无线充电技术(四种主要方式)原理与应用实例图文详解
无线充电器技术原理.doc
无线充电器技术原理简介--------------------------------------------------------------------------------无线充电技术利用了电磁波感应原理,及相关的交流感应技术,在发送和接收端用相应的线圈来发送和接收产生感应的交流信号来进行充电的的一项技术,用户只需要将充电设备放在一个“平板”上即可进行充电,这样的充电方式过去曾经出现在手表和剃须刀上,但是当时无法针对大容量锂离子电池进行有效充电。
无线充电器技术原理构图如图2所示最初由英国一家公司发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,这个“鼠标垫”里装有密集的小型线圈阵列,可产生磁场,将能量传输给装有专用接收线圈的电子设备,进行充电。
接收线圈由磁性合金绕以电线制成,大小和形状都与口香糖相似,可以很方便地贴在电子设备上。
将手机等放在垫上就能充电,并能同时给多个设备充电。
无线充电技术此前已经出现,但这项新发明更为方便实用。
手机等设备只要贴上接收线圈,放置在“鼠标垫”上的任一位置都可充电,不像以前的一些技术那样需要精确定位。
几个设备同时放在垫子上,可以同时进行充电。
充电器产生的磁场很弱,能够给设备充电但不会影响附近的信用卡、录像带等利用磁性记录数据的物品。
电磁感应无线输电技术(无线充电技术)电磁感应无线输电技术已经在诸如电动牙刷等小功率产品上获得了应用,但更大功率的传输目前还不现实。
Intel日前则在会场上演示了无线公供电驱动一枚60W电灯泡。
该项研究是由Intel西雅图实验室的Joshua R. Smith领导的,部分技术基于麻省理工学院物理学家Marin Soljacic的研究。
可以在一米距离内无线给60W灯泡提供电力,效率高达75%。
Intel 首席技术官Justin Rattner表示,未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA等电器放在桌上就能够立即供电。
无线充电器原理图
无线充电器正向我们走来,本文介绍了无线充电器的结构与原理.爱好电子产品设计的朋友们可以参考.
简单实用的无线传能充电器,通过线圈将电能以无线方式传输给电池.只需把电池和接收设备放在充电平台上即可对其进行充电.实验证明.虽然该系统还不能充电于无形之中.但已能做到将多个校电器放置于同一充电平台上同时充电.免去接线的烦恼.
1无线充电器原理与结构
无线充电器系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递.如图1所示,系统工作时输入端将交流市电经全桥整流电路变换成直流电,或用24V直流电端直接为系统供电.经过无线充电器电源管理模块后输出的直流电通过2M有源晶振逆变转换成高频交流电供给初级绕组.通过2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电.
2无线充电器发射电路模块
如图3,无线充电器主振电路采用2MHz有源晶振作为振荡器.有源晶振输出的方波,经过二阶低通滤波器滤除高次谐波,得到稳定的正弦波输出,经三极管13003及其外围电路组成的丙类放大电路后输出至线圈与电容组成的并联谐振回路辐射出去.为接收部分提供能量.
测得与电容组成的并联谐振回路的空芯耦合线圈的线径为O.5mm,直径为7cm,电感为47uH,载波频率为2MHz.根据并联谐振公式得匹配电容C约为140pF.因而.无线充电器发射部分采用2MHz有源晶振产生与谐振频率接近的能源载波频率.。
无线充电技术的工作原理
无线充电技术的工作原理无线充电技术(Wireless Charging)是一项先进的充电技术,采用无需接触的充电方式,使设备在不用插拔电缆的情况下即可获得电力能量。
该技术已在生活中得到广泛应用,例如:智能手机、智能手表、智能音响、电动车等。
无线充电技术的工作原理如下:1. 感应原理无线充电是通过电磁感应原理,也就是利用磁场感应的规律,在空间中传递能量。
无线充电设备由两部分组成,一个是发射器,一个是接收器。
发射器通过电源驱动发生高频电流,产生一个交变磁场;而接收器内置一部分磁铁和线圈,当发射器产生的磁场经过接收器时,线圈会感应到交变电磁场,并产生电流。
2. 能量传输接收器接收到的电流通过线圈传输到设备内部,将无线充电器传输的能量转化为设备所需要的电力,从而使设备充电。
3. 安全性无线充电技术采用了电磁感应原理,可实现线圈之间的无线传输,安全性相对传统的有线充电方式更高,因为传统充电线需要插入电源插座,瞬时电压、电流等等问题可能会对电器产生影响或危害。
无线充电技术具有如下优势:1. 节省时间无线充电可以避免插拔充电线的麻烦,加快充电的速度,让用户更加省时省力。
2. 有效降低安全风险免去了插头接线的过程,不仅安全,也可以保持机器外观整洁,将安全隐患降至最低。
3. 方便快捷无线充电技术带给用户便捷、高效的充电方式,让用户在任何时候、任何地点均可方便快捷地充电,满足了人们日常生活的需求。
