratio.The simulation results are compared with the theoretical design calculations to verify the correctness of the theoretical calculation.The finite element simulation analysis of the rocker arm of the key parts of suspension is carried out by using ANSYS software to verify whether the strength meets the requirements.For the analysis of the frame,this paper used ANSYS to analyze the strength of the frame under various conditions,and the torsion stiffness,bending stiffness calculation and simulation analysis,results show that the"dream4"car frame with strength and stiffness requirements.Key words:FSAE racing,Suspension System,Frame,Simulation analysis,Finite element目录1、绪论 (1)1.1课题研究背景 (1)1.2FSAE赛车行驶系国内外研究现状 (3)1.2.1FSAE赛车行驶系国外研究现状 (3)1.2.2FSAE赛车行驶系国内研究现状 (4)1.3课题研究的内容及目的 (5)2、“梦想4.0号”赛车前后悬架设计 (7)2.12017中国大学生方程式大赛规则对悬架系统的设计要求 (7)2.2“梦想4.0号”赛车赛车轮胎、轮辋的选型以及减震器选择 (7)2.3“梦想4.0号”赛车悬架系统的选型 (9)2.4“梦想4.0号”赛车悬架参数与设计 (10)2.4.1车轮定位参数的选定 (10)2.4.2“梦想4.0号”赛车悬架几何设计 (13)2.4.3悬架刚度与阻尼的计算 (17)2.5悬架关键零部件设计 (24)3、“梦想4.0号”赛车车架设计 (29)3.1FSAE赛车车架介绍 (29)3.2车架材料选择 (30)3.3车架结构设计 (31)3.4车架有限元分析 (34)3.4.1车架不同工况强度分析 (34)3.4.2车架刚度仿真分析 (38)4、“梦想4.0号”赛车悬架仿真 (41)4.1车辆动力学介绍 (41)4.2FSAE建模介绍 (41)4.3“梦想4.0号”赛车前悬建模及仿真分析 (41)4.3.1前悬建模 (41)4.3.2前悬运动学仿真分析 (43)4.4“梦想4.0号”赛车后悬建模与仿真 (50)4.4.1后悬建模 (50)4.4.2后悬运动学仿真分析 (52)5、2016参赛纪实 (57)6、总结与展望 (59)6.1总结 (59)6.2展望 (59)附录 (61)参考文献 (64)致谢 (66)1、绪论1.1课题研究背景FSAE(Formula Society of Automotive Engineers)方程式汽车大赛最早起源于1978年,那时美国举行了一个叫迷你印地(Mini Indy)的小型方程式赛车比赛。

