n次独立重复试验的模型及二项分布.
第63讲 │ n次独立重复试验与二项分布

第63讲 │ 要点探究
P=P(DE F )+P(D E F)+P( D EF)+P(DEF) =0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+ 0.6×0.5×0.5 =0.55. (2)由题意知X可能的取值为0,1,2,3. 又由(1)知 D E F、 D E F 、D E F 是两两互斥事件,且各 盘比赛的结果相互独立. 因此P(X=0)=P( D E F )=0.4×0.5×0.5=0.1.
[答案] (1)对
(2)对
(3)对
(4)对
[解析] 根据事件独立性的概念可知(1)(2)(3)(4)均正确.
第63讲 │ 问题思考
► 问题3 关于n次独立重复试验和二项分布
(1)n次独立重复试验要满足:①每次试验只有两个相互对立 的结果,可以分别称为“成功”和“失败”;②每次试验“成 功”的概率为p,“失败”的概率为1-p;③各次试验是相互独 立的;(
第63讲 │ 要点探究
变式题 (1)一个箱中有9张标有1,2,3,4,5,6,7,8,9的卡片,从
中依次取两张,则在第一张是奇数的条件下第二张也是奇数的 概率是________. (2)某种家用电器能使用三年的概率为0.8,能使用四年的概 率为0.4,已知某一这种家用电器已经使用了三年,则它能够使 用到四年的概率是________.
X P 0 0.1 1 0.35 2 0.4 3 0.15
第63讲 │ 要点探究
因此E(X)=0×0.1+1×0.35+2×0.4+3×0.15=1.6
[点评]
概率计算的核心环节就是把一个随机事件利
用事件的互斥和相互独立进行合理分拆,这样就能把复杂 事件的概率计算转化为一个个简单事件的概率计算.
n次独立重复试验

(四)巩固练习:
(A)1、将一枚硬币连续抛掷5次,则正面向上的次数X的分布为( )
A X~B ( 5,0.5 )B X~B (0.5,5 )
C X~B ( 2,0.5 )D X~B ( 5,1 )
(A)2、随机变量X~B ( 3, 0.6 ) ,P(X=1 ) =()
那么:“重复掷一粒骰子3次,其中有2次出现1点”( ),用 表示出现k次“点数为1点”的事件,类似于上面的讨论,可以得到:
;
;
;
。
可以发现, 一般的,在n次独立试验中,
称随机变量X服从二项分布,记作 。
阅读课本56-58页
(三)典例与变式:
(A)例一:设有一大批产品,其中有20%是非一等品,今从中任取5件产品,则这5件产品中的非一等品的件数X是一个随机变量,求“事件 ”的概率。
探究二:上述问题(2)中的概率是多少?
重复掷一粒骰子3次,就是做3次独立重复试验,设用 ( )表示第 次掷出1点的事件,用 表示“2次出现1点”的事件,则:
设:“出现1点”的概率为 ,“不出现1点”的概率为 ,则 ;
由于事件 、 、 彼此互斥,由概率加法公式得:
所以“重复掷一粒骰子3次,其中有2次出现1点”的概率为
§2.1离散型随机变量及其分布列
学习目标
理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。
学习重点
独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。
学习难点
二项分布模型的构建。
导学设计:
(一)知识链接:
刘备帐下以诸葛亮为首的智囊团共有9名谋士(不包括诸葛亮),假定对某事进行决策时,每名谋士贡献正确意见的概率为0.7,诸葛亮贡献正确意见的概率为0.85.现为此事可行与否而征求每名谋士的意见,并按多数人的意见作出决策,求作出正确决策的概率.
第十一章 第8讲 n次独立重复试验与二项分布

第8讲n次独立重复试验与二项分布基础知识整合1.条件概率及其性质2.事件的相互独立(1)设A,B为两个事件,如果P(AB)=□05P(A)·P(B),那么称事件A与事件B相互独立.(2)如果事件A与B相互独立,那么□06A与□07B,□08A与□09B,□10 A与□11B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,即若用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n)=□12P(A1)P(A2)P(A3)…P(A n).(2)二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=□13C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.1.A ,B 中至少有一个发生的事件为A ∪B . 2.A ,B 都发生的事件为AB . 3.A ,B 都不发生的事件为A -B -.4.A ,B 恰有一个发生的事件为(A B -)∪(A -B ).5.A ,B 至多一个发生的事件为(A B )∪(A B )∪(A B ).1.甲射击命中目标的概率为0.75,乙射击命中目标的概率为23,当两人同时射击同一目标时,该目标被击中的概率为( )A.12 B .1 C.1112 D.56 答案 C解析 1-13×14=1112,选C.2.由0,1组成的三位编号中,若用A 表示“第二位数字为0的事件”,用B 表示“第一位数字为0的事件”,则P (A |B )=( )A.12B.14C.16D.18 答案 A解析 因为第一位数字可为0或1,所以第一位数字为0的概率P (B )=12,第一位数字为0且第二位数字也是0,即事件A ,B 同时发生的概率P (AB )=12×12=14,所以P (A |B )=P (AB )P (B )=1412=12.3.(2019·吉林通化模拟)若ξ~B ⎝ ⎛⎭⎪⎫10,12,则P (ξ≥2)等于( )A.10131024B.111024C.501512D.507512 答案 A 解析P (ξ≥2)=1-P (ξ=0)-P (ξ=1)=1-C 010⎝ ⎛⎭⎪⎫1210-C 110⎝ ⎛⎭⎪⎫1210=10131024.4.(2019·广东汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A.34B.23C.57D.512 答案 D解析 根据题意,恰有一人获得一等奖就是甲获奖乙没获奖或甲没获奖乙获奖,则所求概率是23×⎝ ⎛⎭⎪⎫1-34+34×⎝ ⎛⎭⎪⎫1-23=512.故选D.5.(2019·福建厦门模拟)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25B.35C.18125D.54125 答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P 1=35,∴3次中恰有2次抽到黄球的概率是P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35=54125.6.袋中有红、黄、蓝球各1个,从中有放回地每次任取1个,直到取到红球为止,则第4次首次取到红球的概率为( )A.980B.881C.382D.827 答案 B解析 前3次都取不到红球的概率为⎝ ⎛⎭⎪⎫233,第4次首次取到红球的概率为13,4个独立事件同时发生的概率为⎝ ⎛⎭⎪⎫233×13=881.核心考向突破考向一 条件概率例1 (1)(2019·大庆模拟)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12答案 B解析P(A)=C23+C22C25=25,P(B)=C22C25=110,又A⊇B,则P(AB)=P(B)=110,所以P(B|A)=P(AB)P(A)=P(B)P(A)=14.(2)(2019·江西南昌模拟)口袋中装有大小、形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为________.答案3 5解析口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A表示“第一次取得红球”,事件B表示“第二次取得白球”,则P(A)=26=13,P(AB)=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P(B|A)=P(AB)P(A)=1513=35.触类旁通条件概率的求法(1)定义法:先求P(A)和P(AB),再由P(B|A)=P(AB)P(A)求P(B|A).即时训练 1.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.110 B.15 C.25 D.12答案 C解析设“开关第一次闭合后出现红灯”为事件A,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C.2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.答案 0.72解析 设种子发芽为事件A ,种子成长为幼苗为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9, 由P (B |A )=P (AB )P (A ),得P (AB )=P (B |A )·P (A )=0.9×0.8=0.72. 故这粒种子成长为幼苗的概率为0.72. 考向二 相互独立事件的概率例2 (2017·天津高考)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解 (1)随机变量X 的所有可能取值为0,1,2,3. P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝ ⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为随机变量X的数学期望E(X)=0×14+1×1124+2×14+3×124=1312.(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为11 48.触类旁通求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积;(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.即时训练 3.某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列和数学期望E(ξ).解(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,则P(D)=1-P(A-B-C-)=1-13×14×25=2930.(2)由题意可得,ξ的所有可能取值为0,1,2,3,则P(ξ=0)=P(A-B-C-)=13×14×25=130;P(ξ=1)=P(A B-C-)+P(A-B C-)+P(A-B-C)=23×14×25+13×34×25+13×14×35=13 60;P(ξ=2)=P(AB C-)+P(A B-C)+P(A-BC)=23×34×25+23×14×35+13×34×35=920;P(ξ=3)=P(ABC)=23×34×35=310.所以ξ的分布列为E(ξ)=0×130+1×1360+2×920+3×310=12160.考向三独立重复实验与二项分布例3(2019·重庆模拟)为了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A,B,C,D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为23,23,12.这三项测试能否通过相互之间没有影响.(1)求A能够入选的概率;(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).解(1)设A通过体能、射击、反应分别记为事件M,N,P,则A能够入选包含以下几个互斥事件:MN P-,M N-P,M-NP,MNP,∴P(A)=P(MN P-)+P(M N-P)+P(M-NP)+P(MNP)=23×23×12+23×13×12+13×23×12+23×23×12=1218=23.(2)记ξ表示该训练基地入选人数,则得到的训练经费为η=5000ξ,又ξ的可能取值为0,1,2,3,4,∴P (ξ=0)=C 04⎝ ⎛⎭⎪⎫230⎝ ⎛⎭⎪⎫134=181, P (ξ=1)=C 14⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫133=881, P (ξ=2)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=2481=827, P (ξ=3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫131=3281,P (ξ=4)=C 44⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫130=1681. ∴ξ的分布列为触类旁通求解独立重复试验概率时应注意的问题(1)概率模型是否满足公式P n (k )=C k n p k (1-p )n -k的三个条件:①在一次试验中某事件A 发生的概率是一个常数p ;②n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;③该公式表示n 次试验中事件A 恰好发生了k 次的概率.(2)独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的题用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”等字样的题用对立事件的概率公式计算更简单一样.即时训练 4.某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p =23,记该班级完成n 首背诵后的总得分为S n .(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.解 (1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首. 由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P =⎝ ⎛⎭⎪⎫232×C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132+23×13×23×C 23⎝ ⎛⎭⎪⎫232×13=1681. (2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p =23, ∴P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133=4081, P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫134=3081, P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235×⎝ ⎛⎭⎪⎫130+C 05⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫135=1181, ∴ξ的分布列为∴E (ξ)=10×4081+30×3081+50×1181=185081.。
选修2-3教案2.2.3独立重复试验与二项分布(1)