4. 为移动设备提供便携性无线充电进一步提高了移动设备的便携性,使设备成为更理想的便携工具。
无线充电技术也存在一些问题:1. 成本高无线充电技术适用于广泛的设备范围,但相较于传统有线充电方式,它的成本仍然偏高,无法普及开来。
2. 充电效率较低目前的无线充电技术对充电效率的限制较多,通常需要在电源与设备之间保持一定的距离才能正常充电,因而效率相对较低,充电时间较长。
3. 兼容性问题当前无线充电技术存在部分产品兼容性不足的问题,一些数据表明,针对不同款式设计的无线充电器在充电时会遇到一定的问题。
无线充电技术(四种主要方式)原理与应用实例图文详解
无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。
未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA 等电器放在桌上就能够立即供电。
以下是四种主要无线充电方式:无线充电方式 充电效率使用频率范围传输距离电场耦合方式电磁感应方式92%22KHz数mm-数cm磁共振方式95%13.56MHz 数cm-数m无线电波方式38% 2.45GHz 数m-1.电磁感应方式无线供电驱动一枚60W电灯泡,效率高达75%。
电磁感应无线充电产品示意图电磁感应方式,送电线圈与受电线圈的中心必须完全吻合。
稍有错位的话,传输效率就会急剧下降。
下图靠移动送电线圈对准位置来提高效率。
目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。
Qi源自汉语“气功”中的“气”, 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。
通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。
在伦敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。
在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。
电动牙刷无线充电示意图一种无线充电器发送和接收原理图2. 磁共振方式磁共振方式的原理与声音的共振原理相同。
排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。
同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。
相比电磁感应方式,利用共振可延长传输距离。
磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。
应用:三菱汽车展示供电距离为20cm,供电效率达90%以上。
线圈之间最大允许错位为20cm。
如果后轮靠在车挡上停车,基本能停在容许范围内。
索尼公司发布的一款样机:无电源线的电视机利用磁场共振实现无线供电的电视机。
无线充电技术解析
无线充电技术解析无线充电技术是指通过无线传能技术,将电能无线传输到需要电力供应的设备中,从而实现设备的充电。
它是一种便捷、高效、安全的充电方式,正逐渐改变人们对于充电的传统观念。
本文将深入解析无线充电技术的原理、应用以及未来发展趋势。
一、无线充电技术的原理无线充电技术主要依赖于电磁感应和电磁辐射两种原理。
电磁感应是通过变换电流产生的磁场,诱导被充电设备中的线圈内的电流,从而实现电能传输。
电磁辐射则是利用电磁波在空间中的传输特性,将电能无线传输到接收设备。
在无线充电的过程中,发射端通过电源提供电能,经过电磁感应或电磁辐射的方式传输到接收端。
接收端设备上的接收线圈接收到电磁信号后,将其转化为电能,用于设备的充电或供电。
整个过程中,需要确保发射端和接收端的线圈结构、频率、功率等参数的匹配,以确保充电效率和传输距离。
二、无线充电技术的应用1. 智能手机充电:随着智能手机的普及,充电成为人们日常生活中不可或缺的一部分。
通过无线充电技术,可以摆脱传统充电线的束缚,使得充电更加方便快捷。
只需将手机放在无线充电器上,即可实现自动充电,极大地提高了用户体验。
2. 电动汽车充电:随着对环境保护意识的增强,电动汽车逐渐成为人们的首选。
无线充电技术在电动汽车充电领域的应用具有广阔的前景。
通过在停车场等场所设置无线充电设备,可以使电动汽车在停车期间自动充电,提高电动汽车的续航里程和使用便利性。
3. 家居电子设备充电:无线充电技术也可以应用于家居电子设备的充电领域。
通过将无线充电设备集成到家具中,如床头柜、书桌等,可以为手机、平板电脑等设备提供便捷的充电方式,同时节省充电线的使用和管理。
三、无线充电技术的发展趋势随着科技的进步和人们对便利性的需求不断增加,无线充电技术也在不断创新和发展。
未来的发展趋势主要体现在以下几个方面:1. 跨设备充电:目前的无线充电技术主要针对个体设备的充电,未来无线充电技术有望实现多设备之间的互联互通,即可以通过一个充电设备同时为多个设备进行充电,进一步提高充电效率和便利性。
无线充电技术知识讲座ppt课件
