紫外可见光吸收光谱共56页
紫外吸收光谱课件PPT
2、助色团
本身在UV及可见区不产生吸收,但和发色团相连 时,会使发色团的吸收带向长波移动,同时使吸收 强度增加(即:λ↑,ε↑)通常都含有n电子。
常见的助色团有: -NH2、-NR2、-OH、-OR、-Cl
3、红移 蓝移 增色效应 减色效应
红移: 波长向长波方向移动 蓝移: 波长向短波方向移动 增色效应:ε↑(吸收带强度) 减色效应:ε↓
14:15:32
2、共轭烯烃 伍德沃德(Woodward)规则:是计算共轭分子中→* 跃迁吸收带波长的经验规则。该规则以某一化合物的基本 吸收波长为基础值,加入各种取代基对吸收波长所作的贡 献值,得到该化合物→*跃迁的吸收波长λmax。 应用 (Woodward)规则计算共轭烯烃的K吸收带的 λmax值时,应注意以下几点:
14:15:32
溶剂极性改变使吸收带位移的原因:一般认为是极性溶剂 对n 、 、*轨道的溶剂化作用不同引起的。 轨道的极性 顺序:n > * > ,轨道极性越大,受溶剂极性的影响 也越大。
14:15:32
第一章
紫外吸收光谱法
第四节 常见类型有机化合物的UV 一、饱和化合物
Ultraviolet Absorption Spectroscopy(UV)
14:15:31
3. →* 跃迁 不饱和化合物及芳香化合物
→*跃迁所需能量较低 (max 170 ̄200nm左右)
共轭时,移至近紫外区
例如
CH2=CH2 max=165nm
当存在两个或多个π键处于共轭关系时,→* 跃迁的谱带将随着共轭体系的增大而向长波方向 移动。
14:15:31
4. n→*跃迁
14:15:32
⑴直链共轭烯烃→*跃迁跃迁产生吸收带λmax计算
紫外和可见光吸收光谱
紫外和可见光吸收光谱1.紫外光谱及其产生⑴紫外光的波长范围紫外光的波长范围为4-400nm。
200-400为近紫外区,4-200nm为远紫外区。
由于波长很短的紫外光会被空气中氧和二氧化碳吸收,研究远紫外区的吸收光谱很困难,一般的紫外光谱仅仅是用来研究近紫外区的吸收。
⑵紫外光谱当把一束光通过有机化合物时,某一波长的光可能吸收很强,而对其他波长的光可能吸收很弱,或者根本不吸收。
当化合物吸收一定波长的紫外光时,电子发生跃迁,所产生的吸收光谱叫做紫外吸收光谱,简称紫外光谱。
⑶电子跃迁的种类在有机化合物分子中,由于化合物的价电子有三种类型,即σ键电子、π键电子和未成键的 n 电子,在电子吸收光谱中,电子跃迁主要是经下三种。
①σ-σ*跃迁σ电子是结合得最牢固的价电子,在基态下,电子在成键轨道中,能级最低,而σ*态是最高能级。
σ-σ*跃迁需要相当高的辐射能量。
在一般情况下,仅在200nm以下约~150nm才能观察到,即在一般紫外光谱仪工作范围之外,只能用真空紫外光谱仪才可观察出来(在无氧和二氧化碳的情况下)。
所以测紫外光谱时,常常用烷烃作溶剂。
② n电子的跃迁n 电子是指象N,S,O,X 等原子上未共用的电子。
它的跃迁有两种方式。
第一种方式:n-π* 跃迁未共用电子激发跃入π*轨道,产生吸收带,称为R带(基团型的,Radikalartig德文),由n-π*引起的,在200 nm以上。
如:醛酮分子中羰基在275-295nm处有吸收带,为C=O中n-π*跃迁吸收带。
第二种方式是n→σ*跃迁,这种跃迁所需的能量大于n-π*,故醇醚均在远紫外区才出现吸收带。
~ 200nm。
如甲醇λmax183nm。
③π→π*跃迁乙烯分子中π电子吸收光能量,跃迁到π*轨道。
吸收带在远紫外区。
当双键上氢逐个被烯基取代后,由于共轭作用,π→π*能级减小。
吸收带向长波递增。
由共轭双键产生的吸收带称为K带,其特征是摩尔消光系数大于104。
在近紫外区吸收,CH2=CH2 λmax162nm,CH2=CH-CH=CH2 λmax217nm。
第二章 紫外吸收光谱(共85张PPT)
max (己烷) =114+5M+nnR环内-10R环外 当苯环上有助色团时,向长波方向移至200 ~ 220nm。
-卤代酮的构象: -卤代环已酮有以下两个构象(A) (竖键)和(B)。 RCOOH及RCOOR的n → *比RCHO 的 小,即紫移*称为 *跃迁 ,实现 *跃迁需要吸收很多能量,约为185 千卡/克分子。
v=频率 用 周/秒(Cps)或赫兹(Hz) E=能量 单位为尔格,电子伏特eV或卡/摩尔
