高三一轮复习三角函数专题
三角函数的概念 诱导公式(七大题型)(学生版)--2025年高考数学一轮复习
三角函数的概念 诱导公式(七大题型)目录:01任意角与弧度制02求弧长、扇形面积03求弧长、扇形面积的实际应用04三角函数的概念(求三角函数值及应用)05同角三角函数的基本关系06诱导公式07三角函数的概念诱导公式难点分析01任意角与弧度制1(2024高三·全国·专题练习)下列说法中正确的是()A.锐角是第一象限角B.终边相等的角必相等C.小于90°的角一定在第一象限D.第二象限角必大于第一象限角2(23-24高一上·湖南株洲·阶段练习)把5π4化成角度是()A.45°B.225°C.300°D.135°3(2023高三·全国·专题练习)与9π4终边相同的角的表达式中,正确的是()A.45°+2kπ,k∈ZB.k⋅360°+π4,k∈ZC.k⋅360°+315°,k∈ZD.2kπ-7π4,k∈Z4(2023高三·全国·专题练习)已知角α第二象限角,且cos α2=-cosα2,则角α2是() A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角5(2014高三·全国·专题练习)集合αkπ+π4≤α≤kπ+π2,k∈Z中的角所表示的范围(阴影部分)是()A. B.C. D.,B= 6(22-23高三上·贵州贵阳·期末)已知集合A=α 2kπ+π4≤α≤2kπ+π2,k∈Z,则()α kπ+π4≤α≤kπ+π2,k∈ZA.A⊆BB.B⊆AC.A=BD.A∩B=∅02求弧长、扇形面积7(23-24高三上·安徽铜陵·阶段练习)已知扇形的周长为30cm,圆心角为3rad,则此扇形的面积为()A.9cm2B.27cm2C.48cm2D.54cm28(23-24高三下·浙江·开学考试)半径为2的圆上长度为4的圆弧所对的圆心角是()A.1B.2C.4D.89(22-23高一下·河北张家口·期中)如图,已知扇形的周长为6,当该扇形的面积取最大值时,弦长AB=()A.3sin1B.3sin2C.3sin1°D.3sin2°10(22-23高三下·上海宝山·阶段练习)如图所示,圆心为原点O的单位圆的上半圆周上,有一动点P x,y,点B是P关于原点O的对称点.分别连结PA、PB、AB,如此形成了三个区 (y>0).设A1,0域,标记如图所示.使区域Ⅰ的面积等于区域Ⅱ、Ⅲ面积之和的点P的个数是()A.0个B.1个C.2个D.3个03求弧长、扇形面积的实际应用11(23-24高三上·广东肇庆·阶段练习)“顺德眼”是华南地区首座双立柱全拉索设计的摩天轮总共设有36个等间距座舱,其中亲子座舱4个,每2个亲子座舱之间有8个普通座舱,摩天轮上的座舱运动可以近似地看作是质点在圆周上做匀速圆周运动,质点运行轨迹为圆弧,运行距离为弧长,“顺德眼”在旋转过程中,座舱每秒运行约0.2米,转一周大约需要21分钟,则两个相邻的亲子座舱在运行一周的过程中,距离地面的高度差的最大值约为( )(参考数据:2π≈0.45,计算结果保留整数)A.40米B.50米C.57米D.63米12(23-24高三上·安徽·期中)扇子是引风用品,夏令必备之物.我国传统扇文化源远流长,是中华文化的一个组成部分.历史上最早的扇子是一种礼仪工具,后来慢慢演变为纳凉、娱乐、观赏的生活用品和工艺品.扇子的种类较多,受大众喜爱的有团扇和折扇.如图1是一把折扇,是用竹木做扇骨,用特殊纸或绫绢做扇面而制成的.完全打开后的折扇为扇形(如图2),若图2中∠ABC =θ,D ,E 分别在BA ,BC 上,AD =CE =m ,AC的长为l ,则该折扇的扇面ADEC 的面积为()图1 图2 A.m l -θ2B.m l -θm2C.m 2l -θ2D.m 2l -θm213(2024·湖南长沙·一模)“会圆术”是我国古代计算圆弧长度的方法,它是我国古代科技史上的杰作,如图所示AB是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB上,CD ⊥AB ,则AB的弧长的近似值s 的计算公式:s =AB +CD 2OA.利用上述公式解决如下问题:现有一自动伞在空中受人的体重影响,自然缓慢下降,伞面与人体恰好可以抽象成伞面的曲线在以人体为圆心的圆上的一段圆弧,若伞打开后绳长为6米,该圆弧所对的圆心角为60°,则伞的弧长大约为( )3≈1.7A.5.3米B.6.3米C.8.3米D.11.3米04三角函数的概念(求三角函数值及应用)14(23-24高三下·重庆渝中·阶段练习)已知角α的终边经过点P 1,2sin α ,则sin α的值不可能是() A.32B.0C.-32D.1215(2024·上海松江·二模)已知点A 的坐标为12,32 ,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.16(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边为x 轴的非负半轴.若P m ,2 是角θ终边上一点,且cos θ=-31010,则m =.17(2023高三·全国·专题练习)已知角α的终边经过点P -x ,-6 ,且cos α=-513,则1sin α+1tan α=.18(2024·四川成都·模拟预测)在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 3,4 ,则sin α+2cos αcos α-sin α=()A.11B.-10C.10D.-1119(2024·云南昆明·一模)已知角θ的顶点为坐标原点O ,始边与x 轴的非负半轴重合,点A (1,a )(a ∈Z )在角θ终边上,且OA ≤3,则tan θ的值可以是.(写一个即可)20(2024高三·全国·专题练习)在平面直角坐标系xOy 中,角α的顶点为原点O ,以x 轴的非负半轴为始边,终边经过点P (1,m )(m <0),则下列各式的值恒大于0的有( )个.①sin αtan α;②cos α-sin α;③sin αcos α;④sin α+cos α.A.0B.1C.2D.321(21-22高三下·河南许昌·开学考试)已知某质点从平面直角坐标系xOy 中的初始位置点A 4,0 ,沿以O 为圆心,4为半径的圆周按逆时针方向匀速运动到B 点,则B 点的坐标为()A.4cos ∠AOB ,4sin ∠AOBB.4sin ∠AOB ,4cos ∠AOBC.4cos ∠AOB ,4 sin ∠AOBD.4sin ∠AOB ,4 cos ∠AOB05同角三角函数的基本关系22(21-22高一上·安徽宿州·期末)已知cos α=-513,且α为第二象限角,则sin α=()A.-1213B.-513C.1213D.12523(21-22高一上·四川遂宁·期末)已知cos x 1-sin x =3,则1+sin xcos x=()A.3B.-3C.33D.