二、无线充电技术发展历程
2007年6月7日,麻省理工学院的研究团队在美国《科学》杂志 的网站上发表了研究成果。研究小组把共振运用到电磁波的传输 上而成功“抓住”了电磁波,利用铜制线圈作为电磁共振器,一 团线圈附在传送电力方,另一团在接受电力方。传送方送出某特 定频率的电磁波后,经过电磁场扩散到接受方,电力就实现了无 线传导。这项被他们称为“无线电力”的技术经过多次试验,已 经能成功为一个两米外的60瓦灯泡供电。这项技术的最远输电距 离还只能达到2.7米,但研究者相信,电源已经可以在这范围内为 电池充电。而且只需要安装一个电源,就可以为整个屋里的电器 供电。
电动汽车无线充电技术应用实 例
• 日本无线充电式混合动力巴士
电磁感应式,供电线 圈是埋入充电台的混 凝土中的。车开上充 电台后,当车载线圈 对准供电线圈后(重 合),车内的仪表板 上有一个指示灯会亮, 司机按一下充电按钮, 就开始充电。
电动汽车无线充电技术应用实 例
• 日本无线充电式混合动力巴士结构
电动汽车无线充电技术应用实 例
• 印度无线充电车(REVANXG)
REVANXG则是一款双门运动车型,拥有玻璃车顶,最高时速达130公里, 一次充电可持续行驶200公里,这款车预计2011年上市。
电动汽车无线充电技术应用实 例
• 日产魔方电动车
采用了可在供电线圈和受 电线圈之间提供电力的电 磁感应方式.即将一个受电 线圈装置安装在汽车的底 盘上,将另一个供电线圈 装置安装在地面,当电动 汽车驶到供电线圈装置上, 受电线圈即可接受到供电 线圈的电流,从而对电池 进行充电。目前,这套装 置的额定输出功率为10kW, 一般的电动汽车可在7-8小 时内完成充电。
纯电动汽车
目前更多的是发 展电动汽车
无线充电的主要技术原理
无线充电的主要技术原理无线充电技术是一种利用无线电波传输能量的充电方式。
它是一种通过电磁感应实现的充电方式,也是一种快速高效、方便省时的充电方式。
其工作原理是依靠电磁感应作用,将电能转化为无线电波传输到移动设备上,同时通过电路和控制芯片进行控制,将无线电波转换为电能再传递到设备的电池中。
无线充电主要技术原理包括以下几个方面:1.电磁感应原理无线充电技术依靠电磁感应原理。
电磁感应是一种物理现象,当磁通量随时间变化时,会在导体中产生电动势。
在无线充电设备中,发射端产生的交变电流通过感应线圈,产生变化的磁场,这个变化的磁场激发了接收端的感应线圈,从而在接收端感应线圈中产生电动势,将电能转化为电流流入电池中。
这样就实现了将电能无线传输的目的。
2.共振原理共振原理是无线充电技术的重要组成部分,它的作用是增强电磁感应的效果。
共振是一种物理现象,当两个物体的振动频率相近时,可实现能量传输。
在无线充电技术中,发射端和接收端的感应线圈频率相同,且互相调整到共振状态下,这样就能够将能量传输到接收端了。
这种技术不仅能够扩大传输的距离,还能够减少传输的损耗和能量浪费,从而实现更高效率的无线充电。
3.电池管理技术电池管理技术是无线充电中不可或缺的一部分,其主要作用是监测电池的充电状态,并控制充电量使电池不会受到损害。
在无线充电过程中,需要将电能无线传输给设备,当设备充满时,需要停止充电,并且防止电池过充。
此时需要电池管理技术进行监测,控制充电器的输出电流,保护设备的电池不被过冲和过放。
无线充电技术虽然方便快捷,但仍有一些限制。
例如,传输距离有限,受到障碍物的干扰,能量传输效率低,需要耗费较多的电能,充电速度相对较慢。
因此,无线充电技术在实际应用中还需要不断改进和优化,以满足人们对高效率、高质量充电的需求。
无线充电技术的原理与应用
无线充电技术的原理与应用随着移动设备的普及和需求的不断增长,无线充电技术成为了现代科技领域中颇为热门的话题。
这项技术的出现,极大的便利了人们的生活和工作,解决了大量使用充电线所带来的不便。
接下来,我们就来了解一下无线充电技术的原理和应用。
一、无线充电技术的原理无线充电技术是基于电磁感应原理而实现的。
在这种技术中,一个被称为发射器的设备会通过电磁波将能量传递到另一个被称为接收器的设备中,从而实现对后者的无线充电。
这么说或许有些抽象,下面我们就来深入解析一下其中的原理。
电磁波是指能在空间中传播的电磁场扰动,通常包括了电场和磁场的变化。
当一定频率的电磁波穿过一个线圈时,它会在线圈内产生一个交变的电流,这就是电磁感应现象。
而在无线充电中,电磁波波长通常在1mm到10m之间,频率在3kHz到300GHz之间。
当发射器放出电磁波信号,接收器就会捕捉到这些信号,进而产生电流以供充电。
这样,我们就可以实现无需数据线、无需线材即可对移动设备进行充电的操作了。
二、无线充电技术的应用无线充电技术在生活和工作中都有着较广泛的应用,以下就是其几个典型应用场景。
1、智能手表和智能手机随着智能手表和智能手机的普及,它们的充电方式也发生了变革,由传统的数据线充电变为了无线充电。
在这个场景下,我们需要在无需任何线缆的情况下完成对设备的充电,这也正是无线充电技术的魅力所在。
2、车辆无线充电系统车辆无线充电系统是另一个很好的应用场景。
