2019高考数学大题必考题型及解题技巧分析
2019理科数学全国卷I全解全析
y = x0.3 在 x = 0.2 或者是 y = 0.2x 在 x = 0.3
√
√
(19 理 I-04) 古希腊时期,人们认为最美的人体的头顶至肚脐的长度与肚脐至足的长度之比是
5 − 1( 2
5−1 2≈
0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此。此外,最美人体的头顶至咽喉的长度与咽喉至肚脐
√
的长度之比也是
5
−
1 。若某人满足上述黄金分割比例,且腿长为
105cm,头顶至脖子下端的长度为
26cm,
2
则其身高可能是
A. 165cm
B. 175cm
C. 185cm
D. 195cm
【分析】读题之后要先排除干扰信息“腿长 105cm”。这个条件是没有办法用的。我们只能用 26cm 这个数量。
26
【分析】集合概念题,考察二次不等式求解。口读可得
x2 − x − 6 = (x − 3)(x + 2) ⇒ N = {x| − 2 < x < 3}
【答案】(C) 【点评】第一题表面上考察集合概念,但是实际上是考察二次不等式求解,或者函数单调性。一般可以口读完 成。只要注意集合运算符号就好。考场上做完第一题要深呼吸放松心态。可以不看后面的题目,免得紧张。
A. 5 16
B. 11 32
C. 21 32
D. 11 16
【分析】首先根据位置这道题不会太难。题目有些长,反而降低了计算难度。可以口读完成。
第一步计算全卦数,是ቤተ መጻሕፍቲ ባይዱ
26
=
64。然后有
3
条阳爻的个数是
C63
=
20。所以总共有
5 16
2019解读高考数学卷总结解题技巧精品教育.doc
解读2019年高考数学卷总结解题技巧一、解题思路的理解和来源平时大家评论一个孩子“聪明”或者“不聪明”的依据是看这个孩子对某件事或很多事得反应以及有没有他自己的看法。
如一个“聪明”的孩子,往往反应快、思路清楚,有自己的主见。
那么我们认为“反应快、思路清楚、有主见”是聪明的前提。
学习成绩好的同学,反应快、思路清楚、有主见就是他们的必备条件。
那么解题也如此,必须反应快、思路清楚、有主见。
同一道题,不同的学生从不同的角度去理解,由不同的看法最终汇聚成正确的解题过程,这是解题的必然。
无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。
有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。
那么,如果能教会给学生,在处理数学问题上,第一时间最短的思考路径,并且清晰无比,这样,每个学生都是“聪明的孩子”,在做题上就能攻无不克战无不胜。
解题思路的来源就是对题的看法,也就是第一出发点在哪。
二、如何在短期内训练解题能力数学解题思想其实只要掌握一种即可,即必要性思维。
这是解答数学试题的万用法门,也是最直接、最快捷的答题思想。
什么是必要性思维?必要性思维就是通过所求结论或者某一限定条件寻求前提的思想。
几乎所有数学命题都可以用这一思想进行破解。
纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。
这就对考生的思维能力要求大大加强。
如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。
最主要的原因就是解题思路随意造成的,并非所谓“不够用功”等原因。
由于思维能力的原因,考生在解答高考题时形成一定的障碍。
主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做这做着就走不下去了三、寻找解题途径的基本方法——从求解(证)入手遇到有一定难度的考题我们会发现出题者设置了种种障碍。
从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。
2019年高中高考数学各题型解法及技巧语文
2019年高考数学各题型解法和技巧立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,察看的知识点在20个以内。
选择填空题核查立几中的计算型问题,而解答题重视察看立几中的逻辑推理型问题,自然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步推行,立体几何考题正朝着“多一点思虑,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面地址关系的论证,角与距离的研究是常考常新的热门话题。