二、紫外光谱的特征
符合朗伯-比尔定律(Lambert-Beer’s Law),这是 吸收光谱的基本定律,用数学公式表示为:
A= ㏒(I0/I)=abc
式中:A:吸光度 I0:入射光强度 I:透射光强度 a:吸光系数 b:吸收池厚度(cm) c:被测物质浓度g/L I0/I:透射比,用T表示
CH3 CH3
N max =227nm( 900)
CH3
CH3Cl CH3OH
max =173nm( 200) max =183nm
3. *跃迁
电子由轨道跃迁到*轨道称→*跃迁,所吸收的能量比n → *小,峰位约在200nm附近,这种跃迁是强吸收, >104
例:CH2 CH2 max =162nm
近紫外区(200~400nm):在此波长范围内,玻璃有吸收,一般用石 英比色器,因此称近紫外区为石英紫外区,近紫外区最为有用,通常
所谓的紫外光谱就是指近紫外区的光谱。
2. 紫外光谱 以波长10~400nm的电磁波照射物质分子,即以紫外光照
射物质分子,由分子的电子能级跃迁而产生的光谱叫紫外光 谱。紫外光谱是电子光谱的一部分,可见光谱也是电子光谱 ,电子光谱是由电子跃迁而产生的吸收光谱的总称。
第一章 紫外-可见吸收光谱
乙酰苯和苯的紫外吸收光谱
若苯的两个取代基在对位时,波长较长; 而间位和邻位取代时,波长较小。 例如:
有一分子式为C8H8O的化合物,测得其紫外 光谱如图所示。
从图中说明该化合物有3种不同的吸收带, 都是什么带? 分子有什么生色团? 确定分子的结构式。
K带:217-280nm, ε max10 000-200 000 B带:230-270nm, 当苯环上有取代基 时,发生红移
说明有共轭的两个不饱和键存在,此吸收带为π →π *跃迁产生的K
带,那么该化合物一定含有共轭二烯烃或不饱和醛酮结构。 不饱和酮除了具有K带,还应在320nm附近有R带出现。 在260、300和330nm附近有强吸收带,那么就有3、4或5个共轭双键存在。
(ⅲ)在270~350nm范围内有弱吸收带(ε =10~100)
(2)R吸收带
R吸收带是由德文Radikal(基团)得名。
是由于生色团及助色团中n→π *跃迁所引起的吸 收带。 只有分子中同时存在杂原子(具有n孤对电子) 和双键π 电子时才有可能产生。
它具有杂原子和双键的共轭基团,
如=C =O、-NO、-NO2、-N =N、-C =S等。
特点是: n→π *跃迁的能量最小,处于长波长范 围,一般λ max在270nm以上。 跃迁几率小,吸收强度弱,一般 ε max<100。
在200nm附近无其它吸收,该吸收带为酮醛中羰基n→π *跃迁产生的
R带。 (ⅳ)在260~300范围内有中等强度吸收带( ε =200~2000 )
且该吸收带可能带有精细结构,该吸收带为单个苯环的特征B带。 若在大于300nm或吸收延伸到可见区有高强度吸收,且具有稠环芳 烃、稠环杂芳烃或其衍生物存在。
紫外-可见吸收光谱-ppt
二氧杂环己烷
/nm 177 178 204 214 186 339,665 280 300,665 270
max
13000 10000 41 60 1000 150000 22 100 12
(2)空间阻碍使共轭体系破坏,max蓝移, max减小。
表 表4.5 2-4 - 及 ’ - 位有取代基的二苯乙烯化合物的紫外光谱 R H H CH 3 CH 3 C2H5 R’ H CH 3 CH 3 C2H5 C2H5 max 294 272 243.5 240 237.5
max
9
2.2 紫外-可见光谱的产生
通常由最高占有分子轨道中的一个电子在吸收适当波长的 辐射能量后,跃迁到最低未占有分子轨道,产生紫外-可见吸 收光谱。
在电子跃迁过程中吸收光的频率(υ )取决于分子的能级差:
式中:h——普朗克常数,6.626×10-34J· s; c—— 光速,2.9979×10nm· s-1;
2.n→σ *跃迁
实现这类跃迁所需要的能量较高,其吸收光谱在远紫外区和近紫外区, 杂原子如氧、氮、硫及卤素等均含有不成键n电子。含杂原子的化合物可以 产 生 n→σ * 跃 迁 。 如 甲 醇 ( 汽 态 )λ max=183nm , ε =150 ; 三 甲 胺 ( 汽 态)λ max=227nm,ε =900;碘甲烷(己烷中) λ max=258nm,ε =380。