转向系统毕业论文

转向系统毕业论文

转向系统毕业论文转向系统毕业论文在汽车工程领域,转向系统是一个至关重要的组成部分。

它不仅影响着车辆的操控性能,还直接关系到驾驶员的安全。

因此,对转向系统的研究和改进一直是汽车工程师们的关注焦点之一。

本文将探讨转向系统的原理、发展历程以及未来的发展趋势。

转向系统的原理是通过转向机构将驾驶员的操纵输入转化为车轮的转向角度。

最常见的转向机构包括齿条齿轮机构和齿轮机构。

齿条齿轮机构通过齿条和齿轮的啮合来实现转向角度的变化,而齿轮机构则是通过齿轮的转动来实现。

这两种机构各有优劣,根据不同的需求和应用场景选择合适的转向机构非常重要。

随着科技的不断进步,转向系统也在不断发展和改进。

最早的转向系统是手动转向系统,驾驶员需要通过用力转动方向盘来改变车轮的转向角度。

然而,这种系统在操纵性和舒适性上存在一定的局限性。

后来,液压助力转向系统应运而生。

这种系统通过液压助力装置来减小驾驶员操纵方向盘的力量,提高操纵的舒适性。

然而,液压助力转向系统存在着液压油泄漏、能量浪费等问题。

为了解决这些问题,电动助力转向系统逐渐成为主流。

电动助力转向系统通过电机和齿轮传动装置来提供助力,相比于传统的液压助力转向系统,它具有更高的效率和更低的能量消耗。

此外,电动助力转向系统还可以根据驾驶条件的变化实现主动转向控制,提高车辆的操控性能和安全性。

目前,电动助力转向系统已经成为大多数汽车制造商的首选。

未来,随着自动驾驶技术和智能化技术的发展,转向系统将迎来更大的变革。

自动驾驶技术将使得车辆能够实现自主导航和自动转向,转向系统将成为实现这一目标的关键。

同时,智能化技术的应用也将为转向系统带来更多的可能性。

例如,通过传感器和智能算法,转向系统可以根据驾驶员的行为和路况实时调整车轮的转向角度,提供更加精准和安全的操控。

总之,转向系统作为汽车工程的重要组成部分,不断发展和改进。

从手动转向系统到液压助力转向系统,再到电动助力转向系统,每一次变革都使得驾驶更加轻松和安全。

毕业设计(论文)大学生方程式赛车设计(制动与行走系统设计)(含全套cad图纸)

毕业设计(论文)大学生方程式赛车设计(制动与行走系统设计)(含全套cad图纸)

大学生方程式赛车设计(制动与行走系统设计)摘要Formula SAE赛事1980年在美国举办第一次比赛,现在已经是为汽车工程学会的学生成员举办的一项国际赛事,其目的是设计、制造一辆小型的高性能方程式赛车,并使用这辆自行设计和制造的赛车参加比赛。

中国大学生方程式赛车比赛的组织与开展始于2010年,至今已成功举办了三届。

本文主要阐述了在中国大学生方程式汽车大赛组委会制定的规则下,如何设计一辆Formula SAE 赛车的制动系统。

设计采用的是前盘后盘的液压双回路制动系方案。

它的工作原理是利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动趋势,亦即由制动踏板的踏板力通过推杆和主缸活塞,使主缸油液在一定压力下流入轮缸,并通过轮缸活塞推使制动衬片夹紧制动盘产生摩擦力矩,从而产生制动力,使车轮减速直至停车。

由于赛车本身质量较小,很多地方不能按常规的设计方法进行设计,我主要采用了市场调研的方法,先选取一些类似的车型,依据它们的制动系统结合赛车的实际情况反复验证,通过极限算法计算出完全制动时制动盘的最小尺寸。

同时在极限工况下对几个危险截面的零件的强度进行了校核,使其满足要求。

同时利用UG软件进行了建模,以辅助后续工作的顺利进行。

关键词:Formula SAE,赛车,制动,校核FORMULA RACING BRAKE AND WALKINGSYSTEM DESIGNABSTRACTFormula-SAE launched in the USA in 1980, Formula-SAE is now an international competition for Society of Automotive Engineers student members to form teams for the purpose of designing, building and competing in a small high-performance race car.The article discusses how to design a Formula SAE car's braking system。

大学生方程式赛车转向系统优化设计

大学生方程式赛车转向系统优化设计

目录1 绪论 (1)1.1大学生方程式大赛简介 (1)1.2 FSAE转向系统基础知识 (2)1.3 本次毕业设计的主要工作 (5)2 大学生方程式赛车转向系统设计 (6)2.1 转向系统基本参数 (6)2.2 转向器设计 (7)1)转向器角传动比i W (7)2)转向器载荷及相关尺寸计算 (8)3)齿轮设计 (10)4)齿条设计 (14)5)啮合受力分析 (15)6)齿间间隙调整机构设计 (18)7)轴承选择 (20)2.3 转向梯形优化 (20)3 基于UG的大学生方程式赛车转向系统仿真 (25)3.1 UG简介 (25)3.2 建立零件模型 (26)3.2.1 斜齿轮建模过程 (26)3.2.2 主要零件模型图 (31)4 基于ADAMS Car/Insight的大学生方程式赛车转向系统优化 (34)结论 (39)参考文献 (40)致谢 (42)1 绪论1.1 大学生方程式大赛简介大学生方程式大赛(以下简称FSAE )从1978年创办至今已有三十多年的历史。