知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、屡次遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等 )中不能缺少的内容,因此在主体几何的总复习中,第一应从解决“平行与垂直”的有关问题着手,经过较为基本问题,熟悉公义、定理的内容和功能,经过对问题的解析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转变的思想,以提高逻辑思想能力和空间想象能力。
2、判断两个平面平行的方法:(1)依照定义--证明两平面没有公共点;第1 页判判定理--证明一个平面内的两条订交直线都平行于另一个平面;证明两平面同垂直于一条直线。
3、两个平面平行的主要性质:由定义知:“两平行平面没有公共点”。
由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
两个平面平行的性质定理:”若是两个平行平面同时和第三个平面订交,那么它们的交线平行“。
一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
夹在两个平行平面间的平行线段相等。
经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解决可多得分01、合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。
2019年高考数学试卷各题型答题策略和技巧
2019年高考数学试卷各题型答题策略和技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
2019年普通高等学校招生全国统一考试数学及详细解析(江苏卷)
2019年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()xy x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x=-(3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,AA 1=1则点A 到平面A 1BC 的距离为(A(B(C(D(5) △ABC 中,,3,3A BC π==则△ABC 的周长为(A))33B π++ (B))36B π++(C )6sin()33B π++ (D )6sin()36B π++(6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 (8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80 (10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79(11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A )3 (B )13 (C)2 (D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0 参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备
厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备高中数学的立体几何很抽象,一直让不少学生头疼。
然而,每年的高考都会至少考一题立体几何,且往往是分值高的大题,如果没有迎难而上的勇气,一下子就会被别人甩下将近20分;相反,如果你能搞定立体几何,那你就等于甩开了数以万计被立体几何打败的学生,有助你考上理想大学。
高考对于立体几何的考查重点集中在以下几个方面:①几何的机构特征和三视图、直观图,重点是三视图。
②点、线、平面之间的位置关系,重点是平行关系、垂直关系和异面直线③空间的角度,重点是二面角、直线和平面所成的角、异面直线所成的角④空间向量,一般是以解答题的形式出现,这是立体几何考查的一个重要点。
下面是小编为同学们整理的2019年高考数学立体几何必考压轴题及答案解析,希望同学们一定要给予足够的重视!由于篇幅有限文中无法全部为同学们展示,所以,如果同学们需要完整版的话可以点小编的头像私信咨询小编哦~!私信:立体几何高中数学《立体几何》压轴题及答案解析在高一的时候,同学们开始学习立体几何“三视图”时,大家都会觉得这个内容非常难学.这块内容之所以难学其本质的原因是大家空间想象力不够,对空间几何体直观图的框架呈现方式没有深入理解,另平行投影的原理及三视图的边界意义是还原几何体的重点.三视图作为高考数学立体几何部分的核心考点之一,关键是如何还原几何体.涉及立体几何所有知识点:包括空间几何体(棱锥、棱柱、棱台、圆锥、圆柱、圆台、球)的直观图画法;三视图的投影原理(平行投影:长对正、高平齐、宽相等);截面的做法(平面的基本性质的应用);常见几何体的概念及相关计算公式(表面积和体积等).还原几何体过程中还会考虑到空间点、线、面位置关系的判断等,如线面平行、线面垂直的判定定理与性质定理.立体几何中的动态问题或最值问题,这类问题往往困扰成绩比较好的同学,一般成绩较弱的同学其实这类问题就果断放弃了.究其原因,这类问题的知识覆盖面广,很多同学在这方面缺乏专项的训练,常常在解题时没有明确的思路,无从下手.即使偶尔能做对,也是凭着运气成分,并不是实力使然,也不能100%的做对.。