-3324(2024·河南洛阳·模拟预测)已知tan α=2,则5sin α+cos a2sin α-cos α=()A.13B.113C.53D.225(2023·全国·高考真题)若θ∈0,π2 ,tan θ=12,则sin θ-cos θ=.26(22-23高三·全国·对口高考)已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-|cos α|cos α=.27(2024高一上·全国·专题练习)已知tan α=12,则sin 2α+sin αcos αcos 2α+1的值为.06诱导公式28(2024·全国·模拟预测)已知sin 5π8+α =13,则cos π8+α =()A.-13B.13C.-33D.3329(2024·全国·模拟预测)已知cos θ-2π5 =23,则2sin 19π10-θ +cos θ+13π5=()A.-2B.2C.-23D.2330(23-24高一上·江苏无锡·阶段练习)已知sin α+cos α=-12,则cos π2+α 1-tan -α 的值为()A.-34B.34C.-316D.31631(23-24高一下·湖南株洲·开学考试)已知sin π3-x =13,且0<x <π2,则tan 2π3+x =.32(2023高三·全国·专题练习)已知sin 3π+θ =13,则cos π+θ cos θcos π+θ -1+cos θ-2πsin θ-3π2 cos θ-π -sin 3π2+θ的值为.07三角函数的概念诱导公式难点分析33(23-24高一上·山西运城·期末)若α,β∈0,π2 ,且4sin 2α-sin 2β+23=0,则当2sin α+cos β取最大值时,sin β的值为()A.66B.306C.33D.2634(22-23高三上·山东枣庄·阶段练习)若0<θ<π,且点P cos θ,sin θ 与点Q cos θ+π6 ,sin θ+π6关于x 轴对称,则cos θ=.35(20-21高二上·贵州铜仁·阶段练习)已知sin 5θ-cos 5θ<3cos 3θ-sin 3θ 恒成立,则θ取值范围是.36(2022·上海黄浦·二模)设a ,b ∈R ,c ∈0,4π .若对任意实数x 都有sin 2x -π3=a sin bx +c ,则满足条件的有序实数组a ,b ,c 的组数为.一、单选题1(2023·安徽·模拟预测)已知角α终边上有一点P sin 2π3,cos 2π3,则π-α为()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2(2024·黑龙江·二模)已知角α的终边与单位圆的交点P 35,-45 ,则sin α-π2=()A.-45B.-35C.35D.453(2024·辽宁·三模)已知tan α=12,则sin α+π2 -cos 3π2-α cos -α -sin π-α=()A.-1 B.1 C.-3D.34(2023·海南·模拟预测)若α∈0,π ,且cos α-sin α=12,则tan α=()A.4+75B.4-75C.4+73D.4-735(2024·全国·模拟预测)石雕、木雕、砖雕被称为建筑三雕.源远流长的砖雕,由东周瓦当、汉代画像砖等发展而来,明清时代进入巅峰,形成北京、天津、山西、徽州、广东、临夏以及苏派砖雕七大主要流派.苏派砖雕被称为“南方之秀”,是南方地区砖雕艺术的典型代表,被广泛运用到墙壁、门窗、檐廊、栏槛等建筑中.图(1)是一个梅花砖雕,其正面是一个扇环ABCD ,如图(2),砖雕厚度为6cm ,AD =80cm ,CD=3AB,CD所对的圆心角为直角,则该梅花砖雕的表面积为(单位:cm 2)()A.3200πB.480π+960C.6880π+960D.3680π+9606(2023·贵州遵义·三模)已知a =sin0.1,b =10-1,c =tan0.1,则()A.c >b >aB.b >c >aC.b >a >cD.a >c >b7(2023·山西·模拟预测)已知α,β,γ均是锐角,设sin αcos β+sin βcos γ+sin γcos α的最大值为tan θ,则sin θsin θ+cos θ =()A.3B.1513C.1D.5138(2024·浙江·二模)古人把正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数、正矢函数、余矢函数这八种三角函数的函数线合称为八线.其中余切函数cot θ=1tan θ,正割函数sec θ=1cos θ,余割函数csc θ=1sin θ,正矢函数ver sin θ=1-cos θ,余矢函数ver cos θ=1-sin θ.如图角θ始边为x 轴的非负半轴,其终边与单位圆交点P ,A 、B 分别是单位圆与x 轴和y 轴正半轴的交点,过点P 作PM 垂直x 轴,作PN 垂直y 轴,垂足分别为M 、N ,过点A 作x 轴的垂线,过点B 作y 轴的垂线分别交θ的终边于T 、S ,其中AM、PS、BS、NB为有向线段,下列表示正确的是()A.ver sinθ=AMB.cscθ=PSC.cotθ=BSD.secθ=NB二、多选题9(2023·贵州遵义·模拟预测)下列说法正确的是()A.若sinα=sinβ,则α与β是终边相同的角B.若角α的终边过点P3k,4kk≠0,则sinα=4 5C.若扇形的周长为3,半径为1,则其圆心角的大小为1弧度D.若sinα⋅cosα>0,则角α的终边在第一象限或第三象限10(2023·辽宁·模拟预测)设α为第一象限角,cosα-π8=13,则()A.sin5π8-α=-13 B.cosα+7π8=-13C.sin13π8-α=-223 D.tanπ8-α=-2211(2024·全国·模拟预测)质点A和B在以坐标原点O为圆心,半径为1的圆O上逆时针做匀速圆周运动,同时出发,A的起点在射线y=3x x≥0和圆O的交点处,A的角速度为2rad/s,B的起点为圆O与x轴正半轴的交点,B的角速度为3rad/s,则下列说法正确的是()A.在1s末时,点A的坐标为cos2,sin2B.在2s 末时,点B的坐标为cos6,-sin6C.在2s末时,劣弧AB的长为2-π3D.当A与B重合时,点A的坐标可以为-1,0三、填空题12(2023·江苏苏州·模拟预测)已知x∈(0,π),若sin x1-cos x=3,则1+cos xsin x=.13(2023·四川成都·一模)函数f x =tanπ32x-1,x>012x,x≤0,则f f-3=.14(2023·江西景德镇·三模)已知直线x=a0<a<π2与函数f x =sin x和函数g x =cos x的图象分别交于P,Q两点,若PQ=14,则线段PQ中点的纵坐标为.。
三角函数的图象与性质(高三一轮复习)
数学 N 必备知识 自主学习 关键能力 互动探究
— 27 —
(4)三角函数型函数奇偶性的判断除可以借助定义外,还可以借助其图象与性 质,如在y=Asin(ωx+φ)中代入x=0,若y=0,则为奇函数,若y为最大或最小值, 则为偶函数.若y=Asin(ωx+φ)为奇函数,则φ=kπ(k∈Z),若y=Asin(ωx+φ)为偶函 数,则φ=2π+kπ(k∈Z).