如今,FSAE 已成为世界级赛事,在多个国家设立有分站比赛,如美国站、德国站、西班牙站等。

大赛一年一届,由各国汽车工程协会和大学生方程式大赛组委会举办,得到了许多车企和机构的大力赞助。

各大高校车队严格按照赛规,通过近一年的设计制造,最终同台竞技,争取在动力性、制动性、操控稳定性、燃油经济性等方面的优异表现。

中国大学生方程式大赛(以下简称FSC )始于2010年,已成功举办三届,不仅有吉林大学、同济大学、湖南大学、北京理工大学等名校的长期参与,还吸引来了诸如湖北汽车工业学院、西安汽车科技学院、广西工学院麓山学院等院校的积极加入,得到了北京汽车、广州汽车、奇瑞汽车等知名车企的极力支持。

大赛的宗旨是:由各大学车队的本科生和研究生构想、设计、制造一辆小型方程式赛车并参加比赛。

比赛本身给了参赛车队一个同各地大学的车队同场竞技的机会,以展示和证明他们的创造力和工程技术水平。

大学生方程式赛车转向器毕业设计

大学生方程式赛车转向器毕业设计

目 录
第一章 绪 论 .................................................................................. 1 § 1.1 Formula SAE 概述 ............................................................. 1 § 1.1.1 背景 .......................................................................... 1 § 1.1.2 发展和现状 .............................................................. 2 § 1.2 中国 FSAE 发展概况 ........................................................ 2 § 1.3 任务和目标 ....................................................................... 3 第二章 转向系设计方案分析 ......................................................... 4 § 2.1 赛车转向系概述 ................................................................ 4 § 2.2 转向系的基本构成 ............................................................ 4 § 2.3 转向操纵机构 ................................................................... 4 § 2.4 转向传动机构 ................................................................... 6 § 2.5 机械式转向器方案分析 .................................................... 6 § 2.5.1 齿轮齿条式转向器 ................................................... 6 § 2.5.2 其他形式的转向器 ................................................... 8 § 2.5.3 转向器形式的选择 ................................................... 9 § 2.6 赛车转向系统传动比分析 ................................................ 9 § 2.7 转向梯形机构的分析与选择 ........................................... 10 § 2.7.1 转向梯形机构的选择 ............................................. 10 § 2.7.2 断开式转向梯形参数的确定 .................................. 10 § 2.7.3 转向系内外轮转角的关系的确定 .......................... 12 § 2.7.4 MATLAB 内外轮转角关系曲线部分程序 ............... 14 第三章 转向系主要性能参数 ....................................................... 16 § 3.1 转向器的效率 ................................................................. 16 § 3.1.1 转向器的正效率 η+ ................................................ 16 § 3.1.2 转向器的逆效率 η - ................................................. 17

大学生方程式赛车转向节设计与优化

大学生方程式赛车转向节设计与优化

0引言大学生方程式赛车比赛由国际汽车工程师协会于1979年举办,面向在校本科生或研究生举办的一项学生方程式赛车比赛[1]。

该赛事针对提升大学生研发创新能力而开办,对学生知识运用、团队协作以及人际交流方面的能力都有极大的提升。

转向节是悬架系统的重要组成部分,是赛车底盘所有零部件中受力最复杂、工况最恶劣的零部件之一。

在实际行驶工况中,它不光要承受整车重量,还要承受赛车工况当中的路面冲击、制动力矩和转向力矩等载荷。

复杂和严苛的受力条件对其刚强度提出了较大考验,且由于转向节属于簧下质量,其轻量化对提高赛车操纵稳定性有重要影响[2]。

因此,转向节的合理设计与优化对于提高赛车性能,满足刚强度和轻量化要求有重要意义。

1转向节结构设计转向节作为连接悬架上下摆臂、制动卡钳和转向横拉杆的关键零部件,其结构设计需要满足赛车四轮定位参数、悬架结构形式、制动卡钳和转向横拉杆安装位置等诸多因素的要求。