2019年高考全国Ⅲ卷理数19题解答及分析
题目:【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A C a b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.一.思路展示与解答(1)由题设及正弦定理得sin sin sin sin 2A C AB A +=. 因为sin A ≠0,所以sin sin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B =,因此B =60°. (2)解题视角一:代数法.解三角形问题通常使用代数法研究图形的几何性质,一般都是化为某一种形式的式子,即全部化为角或者边的式子来研究.本题是以锐角三角形为背景的面积最值问题,因此可使用锐角三角形对应的“代数”特点来解决。
方法一 构造单一变量的目标函数(函数思想).本题考查三角形面积最值问题,很自然地想到建立目标函数即三角函数求面积最值。
通过正弦定理及三角形内角和为π,把三角形面积用单一角表示,进而根据锐角三角形所约束的角范围来确定面积的范围.由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.方法二 构造单一变量的不等式(不等式思想).本题的锐角三角形可通过余弦定理建立含有三边的不等式关系,再通过消元的思想得到只有边a 的不等式关系,得出边a 的范围,进而得到面积的范围.由题设及(1)知△ABC的面积ABC S =△.由余弦定理得2221cos 22a cb B ac +-==,故221a a b -+=,① 因为ABC ∆为锐角三角形,故cos 0cos 0A C >>,,则2210b a -+>,② 22+10a b ->,③将①分别代入②,③,可得:122a <<,从而82ABC S <<△.因此,△ABC 面积的取值范围是⎝⎭.方法三 构造未知与已知的关系(转化与化归思想).本题的锐角三角形也可通过向量建立不等式关系,再用已知向量表示未知向量,即建立未知量只有边a 的不等式关系,来确定边a 的范围,进而得到面积的范围.由题设及(1)知△ABC 的面积4ABC S a =△. 因为ABC ∆为锐角三角形,故cos 0cos 0A C >>,,则由cos 00A AB AC >⇒⋅>,所以()+0AB AB BC ⋅> 所以()2cos 0AB AB BC B π+->,即11022a a ->⇒<, 由cos 00C CA CB >⇒⋅>,所以()+0CB CB BA ⋅>,所以()2cos 0CB BA CB B π+->,即211022a a a ->⇒>,所以122a <<ABC S <<△.因此,△ABC 面积的取值范围是⎝⎭.视角二:坐标法。
2019年全国高考数学 解析几何部分试题分析及复习建议
0,
y0
0 S ,则 △MF1F2
1 2
△MF1F2
1 4 2
82 22 4 15 ,4 y0 4 15 ,解得 y0
15 ,
2
x02 15 1,解得 x0 3( x0 3 舍去), 36 20
M 的坐标为 3, 15 .
a
2 3
xM +6=8,所以 xM
3 ,所以 M 的坐标为 (3,
15) .
评注:使用焦半径公式显然很简单,2018 年第 20 题也同样考查了焦半径公式,使用焦半径 公式是否越纲,我认是不超纲的,后面会谈到我的理解,去年白波老师谈到焦半径公式可以 直接使用.
21.(理)已知曲线 C:y= x2 ,D 为直线 y= 1 上的动点,过 D 作 C 的两条切线,切点分
△MF1F2 为等腰三角形,则 M 的坐标为___________.
解法一:由已知可得 a2 36 , b2 20 ,c2 a2 b2 16 ,c 4 ,
MF1 F1F2 2c 8 .∴ MF2 4 .
2
设点 M
的坐标为 x0
,
y0 x0
由双曲线方程可得, a2 4 , b2 5 ,则 c a2 b2 3 ,
则以 O 为圆心,以 3 为半径的圆的方程为 x2 y2 9 .
x2 y2 9
联立
x
2
4
y2 5
,解得
1
y
5 3
.