2.2.3独立重复试验与二项分布(第一课时)教学目标:理解n 次独立重复试验的模型及二项分布教学重点:理解n 次独立重复试验的模型及二项分布教学过程一、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =.称A 与B 独立二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)n P P -+展开式的第1k +项 例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74. 例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验 1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.82lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次课堂小节:本节课学习了n 次独立重复试验的模型及二项分布。
知识讲解独立重复试验与二项分布

知识讲解独立重复试验与二项分布(理)(提高)(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--独立重复试验与二项分布【学习目标】1.理解n 次独立重复试验模型及二项分布.2.能利用n 次独立重复试验及二项分布解决一些简单的实际问题. 【要点梳理】要点一、n 次独立重复试验每次试验只考虑两种可能结果A 与A ,并且事件A 发生的概率相同。
在相同的条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验。
要点诠释:在n 次独立重复试验中,一定要抓住四点: ①每次试验在同样的条件下进行;②每次试验只有两种结果A 与A ,即某事件要么发生,要么不发生; ③每次试验中,某事件发生的概率是相同的; ④各次试验之间相互独立。
总之,独立重复试验,是在同样的条件下重复的,各次之间相互独立地进行的一种试验,在这种试验中,每一次的试验结果只有两种,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的。
要点二、独立重复试验的概率公式1.定义如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:()(1)k k n kn n P k C p p -=-(k=0,1,2,…,n ). 令0k =得,在n 次独立重复试验中,事件A 没有发生的.....概率为...00(0)(1)(1)n nn n P C p p p =-=-令k n =得,在n 次独立重复试验中,事件A 全部发生的概率为........0()(1)n n n n n P n C p p p =-=。
要点诠释:1. 在公式中,n 是独立重复试验的次数,p 是一次试验中某事件A 发生的概率,k 是在n 次独立重复试验中事件A 恰好发生的次数,只有弄清公式中n ,p ,k 的意义,才能正确地运用公式.2. 独立重复试验是相互独立事件的特例,就像对立事件是互斥事件的特例一样,只是有“恰好”字样的用独立重复试验的概率公式计算更方便.要点三、n 次独立重复试验常见实例:1.反复抛掷一枚均匀硬币2.已知产品率的抽样3.有放回的抽样4.射手射击目标命中率已知的若干次射击 要点诠释:抽样问题中的独立重复试验模型:①从产品中有放回地抽样是独立事件,可按独立重复试验来处理; ②从小数量的产品中无放回地抽样不是独立事件,只能用等可能事件计算;③从大批量的产品中无放回地抽样,每次得到某种事件的概率是不一样的,但由于差别太小,相当于是独立事件,所以一般情况下仍按独立重复试验来处理。
二项分布与超几何分布(第1课时+n次独立重复试验与二项分布)课件

1
率均为 ,抽取
5
则 X~B
所以
1
3,
5
3 次可以看成 3 次独立重复试验,
.
P(X=0)=C30
P(X=1)=C31
×
1 0
5
×
1 1
5
×
×
4 2
5
4 3
5
=
=
48
,
125
64
,
125
P(X=2)=C32
P(X=3)=C33
抛硬币这个伯努利试验.
(1)每次试验结果有哪些?
提示:正面向上或反面向上.
(2)各次试验的结果有无影响?
提示:无影响.
2.在相同条件下重复n次伯努利试验时,人们总是约定这n次试验是相互独
立的,此时这n次伯努利试验也常称为n次独立重复试验.
3.独立重复试验应满足的条件是(
)
①每次试验之间是相互独立的;②每次试验只有事件发生与不发生两种结
4
P(A1)=P(A2)=6,P(B1)=P(B2)=5.
(1)至少有 1 棵成活的概率为
1-P(1 2 1 2 )=1-P(1 )P(2 )P(1 )P(2 )
=1-
1 2
6
×
1 2 899
=
.
5
900
(2)由独立重复试验中事件发生的概率公式知,所求概率为
P=C2156Fra bibliotek16
× × ×
C32 ×0.82×0.2+C33 ×0.83×0.20=0.896.
(2)在未来3天中,至少有连续2天预报准确的概率为
n 次独立重复试验及二项分布

《第八讲n次独立重复试验与二项分布》教学设计(初稿)C .15D .120做题方法: 条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).这是通用的求条件概率的方法.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).考点二 相互独立事件——多维探究 角度1 相互独立事件同时发生的概率例2 (1)(2022·石家庄质检)甲、乙独立地解决同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( )A .0.48B .0.52C .0.8D .0.92(2)(2019·全国)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”,设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是___.(3)(2019·课标Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了X个球该局比赛结束.①求P(X=2);②求事件“X=4且甲获胜”的概率.角度2与相互独立事件相关的数学期望例3(2022·内蒙古包头调研)一台设备由三个部件构成,假设在一天的运转中,部件甲、乙、丙需要调整的概率分别为0.1,0.3,0.4,各部件的状态相互独立.(1)求设备在一天的运转中,部件甲、乙中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X,求X的分布列及数学期望.做题方法:求相互独立事件同时发生的概率的主要方法(1)利用相互独立事件的概率乘法公式直接求解.(2)正面计算较繁琐(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.考点三独立重复试验的概率与二项分布——师生共研例4(1)(2022·“四省八校”联考)已知随机变量ξ服从二项分布B(n,p),若E(ξ)=12,D(ξ)=3,则n=____.(2)(2021·山东枣庄期末)2020年是不平凡的一年,世界经济都不同程度地受到疫情的影响.某公司为了促进产品销售,计划从2020年11月起到2021年2月底,利用四个月的时间,开展产品宣传促销活动,为了激励员工,拟制定如下激励措施:从2020年11月1日开始,全部销售员工的销售业绩等级定为0级,每月考核一次,若员工A .4B .5C .6D .73.(2022·甘肃嘉峪关一中模拟)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A .25B .35C .18125D .541254.(2022·山东日照联考)两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .165.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱子,重新取球;若取出白球,则停止取球,那么第4次取球之后停止的概率为( )A .C 35C 14C 45B .⎝⎛⎭⎫593×49C .35×14D .C 14×⎝⎛⎭⎫593×496.(2022·江苏镇江八校期中联考)甲、乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪方先胜三局比赛都结束,假定甲每局比赛获胜的概率均为23,则甲以31的比分获胜的概率为( )A .827B .6481C .49D .897.(2022·重庆市诊断)某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( )A .313B .413C .14D .158.(2021·河南新乡市二模)某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为23,则该同学在上学的路上至少遇到2次绿灯的概率为( )各局比赛结果相互独立,则甲队以32获胜的概率是 .三、解答题14.(2022·云南大理统测)三人参加篮球投篮比赛,规定每人只能投一次.假设甲投进的概率是12,乙、丙两人同时投进的概率是320,甲、丙两人同时投不进的概率是15,且三人各自能否投进相互独立.(1)求乙、丙两人各自投进的概率;(2)设ξ表示三人中最终投进的人数,求ξ的分布列和数学期望.15.(2022·陕西汉中质检)清华大学自主招生考试题中要求考生从A ,B ,C 三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A ,B ,C 三题答卷如下表:题 A B C 答卷数180300120(1)负责招生的教授为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A 题作答的答卷中抽出了3份,则应分别从选择B ,C 题作答的答卷中各抽出的多少份?(2)测试后的统计数据显示,A 题的答卷得优的有60份,若以频率作为概率,在(1)问中被抽出的选择A 题作答的答卷中,记其中得优的份数为X ,求X 的分布列及其数学期望E (X ).B 组能力提升(选做题)1.如图是某个闭合电路的一部分,每个元件正常导电的概率均为23,则从A 到B 这部分电源能通电的概率为 .2.(2020·天津和平区期末)某中学组织高三学生进行一项能力测试,测试内容包括A 、B 、C 三个类型问题,这三个类型所含题目的个数分别占总数的12,13,16,现有3名同学独立地从中任取一个题目作答,则他们选择的题目所属类型互不相同的概率为( )A .136B .112C .16D .133.(2021·黑龙江哈尔滨六中考前押题)甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( )。
二项分布