本文研究的赛车悬架形式为不等长双横臂式独立悬架。

利用车辆动力学仿真软件ADAMS 对赛车悬架系统K&C 特性进行仿真调教和优化[3,4],得到最优悬架硬点组合下的主销内倾角为7°,主销后倾角为3.6°。

确定转向横拉杆和制动卡钳安装位置后,建立转向节的三维模型如图1所示,其质量为712g 。

2转向节强度校核当赛车在进行高速过弯测试时,若速度过大将导致赛车冲出赛道,由于赛道外的路面不平整,因此会带来冲击载荷。

同时,车手将踩下制动踏板,因此会产生制动力。

这种包含冲击、制动和侧倾的极限工况对转向节强度提出了巨大考验。

为了保证转向节在任何情况下都有足够的强度,认为制动减速度和侧向加速度都达到最大值。

赛车轮胎能提供的最大制动减速度为1.4g ,车身结构能提供的最大侧向加速度为1.7g 。

由此计算得到转向节受到垂直地面的冲击载荷为3900N ,刹车座受力为2100N ,转向节臂受力为1500N [5]。

在该受力条件下,利用有限元技术计算得到转向节最大应力为395MPa (图2)。

F1转向系设计

F1转向系设计

目录摘要 (1)Abstract (2)1 绪论 (3)1.1 前言 (3)1.2 设计思路 (3)2 汽车转向系统概述 (4)2.1 转向系的主要要求 (4)2.2 转向系统分类 (5)2.3 转向系布置设计 (5)3 转向器的结构型式及选择 (6)3.1 循环球式转向器 (6)3.2齿轮齿条式转向器 (6)3.2.1 材料的选择 (7)3.2.2 齿轮齿条式转向器优缺点 (7)3.2.3 输入输出形式的选择 (7)3.2.4 齿轮啮合方式的选择 (10)3.2.5 齿条断面形状 (11)3.2.6 齿轮齿条式转向器和转向梯形相对位置 (11)4 转向操纵机构 (12)5 转向传动机构 (13)6 转向梯形的优化设计 (13)6.1 转向梯形结构的选择 (13)6.2 断开点位置的确定 (15)6. 3 转向梯形的设计优化 (16)6.4 用解析法求内、外轮转角关系 (17)6.5 转向传动机构的优化设计 (19)6.5.1 目标函数的建立 (19)6.5.2 设计变量与约束条件 (20)6.5.3 转向梯形的计算 (23)6.5.4 优化结论 (27)7 转向器参数设计 (28)7.1 原地转向力矩及转向器手力计算 (28)7.2 转向器角传动比及力传动比 (29)8 齿轮齿条参数设计及校核 (30)8.1 齿轮精度等级、材料及参数的选择 (30)8.2齿轮几何尺寸确定 (30)8.3齿根弯曲疲劳强度计算 (31)8.3.1 齿轮的齿根弯曲强度校核 (31)8.3.2 齿面接触疲劳强度校核 (31)8.4 齿条参数的设计 (32)结论 (33)致谢 (33)参考文献 (34)F1转向系设计摘要:转向系统在赛车中占有重要的地位,转向系统性能的好坏直接影响到汽车行驶的安全性、操纵稳定性和驾驶舒适性。