A.y=fx-π4为奇函数 B.y=fx-4π为偶函数 C.y=fx+4π-1为奇函数 D.y=fx+π4-1为偶函数
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
(2)(2022·新高考Ⅰ卷)记函数f(x)=sin
ωx+π4
+b(ω>0)的最小正周期为T.若
2π 3
<T<π,且y=f(x)的图象关于点32π,2中心对称,则fπ2=( A )
— 10 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
2.(易错题)(2023·宜昌检测)下列函数中,在其定义域上是偶函数的是( B )
A.y=sin x
B.y=sin x
C.y=tan x
D.y=cosx-π2
解析 对于A,∵y=sin x的定义域为R,sin(-x)=-sin x,∴y=sin x为奇函
数,A错误;对于B,∵y=
sin
x
的定义域为R,
sin-x
=
-sin
x
=
sin
x
,∴y=
sin x为偶函数,B正确;对于C,∵y=tan x的定义域为kπ-π2,kπ+2π(k∈Z),即定 义域关于原点对称,tan(-x)=-tan x,∴y=tan x为奇函数,C错误;对于D,∵y=
2024届高三数学一轮复习--三角函数与解三角形第3练 两角和与差的正弦、余弦和正切公式(解析版)
【详解】因为
cos
4
5 ,所以 5
2 cos 2
2 sin 2
5 ,平方后可得 5
1 cos2 sin2 sin cos 1 ,整理得 1 1 sin 2 1 ,所以 sin 2 3 .
2
5
22
5
5
故选:D.
2.B
【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值
6
,则
tan
(
)
A. 3
B. 2 3
C. 6
D. 6 3
3.(2023·全国·高三专题练习)若
1 1
tan tan
π 4 π 4
1 2
,则
cos
2
的值为(
)
A.- 3 5
B. 3 5
C. 4 5
D. 4 5
4.(2023
秋·江苏泰州·高三泰州中学校考开学考试)已知
cos
12
【详解】因为
sin
3
sin
6
,所以
1 2
sin
3 cos 2
3 sin 1 cos ,
2
2
所以 3 1 cos 3 1 sin ,所以 tan 3 1 2 3 . 3 1
故选:B
3.A
【分析】由已知可得
tan
π 4
1 3
,进而求出
四个命题:
甲: tan 1 ;
2 乙: tan tan 7 : 3 ;
丙:
sin cos
5 4
;
丁: tan tan tan tan 5 : 3 .
如果其中只有一个假命题,则该命题是( )
A.甲
2024届高三数学一轮复习-三角函数与解三角形 第4练 二倍角公式及应用(解析版)
B. cos A cos B
C. sin 2A sin 2B
D. cos 2A cos 2B
12.(2023·全国·高三专题练习)给出下列说法,其中正确的是( )
A.若 cos 1 ,则 cos 2 7
3
9
C.若 x 1 ,则 x 1 的最小值为 2
2
x
B.若 tan 2 4 ,则 tan 1
D. 5 或
5
5
)
D. 24 25
7.(2023·全国·高三专题练习)下列四个函数中,最小正周期与其余三个函数不同的是( )
A. f x cos2 x sin x cos x
B. f x 1 cos 2 x
2sin x cos x
C.
f
x
cos
x
π 3
cos
x
π 3
D.
f
x
sin
D
不
正确,
故选:BC.
10.AD
【分析】根据二倍角正弦公式、辅助角公式,结合正弦型函数的单调性、平移的性质、对称
性、换元法逐一判断即可.
【详解】 f (x) sin x cos x 1 sin 2x, g(x) sin x cos x 2 sin(x π ) ,
2
4
当
x
0,
π 4
时,
3 5 8
2
5 1 5 1.
16
4
故选:D.
2.B 【分析】根据三角恒等变换公式求解.
【详解】
sin
π 6
cos
3 sin 1 cos cos 3 ,
2
2
5
所以 3 sin 1 cos 3 ,
【高考第一轮复习数学】三角函数专题
专题一:三角函数一、三角函数1、同角三角函数的基本关系:22sin cos 1αα+= sin tan cos ααα=2、诱导公式(一) tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k诱导公式(二) tan )tan(cos )cos( sin )sin(αααααα-=-=--=- 诱导公式(三)sin(180)=-sin ;cos(180)cos ;tan(180)tan αααααα++=+=。
tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒诱导公式(四)sin )2cos( cos )2sin(ααπααπ=-=-sin )2cos(cos )2sin(ααπααπ-=+=+3、两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i nαβαβαβ+=-两角和与差的正弦公式:()sin sin cos cos sin αβαβαβ+=+ ()s i n s i n c o s c o s s i nαβαβαβ-=-两角和与差的正切公式:()tan tan tan 1tan tan αβαβαβ++=-; ()tan tan tan 1tan tan αβαβαβ--=+注意:,,()222k k k k z πππαβπαπβπ±≠+≠+≠+∈4、辅助角公式:sin cos ))a x b x x x x ϕ+=+=+其中辅助角ϕ由cos sin ϕϕ⎧=⎪⎪⎨⎪=⎪⎩确定,即辅助角ϕ的终边经过点(,)a b5、二倍角正弦、余弦和正切公式:sin 22sin cos ααα=2222c o s 2c o s s i n 12s i n2c o s 1ααααα=-=-=- 22t a n t a n 21t a n ααα=-注意:2,22k k ππαπαπ≠+≠+ ()k z ∈升幂公式:221cos 21cos 2cos ;sin 22αααα+-==降幂公式:221cos22cos;1cos22sinαααα+=-=7、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,m ax1y=;当22x kππ=-()k∈Z时,m in1y=-.当()2x k kπ=∈Z时,m ax1y=;当2x kππ=+()k∈Z时,m in1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k kπππ-∈Z上是增函数;在在,22k kππππ⎛⎫-+⎪⎝⎭函数性质()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数. []2,2k k πππ+ ()k ∈Z 上是减函数.()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴8、常用特殊角的三角函数值表:二、解三角形1、正弦定理:在C ∆A B 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆A B 的外接圆的半径,则有2sin sin sin a b c R C===AB .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a RA =,sin 2b RB =,sin 2cC R=;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c CC++===A +B +AB.3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆A B 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c abc+-A =,222cos 2a c bac+-B =,222cos 2a b cC ab+-=.6、设a 、b 、c 是C ∆A B 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > .。
三角函数的综合应用+课件-2025届高三数学一轮复习
(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
高三一轮复习三角函数专题及答案解析