108
0.30
(2)在10次射击中,至少8次击中目标的概率为
P X 8 P X 8 P X 9 P X 10
8 C10 0.88 1 0.8 108 9 C10 0.89 1 0.8 10 9 10 C10 0.810 1 0.8 1010
一、 n次独立重复试验
在相同条件下重复做的n次试验,各次试验的结 果相互独立,称为n 次独立重复试验
特点:
1).每次试验是在同样的条件下进行的; 2).各次试验中的事件是相互独立的 3).每次试验都只有两种结果:A发生与不发生 4).每次试验,某事件A发生的概率是相同的. 5).每次试验,某事件发生的次数是可以列举的。
P X k C p 1 p
k n k nk
, k 0,1,..., n
公式理解
一次试验中事件 A 发 生的概率
一次试验中事件A 发生的概率
P ( X k ) C p (1 p)
k n k
nk
(其中k = 0,1,2,·,n ) · · 试验总次数
独立重复试验与二项分布
高二数学组 ----------齐艳
复习引入
前面我们学习了互斥事件、 相互独立事件, 这些都是我 们在具体求概率时需要考虑的一些模型, 吻合模型用公式去 求概率简便. ⑴ P ( A B) P ( A) P ( B) (当 A与B 互斥时) ; ⑵ P ( AB ) P ( A) P ( B ) (当 A与B 相互独立时) 那么这节课来学习一个新的模型-----n 次独立重复试验与 二项分布
事件 A 发生的次数
探究三
三、二项分布
2.4二项分布

意义理解
1).公式适用的条件 2).公式的结构特征
事件 A 发生的概率
k n
事件A发生的概率
k n k
Pn ( k ) C p (1 p)
实验总次数 事件 A 发生的次数
(其中k = 0,1,2,·,n ) · ·
在一次试验中某事件发生的概率是p,那么在n次 独立重复试验中这个事件发生次数X是一个随机变量
1.射击n次, 每一次射击可能击中目 , 也可 标 能不中目标, 而且当射击条件不变时 可以认 , 为每次击中目标的概率 是不变的; p
2.抛掷一颗质地均匀的骰 n次, 每一次抛掷 子 可能出现“5”, 也可能不出现 5”, 而且每次出 “ 1 现“5”的概率都是 ; 6
3.种植n粒棉花种子, 每一粒种子可能出苗 ,
M ⑴如果是有放回地取,则 B( n, ) N ⑵如果是不放回地取, 则 服从超几何分布.
k n C M C N kM P ( k ) (k 0,1, 2,, m) (其中 m min( M , n) n CN
我们先研究下面的问题: 射击3次,每次射中目标的概率都为p>0, 设随机变量X是射中目标的次数,求随机变量X 的概率分布。
n 重贝努利(Bernoulli)试验
若n 次重复试验具有下列特点: 1) 每次试验的可能结果只有两个A 或 A , 且 P ( A) p, P ( A ) 1 p ( 在各次试验中p是常数,保持不变)
2) 各次试验的结果相互独立,
则称这n次重复试验为n重贝努里试验,简称为 贝努里概型.
一般地,在n次独立重复试验中,每次试 验事件A发生的概率均为p(0<p<1),那么在这 n次试验中事件A恰好发生k次的概率为:
n次独立重复试验及二项分布

n次独立重复试验及二项分布一基础知识1.条件概率及其性质(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=P(AB)P(A)(P(A)>0).(2)条件概率的性质①非负性:0≤P(B|A)≤1;②可加性:如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.(2)若P(AB)=P(A)P(B),则A与B相互独立.(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)P(A)=P(A)P(B).(5)一般地,如果事件A1,A2,…,A n(n>2,n∈N*)相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)·…·P(A n).互斥事件与相互独立事件的相同点与不同点(1)相同点:二者都是描述两个事件间的关系;(2)不同点:互斥事件强调两事件不可能同时发生,即P(AB)=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.3.独立重复试验与二项分布(1)独立重复试验:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.独立重复试验的条件:①每次试验在相同条件下可重复进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.(2)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,则事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n,则称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.判断一个随机变量是否服从二项分布,要看两点:,(1)是否为n次独立重复试验;,(2)随机变量是否为某事件在这n次独立重复试验中发生的次数.考点一条件概率[典例精析](1)(2019·合肥模拟)将三颗骰子各掷一次,记事件A为“三个点数都不同”,B为“至少出现一个6点”,则条件概率P(A|B)=________,P(B|A)=_______.(2)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.[解析](1)P(A|B)的含义是在事件B发生的条件下,事件A发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不相同”的概率,因为“至少出现一个6点”有6×6×6-5×5×5=91种情况,“至少出现一个6点,且三个点数都不相同”共有C 13×5×4=60种情况,所以P (A |B )=6091.P (B |A )的含义是在事件A 发生的条件下,事件B 发生的概率,即在“三个点数都不相同”的条件下,“至少出现一个6点”的概率,因为“三个点数都不同”有6×5×4=120种情况,所以P (B |A )=12.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110,由条件概率公式,得P (B |A )=P (AB )P (A )=11025=14.[答案] (1)6091 12 (2)14[题组训练]1.(2019·石家庄摸底)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.解析:设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25.答案:252.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为________.解析:法一:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则P (B |A )=P (AB )P (A )=3×2A 2535=12.法二:在第1次抽到理科题的条件下,还有2道理科题和2道文科题,故在第1次抽到理科题的条件下,第2次抽到理科题的概率为12.答案:12考点二 相互独立事件的概率[典例精析](1)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为________.(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.[解析] (1)设甲、乙、丙、丁需使用设备分别为事件A ,B ,C ,D ,则P (A )=0.6,P (B )=P (C )=0.5,P (D )=0.4,恰好3人使用设备的概率P 1=P (A BCD +A B CD +AB C D +ABC D )=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人使用设备的概率P 2=0.6×0.5×0.5×0.4=0.06,故所求概率P =0.25+0.06=0.31.(2)依题意,该选手第2个问题回答错误,第3,4个问题均回答正确,第1个问题回答正误均有可能,则所求概率P =1×0.2×0.82=0.128. [答案] (1)0.31 (2)0.128 [变式发散]1.(变设问)保持本例(2)条件不变,则该选手恰好回答了5个问题就晋级下一轮的概率为________. 解析:依题意,该选手第3个问题的回答是错误的,第4,5个问题均回答正确,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23×0.82+2×0.2×0.8×0.2×0.82=0.005 12+0.040 96=0.046 08. 答案:0.046 082.(变设问)保持本例(2)条件不变,则该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.解析:依题意,设答对的事件为A ,可分第3个回答正确与错误两类,若第3个回答正确,则有A A A A 或A A A A 两类情况,其概率为:0.8×0.2×0.8×0.2+0.2×0.2×0.8×0.2=0.025 6+0.006 4=0.032.若该选手第3个问题的回答是错误的,第1,2个问题回答均错误或有且只有1个错误,则所求概率P =0.23+2×0.2×0.8×0.2=0.008+0.064=0.072.所以所求概率为0.032+0.072=0.104. 答案:0.104[题组训练]1.在高三的某次模拟考试中,对于数学选修4系列的考查中,甲同学选做《不等式选讲》的概率为13,乙同学选做《不等式选讲》的概率为14,假定二人的选择相互之间没有影响,那么这次模拟考试中甲、乙两个同学至少有1人选做《不等式选讲》的概率为________.解析:记高三的某次模拟考试中“甲同学不选做《不等式选讲》”为事件A ,“乙同学不选做《不等式选讲》”为事件B ,且A ,B 相互独立.依题意,P (A )=1-13=23,P (B )=1-14=34,所以P (AB )=P (A )·P (B )=23×34=12.又因为甲、乙二人至少有一人选做《不等式选讲》的对立事件为甲、乙二人都不选做《不等式选讲》,所以所求概率为1-P (AB )=1-12=12.答案:122.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解:(1)随机变量X 的所有可能取值为0,1,2,3,则P (X =0)=)211(-×)311(-×)411(-=14,P (X =1)=12×)311(-×)411(-)411(-+)211(-×13×)411(-+)211(-×)311(-×14=1124,P (X =2)=)211(-×13×14+12×)311(-×14+12×13×)411(-=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为1148.考点三 独立重复试验与二项分布[典例精析]九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.[解] (1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只), 所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X 的所有可能取值为0,1,2,3,4,则P (X =0)=)53(4=81625,P (X =1)=C 14×25×)53(3=216625,P (X =2)=C 24×)52(2×)53(2=216625,P (X =3)=C 34×)52(3×35=96625,P (X =4)=)52(4=16625. 所以X 的分布列为[题组训练]1.