本课题首先通过分析转向系的功能要求,结合转向系统的布置设计,比较各类型的转向器的优缺点,选用齿轮齿条式转向器。

毕业论文(设计)转向系统设计

毕业论文(设计)转向系统设计

目录摘要 (3)第一章绪论 (4)1.1汽车转向系统概述 (4)1.2齿轮齿条式转向器概述 (10)1.3液压助力转向器概述 (11)1.4国内外发展情况 (14)1.5本课题研究的目的和意义 (14)1.6本文主要研究内容 (14)第二章汽车主要参数的选择 (15)2.1汽车主要尺寸的确定 (15)2.2汽车质量参数的确定 (17)2.3轮胎的选择 (18)第三章转向系设计概述 (20)3.1对转向系的要求 (20)3.2转向操纵机构 (20)3.3转向传动机构 (21)3.4转向器 (21)3.5转角及最小转弯半径 (22)第四章.转向系的主要性能参数 (24)4.1转向系的效率 (24)4.2传动比变化特性 (25)4.3转向器传动副的传动间隙△T (27)4.4转向盘的总转动圈数 (28)第五章机械式转向器方案分析及设计 (29)5.1齿轮齿条式转向器 (29)5.2其他转向器 (31)5.3齿轮齿条式转向器布置和结构形式的选择 (32)5.4数据的确定 (32)5.5设计计算过程 (33)5.6齿轮轴的结构设计 (37)5.7轴承的选择 (37)5.8转向器的润滑方式和密封类型的选择 (38)5.动力转向机构设计 (38)5.1对动力转向机构的要求 (38)5.2动力转向机构布置方案 (38)5.3液压式动力转向机构的计算 (40)5.4动力转向的评价指标 (45)6. 转向传动机构设计 (47)6.1转向传动机构原理 (47)6.2转向传送机构的臂、杆与球销 (49)6.3转向横拉杆及其端部 (49)6.4杆件设计结果 (50)7.结论 (51)致谢 (51)摘要本课题的题目是转向系的设计。

以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。

因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。

大学生F1方程式赛车设计毕业论文

大学生F1方程式赛车设计毕业论文

大学生F1方程式赛车设计毕业论文目录第一章绪论1.1、 Formule SAE概述1.1.1、背景1.1.2、发展及现状1.2、任务及目标第二章赛车总体参数与主要总成的选择2.1、概述2.1.1、总体设计因满足的要求2.1.2、总体设计的目的2.2、汽车形式的选择2.2.1、轴数2.2.2、驱动形式2.2.3、布置形式2.3、汽车主要参数的选择2.3.1、汽车主要尺寸的确定2.3.2、汽车质量参数的确定2.3.3、汽车动力性参数的确定2.4、发动机的选择2.4.1、发动机限制2.4.2、发动机主要性能指标的选择2.4.3、进气系统2.4.4、排气系统2.5、传动系统2.5.1、变速箱性能参数的确定2.5.2、主减速器及差速器的确定2.6、轮胎和轮辋的选择2.7、悬架系统的选择2.7.1、比赛要求2.7.2、悬架的作用2.7.3、悬架的分类2.7.4、悬架的选择2.7.5、方程式赛车悬架的特殊性2.8、制动系统的选择2.8.1、制动系统要求2.8.2、制动器的分类2.8.3、制动器的选择2.9、转向系统的选择2.9.1、转向的要求2.9.2、转向系的确定2.10、车架形式的选择2.10.1、车架的定义2.10.2、车架的设计2.10.3、车架的分类第三章赛车整车的总体设计3.1、车架的设计3.1.1、车架的设计流程3.1.2、车架设计要求3.1.3、名词解释3.1.4、车架设计过程3.1.4.1、前环以及前斜撑设计3.1.4.2、主环设计3.1.4.3、支撑要求3.1.5、车架材料的选择3.1.6、车架焊接方式的选择3.2、其他部件的三维建模3.2.1、发动机总成以及变速箱三维建模3.2.2、制动总泵以及各个踏板的三维建模3.2.3、悬架系统建模3.2.4、制动系统的三维建模3.2.5、车轮三维建模3.2.6、后驱动桥三维建模3.2.7、转向系统的设计3.2.8、油箱三维模型的建立3.2.9、车身的设计3.2.10、座椅的设计3.2.11、赛车的总装第四章整车设计中的关键问题4.1、车架强度校核4.1.1、有限元软件介绍4.1.2、有限元模型的建立4.1.3、模型的简化及建立4.1.4、网格划分4.1.5、车架静力学分析4.1.5.1、车架静态载荷分析4.1.5.2、工况分析及边界条件处理4.1.5.3、弯曲工况分析4.1.5.4、制动工况的分析4.1.6、车架刚度分析4.1.6.1、车架扭转刚度分析4.1.6.2、车架弯曲刚度分析4.1.7、车架模型(二)的有限元模型分析4.2、动力系统计算匹配及评价4.2.1、概述4.2.2、动力性能计算4.2.2.1、动力性相关公式4.2.2.2、计算过程及结果4.2.2.3、本节结论第五章结论参考文献致绪论1.1、Formule SAE 概述1.1.1、背景Formula SAE,是由各国SAE,即汽车工程师协会举办的面向在读或毕业7个月以的本科生或研究生举办的一项学生方程式赛车比赛,要求在一年的时间制造出一辆在加速、刹车、操控性方面有优异的表现并且足够稳定耐久,能够成功完成规则中列举的所有项目业余休闲赛车。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南科技大学毕业设计(论文)题目方程式赛车前、后悬架及转向系统设计(转向系统)方程式赛车前、后悬架及转向系统设计(转向系统)摘要赛车转向系的设计对赛车转向行驶性能、操纵稳定性等性能都有较大影响。