则 S△OPF
1 5 3 23
5 .故选 2
10(理).双曲线 C: x2 y2 =1 的右焦点为 F,点 P 在 C 的一 42
19年数学高考大题知识点
19年数学高考大题知识点数学一直是高考中的一门重要科目,对于考生来说,掌握数学的基本知识和解题技巧是取得好成绩的关键。
本文将针对2019年数学高考大题中的一些知识点进行详细论述,希望能帮助广大考生更好地备战。
一、平面向量平面向量是高考数学中的重要内容之一,涉及到向量的表示、运算、共线、垂直等多个方面的知识点。
在2019年数学高考大题中,平面向量的应用较多。
首先,我们来讨论平面向量的表示和运算。
平面向量一般用字母加上箭头表示,如向量AB记作→AB。
向量可以进行加法、减法和乘法运算。
加法运算遵循平行四边形法则,即将两个向量的起点连在一起,将两个向量的终点连在一起,连接起始点和终止点,所得到的向量即为两个向量的和。
减法运算可视为加法运算的逆运算,即将被减数加上减向量的负向量。
向量与标量的乘法是指用一个实数来放大或缩小向量的长度。
其次,我们关注平面向量的共线和垂直。
两个非零向量共线的充要条件是它们的方向相同或相反;两个非零向量垂直的充要条件是它们的内积为零。
二、几何证明几何证明是高考数学中的另一重要内容,要求考生具备一定的几何知识和推理能力。
通过几何证明,可以深入理解几何定理和性质,拓宽数学思维。
在2019年的数学高考大题中,几何证明的题目较多,涉及到平行线、相似三角形、圆等几何概念。
在几何证明中,需要应用到的知识点有:等腰三角形的性质、直角三角形的性质、两角平分线的性质等等。
考生在备考过程中,要熟练掌握这些几何知识点,结合定理使用灵活。
三、数列与数学归纳法数列是高考数学中的重要考点之一,对于考生来说,了解数列的基本概念、计算方法以及性质是必不可少的。
数列中的重要概念包括等差数列、等比数列、递推公式等。
在2019年数学高考大题中,数列的应用较多,包括求和、推导递推公式等。
对于这些题目,考生需要熟练掌握数列的求和公式,对于等差数列和等比数列应用不同的求和公式。
数学归纳法是解决数列问题的一种重要思想方法,可以通过归纳证明来推导出数列的通项公式。
高考数学真题2019解析
高考数学真题2019解析2019年的高考数学卷又一次成为了备受关注的话题。
人们热议其中的难题和解答,探寻其中的奥妙和技巧。
本文就对2019年高考数学真题进行深入解析,帮助考生更好地理解其中的逻辑和思路。
首先,让我们来看一道典型的选择题:已知函数f(x) = 2x^2 - bx + 3,若对任何x都有f(x) ≤ 1,则b的取值范围是()A. (-∞, -4]B. (-4, 4)C. [4, +∞)D. (-2, 2)解析:这道题主要考察了对函数不等式的理解和运用。
首先,我们要将不等式f(x) ≤ 1转化成对应的方程,即2x^2 - bx + 3 = 1,化简得到2x^2 - bx + 2 = 0。
根据一元二次方程的判别式Δ = b^2 - 8,若对任意x 都有实数解,则Δ ≥ 0。
因此,得到b^2 - 8 ≥ 0,解得b ∈ (-∞, -2] ∪ [2, +∞)。
综合考虑题意,最终得出b的取值范围为(-∞, -4] ∪ [4, +∞),选项C为答案。
接着,让我们来看一道解答问题的题目:已知等差数列{an}中,an = 3n - 4,求当n = 1, 2, 3, 4时,an的和。
解析:根据等差数列的性质,首先要求出通项公式。
已知an = 3n - 4,因此可以得到a1 = -1,d = 3。
进而得到通项公式an = -1 + 3(n-1),其中n为项数。
代入n = 1, 2, 3, 4,得到a1 = 2, a2 = 5, a3 = 8, a4 = 11。
根据等差数列的求和公式Sn = (a1 + an) * n / 2,对n = 1, 2, 3, 4分别求和,得到S1 = 2, S2 = 7, S3 = 15, S4 = 26。
最后,让我们来看一道解答证明题的问题:证明:在三角形ABC中,设AB = AC,角BAC = 20°,点D在AC 边上,且角DBC = 60°,求角ACB的度数。
2019年全国高考数学解析几何部分试题分析和复习建议(共28张PPT)
| MF1 | exM
a
2 3
xM
+6=8
,所以
xM
3 ,所以 M 的坐标为 (3,
15) .
21.(理)已知曲线 C:y= x2 ,D 为直线 y= 1 上的动点,过 D 作 C 的两条切线,切点分
2
2
别为 A,B.