三角函数典型习题 1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.2 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++C B A . (I )试判断△ABC 的形状;(II )若△ABC 的周长为16,求面积的最大值.3 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)(Ⅱ)4.在∆(1)求(2)若5(1(26(I)(II)若7(Ⅰ)(Ⅱ)当0,2x ∈⎢⎥⎣⎦时,求函数()f x 的最大值,并写出x 相应的取值.8.在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。答案解析1【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin AC A A π⎛⎫+=+π-- ⎪6⎝⎭===22∴C II.163∴ (Ⅱ)∵由(Ⅰ)∵C 2∵tan 3A =,A 为三角形的内角,∴sin A = 由正弦定理得:sin sin AB BC C A= ∴BC ==8【解析】:(1) //m n ⇒ 2sinB(2cos 2B 2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得: 4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△∴△②4=a 2∴∵△∴△42sin (2)a 2+故S 5π12sin 23x ⎛⎫=+- ⎪⎝⎭. 又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤, 即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴. (Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 6【解析】:(I)由已知得3sin 3sin 222A A a c b ⇒=⋅-+(II)而b 又S 所以7 =所以(Ⅱ)1-所以此时444428。
高三高考数学第一轮复习课件三角函数复习
]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2
。
(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+
(完整版)高三一轮复习三角函数专题及答案解析
三角函数典型习题1 •设锐角ABC的内角A B, C的对边分别为a, b, c,a 2bsi nA.(I )求B的大小;(n)求cosA sin C的取值范围• A B C 厂2 •在ABC中角A,B,C所对的边分别为a, b, c,sin sin— 2 .2 2(1)试判断△ ABC的形状;(II)若厶ABC的周长为16,求面积的最大值•23 •已知在ABC中,A B,且tan A与tan B是方程x 5x 6 0的两个根•(I )求tan (A B)的值;(n )若AB 5 ,求BC的长•2 2 2 14. 在ABC中,角A. B. C所对的边分别是a,b,c,且a c b ac.22A C(1) 求sin cos2B 的值;2(2) 若b=2,求厶ABC面积的最大值.5. 已知函数f(x) 2s in2 n x 3cos2x, xn,-n•4 4 2(1 )求f (x)的最大值和最小值;(2)f(x) m 2在x n,n上恒成立,求实数m的取值范围.4 26. 在锐角△ ABC 中,角A. B. C 的对边分别为a、b、c,已知(b2 c2 a2)ta nA 3bc.(I) 求角A;(II) 若a=2,求厶ABC面积S的最大值?7. 已知函数f (x) (sin x cosx) +cos2 x .(I )求函数f x的最小正周期;(n )当x o,?时,求函数f x的最大值拼写出x相应的取值•8 .在ABC中,已知内角A . B . C所对的边分别为a、b、c,向量r r 2 B r r m 2sin B, 、3 ,n cos2B, 2cos 1,且m//n?2(I) 求锐角B的大小;(II) 如果b 2,求ABC的面积S ABC的最大值?答案解析11【解析】:(I )由a 2bsi nA ,根据正弦定理得si nA 2si n Bsin A ,所以sin B -,2 由ABC 为锐角三角形得B n .6(n )cosA sin C cos A sinAcos A sin -A61 3cos A cos Asin A22、、3sinA -.32【解析】 :I. sinC . sin CC cos .C sin2sin('—222 224C C 即C,所以此三角形为直角三角形2 422••• tanA 3, A 为三角形的内角,二sin A由正弦定理得:-A 艮 -BCsin C sin A-2 2b a b 2 abII.16 号,此时面积的最大值为 32 6 42 .-2ab ,—2ab 64(2 -.2)当且仅当a b 时取等3【解析】:(I )由所给条件 方程x 2 5x 6 ••• tan (A B) tan A tan B1 tan Atan BB C 180 ,• C180 (A 0 的两根 tan A 3, tan B 2 . 1B).由(I )知,tanCtan(A B)1,•/ C 为三角形的内角,• sinC_2 23 10弘知教育内部资料 中小学课外辅导专家2 3••• BC 1 —汇 3.5. 近 y/10 2r r 2B 厂8【解析】:(1) m//n2sinB(2cos ;-1)=-,3cos2B 2sinBcosB=- 3cos2Btan2B=- 32兀 心宀 n••• 0<2B< n,2B=y,A 锐角 B=3① 当B=n^,已知b=2,由余弦定理,得: 4=a 2+c ?-ac > 2aac=ac(当且仅当a=c=2时等号成立)■/ △ ABC 的面积 S ABC =3acsinBh^ac w 3ABC 的面积最大值为.3② 当B=6n 时,已知b=2,由余弦定理,得:4=a 2+c 2+ 3ac 县ac+ . 3ac=(2+ 3)ac(当且仅当 a=c= , 6- . 2时等号成立) •,ac < 4(23)1 1•••△ ABC 的面积 S AABC =2 acsinB^ac <2- , 3 ,△ ABC 的面积最大值为 2- 314【解析】:(1)由余弦定理:cosB=4sid +cos2B=1 24⑵由cos B4 得sinB.15 •/ b=2,4n1 2sin 2x —;=;ac+4 > 2c,得 acw —,c 233 2sin(2x -)2 ,即 0 1 -2sin(2x -) 12 44(2)由 tan2B=- .3n [、. 5nB=3或石 1 V15S\ ABc =~acsi nBw(a=c 时取等号)3故S A ABC 的最大值为5【解析】(I ) T f(x).n _1 cos 2x3cos2x 1 sin2x 3cos2x弘知教育内部资料 中小学课外辅导专家n nn n又••• x —< 2x -<4 2 613 又 S besin A be24所以△ ABC 面积S 的最大值等于32 27【解析】:(I )因为 f (x) (sin x eosx) +eos2 x sin1 sin2x eos2x ( ) =1+.2si n(2x )42所以,T —,即函数f(x)的最小正周期为2(n )因为 0 x ,得 2x L,所以有-sin(2x) 12 4 4 4 24所以,函数f x 的最大值为1 2此时,因为一2x —丄,所以,2x ,即x -4 4 4428即 2 < 1 2sinn2x -3 • f(x) maxf (X)min(n) •/ f (x)f(x)f(x)•- m f (X)maxf ( X) min••• 1 m 4,即m 的取值范围是(1,4).6【解析】:(1)由已知得b 1 2 * 4e 2 a 2 si nA ,32bccos A又在锐角△ ABC 中,所以A=60,[不说明是锐角 △ ABC 中,扣 1 分](II)因为 a=2,A=60 所以 b e be 4,S1 3besin Abe2而 b 2 e 2 2be be 42bcbe 4 ,3x 2sin xeosx eos 2 x eos2x。
2023年新高考数学一轮复习5-3 三角函数的图象与性质(知识点讲解)含详解
专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭例 4. 函数y =sin x -cos x 的定义域为 .【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线.(3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<-例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T 2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x ∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π= 3π例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( )A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-. 【解析】 【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =, 因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsinφ16,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤, 因此,当11236x ππ+=时,即34x π=时,32y =-, 当5232x ππ+=时,即1312x π=时,3y =. 所以该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值是3,最小值是32-.