甲、乙两名运动员练习定点投球,已知在该点每次投篮甲命中的概率是0.8,乙命中的概率是0.9,每人投两次,则甲、乙都恰好命中一次的概率为( )A.0.32B.0.18C.0.50D.0.057 6 解析:选D 甲命中一次的概率为C 12×0.8×(1-0.8)=0.32,乙命中一次的概率为C 12×0.9×(1-0.9)=0.18,他们投篮命中与否相互独立,所以甲、乙都恰好命中一次的概率为P =0.32×0.18=0.057 6.2.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率为多少? 解:(1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×)21(1×)211(-2=38,P (X =20)=C 23×)21(2×)211(-1=38, P (X =100)=)21(3=18,P (X =-200)=)211(-3=18.所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-)81(3=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率为511512.[课时跟踪检测]A 级 1.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为( )A.23B.12C.34D.14解析:选B 设女孩个数为X ,女孩多于男孩的概率为P (X ≥2)=P (X =2)+P (X =3)=C 23×)21(2×12+C 33×)21(3=3×18+18=12.2.(2018·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:30天以上的概率为( )A.1316B.2764C.2532D.2732解析:选D 由表可知元件使用寿命在30天以上的频率为150200=34,则所求概率为C 23)43(2×14+)43(3=2732. 3.(2019·武汉调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.59解析:选A 小赵独自去一个景点共有4×3×3×3=108种情况,即n (B )=108,4个人去的景点不同的情况有A 44=4×3×2×1=24种,即n (AB )=24,∴P (A |B )=n (AB )n (B )=24108=29. 4.甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的英语口语测试成绩不低于85分”记为事件B ,则P (AB ),P (A |B )的值分别是( )A.14,59B.14,49C.15,59D.15,49 解析:选A 由题意知,P (AB )=1020×510=14,根据条件概率的计算公式得P (A |B )=P (AB )P (B )=14920=59.5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14B.89C.116D.532解析:选D 两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,故两次数字乘积为偶数的概率为1-2)62(=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532. 6.设由0,1组成的三位编号中,若用A 表示“第二位数字为0的事件”,用B 表示“第一位数字为0的事件”,则P (A |B )=________.解析:因为第一位数字可为0或1,所以第一位数字为0的概率P (B )=12,第一位数字为0且第二位数字也是0,即事件A ,B 同时发生的概率P (AB )=12×12=14,所以P (A |B )=P (AB )P (B )=1412=12.答案:127.事件A ,B ,C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (B )=______,P (A B )=______.解析:由题意得⎩⎪⎨⎪⎧P (A )·P (B )=16, ①P (B )·P (C )=18, ②P (A )·P (B )·P (C )=18, ③由③÷①得P (C )=34,所以P (C )=1-P (C )=1-34=14.将P (C )=14代入②得P (B )=12,所以P (B )=1-P (B )=12,由①可得P (A )=13,所以P (A B )=P (A )·P (B )=23×12=13. 答案:12 138.某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为14,用ξ表示5位乘客在第20层下电梯的人数,则P (ξ=4)=________.解析:考查一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~B )41,5(,即有P (ξ=k )=C k 5k )41(×)43(5-k ,k =0,1,2,3,4,5.故P (ξ=4)=C 45)41(4×)43(1=151 024. 答案:151 0249.挑选空军飞行员可以说是“万里挑一”,要想通过需要过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275. (2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k ·(1-0.3)3-k ,k =0,1,2,3. 故P (X =0)=C 03×0.30×(1-0.3)3=0.343,P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189,P (X =3)=C 33×0.33=0.027,故X 的分布列为10.甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率为多少? 解:(1)记“甲连续射击4次,至少有1次未击中目标”为事件A 1,则事件A 1的对立事件A 1为“甲连续射击4次,全部击中目标”.由题意知,射击4次相当于做4次独立重复试验.故P (A 1)=C 44)32(4=1681.所以P (A 1)=1-P (A 1)=1-1681=6581. 所以甲连续射击4次,至少有一次未击中目标的概率为6581.(2)记“甲射击4次,恰好有2次击中目标”为事件A 2,“乙射击4次,恰好有3次击中目标”为事件B 2,则P (A 2)=C 24×)32(2×)321(-2=827,P (B 2)=C 34)43(3×)431(-1=2764. 由于甲、乙射击相互独立,故P (A 2B 2)=P (A 2)P (B 2)=827×2764=18. 所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为18.(3)记“乙恰好射击5次后,被终止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5), 则A 3=D 5D 4D 3(D 2D 1∪D 2D 1∪D 2D 1),且P (D i )=14.由于各事件相互独立,故P (A 3)=P (D 5)P (D 4)P (D 3)P (D 2D 1+D 2D 1+D 2D 1)=14×14×34×)41411(⨯-=451 024. 所以乙恰好射击5次后,被终止射击的概率为451 024.B 级1.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B.)95(3×49 C.35×14 D.C 14×)95(3×49 解析:选B 由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为)95(3×49.2.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )A.310B.29C.78D.79解析:选D 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730.则所求概率为P (B |A )=P (AB )P (A )=730310=79. 3.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则P (X ≥-80)=________. 解析:由题意得该产品能销售的概率为)611(-)1011(-=34.易知X 的所有可能取值为-320,-200,-80,40,160,设ξ表示一箱产品中可以销售的件数,则ξ~B )43,4(,所以P (ξ=k )=C k 4)43(k )41(4-k, 所以P (X =-80)=P (ξ=2)=C 24)43(2)41(2=27128,P (X =40)=P (ξ=3)=C 34)43(3)41(1=2764, P (X =160)=P (ξ=4)=C 44)43(4)41(0=81256, 故P (X ≥-80)=P (X =-80)+P (X =40)+P (X =160)=243256.答案:2432564.从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示的频率分布直方图.(1)估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率; (2)假设该市高一学生的体重X 服从正态分布N (57,σ2).①利用(1)的结论估计该高一某个学生体重介于54~57 kg 之间的概率;②从该市高一学生中随机抽取3人,记体重介于54~57 kg 之间的人数为Y ,利用(1)的结论,求Y 的分布列.解:(1)这400名学生中,体重超过60 kg 的频率为(0.04+0.01)×5=14,由此估计从该市高一学生中随机抽取一人,体重超过60 kg 的概率为14.(2)①∵X ~N (57,σ2),由(1)知P (X >60)=14,∴P (X <54)=14,∴P (54<X <60)=1-2×14=12,∴P (54<X <57)=12×12=14,即高一某个学生体重介于54~57 kg 之间的概率为14.②∵该市高一学生总体很大,∴从该市高一学生中随机抽取3人,可以视为独立重复试验, 其中体重介于54~57 kg 之间的人数Y ~B )41,3(,其中P (Y =i )=C i 3)41(i )43(3-i ,i =0,1,2,3.∴Y 的分布列为5.为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列;(3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值.解:(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).(2)由题表可知,10户中位于第二阶梯电量的有4户,设取到第二阶梯电量的用户数为ξ,则ξ可取0,1,2,3,4.P (ξ=0)=C 04C 46C 410=114,P (ξ=1)=C 14C 36C 410=821,P (ξ=2)=C 24C 26C 410=37,P (ξ=3)=C 34C 16C 410=435,P (ξ=4)=C 44C 06C 410=1210, 故ξ的分布列为(3)由题意可知从全市中抽取10户,用电量为第一阶梯的户数满足X ~B )52,10(,可知P (X =k )=C k 10)52(k ·)53(10-k (k =0,1,2,3,…,10). 由⎩⎨⎧ C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k +110⎝⎛⎭⎫25k +1⎝⎛⎭⎫359-k ,C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k -110⎝⎛⎭⎫25k -1⎝⎛⎭⎫3511-k ,解得175≤k ≤225.又k ∈N *,所以当k =4时概率最大,故k =4.。
超几何分布、二项分布区别