在这个场景下,用户可以将车辆停放在充电点上,在车底装置的接收器和地面控制装置之间,通过电磁感应将电能传递给车辆电池,从而实现车辆充电。
相比传统的有线充电方式,这种方式对用户的便利性更高。
3、电子游戏手柄在电子游戏领域,无线充电技术被广泛应用于游戏手柄上。
这样一来,游戏手柄就不再需要通过数据线连接到主机,而是可以通过无线信号进行通讯和充电操作。
这不仅方便了使用者进行多位置游戏体验,也大大提高了使用者的使用体验。
无线充电器技术参考及原理图
无线充电器技术参考及原理图(电路图)
无线充电器正向我们走来,本文介绍了无线充电器的结构与原理。
爱好电子产品设计的朋友们可以参考。
简单实用的无线传能充电器,通过线圈将电能以无线方式传输给电池。
只需把电池和接收设备放在充电平台上即可对其进行充电。
实验证明.虽然该系统还不能充电于无形之中.但已能做到将多个校电器放置于同一充电平台上同时充电。
免去接线的烦恼。
1 无线充电器原理与结构
无线充电器系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递。
如图1所示,系统工作时输入端将交流市电经全桥整流电路变换成直流电,或用24V直流电端直接为系统供电。
经过无线充电器电源管理模块后输出的直流电通过2M有源晶振逆变转换成高频交流电供给初级绕组。
通过2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。
2 无线充电器发射电路模块
如图3,无线充电器主振电路采用2 MHz有源晶振作为振荡器。
有源晶振输出的方波,经过二阶低通滤波器滤除高次谐波,得到稳定
的正弦波输出,经三极管13003及其外围电路组成的丙类放大电路后输出至线圈与电容组成的并联谐振回路辐射出去.为接收部分提供能量。
测得与电容组成的并联谐振回路的空芯耦合线圈的线径为O.5 mm,直径为7 cm,电感为47 uH,载波频率为2 MHz。
根据并联谐振公式得匹配电容C约为140 pF。
因而.无线充电器发射部分采用2MHz有源晶振产生与谐振频率接近的能源载波频率。
无线快充是怎么工作的原理
无线快充是怎么工作的原理
无线快充是一种通过电磁感应技术向电子设备充电的方式,其工作原理可以分为两个方面:电磁感应和电能转换。
1. 电磁感应:
无线快充采用了电磁感应原理,利用两个线圈之间的磁场相互耦合来实现能量传输。
一个线圈被称为发送线圈(或发射线圈),另一个线圈被称为接收线圈(或接收线圈)。
- 发送线圈:发送线圈通过电源或充电器输入电流,产生一个交变电流。
这个电流在发送线圈中会产生一个交变磁场。
- 接收线圈:接收线圈位于需要充电的电子设备中,它与发送线圈进行靠近并对齐。
当发送线圈中的交变磁场与接收线圈相接触时,接收线圈中也会感应出一个交变电压。
2. 电能转换:
接收线圈感应到的交变电压通过整流、滤波和变换等电路处理后,将其转换为直流电压,然后再供给电子设备进行充电。
整个过程中,送电线圈和接收线圈之间的磁场的变化频率通常在100 kHz到300 kHz之间,因为这个范围内的频率能够实现较高的能量传输效率。
需要注意的是,为了实现无线快充,电子设备需要支持接收线圈内置的无线充电功能。
否则,需要额外附加一个接收线圈的充电接收器进行无线充电。
一篇读懂无线充电技术(附方案选型及原理分析)
一篇读懂无线充电技术(附方案选型及原理分析)••0.背景•1.无线供电特点•2.无线供电原理及实现方式•3.现有解决方案分析•4.FAQ及相关测试•5.参考资料作者:HowieXue0.背景现今几乎所有的电子设备,如手机,MP3和笔记本电脑等,进行充电的方式主要是有线电能传输,既一端连接交流电源,另一端连接便携式电子设备充电电池的。
这种方式有很多不利的地方,首先频繁的插拔很容易损坏主板接口,另外不小心也可能带来触电的危险。
无线充电运用了一种新型的能量传输技术——无线供电技术。
该技术使充电器摆脱了线路的限制,实现电器和电源完全分离。
在安全性,灵活性等方面显示出比传统充电器更好的优势。
在如今科学技术飞速发展的今天,无线充电显示出了广阔的发展前景。
无线充电已从梦想成为现实,从概念变成商用产品。
产品实例:图:手机笔记本无线充电器图:新能源汽车无线充电图:电动牙刷无线充电1.无线供电特点1.1优点:(1)便捷性:非接触式,一对多充电与一般充电器相比,减少了插拔的麻烦,同时亦避免了接口不适用,接触不良等现象,老年人也能很方便地使用。
一台充电器可以对多个负载充电,一个家庭购买一台充电器就可以满足全家人使用。
(2)通用性:应用范围广只要使用同一种无线充电标准,无论哪家厂商的哪款设备均可进行无线充电。
(3)新颖性,用户体验好(4)具有通用标准主流的无线充电标准有:Qi标准、PMA标准、A4WP标准。
Qi标准:Qi标准是全球首个推动无线充电技术的标准化组织——无线充电联盟(WPC,2008年成立)推出的无线充电标准,其采用了目前最为主流的电磁感应技术,具备兼容性以及通用性两大特点。
只要是拥有Qi标识的产品,都可以用Qi无线充电器充电。
2017年2月,苹果加入WPC。