在赛车转向系设计过程中首先通过转向系统受力计算和UG草图功能进行运动分析,确定转向系的传动比,确定了方向盘转角输入与轮胎转角输出之间的关系;运用空间机构运动学的原理,采用Matlab软件编制转向梯形断开点的通用优化计算程序,确定汽车转向梯形断开点的最佳位置,从而将悬架导向机构与转向杆系的运动干涉减至最小;然后采用UG运动分析的方法,分析转向系在转向时的运动,求解内外轮转角、拉杆与转向器及转向节臂的传动角、转向器的行程的对应关系,为转向梯形设计及优化提供数据依据。

完成结构设计与优化后我们对转向纵拉杆与横拉杆计算球铰的强度与耐磨性校核以及对一些易断的杆件进行了校核计算,确保赛车有足够的强度与寿命。

完成了对转向轻便性的计算,我们计算了转向轮的转向力矩M,转以及转向盘回转总圈数n,以确认是否达到赛车规则中转向盘上作用力p手所规定的要求以及转向的灵活性与轻便性。

最后我们建立三维模型数据进行预装配,在软件上检查我们设计的转向系是否存在干涉等现象以及检查我们的转向系是否满足我们的设计要求,对我们的设计进行改进。

我们还计划采用adams柔性体单元建立转向系统模型,以提高模型仿真优化的精确度。

关键词:赛车,转向,UG,转向梯形,运动分析,齿轮齿条The design of Formula front and rear suspension andsteering system (steering system)ABSTRACTSteering System Design of a car has a significant impact of driving performance, steering stability. In the car design process, first through the steering force calculations and the UG kinetic analysis we determine the ratio of steering system, the relationship between the wheel angle input and output; The principles of spatial mechanism kinetics and a related optimization program by using Matlab are applied to the calculation of the spatial motion of the ackerman steering linkage. By using the method,the interference between suspension guiding mechanism and steering linkage is minimized; then UG kinetic analysis is used to analysis the motion of steering system when turning and calculating the corresponding relation between the turning angle of inside and outside wheels, the transmission angle of steering linkage and steering box or steering linkage and track-rod, and steering box stroke. And it provides a theoretical basis for designing and optimizing the steering trapezoidal mechanism.After the work we calculate the ball joints tie rod strength and wear resistance, and some calculations was made on some dangerous bars, to ensure the car has enough strength and life. After carrying out a complete calculation of the portability, we calculate the torque of the wheel, the force of steering wheel on the hands and the total number of turns , to meet the requirements in the car ruls. Finally, we set up pre-assembled