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)完善表格见解析;图象见解析;最大值为2,最小值为 【解析】 【分析】(1)利用最大值点和零点可确定最小正周期,由此可求得ω;利用()01f =可求得ϕ,由此可得()f x 解析式;令()222262k x k k Z πππππ-+≤+≤+∈即可求得单调递增区间;(2)令26X x π=+,利用五点作图法即可完善表格并得到图象,结合图象可求得最值.(1)若()12f x =,()20f x =,即1x 是()f x 的最大值点,2x 是()f x 的零点,且12x x -的最小值为4π,设()f x 的最小正周期为T ,则44T π=,即2T ππω==,解得:2ω=. 由()01f =可得:()02sin 1f ϕ==,即有1sin 2ϕ=, 26k πϕπ∴=+或()526k k Z ππ+∈,又2πϕ<,6πϕ∴=, 综上所述:()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;令()222Z 262k x k k πππππ-+≤+≤+∈,解得:()Z 36k x k k ππππ-+≤≤+∈,()f x ∴的单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)根据“五点作图法”的要求先完成表格:令2X x π=+.由图可知:当6x π=时,()f x 取到最大值2;当712x π=时,()f x 取到最小值3-. 【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭【答案】C 【解析】 【分析】利用关于正切型函数的不等式去求函数()f x =的定义域【详解】由πtan(2)14x,可得ππππ2π442k x k ,则π3πππ2428k k x则函数()f x 3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭ 故选:C例 4. 函数y =sin x -cos x 的定义域为 . 【答案】5{|22,}44x k x k k Z ππππ+≤≤+∈ 【解析】法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为4π,54π,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈. 法二:sin x -cos x =2sin (4x π-)≥0,将4x π-视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -4π≤π+2k π(k ∈Z ),解得2k π+4π≤x ≤2k π+54π (k ∈Z ),所以定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈ 【点睛】若定义域中含k π或2k π应注明k ∈Z . 【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线. (3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-【答案】A 【解析】709,,sin()1,363663x x x ππππππ∴≤≤∴-≤-≤≤-≤max min 2,y y ∴==故选A例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.【答案】16,8⎡⎤-⎢⎥⎣⎦【解析】 【分析】由x 的范围求出tan x 的范围,再根据二次函数的性质即可得出答案. 【详解】因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]tan 1,1x ∈-,22312tan 3tan 12tan 48y x x x ⎛⎫=-+-=--+ ⎪⎝⎭,则当3tan 4x =时,()max 18f x =,当tan 1x =-时,()min 6f x =-, 所以函数()f x 的值域为16,8⎡⎤-⎢⎥⎣⎦.故答案为:16,8⎡⎤-⎢⎥⎣⎦.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π,076x π=,03y =;(2)最大值0,最小值3-. 【解析】 【详解】试题分析:(1)由图可得出该三角函数的周期,从而求出00,x y ;(2)把26x π+看作一个整体,从而求出最(1)由题意知:()f x 的最小正周期为π,令y=3,则2+2k k 62x Z πππ+=∈,,解得+k k 6x Z ππ=∈,,所以076x π=,03y =. (2)因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是 当206x π+=,即12x π=-时,()f x 取得最大值0;当262x ππ+=-,即3x π=-时,()f x 取得最小值3-.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,CD 选项均不满足条件.例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】 【详解】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<- 【答案】A 【解析】 【分析】依题意可求ω=2,又当x 23π=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=A sin (2x 6π+),解:依题意得,函数f (x )的周期为π, ∵ω>0, ∴ω2ππ==2.又∵当x 23π=时,函数f (x )取得最小值, ∴223π⨯+φ=2k π32π+,k ∈Z ,可解得:φ=2k π6π+,k ∈Z , ∴f (x )=A sin (2x +2k π6π+)=A sin (2x 6π+).∴f (﹣2)=A sin (﹣46π+)=A sin (6π-4+2π)>0.f (2)=A sin (46π+)<0, f (0)=A sin 6π=A sin56π>0, 又∵326ππ->4+2π562ππ>>,而f (x )=A sin x 在区间(2π,32π)是单调递减的,∴f (2)<f (﹣2)<f (0). 故选A .例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【答案】D【解析】法一:(反子集法)∵x ∈⎝⎛⎭⎫π2,π,∴ωx +π4∈⎝⎛⎭⎫πω2+π4,πω+π4. ∵f (x )在⎝⎛⎭⎫π2,π上单调递减,∴⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,解得⎩⎨⎧ω≥4k +12,k ∈Z ,ω≤2k +54,k ∈Z.∴k =0,此时12≤ω≤54,故选D .法二:(子集法)由2k π+π2≤ωx +π4≤2k π+3π2,得2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z ,因为f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减, 所以⎩⎨⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得⎩⎨⎧ω≥4k +12,ω≤2k +54.因为k ∈Z ,ω>0,所以k =0,所以12≤ω≤54,即ω的取值范围为⎣⎡⎦⎤12,54.故选D . 【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3【答案】A 【解析】 【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<, 322π⎛⎫324ππ2所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】 由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+【答案】A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 22πy =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确;y =sin2x +cos2x =(2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确;y =sin x +cosx =(x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确;故选A .例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.三角函数是奇、偶函数的充要条件(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π= 【答案】A 【解析】 【详解】试题分析:由题图知,2A =,最小正周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+.因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22()32k k Z ππϕπ+=+∈,令0k =,得6πϕ=-,所以2sin(2)6y x π=-,故选A. 例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( ) A .