则
P X k
CMk
C nk N M
CNn
k 0,1,2,,M
区分超几何分布及二项分布的使用
(1)逐次抽取,取后放回用二项分布 (2)一次性抽取(无放回、无顺序)用超几何分布 (3)在统计中,用频率估计概率,在总体中抽取用二项分布 (4)在统计中,在样本中抽取用超几何分布
常见数列通项求法 求an
(1)Sn与n关系式,例如: Sn n2 n或Sn n2 n 1 (2)Sn与an关系式(不含n),例如:Sn 1 2an
Sn1与Sn关系式(不含n),例如:a1 2,Sn1 2Sn 1
Sn与an1关系式(不含n),例如:a1
1 2
,Sn
1
2an1
(3)an1与an的关系式(不含 n,非等差等比),例如a1 1,an1 2an 3
超几何分布、二项分布的区别与联系
超几何分布和二项分布都是离散型随机变量 的一种概率分布模型,一般以分布列的形式 体现其分布
二项分布:
(1)是在n次独立重复试验条件下的概率分布模型 (2)随机变量的取值是这n次独立重复试验中事件发生的次数,为0—n (3)每次试验的结果只有发生和不发生两种情况,且相互独立 (4)每次试验中事件发生的概率保持不变
错位相减法万能公式
差比数列 cn an bqn1 ,则其前n项和一定为: Sn An Bqn B
其中A a ,B b A q 1 q 1
注:本结论只能作为最后结果的检验,不能 作为解答过程。
在n次独立重复试验中,事件A发生的次数为X,每次试验中事件A
发生概率为p,记 X ~ Bn, p ,则
PX k Cnk pk 1 p nk
k 0,1,2,,n
超几何分布:描述了由有限个物件中抽出n个物件,成功抽
新教材人教b版选择性必修第二册423二项分布与超几何分布课件

C12
1 2
1
1 2
1
C22
2 3
2
+
C22
1 2
2
C12
2 3
1
1 3
1
=
1,
3
P(ξ=4)=P(X=2,Y=2)=
C22
1 2
2
C22
2 3
2
=
1 9
,
∴ξ的分布列为
ξ
0
1
2
3
4
P
1
1
13
1
1
36
6
36
3
9
2| 超几何分布
如图,我国古代珠算算具算盘每个档(挂珠的杆)上有7颗算珠,用梁隔开,梁上面2 颗叫上珠,下面5颗叫下珠.
我国2019年某新年贺岁大片自上映以来引发了社会的广泛关注,受到了观众
,女性观众认为该贺岁
2
3
大片好看的概率为 1 .某机构就该贺岁大片是否好看的问题随机采访了4名观众
2
(其中2男2女).
(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;
(2)设ξ表示这4名观众中认为该贺岁大片好看的人数,求ξ的分布列.
…
C C k nk M NM
…
C C s ns M NM
CNn
CNn
CNn
CNn
判断正误,正确的画“ √” ,错误的画“ ✕” . 1.某同学投篮的命中率为0.6,他10次投篮命中的次数X是一个随机变量,且X~ B(10,0.6). ( √ ) p,某人一次买了8张,中奖张数X是一个随机变量,且X~B(8, p). ( √ ) 3.二项分布是一个概率分布,是一个用公式P(X=k)=Ckn pk(1-p)n-k,k=0,1,2,…,n表示的 概率分布,它表示了n次独立重复试验中事件A发生次数的概率分布. ( √ ) 4.超几何分布的模型是有放回抽样. ( ✕ ) 5.超几何分布的总体往往由差异明显的两部分组成.( √ )
高考数学一轮总复习课件:n次独立重复试验与二项分布