8
(三)吸收池 用于盛放分析试样,一般有石英和玻璃材料两 种。石英池适用于可见光区及紫外光区,玻璃吸收池只能用于 可见光区。为减少光的损失,吸收池的光学面必须完全垂直于 光束方向。 (四)检测器 检测信号、测量单色光透过溶液后光强度变化。 常用的检测器有光电池、光电管和光电倍增管等。硒光电 池对光的敏感范围为300~800nm,能产生可直接推动检流计的 光电流,但由于容易出现疲劳效应而只能用于低档的分光光度 计中;光电管在紫外-可见分光光度计上应用较为广泛;光电倍 增管是检测微弱光最常用的光电元件,它的 灵敏度比一般的光电管要高200倍,对光谱的精细结构有较好的 分辨能力。 (五)信号指示系统 放大信号并以适当方式指示或记录下来。 常用的信号指示装置有直读检流计、电位调节指零装置以 及数字显示或自动记录装置等。
第五章 紫外-可见吸收光谱法(共73张PPT)
π→π*跃迁:
所需能量较小,λ一般>200nm,εmax > 104。
不饱和基团(乙烯基、乙炔基)
不饱和烃、共轭烯烃和芳香烃类可发生此类跃迁。
乙烯 π→π*跃迁: λmax 165nm
丁二烯 π→π*跃迁: λmax 217nm
n→π*跃迁:
所需能量最小, λ >200nm,
这些能量是量子化的,只有光辐射的能量恰好等于两能级之间的
能量差时,才能被吸收。
分子内部三种能级跃迁所需 能量大小的顺序为:
ΔE电> ΔE振> ΔE转
分子的电子跃迁所吸收的能量比后二者大的多
1. ΔE电 约为1~20eV,所吸收的电磁辐射波长约为1240~
62nm,主要在紫外和可见光区。
2. ΔE振约为~1eV,相应的分子吸收光谱为红外光谱。
光的强度I0与透射光的强度I之比的对数值。
A=lg I0/ I
T与A的关系:A=-lgT
三、朗伯-比尔定律
朗伯-比尔定律是分子吸收光谱法定量分析的基础。
要求:能够提供足够强的连续辐射、有良好的稳定性、较长的使用
三、紫外-可见吸收光谱法的应用
第六节 紫外-可见吸收光谱的应用
光源不同:前者为锐线光源,如空心阴极灯;
由于化合物分子结构中取代基的引入或溶剂的改变使得吸收带的
强度即摩尔吸收系数εmax增大或减小的现象,称为增色效应或减色效
应。
三、紫外-可见光谱中的常见吸收带
1、R带:(基团radical)
含杂原子的不饱和基团的
n →π*跃迁产生
C=O;C=N;—N=N—
特点:λmax 200~400nm,
紫外可见吸收光谱分析课件PPT
目录
• 引言 • 基础知识 • 紫外可见吸收光谱分析原理 • 实验技术 • 应用实例 • 展望与未来发展
01
引言
课程目标
掌握紫外可见吸收光谱的基本原理和应用 学会使用紫外可见分光光度计进行实验操作 了解光谱分析在各个领域的应用和前景
课程大纲
第一章紫外可见Βιβλιοθήκη 收光谱的基本原理化学计量学
紫外可见吸收光谱在化学计量学中用于多元校正和模型构建,提高分析的准确 性和可靠性。
在生物学研究中的应用
生物分子相互作用
利用紫外可见吸收光谱可以研究生物分子之间的相互作用和结合 方式。
蛋白质结构分析
通过对蛋白质的紫外光谱进行分析,可以推断蛋白质的二级结构。
生物活性物质检测
紫外可见吸收光谱用于检测生物活性物质,如维生素、氨基酸等。
定量分析
通过测量物质在特定波长下的吸光度,可以计算 物质的浓度或含量。
吸收光谱的应用
01
有机化合物的鉴定
02
金属离子的测定
03
生物大分子的研究
通过比较已知化合物的吸收光谱, 可以鉴定未知有机化合物的结构。
通过测量金属离子在特定波长下 的吸光度,可以测定金属离子的 浓度。
通过分析生物大分子在紫外可见 区的吸收光谱,可以研究其结构 和功能。
第二章
紫外可见分光光度计的原理及使用方法
第三章
实验操作及数据分析
第四章
光谱分析的应用及前景
02
基础知识
光的性质
01
02
03
光的波动性
光是一种电磁波,具有波 动性质,包括振幅、频率 和波长等特征。
光的粒子性
光同时具有粒子性质,光 子是光的能量单位,可以 与物质发生相互作用。
07紫外可见吸收光谱法
24
一、紫外可见吸收光谱
(二)无机化合物的紫外—可见吸收光谱 3. 电荷转移吸收光谱 当吸收紫外可见辐射后,分子中原定域在金属M 轨道上电荷的转移到配位体L的轨道,或按相反方 向转移,这种跃迁称为电荷转移跃迁,所产生的吸 收光谱称为荷移光谱.