[]4,2-- B .[]2,0-C .[]0,2D .[]2,4【答案】A(1)4sin(1)14sin11f -=-+=-+,因为sin1sin 4π>4sin110-+<,(0)4sin10f =>,因此()f x 在[1,0]-上有零点,故在[2,0]-上有零点;(2)4sin524sin(25)2f π=-=---,而025ππ<-<,即sin(25)0π->,因此(2)0f <,故()f x 在[0,2]上一定存在零点;虽然(4)4sin1740f =-<,但99()4sin(1)4sin(1)844f πππππ=+-=+-,又21243πππ<+<,即3sin(1)42π+>,从而,于是()f x 在区间9[2,]8π上有零点,也即在[2,4]上有零点,排除B ,C ,D ,那么只能选A .例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据()f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈, 因为0>ω,所以当0k =时min 3ω=; 故答案为:3例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3求出36x π+的范围,再由函数值为零,得到36x π+的取值可得零点个数.【详解】 详解:0x π≤≤ 193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点.。
高考一轮复习专题三角函数(全)
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, |α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ. 两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cosα=x r 、tan α=yx 分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α. 公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数y =tan )4(x -π的定义域为( ).A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ).A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域.(2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质1含解析
三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共6小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.函数的定义域为A. B.C. D.2.函数的定义域是()A. (0,]B. (0,)C. [0,]D. (0,]3.已知f(x)=cos x(cos x +sin x)在区间[-,m]上的最大值是,则实数m的最小值是()A. B. C. D.4.若f(x )=(x -)在区间[-a,a]上单调递增,则实数a的最大值为()A. B. C. D.5.已知函数f(x)=sin(ωx +)(ω>0)在区间[-,]上单调递增,则ω的取值范围为( )A. (0,]B. (0,]C. [,]D. [,2]6.函数f(x )=(4x +)+的零点个数为()A. 2B. 3C. 4D. 5二、多选题(本大题共2小题,共10.0分。
在每小题有多项符合题目要求)7.函数f(x)=A (x +)(A >0,>0,||<)的部分图象如图所示,则()1A. f(x)的图象的最小正周期为B. f(x)的图象的对称轴方程为x=+2k(k Z)C. f(x)的图象的对称中心为(+2k,0)(k Z)D. f(x)的单调递增区间为[4k-,4k+](k Z)8.已知函数,现给出下列四个命题,其中正确的是()A. 函数的最小正周期为B. 函数的最大值为1C. 函数在上单调递增D. 将函数的图象向左平移个单位长度,得到的函数解析式为三、填空题(本大题共2小题,共10.0分)9.已知函数f(x)=sin(2x+φ)(0≤φ<π)关于直线对称,则f(0)= .10.筒车是我国古代独创的一种水利浇灌工具,因其经济又环保,至今还在农业生产中得到应用,明朝科学家徐光启在农政全书中用图画1描绘了筒车的工作原理.假定在水流稳定的状况下,简车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形圆,筒车的半径为4m,筒车转轮的中心O到水面的距离为2m,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中出现即时的位置时起先计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系设盛水筒M从点运动到点P时所经过的时间为单位:,且此时点P距离水面的高度为单位:,则h 与t的函数关系式为,点P第一次到达最高点须要的时间为四、解答题(本大题共2小题,共24.0分。
2024届高三数学一轮复习-三角函数与解三角形 第2练 同角三角函数的基本关系及诱导公式(解析版)
第2练同角三角函数的基本关系及诱导公式一、单选题
二、多选题
A.()f x 的值域为2,2⎡⎤-⎣⎦
B.()f x 的最小正周期为πC.π
6
ϕ=
D.将函数f (x )的图象向左平移14.(2023·全国·高三专题练习)2022的形成需要两股涌潮,一股是波状涌潮,鱼鳞一样的涌潮.若波状涌潮的图象近似函数而破碎的涌潮的图象近似()f x '(两潮有一个交叉点,且破碎的涌潮的波谷为A.2
ω=C.π4f x ⎛
⎫'+ ⎪⎝
⎭的图象关于原点对称
三、填空题
15.(2023·全国·高三专题练习)已知16.(2023·湖南衡阳·衡阳市八中校考模拟预测)已知π
四、解答题
(1)若AM BM =,求
AC
AM
的值;(2)若AM 为BAC ∠的平分线,且20.(2023·全国·高三专题练习)a c <,且ππsin cos 36A ⎛⎫⎛- ⎪ ⎝⎭⎝(1)求A 的大小;
(2)若sin sin 43sin a A c C +=
参考答案:。
高三一轮复习 三角函数全章 练习(7套)+易错题+答案
第五章三角函数第1节任意角、弧度制、任意角的三角函数一、选择题1.给出下列四个命题:①-是第二象限角;②是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( C )(A)1个(B)2个(C)3个(D)4个解析:-是第三象限角,故①错误.=π+,从而是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.选C.2.已知点P(tan α,cos α)在第三象限,则角α的终边所在象限是( B )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:由题意知tan α<0,cos α<0,所以α是第二象限角.选B.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( C )(A)(B)(C) (D)2解析:设圆半径为r,则其内接正三角形的边长为r,所以α==,选C.4.设集合M={x|x=²180°+45°,k∈Z},N={x|x=²180°+45°,k∈Z},那么( B )(A)M=N (B)M⊆N(C)N⊆M (D)M∩N=∅解析:由于M={x|x=²180°+45°,k∈Z}={…,-45°,45°,135°, 225°,…},N={x|x=²180°+45°,k∈Z}={…,-45°,0°,45°,90°,135°, 180°,225°,…},显然有M⊆N,故选B.5.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( A )(A)1 (B)2 (C)3 (D)4解析:举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin =sin ,但与的终边不相同,故④错;当θ=π,cos θ=-1时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.选A.6.设θ是第三象限角,且|cos |=-cos ,则是( B )(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角解析:由θ是第三象限角,知为第二或第四象限角,因为|cos |=-cos ,所以cos ≤0,综上知为第二象限角.选B.二、填空题7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为.解析:设扇形的半径为R,则αR2=2,所以R2=1,所以R=1,所以扇形的周长为2R+α²R=2+4=6.答案:68.若α角与角终边相同,则在[0,2π]内终边与角终边相同的角是.解析:由题意,得α=+2kπ(k∈Z),=+(k∈Z).又∈[0,2π],所以k=0,1,2,3,=,,,.答案:,,,9.已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E∩F= .解析:由单位圆的正、余弦线,容易得E={θ|<θ<π},又由F可知θ应在第二、四象限,所以E∩F={θ|<θ<π}.