PMA标准:PMA联盟致力于为符合IEEE协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。
PMA也是采用电磁感应原理实现无线充电。
无线充电技术介绍ppt课件
17
❖ 磁共振方式
无线充电技术原理
相比较电磁感应方式,利用共振可延长传输距离。磁共振方式不同于电磁感应 方式,无需使线圈间的位置完全吻合。
18
❖ 磁共振方式
无线充电技术原理
电磁感应方式与磁共振方式原理比较
电磁感应方式
磁共振方式
19
❖ 电场耦合方式
无线充电技术原理
电场耦合方式的无线供电技术与电磁感应方式及磁共振方式不同,电场耦合方 式利用通过沿垂直方向耦合两组非对称偶极子而产生的感应电场来传输电力, 具有抗水平错位能力较强的特点。简单来说送电电极产生强感应电场,通过电 场将电力转移到受电侧。
天才特斯拉是无线输电的鼻祖
6
无线充电技术发展 ❖ 2007年,美国麻省理工学院)无线传能实验中发射谐振器和接收谐振器是半
径为3mm的铜线缠绕5.25圈、线圈半径300mm、高度200mm,具备分布式 电感和电容特性的线圈型谐振器,实验测得其谐振频率为9.90MHz。在谐振 器距离2m传输时传输效率约为40%,距离为1m时传输效率可高达90%。用 两米外的一个电源,“隔空”点亮了一盏60瓦的灯泡。
7
无线充电技术发展 ❖ 2008年12月17日成立无线充电联盟(
Wireless Power Consortium),2010年8月 31日,无线充电联盟在北京正式将Qi无线充 电技术引入中国。无线充电技术采用统一的 工业标准,未来几年,手提电话、PMP/MP3 播放器、数字照相机、手提电脑等产品都可 以使用全新的低能耗、高兼容的相同的无线 充电器。
无线充电技术介绍 编辑:左志刚
1
Contents
无线充电技术引言
无
无线充电技术发展
线
充 电
无线充电器充电原理
无线充电器充电原理近年来,无线充电技术逐渐成为智能手机、电动汽车等电子设备的重要充电方式。
与传统有线充电方式相比,无线充电具有方便、安全、高效等优势。
那么,无线充电器是如何实现充电的呢?本文将对无线充电器的充电原理进行详细解析。
一、电磁感应充电原理无线充电器的充电原理主要依靠电磁感应技术。
电磁感应是指当一个导体在变化的磁场中运动或者磁场与导体相对运动时,将会在导体中产生感应电动势。
基于这一原理,无线充电器通过产生变化的磁场,使电能传输到充电设备中进行充电。
具体而言,无线充电器由两个主要部分组成:发射器和接收器。
发射器中心有一个线圈,通过接入交流电源,形成一个高频交变的电流。
这个电流会产生一个交变磁场,而接收器中的线圈则会感应到这个磁场,并产生相应的感应电流。
通过将感应电流经过整流和稳压等处理,最终将电能传递给需要充电的设备。
二、共振充电原理除了电磁感应充电原理,还有一种常见的无线充电原理是共振充电。
共振充电技术利用共振现象实现能量传输。
共振是指两个物体在共同的自然频率上发生振动的现象。
在共振充电中,系统由一个发射器和一个接收器组成,发射器和接收器都有自己的共振频率。
当两者的共振频率相同时,能量将以极高的效率传输。
发射器通过自身共振发射电能信号,接收器当与发射器的频率匹配时,能够以最高效率接收到电能。
通过这种方式,无线充电器可以实现快速充电,提高充电效率。
三、电磁辐射安全性对于无线充电器的用户来说,安全性是一个重要的关注点。
虽然无线充电器使用电磁辐射来进行充电,但合理使用并符合相关标准的无线充电器在电磁辐射方面是安全的。
根据相关研究,使用合格的无线充电器进行充电,其辐射强度低于国际标准规定的安全限值。
此外,无线充电器会根据充电器与接收器之间的距离和位置进行智能调整,以保持辐射范围在安全水平内。
因此,正常使用情况下,无线充电器不会对人体健康造成明显的影响。
总结:无线充电器的充电原理主要基于电磁感应和共振技术。
wifi充电技术原理
wifi充电技术原理
Wifi充电技术利用无线电波进行能量传输,具体原理如下:
1. 基本原理:Wifi充电技术采用无线电频谱的能量进行传输,类似于无线电波的传输原理。
无线电波是一种电磁波,可以传输能量。
其中,能量的传输是通过电磁场相互作用实现的。
2. 发送端:在Wifi充电系统中,发送端通常是一个无线发射器,会将电源的直流电转换为高频交流电信号,然后通过天线将信号以无线电波的形式发送出去。
3. 接收端:接收端是一个无线接收器,接收来自发送端的无线电波,并将其转换为交流电信号。
4. 调制解调:发送端和接收端之间还需要进行信号的调制和解调过程。
发送端使用调制技术将直流电信号调制成高频交流电信号,接收端通过解调技术将接收到的高频信号解调成直流电信号。
5. 能量传输:Wifi充电技术的关键在于能量的传输。
无线电
波在传输过程中会产生电磁场,当接收端处于发送端的电磁场范围内时,电磁场能量会诱导出交流电信号,实现能量的传输。
6. 效率和距离:Wifi充电技术的效率和传输距离受到很多因
素的影响,如发送端和接收端之间的距离、电磁场的功率密度、天线的方向性等。
为了提高传输效率,需要优化系统设计和调整参数。