【解析】 记“甲独立地译出密码”为事件A,“乙独立地
译出密码”为事件B,A,B为相互独立事件,且P(A)=
1 3
,P(B)
=14.
(1)“2 个人都译出密码”的概率为:
P(AB)=P(A)×P(B)=13×14=112.
(2)“2个人都译不出密码”的概率为:
P(AB)=P(A)×P(B)=[1-P(A)]×[1-P(B)]=1-131-14=12..3
B.7 C.3 D.4
【解析】
由题意知,P(A)=
C32+C42 C72
=
3 7
,P(AB)=
C42 C72
=
2 7
,
2 所以P(B|A)=PP((AAB))=73=23.故选C.
7
题型二 相互独立事件的概率
例2 甲、乙2个人独立地破译一个密码,他们能译出密码 的概率分别为13和14,求:
作为做对试题的概率,已知某个学生已经做对第一问,则该学
生做对第二问的概率为( A )
A.0.9
B.0.8
C.0.72
D.0.576
【解析】 P=7820=0.9,选A.
(2)在100件产品中有95件合格品,5件不合格品.现从中不
放回地取两次,每次任取一件,则在第一次取到不合格品后, 4
第二次再次取到不合格品的概率为___9_9____. 【解析】 方法一:设A={第一次取到不合格品}, B={第二次取到不合格品},则P(AB)=CC150202, 5×4 所以P(B|A)=PP((AAB))=100× 5 99=949. 100
(5)“至少1个人译出密码”的对立事件为“2个人都未译出
密码”,所以至少有1个人译出密码的概率为:
独立重复试验与二项分布

C180 0.88 1 0.8 108 C190 0.89 1 0.8 109
C10 10
0.810
1 0.8
1010
0.68
(3) 设至少投篮n次保证命中的概率大于0.99
P命 中 1 P X 0 1 (1 0.8)n 1 0.2n 0.99
n 2.86 故至 少 投篮 3次.
【思维总结】 解答此类题目,首先分析随机变 量是否满足独立重复试验概型的条件,再利用 P(X=k)=Cknpk·(1-p)n-k 计算即可.
判断一个随机变量是否服从二项分布的关键 (1)对立性,即一次试验中,事件发生与否二者必居其一. (2)重复性,即试验独立重复地进行了n次. (3)随机变量是事件发生的次数.
P(X
k
)
C
k n
p
k
(1
p)nk ,k
0,1, 2, ..., n.
展开式中的第 k 1 项.
此时称随机变量X服从参数为n,p二项分布,记作X~B(n,p)
∴甲打完 5 局才能取胜
的概率
1 )2 2
1 2
3 16
.
(2) 记事件 A “甲打完 3 局才能取胜”, 记事件 B =“甲打完 4 局才能取胜”, 记事件 C =“甲打完 5 局才能取胜”.
事件 D =“按比赛规则甲获胜”,则 D A B C ,
又因为事件 A 、 B 、 C 彼此互斥, 故 P(D) P( A B C) P( A) P(B) P(C)
P(B) P( X 1) P( X 2) P( X 3) 1 P(X 0) P( X 4) P( X 5)
=0.2592+0.3456+0.2304+0.0768+0.01024
=0.92224.
第8节 二项分布及其应用(理)

[考题印证]
(2009· 辽宁高考)(12分)某人向一目标射击4次,每次击
中目标的概率为 .该目标分为3个不同的部分,第一、二、 三部分面积之比为1∶3∶6,击中目标时,击中任何一部分 的概率与其面积成正比. (1)设X表示目标被击中的次数,求X的分布列;
(2)若目标被击中2次,A表示事件“第一部分至少被击中
2.借助古典概型概率公式,先求事件A包含的基本事件 数n(A),再在事件A发生的条件下求事件B包含的基
本事件数,即n(AB),得P(B|A)=
.
1号箱中有2个白球和4个红球,2号箱中有5个白球和3
个红球,现随机地从1号箱中取出一球放入2号箱,然后从2 号箱随机取出一球,问从2号箱取出红球的概率是多少? [思路点拨]
P(A)P(A)P( )P( )= P( )P( )P(B)P(B)= .
,
所以甲、乙两人各投球2次,共命中2次的概率为
1.独立重复试验的条件:第一,每次试验是在同样条件下 进行;第二,各次试验中的条件是相互独立的;第三,
每次试验都只有两种结果,即事件要么发生,要么不
发生. 2.关于P(X=k)= pk(1-p)n-k,k=0,1,2,…,n,它是
两次试跳中成功i次”为事件Ni(i=0,1,2),因为事件“甲、乙
各试跳两次,甲比乙的成功次数恰好多一次”可表示为 M1N0+M2N1,且M1N0、M2N1为互斥事件. 所以所求的概率为
P(M1N0+M2N1)=P(M1N0)+P(M2N1) =P(M1)P(N0)+P(M2)P(N1) =C×0.7×0.3×0.42+0.72×C×0.6×0.4 =0.067 2+0.235 2=0.302 4. 即甲、乙每人试跳两次,甲比乙的成功次数恰好多一次 的概率为0.302 4.
2.2.3独立重复试验与二项分布(二)

1 3
练习: 练习:P40例3 变式训练 例
例3 某人抛掷一枚硬币,出现正面和反面的概率都是 ,构 某人抛掷一枚硬币,出现正面和反面的概率都是0.5,
造数列
{an } ,使 an =
{
1,当第n次出现正面 ,当第 次出现正面 -1,当第n次出现反面 ,当第 次出现反面
记
S n = a1 + a2 + ... + an (n ∈ N * )
2、二项分布: 、二项分布:
一般地, 次独立重复试验中, 一般地,在n次独立重复试验中,设事件 发生的 次独立重复试验中 设事件A发生的 次数为X,在每次试验中事件A发生的概率为 发生的概率为p, 次数为 ,在每次试验中事件 发生的概率为 ,那么 次独立重复试验中, 恰好发生k次的概率为 在n次独立重复试验中,事件 恰好发生 次的概率为 次独立重复试验中 事件A恰好发生
北京卷理) 例2.(2009北京卷理) ( 北京卷理 某学生在上学路上要经过4个路口 个路口, 某学生在上学路上要经过 个路口,假设在各路口是 否遇到红灯是相互独立的, 否遇到红灯是相互独立的,遇到红灯的概率都是 , 遇到红灯时停留的时间都是2min. 遇到红灯时停留的时间都是 (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红 灯的概率; 灯的概率; (Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的 分布列. 分布列
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 于是得到随机变量ξ的概率分布如下 变量. 于是得到随机变量 的概率分布如下: 的概率分布如下: ξ p
第二章 2.2.3独立重复试验与二项分布