答案:{θ|<θ<π}10.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为.解析:由已知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.答案:-111.满足cos α≤-的角α的集合为.解析:作直线x=-交单位圆于C,D两点,连接OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2kπ+π≤α≤2kπ+π,k∈Z}.答案:{α|2kπ+π≤α≤2kπ+π,k∈Z}三、解答题12.已知角α的终边经过点P(-,y),且sin α=y(y≠0),判断角α所在的象限,并求cos α,tan α的值.解:因为r=|OP|==,所以sin α==y.因为y≠0,所以9+3y2=16,解得y=±,所以角α在第二或第三象限.当角α在第二象限时,y=,cos α==-,tan α=-;当角α在第三象限时,y=-,cos α=-,tan α=.13.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.解:设扇形的半径为r cm,弧长为l cm,则解得所以圆心角α==2(rad).如图,过O作OH⊥弦AB于H,则∠AOH=1 rad.所以AH=1²sin 1=sin 1(cm),所以AB=2sin 1(cm).所以圆心角的弧度数为2 rad,弦长AB为2sin 1 cm.14.求函数y=lg(2sin x-1)+的定义域.解:要使原函数有意义,必须有即如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2kπ+,2kπ+)(k∈Z).第2节同角三角函数的基本关系及诱导公式一、选择题1.已知A=+(k∈Z),则A的值构成的集合是( C )(A){1,-1,2,-2} (B){-1,1}(C){2,-2} (D){1,-1,0,2,-2}解析:当k为偶数时,A=+=2;k为奇数时,A=-=-2.故选C.2.已知sin α=,则sin4α-cos4α的值为( B )(A)- (B)- (C)(D)解析:sin4α-cos4α=sin2α-cos2α=2sin2α-1=-.3.等于( A )(A)sin 2-cos 2(B)sin 2+cos 2(C)±(sin 2-cos 2)(D)cos 2-sin 2解析:===|sin 2-cos2|=sin 2-cos 2.4.若函数f(x)=则f(-)的值为( A )(A)(B)- (C)(D)-解析:由已知得f(-)=f(-)+1=f()+2=-cos +2=.5.已知=1,则sin2θ+3sin θcos θ+2cos2θ的值是( C )(A)1 (B)2 (C)3 (D)6解析:由已知得=1,即tan θ=1,于是sin2θ+3sin θcos θ+2cos2θ===3.6.若sin θ,cos θ是方程4x2+2mx+m=0的两根,则m的值为( B )(A)1+ (B)1-(C)1± (D)-1-解析:由题意知sin θ+cos θ=-,sin θ²cos θ=.又(sin θ+cos θ)2=1+2sin θcos θ,所以=1+,解得m=1±.又Δ=4m2-16m≥0,所以m≤0或m≥4,所以m=1-.二、填空题7.若=2,则sin(θ-5π)sin(-θ)= .解析:由=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得1+2sin θcos θ=4(1-2sin θcos θ),故sin θcos θ=, 所以sin(θ-5π)sin(-θ)=sin θcos θ=.答案:8.已知cos(-α)=,则sin(α-)= .解析:sin(α-)=-sin[+(-α)]=-cos(-α)=-.答案:-9.已知cos 31°=a,则sin 239°²tan 149°= .解析:sin 239°²tan149°=sin(180°+59°)²tan(180°-31°)=-sin 59°²(-tan 31°)=cos 31°²=sin 31°==.答案:10.若x∈(0,),则2tan x+tan(-x)的最小值为 .解析:因为x∈(0,),所以tan x>0.所以2tan x+tan(-x)=2tan x+≥2,所以2tan x+tan(-x)的最小值为2.答案:211.已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .解析:由题意,得cos(θ+)=,所以tan(θ+)=.所以tan(θ-)=tan(θ+-)=-=-.答案:-12.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则 f (2 017)的值为.解析:因为f(4)=asin(4π+α)+bcos(4π+β)=asin α+bcos β=3,所以f(2 017)=asin(2 017π+α)+bcos(2 017π+β)=asin(π+α)+bcos(π+β)=-asin α-bcos β=-3.答案:-3三、解答题13.已知sin(3π+θ)=,求+的值.解:因为sin(3π+θ)=-sin θ=,所以sin θ=-.所以原式=+=+=+====18.14.已知0<α<,若cos α-sin α=-,试求的值. 解:因为cos α-sin α=-,所以1-2sin α²cos α=.所以2sin α²cos α=,所以(sin α+cos α)2=1+2sin αcos α=1+=.因为0<α<,所以sin α+cos α=.由cos α-sin α=-,sin α+cos α=得sin α=,cos α=,所以tan α=2,所以==-.15.是否存在α∈(-,),β∈(0,π),使等式sin(3π-α)=cos(-β),cos(-α)=-cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在α,β使得等式成立,即有由诱导公式可得③2+④2得sin2α+3cos2α=2,所以cos2α=.又因为α∈(-,),所以α=或α=-.将α=代入④得cos β=.又β∈(0,π),所以β=,代入③可知符合.将α=-代入④得cos β=.又β∈(0,π),所以β=,代入③可知不符合.综上可知,存在α=,β=满足条件.第3节两角和与差的正弦、余弦和正切公式一、选择题1.化简的结果是( C )(A)tan (B)tan 2x (C)-tan x (D)解析:原式===-tan x,故选C.2.在△ABC中,2cos Bsin A=sin C,则△ABC的形状一定是( D )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形解析:由条件得2cos Bsin A=sin(A+B),即2cos Bsin A=sin Acos B+cos Asin B,得sin Acos B-cos Asin B=0,即sin(A-B)=0.因为角A,B是三角形的内角,所以A-B=0,△ABC是等腰三角形,故选D.3.函数f(x)=sin x-cos(x+)的值域为( B )(A)[-2,2] (B)[-,](C)[-1,1] (D)[-,]解析:因为f(x)=sin x-cos(x+)=sin x-(cos xcos -sin xsin)=sin x-cos x=sin(x-),所以值域为[-,],故选B.4.已知tan α,tan β是方程x2+3x+4=0的两根,若α,β∈(-,),则α+β等于( D )(A) (B)或-(C)-或 (D)-解析:由韦达定理得tan α+tan β=-3<0,tan α²tan β=4>0,故tan α<0,tan β<0,所以α,β∈(-,0),故α+β∈(-π,0).又tan(α+β)==,所以α+β=-.故选D.5.已知sin(α+)+cos α=-,则cos(-α)等于( C )(A)-(B)(C)- (D)解析:由sin(α+)+cos α=-,展开化简可得sin(α+)=-,所以cos(-α)=cos[-(+α)]=sin(+α)=-.6.在三角函数中,如果角α与角β可能相等,我们称这两个角是“亲情角”.已知tan(β-)=2,下列选项中,哪个角α与已知的角β互为亲情角( C )(A)tan α=3 (B)tan α=(C)tan2(α+)=(D)cos α=解析:由条件得=2,解得tan β=-3,由于A,B,D三个选项的tan α≠-3,所以均不符合.对于选项C,由tan2(α+)=()2=,解得tan α=-3或tan α=-,故选C.二、填空题7.计算cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α) = .解析:原式=cos [(α-35°)-(25°+α)]=cos 60°=.答案:8.已知tan(+θ)=3,则sin 2θ-2cos2θ= .解析:由tan(+θ)=3,求得tan θ=,而sin 2θ-2cos2θ===-.答案:-9.已知sin(x+)=,则sin(x-)+sin2(-x)的值是.解析:因为sin(x-)=-sin(x+)=-,sin2(-x)=cos2(+x)=1-sin2(+x)=,所以原式=-+=.答案:10.在△ABC中,若cos A=,sin B=,则cos C= .解析:因为cos A=,则sin A=,且45°<A<60°.又因为sin B=,sin B<,则0°<B<30°或150°<B<180°(舍去),所以cos B=,从而有cos C=-cos(A+B)=-cos Acos B+sin Asin B=-.