需要注意的是,Wifi充电技术目前仍然处于研发阶段,尚未商用。
由于能量的传输涉及电磁辐射和能量损耗等问题,还需要解决安全性和效率等方面的挑战。
因此,Wifi充电技术的应用还需要进一步的研究和改进。
四种常见的无线充电工作原理和优缺点分析
四种常见的无线充电工作原理和优缺点分析现在的手机发展的越来越智能,各种高科技也加入到我们的生活,比如说现在的一项高科技,那就是无线充电的功能。
想必大家还是能够想起以前我们使用万能充充电的时候吧,那个时候的手机还不是一体机,电池还是可以被拆下来的,那个时候我们有两种充电的方式,一种就是依靠万能充,一种就是依靠数据线充电。
到后来,手机已经发展到一体机的的时代,我们不能在将电池拆卸下来,只能依靠数据线的方式充电。
近几年来,智能机开始配备了一种新的充电方式,也就是无线充电的功能,对于这一项功能虽然科技感超强,但是很多人还是觉得很奇怪,没有数据线的支撑,那么两个设备是怎么样开始电流的传输呢?现在有四种这样的电流传输方式,这篇文章我们就来说一说各种的充电方式。
第一种:电磁感应无线充电,这一种充电的方式就是利用了一个供无线充电板和手机上感应的磁铁之间产生的感应磁通量,将这种磁力转换成一个电力,进行电流的传输。
这一种充电方式所要求的电路结构就比较简单,成本上来说也不会太高,但是这种充电的方式也存在着一个缺点,那就是传输的距离过短,如果手机摆放的位置没有摆好,那么就很有可能充不上电,或者充电速度特别缓慢。
第二种:磁场共振式充电,这一种充电的原理是需要两方的谐振器产生一个磁场共振,跟第一种一样,也是通过磁力将它变成电力,进行一个充电,这种方式是需要连接的两方在同一个频率上有震动感,那么就可以充上电,而且适用于距离比较长的传输,不过还是有缺点的,那就是充电的效率会比较低,目前这一种充电方式还正在研究当中,估计要将这个缺点进行一定的改善之后才能出现在市场上。
第三种:无线电波式充电,这一种充电方式是在供电方上配置一个可以进行无线电波的发射的设备,当然有了一个发射设备,就必须要有一个接受的设备,以一种直流电压输出和。
无线充电的原理与应用
无线充电的原理与应用在科技飞速发展的今天,无线充电技术正逐渐走进我们的生活,为我们带来更加便捷和高效的充电体验。
那么,无线充电到底是怎么一回事呢?它又有哪些广泛的应用呢?让我们一起来揭开无线充电的神秘面纱。
无线充电的原理其实并不复杂。
从根本上说,它是利用电磁感应、电磁共振或者无线电波等方式来实现能量的传输。
电磁感应是目前无线充电技术中应用较为广泛的一种原理。
想象一下,有两个线圈,一个是发射线圈,另一个是接收线圈。
当电流通过发射线圈时,会产生一个变化的磁场。
这个变化的磁场会穿过接收线圈,从而在接收线圈中产生感应电动势,进而产生电流,实现电能的传输。
这种方式就像是我们小时候玩的变压器游戏,只不过把两个线圈分开了,而且不需要直接的物理接触就能传递电能。
电磁共振则是另一种常见的无线充电原理。
它的工作方式有点类似于两个音叉,当一个音叉被敲响,并且其频率与另一个音叉的固有频率相同时,另一个音叉也会跟着振动起来。
在电磁共振中,发射端和接收端的线圈被调整到相同的共振频率,当发射端产生电磁场时,接收端能够以相同的频率共振,从而实现高效的能量传输。
与电磁感应相比,电磁共振的传输距离更远,而且可以同时为多个设备充电。
除了以上两种方式,无线电波无线充电则是通过发射无线电波来传输能量。
这种方式的传输距离可以非常远,但能量传输效率相对较低,目前还处于研究和发展阶段。
了解了无线充电的原理,接下来让我们看看它在实际生活中的广泛应用。
在消费电子领域,无线充电已经成为了智能手机的一项常见功能。
我们不再需要繁琐地插拔充电线,只需将手机放在无线充电器上,就能轻松充电。
这不仅方便了我们的日常使用,还减少了充电接口的磨损,延长了手机的使用寿命。
而且,越来越多的智能手表、无线耳机等设备也开始支持无线充电,为我们打造了一个更加简洁、便捷的智能生活环境。
在电动汽车领域,无线充电技术也有着巨大的潜力。
想象一下,未来的电动汽车不再需要拖着长长的充电线,只需停在特定的充电区域,就能自动充电。
无线充电原理图文详解
无线充电原理图文详解支持无线充电的智能手机从2011年夏季前后开始上市。
任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。
停车即可充电的EV(电动汽车)用充电系统也在推进研发。
无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。
NTT D oCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。
这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。
今后NTT DoCoMo将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。
软银移动也预定2012年1月上市支持无线充电的智能手机。
KDDI正在开发车载式智能手机的无线充电座。