2.2.3独立重复试验与二项分布学习目标1.理解n次独立重复试验的模型.2.理解二项分布.3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.知识点一独立重复试验1.独立重复实验的定义一般地,在相同条件下重复做的n次试验称为n次独立重复试验.2.独立重复试验中事件A恰好发生k次的概率一般地,如果在1次实验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.思考(1)有放回地抽样试验是独立重复试验吗?(2)在n次独立重复试验中,各次试验的结果相互有影响吗?答案(1)是.有放回地抽样试验是相同条件下重复做的n次试验,是独立重复试验.(2)在n次独立重复试验中,各次试验的结果相互之间无影响.因为每次试验是在相同条件下独立进行的,所以第i次试验的结果不受前i-1次结果的影响(其中i=1,2,…,n).知识点二二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.1.有放回地抽样试验是独立重复试验.(√)2.在n次独立重复试验中,各次试验的结果相互没有影响.(√)3.对于n次独立重复试验,各次试验中事件发生的概率可以不同.(×)4.如果在1次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.(√)一、独立重复试验的判断例1判断下列试验是不是独立重复试验:(1)依次投掷四枚质地不同的硬币,3次正面向上;(2)某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中;(3)口袋中装有5个白球,3个红球,2个黑球,依次从中抽取5个球,恰好抽出4个白球.解(1)由于试验的条件不同(质地不同),因此不是独立重复试验.(2)某人射击且击中的概率是稳定的,因此是独立重复试验.(3)每次抽取,试验的结果有三种不同的颜色,且每种颜色出现的可能性不相等,因此不是独立重复试验.反思感悟独立重复试验的判断依据(1)要看该试验是不是在相同的条件下可以重复进行.(2)每次试验相互独立,互不影响.(3)每次试验都只有两种结果,即事件发生,不发生.跟踪训练1下列事件:①运动员甲射击一次,“射中9环”与“射中8环”;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”;④在相同的条件下,甲射击10次,5次击中目标.其中是独立重复试验的是()A.①B.②C.③D.④答案 D解析①③符合互斥事件的概念,是互斥事件;②是相互独立事件;④是独立重复试验.二、独立重复试验的概率例2 甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果需用分数作答)(1)求甲射击3次,至少有1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 考点 独立重复试验的计算题点 n 次独立重复试验中恰好发生k 次的概率解 (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,知射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-⎝⎛⎭⎫233=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×⎝⎛⎭⎫232=49,P (B 2)=C 12×⎝⎛⎭⎫341×⎝⎛⎭⎫1-34=38,由于甲、乙射击相互独立,故P (A 2B 2)=49×38=16.引申探究1.在本例(2)的条件下,求甲、乙均击中目标1次的概率.解 记“甲击中目标1次”为事件A 3,“乙击中目标1次”为事件B 3,则P (A 3)=C 12×23×13=49,P (B 3)=38, 所以甲、乙均击中目标1次的概率为P (A 3B 3)=49×38=16.2.在本例(2)的条件下,求甲未击中,乙击中2次的概率.解 记“甲未击中目标”为事件A 4,“乙击中2次”为事件B 4,则P (A 4)=C 02⎝⎛⎭⎫1-232=19,P (B 4)=C 22⎝⎛⎭⎫342=916,所以甲未击中、乙击中2次的概率为P (A 4B 4)=19×916=116. 反思感悟 独立重复试验概率求法的三个步骤(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验. (2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.跟踪训练2 甲、乙两队进行排球比赛,已知在一局比赛中甲队胜的概率为23,没有平局.(1)若进行三局两胜制比赛,先胜两局者为胜,甲获胜的概率是多少? (2)若进行五局三胜制比赛,甲获胜的概率为多少?解 (1)甲第一、二局胜,或第二、三局胜,或第一、三局胜,则P =⎝⎛⎭⎫232+C 12×23×13×23=2027. (2)甲前三局胜,或甲第四局胜,而前三局仅胜两局,或甲第五局胜,而前四局仅胜两局,则 P =⎝⎛⎭⎫233+C 23×⎝⎛⎭⎫232×13×23+C 24×⎝⎛⎭⎫232×⎝⎛⎭⎫132×23=6481.三、二项分布的应用例3 一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率. 考点 二项分布的计算及应用 题点 二项分布的实际应用 解 (1)由ξ~B ⎝⎛⎭⎫5,13,则 P (ξ=k )=C k 5⎝⎛⎭⎫13k ⎝⎛⎭⎫235-k ,k =0,1,2,3,4,5. 即P (ξ=0)=C 05×⎝⎛⎭⎫130×⎝⎛⎭⎫235=32243; P (ξ=1)=C 15×13×⎝⎛⎭⎫234=80243; P (ξ=2)=C 25×⎝⎛⎭⎫132×⎝⎛⎭⎫233=80243; P (ξ=3)=C 35×⎝⎛⎭⎫133×⎝⎛⎭⎫232=40243; P (ξ=4)=C 45×⎝⎛⎭⎫134×23=10243; P (ξ=5)=C 55×⎝⎛⎭⎫135=1243. 故ξ的分布列为(2)η的分布列为P (η=k )=P (前k 个是绿灯,第k +1个是红灯)=⎝⎛⎭⎫23k ·13,k =0,1,2,3,4, 即P (η=0)=⎝⎛⎭⎫230×13=13; P (η=1)=23×13=29;P (η=2)=⎝⎛⎭⎫232×13=427; P (η=3)=⎝⎛⎭⎫233×13=881; P (η=4)=⎝⎛⎭⎫234×13=16243; P (η=5)=P (5个均为绿灯)=⎝⎛⎭⎫235. 故η的分布列为(3)所求概率为P (ξ≥1)=1-P (ξ=0) =1-⎝⎛⎭⎫235=211243.反思感悟 (1)对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A +B 还是AB ,确定事件至少有一个发生,还是同时发生,分别应用相加或相乘事件公式;最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n 次独立重复试验的概率公式求解. (2)把一个交通问题抽象为二项分布问题,体现了数学建模的核心素养.跟踪训练3 某一中学生心理咨询中心服务电话接通率为34,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数X 的分布列. 考点 二项分布的计算及应用 题点 求二项分布的分布列解 由题意可知X ~B ⎝⎛⎭⎫3,34, 所以P (X =k )=C k 3⎝⎛⎭⎫34k ·⎝⎛⎭⎫143-k ,k =0,1,2,3, 即P (X =0)=C 03×⎝⎛⎭⎫340×⎝⎛⎭⎫143=164; P (X =1)=C 13×34×⎝⎛⎭⎫142=964; P (X =2)=C 23×⎝⎛⎭⎫342×14=2764; P (X =3)=C 33×⎝⎛⎭⎫343=2764. 所以X 的分布列为X 0 1 2 3 P164964276427641.独立重复试验要从三方面考虑:第一,每次试验是在相同条件下进行的;第二,各次试验的结果是相互独立的;第三,每次试验都只有两种结果,即事件要么发生,要么不发生. 2.如果1次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k .此概率公式恰为[(1-p )+p ]n 展开式的第k +1项,故称该公式为二项分布公式.1.若随机变量X ~B ⎝⎛⎭⎫5,13,则P (X =2)等于( ) A.⎝⎛⎭⎫132×⎝⎛⎭⎫233B.⎝⎛⎭⎫232×⎝⎛⎭⎫133C .C 25⎝⎛⎭⎫232×⎝⎛⎭⎫133 D .C 25⎝⎛⎭⎫132×⎝⎛⎭⎫233 答案 D解析 ∵随机变量X ~B ⎝⎛⎭⎫5,13, ∴P (X =2)=C 25⎝⎛⎭⎫132×⎝⎛⎭⎫233. 2.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第X 次首次测到正品,则P (X =3)等于( )A .C 23⎝⎛⎭⎫142×34B .C 23⎝⎛⎭⎫342×14C.⎝⎛⎭⎫142×34D.⎝⎛⎭⎫342×14答案 C解析 P (X =3)=⎝⎛⎭⎫142×34.3.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在1次试验中发生的概率p 的取值范围是( ) A .[0.4,1] B .(0,0.4] C .(0,0.6] D .[0.6,1]答案 A解析 由题意知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A.4.在4次独立重复试验中,事件出现的概率相同,若事件A 至少出现一次的概率为6581,则事件A 在一次试验中出现的概率为________. 答案 13解析 设事件A 在一次试验中出现的概率为x ,则1-C 04(1-x )4=6581,解得x =13. 5.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________. 答案1132解析 正面出现的次数比反面出现的次数多,则正面可以出现4次、5次或6次,所求概率P=C 46⎝⎛⎭⎫126+C 56⎝⎛⎭⎫126+C 66⎝⎛⎭⎫126=1132.一、选择题1.若X ~B (5,0.1),则P (X ≤2)等于( ) A .0.665 B .0.008 56 C .0.918 54 D .0.991 44答案 D解析 P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 050.10×0.95+C 150.1×0.94+C 250.12×0.93=0.991 44.2.一头猪服用某药品后被治愈的概率是90%,则服用这种药的5头猪中恰有3头被治愈的概率为( ) A .0.93B .1-(1-0.9)3C .C 35×0.93×0.12D .C 35×0.13×0.92答案 C解析 5头猪中恰有3头被治愈的概率为C 35×0.93×0.12. 3.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率是( )A.13B.23C.14D.25考点 独立重复试验的计算 题点 n 次独立重复试验概率的应用 答案 B解析 设此射手的命中概率为x ,则不能命中的概率为1-x ,由题意知4次射击全部没有命中目标的概率为1-8081=181,有(1-x )4=181,解得x =23或x =43(舍去).4.甲、乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局比赛都结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A.827B.6481C.49D.89 考点 独立重复试验的计算题点 n 次独立重复试验中恰好发生k 次的概率 答案 A解析 当甲以3∶1的比分获胜时,说明甲乙两人在前三场比赛中,甲只赢了两局,乙赢了一局,第四局甲赢,所以甲以3∶1的比分获胜的概率为P =C 23⎝⎛⎭⎫232⎝⎛⎭⎫1-23×23=3×49×13×23=827,故选A.5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( )A.⎝⎛⎭⎫125B .C 25×⎝⎛⎭⎫125C .C 35×⎝⎛⎭⎫123 D .C 25×C 35×⎝⎛⎭⎫125 考点 独立重复试验的计算 题点 n 次独立重复试验概率的应用 答案 B解析 如图,由题意可知,质点P 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率,所求概率为P =C 25×⎝⎛⎭⎫122×⎝⎛⎭⎫123=C 25×⎝⎛⎭⎫125.故选B.6.设随机变量ξ~B (2,p ),η~B (3,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.2027B.827C.727D.127 考点 二项分布的计算及应用 题点 利用二项分布求概率 答案 C解析 易知P (ξ=0)=C 02(1-p )2=1-59,∴p =13,则P (η≥2)=C 33p 3+C 23p 2(1-p )1=127+627=727. 7.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( ) A.⎝⎛⎭⎫593×49 B.C 35C 14C 45C.35×14D .C 14×⎝⎛⎭⎫593×49考点 独立重复试验的计算题点 用独立重复试验的概率公式求概率 答案 A解析 由题意知前3次取出的均为黑球,第4次取得的为白球.故其概率为⎝⎛⎭⎫593×49. 二、填空题8.从次品率为0.1的一批产品中任取4件,恰有两件次品的概率为________. 考点 独立重复试验的计算题点 n 次独立重复试验中恰好发生k 次的概率 答案 0.048 6解析 P =C 24×(0.1)2×(1-0.1)2=0.048 6.9.已知实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是23,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率为________. 考点 独立重复试验的计算 题点 n 次独立重复试验概率的计算 答案2027解析 实验女排要获胜必须赢得两局,故获胜的概率为 P =⎝⎛⎭⎫232+23×13×23+13×23×23=2027.10.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________. 考点 独立重复试验的计算 题点 n 次独立重复试验概率的应用 答案625解析 由已知可求得通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为410=25,为负数的概率为12.∴取出的数恰好为两个正数和一个负数的概率为C 23×⎝⎛⎭⎫252×⎝⎛⎭⎫121=625. 三、解答题11.甲队有3人参加知识竞赛,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,且各人答对正确与否相互之间没有影响.用ξ表示甲队的总得分,求随机变量ξ的分布列. 考点 二项分布的计算及应用 题点 求二项分布的分布列解 由题意知,ξ的可能取值为0,1,2,3,且P (ξ=0)=C 03×⎝⎛⎭⎫1-233=127, P (ξ=1)=C 13×23×⎝⎛⎭⎫1-232=29,P (ξ=2)=C 23×⎝⎛⎭⎫232×⎝⎛⎭⎫1-23=49, P (ξ=3)=C 33×⎝⎛⎭⎫233=827, 所以ξ的分布列为12.某单位为绿化环境,移栽了甲、乙两种大树各2棵.设甲、乙两种大树移栽的成活率分别为56和45,且各棵大树是否成活互不影响,求移栽的4棵大树中, (1)至少有1棵成活的概率; (2)两种大树各成活1棵的概率. 考点 独立重复试验的计算 题点 n 次独立重复试验概率的应用解 设A k 表示第k 棵甲种大树成活,k =1,2,B l 表示第l 棵乙种大树成活,l =1,2, 则A 1,A 2,B 1,B 2相互独立, 且P (A 1)=P (A 2)=56,P (B 1)=P (B 2)=45.(1)至少有1棵成活的概率为1-P (A 1·A 2·B 1·B 2) =1-P (A 1)·P (A 2)·P (B 1)·P (B 2) =1-⎝⎛⎭⎫162⎝⎛⎭⎫152=899900.(2)由独立重复试验中事件发生的概率公式知, 所求概率为P =C 12⎝⎛⎭⎫56⎝⎛⎭⎫16·C 12⎝⎛⎭⎫45⎝⎛⎭⎫15 =1036×825=80900=445.13.某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰,若有500人参加测试,学生成绩的频率分布直方图如图.(1)求获得参赛资格的人数;(2)根据频率分布直方图,估算这500名学生测试的平均成绩;(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他前两次连续答错的概率为19,求甲在初赛中答题个数X 的分布列.解 (1)由频率分布直方图得,获得参赛资格的人数为 500×(0.005 0+0.004 3+0.003 2)×20=125(人). (2)设500名学生的平均成绩为x ,则x =(40×0.006 5+60×0.014 0+80×0.017 0+100×0.005 0+120×0.004 3+140×0.003 2)×20=78.48.(3)设学生甲答对每道题的概率为P (A ), 则(1-P (A ))2=19,∴P (A )=23.学生甲答题个数X 的可能值为3,4,5, 则P (X =3)=⎝⎛⎭⎫233+⎝⎛⎭⎫133=13,P (X =4)=C 13×13×⎝⎛⎭⎫233+C 13×23×⎝⎛⎭⎫133=1027, P (X =5)=C 24×⎝⎛⎭⎫132×⎝⎛⎭⎫232=827. 所以X 的分布列为14.网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物. (1)求这4个人中恰有1人去淘宝网购物的概率;(2)用ξ,η分别表示这4个人中去淘宝网和京东商城购物的人数,令X =ξη,求随机变量X 的分布列.考点 二项分布的计算及应用 题点 二项分布的实际应用解 依题意,得这4个人中,每个人去淘宝网购物的概率为13,去京东商城购物的概率为23.设“这4个人中恰有i 人去淘宝网购物”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝⎛⎭⎫13i ⎝⎛⎭⎫234-i(i =0,1,2,3,4).(1)这4个人中恰有1人去淘宝网购物的概率为 P (A 1)=C 14⎝⎛⎭⎫131⎝⎛⎭⎫233=3281.(2)易知X 的所有可能取值为0,3,4.P (X =0)=P (A 0)+P (A 4)=C 04⎝⎛⎭⎫130×⎝⎛⎭⎫234+C 44⎝⎛⎭⎫134×⎝⎛⎭⎫230 =1681+181=1781, P (X =3)=P (A 1)+P (A 3)=C 14⎝⎛⎭⎫131×⎝⎛⎭⎫233+C 34⎝⎛⎭⎫133×⎝⎛⎭⎫231 =3281+881=4081, P (X =4)=P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=2481. 所以随机变量X 的分布列是。
N次独立重复试验与二项分布课件