three-dimensional model data, checking the steering we designed whether there is interference phenomena and to examine whether our steering meet our design requirements, to improve our design. We also plan to use adams flexible body element to establish steering system model to improve the accuracy of simulation and optimization models.KEY WORD:FSAE,UG, steering trapezoid, motion analysis, rack and pinion目录第一章绪论 (1)§1.1 Formula SAE 概述 (1)§1.1.1 背景 (1)§1.1.2 发展和现状 (2)§1.2 中国FSAE发展概况 (2)§1.3 任务和目标 (3)第二章转向系设计方案分析 (4)§2.1 赛车转向系概述 (4)§2.2 转向系的基本构成 (4)§2.3 转向操纵机构 (4)§2.4 转向传动机构 (6)§2.5 机械式转向器方案分析 (6)§2.5.1 齿轮齿条式转向器 (6)§2.5.3 转向器形式的选择 (9)§2.6 赛车转向系统传动比分析 (9)§2.7 转向梯形机构的分析与选择 (10)§2.7.1 转向梯形机构的选择 (10)§2.7.2 断开式转向梯形参数的确定 (10)§2.7.3 转向系内外轮转角的关系的确定 (12)§2.7.4 MATLAB内外轮转角关系曲线部分程序 (14)第三章转向系主要性能参数 (16)§3.1 转向器的效率 (16)§3.1.1 转向器的正效率η+ (16)§3.1.2 转向器的逆效率η- (17)§3.2 传动比的变化特性 (17)§3.2.1 转向系传动比 (17)§3.2.2 力传动比与转向系角传动比的关系 (18)§3.2.3转向系的角传动比iwo (19)§3.2.4转向器角传动比及其变化规律 (19)§3.3 转向器传动副的传动间隙Δt (20)§3.3.1转向器传动间隙特性 (20)§3.3.2如何获得传动间隙特性 (21)§3.4 转向系传动比的确定 (22)第四章齿轮齿条式转向器设计与计算 (23)§4.1 转向系计算载荷的确定 (23)§4.1.1 原地转向阻力矩MR的计算 (23)§4.1.2 作用在转向盘上的手力Fh (23)§4.1.3转向横拉杆直径的确定 (24)§4.1.4初步估算主动齿轮轴的直径 (24)§4.2 齿轮齿条式转向器的设计 (24)§4.2.1 齿条的设计 (25)§4.2.2 齿轮的设计 (25)§4.2.3 转向横拉杆及其端部的设计 (26)§4.2.4齿条调整 (26)§4.2.5转向传动比 (27)§4.2.6 齿轮齿条式转向器的设计要求 (27)§4.3齿轮轴和齿条的设计计算 (28)§4.3.1选择齿轮材料、热处理方式及计算许用应力 (28)§4.3.2初步确定齿轮的基本参数和主要尺寸 (29)§4.3.3确定齿轮传动主要参数和几何尺寸 (30)§4.4 齿轮齿条转向器转向横拉杆的运动分析 (30)§4.5 齿轮齿条传动受力分析 (31)§4.6 齿轮轴的强度校核 (32)§4.6.1轴的受力分析 (32)§4.6.2判断危险剖面 (33)§4.6.3轴的弯扭合成强度校核 (33)§4.6.4轴的疲劳强度安全系数校核 (33)§4.7 齿轮轴轴承的校核 (35)第五章转向梯形的优化设计 (36)§5.1目标函数的建立 (36)§5.2设计变量与约束条件 (37)§5.2.1保证梯形臂不与车轮上的零部件发生干涉 (37)§5.2.2保证有足够的齿条行程来实现要求的最大转角.38§5.2.3保证有足够大的传动角α (38)第六章基于UG运动仿真的转向梯形设计与优化 (41)§6.1建立UG三维模型 (41)§6.2建立连杆特性 (41)§6.3建立运动副 (42)§6.4运动驱动 (42)§6.5 参数设定及输出 (43)§6.6 试验验证效果 (43)§6.7 基于UG工程图模块的转向机动图 (45)§6.8 UG模型以及基于UG高级仿真的零部件校核 (46)§6.9 UG装配模型检查干涉问题 (47)第七章结论 (48)参考文献 (49)致谢 (50)第一章绪论§1.1 Formula SAE 概述§1.1.1 背景Formula SAE 赛事由美国汽车工程师协会(the Society of AutomotiveEngineers 简称SAE)主办。

相关文档
最新文档