未来无线充电的应用范围将有望扩大到EV的充电系统。
目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。
Qi源自汉语“气功”中的“气”,以松下、韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。
无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。
通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。
19世纪发现的物理现象电磁感应方式采用了19世纪上半期发现的物理现象。
众所周知,电流流过线圈时,周围会产生磁场。
1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。
用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。
1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。
无线充电使用的充电座和终端分别内置了线圈,使二者靠近便开始从充电座向终端供电。
为提高供电效率,需要使线圈之间的位置对齐,不产生偏移。
无线充电技术PPT课件
② 磁场共振
无线传输电力系统结构
英特尔的“无线充电碗”
③ 电场感应
有了利用空间磁场的无线供电技术,自然而然会有人想到利用 空间电场进行无线充电。因为原本电和磁就是相互对应而又关 联的。对于电场感应的无线充电技术而言,简单点说,可以把 能量发射装置和接收装置看成电容的两个极板。在交流电场的 作用下,电容的两个极板会有交变电流流过,这样就实现了电 能的无线传递。
机皇诺基亚!
1 历史与发展
近代无线充电技术的发展
第三点也是最重要的一点是区域内无线充电需求的提高。随着移动互联网 技术的发展,各种智能终端设备越来越普遍。在中国2014年的智能手机 出货量达到了惊人的4亿部。而人们在要求智能设备更快的上网速度,更 快的运算速度,更清晰的显示效果的同时,各种智能设备的电能需求也在 不断的提高。受限制于电池技术,智能设备的续航时间成为困扰用户的最 大问题。在功能机时代,常见手机的使用时间可以轻松达到一个星期。而 进入智能机时代,虽然电池的容量增大了3倍以上,智能手机的续航则下 降到了一天左右。因此无线充电作为一种简易可行的智能设备充电方式受 到了越来越多的关注。 无线充电技术对于智能手机的意义如何呢?我们回顾一下智能手机的发展 历史。从 2012年小米的第一款手机发布开始,智能手机厂商开始了一轮 疯狂的配置大战,从双核CPU,1G内存一直厮杀到八核4G内存,手机摄 像头也从500万像素冲到了夸张的4000万像素。在一轮硬件配置的比拼之 后,国产智能手机的同质化也越来越严重。差异化竞争成为智能手机厂商 的必然选择。对性能参数的追求也将逐渐转移到对用户使用体验的关注上。 在这种环境下,无线充电技术还是有很大的发展机会的。 以上三个条件结合在一起,使得无线充电技术的发展成为了可能。
① 磁感应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线充电技术(四种主要方式)原理与应用实例图文详解
无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。
未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA等电器放在桌上就能够立即供电。
以下是四种主要无线充电方式:
1.电磁感应方式
无线供电驱动一枚60W电灯泡,效率高达75%。
电磁感应无线充电产品示意图
剧下降。
下图靠移动送电线圈对准位置来提高效率。
目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。
Qi源自汉语“气功”中的“气”,无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。
通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。
英国HaloIPT 公司在伦敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。
在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。
日产无线充电技术架构
电动牙刷无线充电示意图
一种无线充电器发送和接收原理图
2.磁共振方式
磁共振方式的原理与声音的共振原理相同。
排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。
同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。
相比电磁感应方式,利用共振可延长传输距离。
磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。