(1)证明:直线 AB 过定点:
(2)若以 E(0, 5 )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求四边形 2
⋯⋯①
由 0 ,可得 k2 2kt 1 0 ⋯⋯②
于是 k1 k2 2t , k1k2 1,
将②代入①得,
A(k1
,
k12 2
)
,
B(k2
,
k22 2
)
,
所以 kAB
k1 k2 2
t
.
故直线 AB 的方程为 y k1 k2 x 1 ,即直线 AB 过定点 (0, 1 ) .
因此,四边形 ADBE 的面积为 3 或 4 2 .
法二:由(1)得 | x1 x2 | (x1 x2 )2 4x1x2 4t2 4 ,
把 x t 代入 y tx 1 得, y t2 1 .
2
2
则四边形 ADBE 的面积
S
SABD
SABE
1 2
由 EM AB ,得 t t(t 2 2) 0 ,得 t 0 或 t2 1,
故四边形 ADBE 的面积为 3 或 4 2 .
法三:设 AB 的中点为 G,则G
������1+������2 , ������1+������2 ,������������ =
高考数学做题技巧:全题型解析
2019高考数学做题技巧:全题型解析2019年高考进入最后的冲刺阶段,为了使同学们更好的复习数学,查字典数学网整理了2019高考数学做题技巧:全题型解析,供同学们参考。
一、选择题:高考数学题选择题占40%的比重,把握好选择题是考取高分的基础。
选择题中一些特殊方法,如排除法、特殊值法、特殊图形法、极限思想等的合理运用会使结果更准确,速度更快,尤其是遇到较难的题目,首先应考虑是否可以用这些方法来解。
有些题目其实就是考查学生灵活应对能力的,常规思维很难解决。
而哪些题目可以用此法,关键是看题中所给的条件和所求结论是否在一定范围内具有一般性。
这里提一下特殊值法,特殊值法最适合的是选择题,尤其适合的是选项里都是一个答案的题目,可以直接用特殊值代入验证。
不过,用特殊值要熟练,思路要清晰,基础知识要完全考虑到,而且不能脱离题干,不然很容易得出错误的结论。
另外,特殊值法并不是只是代入一个特殊值就好了,可以尽量把能想到的两三个特殊值代进去,比如在三角形中,特殊值可以代入30、60、90,但同时也应该注意三角形边角比例的关系,不然很容易得出错误的答案,这样就得不偿失了。
这里解析中取的特殊值是等边三角形,三个内角均为60,如果取三个角分别为30、60、90,虽然同样是我们比较熟悉的特殊值,但却跟题干中所提到的三个角对应的三条边a、b、c为等差数列不符,自然就无法得到正确答案了。
二、填空题:概念要清,方法要对,计算要准。
填空题对思维的严密和计算的准确性要求都很严格。
符号、小数点的错误都会造成劳而无获,因此要特别注意运算的规范,要一丝不苟,不可贪快不细,做无用功。
三、解答题:这一类型的题目的要求除了与填空题相同外,还应注意:1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。
高考数学各题型解答方法分析
2019高考数学各题型解答方法分析在高考君整理过程中发现,许多同学问的问题实质是一样的,其中关于数学提分技巧的问题最多,根据实质的相同点我们整理出了问题与解答,供大家参考。
一、数学各题型的解题方法问题1:老师,怎样攻克圆锥曲线,怎样练习答题规范,刘熹老师:圆锥曲线问题,需要先掌握韦达定理的通用解法,大约是十个左右的方程,能根据题目条件写好这是个方程就很好。
答题规范的话,最好能够参考标准答案评判自己的卷子,并且知道每一分都是怎么扣的,然后把规范答案完整地自己写一遍,有两三次就好了。
总之要动笔。
问题2:数列和解析几何还有导数怎么办?还有填空和选择.刘熹老师:多练,先学方法,先把一两道经典题弄透,再推广,不要盲目做题每次都只做一半就放弃。
问题3:椭圆与双曲线怎么做?是不是多半看题就要联立方程求维达定理?做这种题真的不需要方法只需要计算吗……刘熹老师:大题还是小题?大题掌握韦达定理,小题重点掌握数形结合--一定要会画图。
文科一般掌握好韦达定理就很好,计算是所有表达式列完整之后实现的,方法其实还是有的,比如点差法等等,不过一般都是针对特定条件,掌握其转化表达式的方式就好。
问题4:老师数学的做题顺序应该是什么圆锥曲线的大题思路大概有什么。
刘熹老师:数学的做题顺序,一般建议是由易到难,所以一般是建议,选择题,顺着做,第8题不跳,建议不会也猜一个,然后填空题,前三也是顺着做,后面看你自己的情况,一般填空4也顺做,5,6根据程度,可以考虑是否跳,跳过后直接做大题1,然后大题2、3正常做,然后导数第一问,圆锥第一问,压轴第一问,然后导数第二问,圆锥第二问,然后填空的难题,然后检查卷面,最后压轴的2、3问,其中,如果导数圆锥比较顺,可以一直推导到推不动为止。
问题5:每次压轴题第二问时间都非常紧算不出来怎么办刘熹老师:这说明你有可能前面把题做对花的时间过多了,时间紧不止要在本题找原因,其实更重要的要去前面找原因,分析时间花费,找到突破口问题6:数学导数去哪找相关结论刘熹老师:导数的切线方程模型、分类讨论模型、恒成立模型、零点渐近线模型,找本参考书看一下,然后再由易到难练即可问题7:最后两道大题.怎样才能多得些分刘熹老师:掌握套路,听名师讲解,适当练习常见套路,了解评判规则多踩分即可。
2019高考数学重点题型解析精品教育.doc
高考数学重点题型解析2019高考是每个人一生中都要经历的一次至关重要的一次考试,要考好高考,就一定要好好复习。
查字典数学网编辑为您准备了高考数学重点题型,对你有帮助吗?函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。
抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。
此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。
因此备受命题者的青睐,在近几年的高考试题中不断地出现。