度最大处对应的波长称为最大吸收波长max ;
3. 不同浓度的同一种物质,其吸收曲线形状相似
max不变。而对于不同物质,它们的吸收曲线形 状和max则不同;
4. 吸收谱带的强度与该物质分子吸收的光子数成 正比,定量分析的依据。
6
一、紫外可见吸收光谱
(一)有机化合物的紫外—可见吸收光谱
分子中外层价电子跃迁的结果(三种):σ电子、 π电子、n电子.
27
二、光的吸收定律
朗伯(Lambert)
光的吸收程度和吸 收层厚度的关系
A∝b
比耳(Beer)
光的吸收程度和吸收 物浓度之间的关系 A∝ c
朗伯—比耳定律 A= ε bc
吸光光度法的理论基础和定量测定的依据
28
二、光的吸收定律
A=lg(I0/It)= εb c
A=lg(I0/It)= a b c
饱和烃的取代衍生物如卤代烃,其卤素原子上存在 n电子,可产生n* 的跃迁。 n* 的能量低于 *。例如,CH3Cl、CH3Br和CH3I的n* 跃迁分 别出现在173、204和258nm处。氯、溴和碘原子引入 甲烷后,其相应的吸收波长发生了红移,显示了助色 团的助色作用.
直接用烷烃和卤代烃的紫外吸收光谱分析这些化合 物的实用价值不大。但它们是测定紫外和(或)可见 吸收光谱的良好溶剂.
课件紫外可见吸收光谱(共83张PPT)
T I I0
I 为透射光的强度
I0 为入射光的强度
A lgI0
lgT
I
1760年朗伯(Lambert)阐明了光的吸收程度和吸收层厚度的 关系,即 A∝b
1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间 也具有类似的关系,即 A∝ c
二者的结合称为朗伯-比尔定律,其数学表达式为:
AlgTkbc
Abc
摩尔吸光系数ε的讨论:
(1)吸收物质在一定波长和溶剂条件下的特征常数; (2)不随浓度c和光程长度b的改变而改变。在温度和波长等条件一定时 ,ε仅与吸收物质本身的性质有关,与待测物浓度无关;
(3)同一吸收物质在不同波长下的ε值是不同的。在最大吸收波长λmax 处的摩尔吸光系数,常以εmax表示。εmax表明了该吸收物质最大限度的
➢ 含有杂原子的不饱和化合物可以发生n→p*跃迁, 如含有羰基、硝基、亚硝基等
➢ n→p*跃迁所产生的吸收带称为R带
常用概念
➢ 发色团(或生色团):具有π电子的不饱和基团,即 可在紫外-可见光区产生吸收的官能团。如C=C、 C≡C、 C=O、-NO2等
➢ 助色团:有一些含有n电子的基团(如-OH、-NH2、OR、-SH、-Cl、-Br、-I等),它们本身没有生色功能
第二节
紫外-可见分光 光度计
UV-Vis spectrometer
一、基本组成
二、分光光度计的 类型
一、基本组成
1. 光源
➢ 要求:提供能量,激发被测物质分子使之产生价电子的跃迁, 从而产生电子光谱;在整个紫外光区或可见光谱区可以发射连续光 谱;具有足够的辐射强度、较好的稳定性、较长的使用寿命。
2. 有机化合物的紫外可见吸收光谱