3.在 5 道题中有 3 道理科题和 2 道文科题.如果不放回地依次 抽取 2 道题,则在第 1 次抽到文科题的条件下,第 2 次抽到理科题的 概率为( )
1233 A.2 B.5 C.5 D.4 D [根据题意,在第 1 次抽到文科题后,还剩 4 道题,其中有 3 道理科题;则第 2 次抽到理科题的概率 P=34,故选 D.]
29
(2019·全国卷Ⅱ)11 分制乒乓球比赛,每赢一球得 1 分, 当某局打成 10∶10 平后,每球交换发球权,先多得 2 分的一方获胜, 该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分 的概率为 0.5,乙发球时甲得分的概率为 0.4,各球的结果相互独立.在 某局双方 10∶10 平后,甲先发球,两人又打了 X 个球该局比赛结束.
33
②假设这名射手射击 5 次,求有 3 次连续击中目标,另外 2 次未 击中目标的概率;
③假设这名射手射击 3 次,每次射击,击中目标得 1 分,未击中 目标得 0 分.在 3 次射击中,若有 2 次连续击中,而另外 1 次未击中, 则额外加 1 分;若 3 次全击中,则额外加 3 分.记 ξ 为射手射击 3 次 后的总分数,求 ξ 的分布列.
26
②由题意可得,ξ 的所有可能取值为 0,1,2,3,
则 P(ξ=0)=P(A B C)=13×14×25=310;
P(ξ=1)=P(A B C)+P(A B C)+P(A B C)=23×14×25+13×34×25
+13×14×35=6103;
P(ξ=2)=P(ABC)+P(ABC)+P(ABC)=23×34×25+23×14×35+13×34
A.0.2 B.0.3 C.0.38 D.0.56
24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节 n 次独立重复试验与二项分布[备考方向要明了]考什 么怎 么 考1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.相互独立事件、n 次独立重复试验的概率求法是每年高考的热点,特别是相互独立事件、n 次独立重复试验及二项分布的综合更是高考命题的重中之重,如2012年山东T19等.[归纳·知识整合]1.条件概率及其性质条件概率的定义条件概率的性质设A 、B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率(1)0≤P (B |A )≤1(2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A )2.事件的相互独立性(1)定义:设A 、B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立.(2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )P (B ). ②如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立. [探究] 1.“相互独立”和“事件互斥”有何不同?提示:两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.3.独立重复试验与二项分布独立重复试验 二项分布定义在相同条件下重复做的n 次试验称为n 次独立重复试验 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率计算公式 A i (i =1,2,…,n )表示第i次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n )在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n )[探究] 2.二项分布的计算公式和二项式定理的公式有何联系? 提示:如果把p 看成a,1-p 看成b ,则C k n p k(1-p )n -k就是二项式定理中的通项.[自测·牛刀小试]1.若事件E 与F 相互独立,且P (E )=P (F )=14,则P (EF )的值等于( )A .0 B.116C.14D.12解析:选B EF 代表E 与F 同时发生, 故P (EF )=P (E )·P (F )=116.2.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C 由P (AB )=P (A )P (B |A )可得P (A )=34.3.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是( )A .0.26B .0.08C .0.18D .0.72解析:选A P =0.8×0.1+0.2×0.9=0.26.4.掷一枚不均匀的硬币,正面朝上的概率为23,若将此硬币掷4次,则正面朝上3次的概率是________.解析:设正面朝上X 次,则X ~B ⎝ ⎛⎭⎪⎫4,23, P (X =3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫131=3281. 答案:32815.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”, 则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P AB P A =16.答案:16条件概率[例1] (1)甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A .0.6B .0.7C .0.8D .0.66(2)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.[自主解答] (1)甲市为雨天记为事件A ,乙市为雨天记为事件B ,则P (A )=0.2,P (B )=0.18,P (AB )=0.12,故P (B |A )=P AB P A =0.120.2=0.6.(2)记A =“甲厂产品”,B =“合格产品”,则P (A )=0.7,P (B |A )=0.95.故P (AB )=P (A )·P (B |A )=0.7×0.95=0.665.[答案] (1)A (2)0.665在本例2中条件改为“甲厂产品的合格率是95%,其中60%为一级品”,求甲厂产品中任选一件为一级品的概率.解:设甲厂产品合格为事件A ,一级品为事件B ,则甲厂产品中任一件为一级品为AB , 所以P (AB )=P (A )P (B |A )=95%×60%=0.57.———————————————————条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A );(2)基本事件法:借古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB .(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=A 25=20;根据分步乘法计数原理,n (A )=A 13×A 14=12; 于是P (A )=n An Ω=1220=35. (2)因为n (AB )=A 23=6,所以P (AB )=n AB n Ω=620=310.(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率 P (B |A )=P ABP A =31035=12.法二:因为n (AB )=6,n (A )=12,所以P (B |A )=n AB n A =612=12.相互独立事件的概率[例2] 某果园要用三辆汽车将一批水果从所在城市E 运至销售城市F ,已知从城市E 到城市F 有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为110,不堵车的概率为910;走公路Ⅱ堵车的概率为35,不堵车的概率为25,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.(1)求甲、乙两辆汽车中恰有一辆堵车的概率; (2)求三辆汽车中至少有两辆堵车的概率.[自主解答] 记“汽车甲走公路Ⅰ堵车”为事件A , “汽车乙走公路Ⅰ堵车”为事件B . “汽车丙走公路Ⅱ堵车”为事件C .(1)甲、乙两辆汽车中恰有一辆堵车的概率为P 1=P (A ·B )+P (A ·B )=110×910+910×110=950.(2)甲、乙、丙三辆汽车中至少有两辆堵车的概率为P 2=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=110×110×25+110×910×35+910×110×35+110×110×35=59500. ——————————————————— 求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算.2.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘,已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率; (2)求红队队员获胜总盘数为1的概率.解:(1)设甲胜A 为事件D ,乙胜B 为事件E ,丙胜C 为事件F ,则D ,E ,F 分别表示事件甲不胜A 、事件乙不胜B 、事件丙不胜C .因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5.红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55. (2)由题意知ξ可能的取值为0,1,2,3.又由(1)知D ] E ]F 、D E F 、D E -F -是两两互斥事件,且各盘比赛的结果相互独立.P (ξ=1)=P (D E F )+P (D E F )+P (D E -F -)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35. 即红队队员获胜1盘的概率为0.35.独立重复试验与二项分布[例3] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.(1)从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率; (2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;(3)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为X ,求X 的分布列.[自主解答] (1)设从甲、乙、丙三台机床加工的零件中任取一件是一等品分别为事件A ,B ,C ,则P (A )=0.7,P (B )=0.6,P (C )=0.8.所以从甲、乙、丙三台机床加工的零件中各取一件检验,至少有一件一等品的概率为P 1=1-P (A )P (B )P (C )=1-0.3×0.4×0.2=0.976.(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,它是一等品的概率为P 2=2×0.7+0.6+0.84=0.7.(3)依题意抽取的4件样品中一等品的个数X 的可能取值为0,1,2,3,4,则P (X =4)=C 04×0.74=0.2401, P (X =3)=C 14×0.3×0.73=0.4116, P (X =2)=C 24×0.32×0.72=0.2646, P (X =1)=C 34×0.33×0.7=0.0756, P (X =0)=C 44×0.34=0.0081.∴X 的分布列为:X 4 3 2 1 0 P0.24010.41160.26460.07560.0081———————————————————二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数.3.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意识,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为: X 0 1 2 3 P27642764964164(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C 区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.1个技巧——抓住关键词求解相互独立事件的概率在应用相互独立事件的概率公式时,要找准关键字句,对含有“至多有一个发生”,“至少有一个发生”,“恰有一个发生”的情况,要结合对立事件的概率求解.1个明确——明确常见词语的含义解题过程中要明确事件中“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词的意义.已知两个事件A ,B ,则(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A B ; (4)A ,B 恰有一个发生的事件为A B ∪A B ; (5)A ,B 至多一个发生的事件为A B ∪A B ∪A B .易误警示——独立事件概率求法中的易误点[典例] (2012·珠海模拟)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.[解] (1)设X 为射手在5次射击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率为P (X =2)=C 25×⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-233=40243. (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. (3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2 A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29. P (ξ=2)=P (A 1A 2A 3)=23×13×23=427,P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827,P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232=827,所以ξ的分布列为:ξ0 1 2 3 6 P12729427827827[易误辨析]1.本题第(2)问因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132=80243这一错误结果;2.本题第(2)问中因忽视连续三次击中目标,另外两次未击中导致分类不准确; 3.正确区分相互独立事件与n 次独立重复试验是解决这类问题的关键. [变式训练]某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是13.(1)求小明在投篮过程中直到第三次才投中的概率; (2)求小明在4次投篮后的总得分ξ的分布列.解:(1)设小明第i 次投篮投中为事件A i ,则小明在投篮过程中直到第三次才投中的概率为P =P (A 1)·P (A 2)·P (A 3)=23×23×13=427.(2)由题意知ξ的可能取值为0,2,4,6,8,则P (ξ=0)=⎝ ⎛⎭⎪⎫234=1681;P (ξ=2)=C 14×⎝ ⎛⎭⎪⎫13×⎝ ⎛⎭⎪⎫233=3281;P (ξ=4)=C 24×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=C 34×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫23=881;P (ξ=8)=⎝ ⎛⎭⎪⎫134=181. 所以ξ的分布列为:ξ0 2 4 6 8 P16813281827881181一、选择题(本大题共6小题,每小题5分,共30分)1.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12B .0.42C .0.46D .0.88解析:选D 由题意知,甲、乙都不被录取的概率为(1-0.6)·(1-0.7)=0.12.故至少有一人被录取的概率为1-0.12=0.88.2.(2013·济南模拟)位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为13,向右移动的概率为23,则质点P 移动五次后位于点(1,0)的概率是( )A.4243 B.8243 C.40243D.80243解析:选D 依题意得,质点P 移动五次后位于点(1,0),则这五次移动中必有某两次向左移动,另三次向右移动,因此所求的概率等于C 25⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫233=80243.3.(2013·荆州质检)已知随机变量ξ服从二项分布ξ~B ⎝ ⎛⎭⎪⎫6,13,即P (ξ=2)等于( )A.316B.1243C.13243D.80243解析:选D 已知ξ~B ⎝ ⎛⎭⎪⎫6,13,P (ξ=k )=C k n p k q n -k,当ξ=2,n =6,p =13时,有P (ξ=2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-136-2=80243.4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18 B.14 C.25D.12解析:选B P (A )=C 23+C 22C 25=410=25,P (A ∩B )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P A ∩BP A =110410=14.5.将一枚硬币连掷5次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选C 由C k 5⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫125-k =C k +15⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫155-k -1,即C k 5=C k +15,故k +(k +1)=5,即k =2.6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为( ) A.35 B.15 C.45D.25解析:选A 设该队员每次罚球的命中率为p (其中0<p <1),则依题意有1-p 2=1625,p 2=925.又0<p <1,因此有p =35. 二、填空题(本大题共3小题,每小题5分,共15分)7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析:设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗)出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.答案:0.728.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用ξ表示这5位乘客在第20层下电梯的人数,则P (ξ=4)=________.解析:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~B ⎝⎛⎭⎪⎫5,13,即有P (ξ=k )=C k 5⎝ ⎛⎭⎪⎫13k ×⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243.答案:102439.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是________.解析:设“任取一书是文科书”的事件为A ,“任取一书是精装书”的事件为B ,则A 、B 是相互独立的事件,所求概率为P (AB ).据题意可知P (A )=40100=25,P (B )=70100=710,故P (AB )=P (A )·P (B )=25×710=725.答案:725三、解答题(本大题共3小题,每小题12分,共36分)10.在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.解:(1)设事件A 表示“甲选做第21题”,事件B 表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“AB +A - B -”,且事件A 、B 相互独立.故P (AB +A B )=P (A )P (B )+P (A )P (B )=12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B ⎝⎛⎭⎪⎫4,12则P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k =C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4).故变量ξ的分布列为:ξ0 1 2 3 4 P11614381411611.下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x 的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列.解:(1)依题意及频率分布直方图知,0.02+0.1+x +0.37+0.39=1,解得x =0.12. (2)由题意知,X ~B (3,0.1) 因此P (X =0)=C 03×0.93=0.729,P (X =1)=C 13×0.1×0.92=0.243, P (X =2)=C 23×0.12×0.9=0.027, P (X =3)=C 33×0.13=0.001.故随机变量X 的分布列为:X 0 1 2 3 P0.7290.2430.0270.00112.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求出在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列.解:(1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头、石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以在1次游戏中玩家甲胜玩家乙的概率P =13.(2)X 的可能取值分别为0,1,2,3.X ~B ⎝ ⎛⎭⎪⎫3,13,则 P (X =0)=C 03·⎝ ⎛⎭⎪⎫233=827, P (X =1)=C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫232=1227, P (X =2)=C 23·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫231=627, P (X =3)=C 33·⎝ ⎛⎭⎪⎫133=127. X 的分布列如下:X 0 1 2 3 P82712276271271.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12D.116解析:选A 理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件A ·C ·B ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C )=12.所以P (A ·B ·C )=P (A )·P (B )·P (C )=18.2.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________. 解析:由题意知,正面可以出现6次,5次,4次,所求概率P =C 66⎝ ⎛⎭⎪⎫126+C 56⎝ ⎛⎭⎪⎫126+C 46⎝ ⎛⎭⎪⎫126=1+6+1564=1132. 答案:11323.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 解:(1)该公司决定对该项目投资的概率为P =C 23⎝ ⎛⎭⎪⎫132 ·23+C 33⎝ ⎛⎭⎪⎫133=727. (2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数 “中立”票张数 “反对”票张数 事件A 0 0 3 事件B 1 0 2 事件C 1 1 1 事件D12P (A )=C 33⎝ ⎛⎭⎪⎫133=127,P (B )=C 13⎝ ⎛⎭⎪⎫133=19, P (C )=C 13C 12⎝ ⎛⎭⎪⎫133=29,P (D )=C 13⎝ ⎛⎭⎪⎫133=19. ∵A 、B 、C 、D 互斥,∴P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=1327.。