然而,由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。
下面通过例题来探讨这类问题的求解策略。
例:设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:(i)f(-1)=f(1)=0;(ii)对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤—u-v—。
(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x; (Ⅱ)证明:对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤1解题:(Ⅰ)证明:由题设条件可知,当x∈[-1,1]时,有f(x)=f(x)-f(1)≤—x-1—=1-x,即x-1≤f(x)≤1-x.(Ⅱ)证明:对任意的u,v∈[-1,1],当—u-v—≤1时,有—f(u)-f(v)—≤1当—u-v—>1,u·v0且v-u>1,其中v∈(0,1],u∈[-1,0) 要想使已知条件起到作用,须在[-1,0)上取一点,使之与u 配合以利用已知条件,结合f(-1)=f(1)=0知,这个点可选-1。
同理,须在(0,1]上取点1,使之与v配合以利用已知条件。
所以,—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—≤—u+1—+—v-1—=1+u+1-v=2-(v-u)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快戳!数学6大必考题型全总结!掌握好轻松考到140+!
高考数学大题必考题型及解题技巧分析
1
排列组合篇
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率。
2
立体几何篇
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立体几何中的计算型问题,而解答题着重考查立
体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分
1. 合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。
然后带齐用具,提前半小时到考场。
2. 通览全卷,摸透题情。
刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。
这样能提醒自己先易后难,也可防止漏做题。
3 .解答题规范有序。
一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。
对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。
比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。
有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
3
数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n 项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
4
导数应用篇
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:
1. 导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于多项式的导数问题属于较难类型。
2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
知识整合
1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点
内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
5
解析几何
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
1、几何问题代数化。
2、用代数规则对代数化后的问题进行处理。
高考解析几何解题套路及各步骤操作规则
步骤一:把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来;
口诀:见点化点、见直线化直线、见曲线化曲线。
1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;
2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;
3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二
元二次方程表示,只要是题目中提到的曲线都要加以方程化;
步骤二:把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。
口诀:点代入直线、点代入曲线。
1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;
2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;
这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得最后答案的基础,最后就是解方程组的问题了。
6
极值不等式
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2.注意最后一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14。