一个特定的频率上共振,它们就可以交换彼此的能量。
应用:
三菱汽车展示供电距离为20cm,供电效率达90%以上。
线圈之间最大允许错位为20cm。
如果后轮靠在车挡上停车,基本能停在容许范围内。
索尼公司发布的一款样机:无电源线的电视机利用磁场共振实现无线供电的电视机。
还有将供电线圈埋入道路中,在红灯停车时和行驶中为电动汽车充电的构想,以及利用植入轨道中的线圈为行驶中的磁悬浮列车供电的设想。
韩国首尔一座游乐园内试运行一种新型电车。
这种电车在铺有电感应条的路面上行驶时可“无线”充电,不像传统电车需通过路轨或头顶电线获得电力。
电磁感应方式和磁共振方式原理比较
3.电场耦合方式
电场耦合方式的无线供电技术与“电磁感应方式”及“磁场共振方式”不同,电场耦合方式利用通过沿垂直方向耦合两组非对称偶极子而产生的感应电场来传输电力,具有抗水平错位能力较强的特点。
村田制作所的电场耦合方式利用通过沿垂直方向耦合两组非对称偶极子而产生的感应电场来传输电力。
其基本原理为:下图中以淡蓝色标示的部分产生强感应电场,通过电场将电力从送电侧转移到受电侧。
村田制作所的方法的特点在于非对称偶极子,需要两组电极。
村田制作所将其称为active electrode和passive electrode。
passive electrode主要起着接地作用。
系统通过组合这些电极来传输电力。
首先由放大器略微提高电压,然后通过升压电路一举提高至1.5kV左右。
以这一电压传输电力后,再利用降压电路及整流电路转换成实际使用的直流电压。
电源电路的开关频率为200 k~400kHz,由此构成系统。
电场耦合方式的特点大致有三:①充电时可实现位置自由,②电极薄,③电极部的温度不会上升。
因此不仅能够提供便利性,而且还可降低系统成本。
村田制作所将面向平板终端使用的充电座,量产输出功率为10W的送电模块及受电模块。
模块中最厚的部分是变压器。
如下图所示:
供平板终端使用的产品,最厚的部分为变压器。
4.无线电波方式
基本原理——类似于早期使用的矿石收音机,主要有微波发射装置和微波接收装置组成,如图,接收电路,可以捕捉到从墙壁弹回的无线电波能量,在随负载作出调整的同时保持稳定的直流电压。
Powercast公司研制出可以将无线电波转化成直流电的接收装置,可在约1米范围内为不同电子装置的电池充电。
日本的龙谷大学发布了一项技术成果:移动式无线充电系统,当时就是使用的频率2.45GHz 的微波。
但是实验并不是用实车进行的,而是用的一个警车模型,通过微波送电,点亮了行驶中的模型警车的警灯。
小结:
●一般来说,利用电磁感应原理的无线供电技术最具现实性,并且现在在电动汽车上有实际应用;电磁感应式非接触充电系统存在以下三方面的问题:(1)送电距离比较短,如果两个线圈的横向偏差较大传输效率就会明显下降。
目前来看只能实现传输距离为10cm 左右,需要考虑很多的散热问题,比如线圈之间的发热。
(2)耦合的辐射问题,电磁波的耦合会不会存在大的磁场泄漏。
电磁感应在线圈之间传输电力,如同我们的磁铁一样,在外圈有一定的泄漏,人如何避免受影响是个很大问题。
(3)线圈之间也是有可能有杂物进入的,还有某些动物(猫狗)进入里面,一旦产生电涡流,就如同电磁炉一样,安全性问题非常明显。
●磁场共振方式,则是现在最被看好、被认为是将来最有希望广泛应用于电动汽车的一种方式;磁场共振式供电,目前技术上的难点是,小型、高效率化比较难。
现在的技术能力大约是直径半米的线圈,能在1m左右的距离提供60w的电力。
●电磁波送电方式,现在则提出了利用这种技术的“太空太阳能发电技术”,可以从根本上解决电力问题。
●设计最难的部分在于安全。
因为无线充电系统与电磁炉一样会发射电磁波能量,有两大问题,一是长期发射,长时间下会造成能源浪费。
二是当充电系统上放的金属异物,电磁波对其加热,轻则烧毁装置,重则发生火灾。
所以需要有“受电端目标物辨识”,当正确的目标放置时才送电。
侦测装置的方法比如:(1)磁力激活:受电端装磁铁,发射端感受到磁力才发送能量。
这种方法简单有效。
(2)感应线圈上的资料传送,也是认为最安全的方法,与RFID原理一样,电力传送中识别码一起传送和验证。
但解决系统噪声和负载电流变化的干扰是难题。
展望:
●电磁波送电方式的“太空太阳能发电技术”应用,可以从根本上解决电力问题。
利用铺设在巨大平板上的亿万片太阳电池,在太阳光照射下产生电流,将电流集中起来,转换成无线电微波,发送给地面接收站。
地面接收后,将微波恢复为直流电或交流电,送给用户使用。
●无线供电,使得电动汽车可以提供这么一种可能:一辆电动汽车从出厂到它报废为止,终生不用你去理会电力补充问题
●电动汽车,在太阳能电池技术、无线供电技术、以及自动驾驶技术的支持下,完全可以颠覆现在的交通概念
●N年以后,在高速公路上,车在自动行驶,而汽车、电脑、手机需要的所有电力都来自从路面下铺装的供电系统、或者来自汽车上的接收装置接收的电磁波。
●随着电动汽车的发展无线充电技术必定有着广阔的利用空间。
无线充电站
无线充电式停车厂
没有任何事情因为太奇妙而不能成真,只要它遵守了自然的法则!。