答案:-11.已知cos(α-β)=,则(sin α+sin β)2+(cos α+cos β)2的值为.解析:(sin α+sin β)2+(cos α+cos β)2=2+2(cos αcos β+sin αsin β)=2+2cos(α-β)=.答案:12.设a,b,∈R,c∈[0,2π),若对任意实数x都有2sin(3x-)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.解析:因为2sin(3x-)=asin(bx+c),所以a=±2,b=±3.当a,b确定时,c唯一.若a=2,b=3,则c=;若a=2,b=-3,则c=;若a=-2,b=-3,则c=;若a=-2,b=3,则c=,故共有四组.答案:4三、解答题13.已知cos(α-β)=-,cos β=,α∈(,π),β∈(0,),求cos(α-2β)的值.解:由条件得α-β∈(0,π),sin(α-β)=,sin β=,所以cos(α-2β)=cos [(α-β)-β]=.14.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0,(1)求ω的值;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.解:(1)因为f(x)=sin(ωx-)+sin(ωx-)=sin ωxcos -cos ωxsin -cos ωx=sin ωx-cos ωx=sin(ωx-),由题设f()=0,得-=kπ,k∈Z,故ω=6k+2,考虑到0<ω<3,故有ω=2.(2)由上可知f(x)=sin(2x-),所以g(x)=sin(x+-)=sin(x-).因为x∈[-,],所以x-∈[-,],当x-=-,即x=-时,g(x)取最小值是-.15.已知函数f(x)=2sin(x-).(1)求f(x)的单调区间;(2)设α,β∈[0,],f((3α-)=-,f(3β+π)=,求cos(α+β)的值.解:(1)由-+2kπ≤x-≤+2kπ,k∈Z,解得-+6kπ≤x≤+6kπ,k∈Z,即得单调递增区间是[-+6kπ,+6kπ],k∈Z.同理可求单调递减区间是[+6kπ,+6kπ],k∈Z.(2)因为得即因为α,β∈[0,],解得从而有cos(α+β)=-.第4节二倍角公式一、选择题1.化简²的结果为( B )(A)tan α (B)tan 2α(C)1 (D)解析:原式=²==tan 2α,故选B.2.若设a=cos 6°-sin 6°,b=,c=,则有( C )(A)c<b<a (B)a<b<c(C)a<c<b (D)b<c<a解析:经计算得a=sin 24°,b=tan 26°,c=sin 25°,所以a<c<b,故选C.3.已知sin α+cos α=,则sin2(-α)等于( B )(A) (B) (C)(D)解析:由sin α+cos α=,两边平方得1+sin 2α=,解得sin 2α=-,所以sin2(-α)===,故选B.4.函数f(x)=cos 2x+6cos(-x)的最大值为( B )(A)4 (B)5 (C)6 (D)7解析:因为f(x)=1-2sin2x+6sin x=-2(sin x-)2+,当sin x=1时,f(x)取最大值为5,故选B.5.设α为锐角,且cos(α+)=,则sin(2α+)的值为( A )(A)(B)(C)(D)解析:因为α为锐角,且cos(α+)=,得sin(α+)=,所以sin[2(α+)]=,cos[2(α+)]=,从而有sin(2α+)=sin [2(α+)-]=³-³=,故选A.6.已知不等式f(x)=3sin cos +cos2-+m≤0对于任意的-≤x≤恒成立,则实数m的取值范围是( C )(A)[,+∞) (B)(-∞,)(C)(-∞,-] (D)[-,]解析:因为f(x)=sin +cos +m=(sin +cos )+m=sin(+)+m.因为-≤x≤,则-≤+≤,所以-≤sin(+)≤,即f(x)的最大值是²+m=+m≤0,解得m≤-,故选C.二、填空题7.已知角α终边过点P(3,4),则cos 2α= .解析:因为角α终边过点P(3,4),所以cos α=,sin α=,cos 2α=-.答案:-8.某会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是四个全等的直角三角形与一个小正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于.解析:设直角三角形的两直角边长分别为a,b,则4³(ab)+1=25,得ab=12.又因为a2+b2=25,联立方程组可解得或所以cos θ=,从而有cos 2θ=2cos2θ-1=.答案:9.若=2 018,则+tan 2α= .解析:+tan 2α=+=+====2 018.答案:2 01810.已知4cos Acos B=,4sin Asin B=,则(1-cos 4A)(1-cos 4B) = .解析:由条件得4cos Acos B²4sin Asin B=²,即sin 2Asin 2B=,所以原式=2sin22A²2sin22B=4(sin 2Asin 2B)2=4()2=3.答案:311.设△ABC的三个内角分别为A,B,C,则cos A+2cos 的最大值是.解析:因为cos A+2cos =cos A+2sin=-2sin2+2sin +1=-2+,所以当sin =,即A=时,cos A+2cos 的最大值是.答案:三、解答题12.已知f(x)=sin x+2sin(+)cos(+).(1)若f(α)=,α∈(-,0),求α的值;(2)若sin =,x0∈(,π),求f(x0)的值.解:(1)由条件可得f(x)=sin x+cos x=sin(x+).因为f(α)=,α∈(-,0),所以sin(α+)=.则α+=,解得α=-.(2)因为sin =,x0∈(,π),得sin x0=,cos x0=-,所以f(x0)=.13.已知函数f(x)=2cos x(sin x+cos x)-1.(1)求f()的值;(2)若f(x0)=,x0∈[0,],求sin 2x0的值.解:(1)因为f(x)=sin 2x+cos 2x=2sin(2x+),所以f()=2.(2)由上可知,f(x0)=2sin(2x0+)=,所以sin(2x0+)=.由x0∈[0,],得2x0+∈[,].由0<sin(2x0+)=<,知2x0+∈(,π),从而有cos(2x0+)=-, 所以sin 2x0=sin[(2x0+)-]=²-(-)²=.14.已知函数f(x)=sin 2xsin ϕ+cos2xcos ϕ-sin(+ϕ)(0<ϕ<π),其图象过点(,).(1)求ϕ的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值.解:(1)由条件得f(x)=sin 2xsin ϕ+cos ϕ-cos ϕ=sin 2xsin ϕ+cos 2xcos ϕ=cos(2x-ϕ).又函数图象过点(,),得=cos(2²-ϕ),-ϕ=2kπ,ϕ=-2kπ,k∈Z.又因为0<ϕ<π,解得ϕ=.(2)由上可知f(x)=cos(2x-),将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,即g(x)=f(2x)=cos(4x-).因为x∈[0,],所以4x-∈[-,],有cos(4x-)∈[-,1],所以函数g(x)在区间[0,]上的最大值和最小值分别为和-.第5节三角函数的化简与求值一、选择题1.计算等于( D )(A)-(B)- (C) (D)解析:原式====,故选D.2.式子tan 11°+tan 19°+tan 11°tan 19°的值是( D )(A) (B) (C)0 (D)1解析:因为tan(11°+19°)==,所以tan 11°+tan 19°=(1-tan 11°tan 19°),即tan 11°+tan 19°=1-tan 11°tan 19°,从而有tan 11°+tan 19°+tan 11°tan 19°=1,故选D.3.若sin(-α)=,则cos(+2α)等于( A )(A)- (B)- (C)(D)解析:观察发现+2α=2(+α),而(+α)+(-α)=,则有cos(+α)=sin(-α)=,所以cos(+2α)=2cos2(+α)-1=2³-1=-,故选A.4.设M=sin 100°-cos 100°,N=(cos 46°cos 78°+cos 44°²cos 12°),P=,Q=,则M,N,P,Q的大小关系是( C )(A)M>N>P>Q (B)P>M>N>Q(C)N>M>Q>P (D)Q>P>M>N解析:因为M=sin(100°-45°)=sin 55°,N=(cos 46°sin 12°+sin 46°cos 12°)=sin 58°,P==tan(45°-10°)=tan 35°,Q==tan 45°=1,所以N=sin 58°>sin 55°=M>sin 45°=1=Q.=tan 45°>tan 35°=P,即有N>M>Q>P,故选C.5.设△ABC的三内角为A,B,C,向量m=(sin A,sin B),n=(cos B, cos A),若m²n=1+cos(A+B),则角C等于( C )(A) (B) (C) (D)解析:因为m²n=1+cos(A+B),所以sin Acos B+cos Asin B=1+cos(A+B),即sin(A+B)=1+cos(A+B).又因为A+B+C=π,得sin(A+B)=sin C,cos(A+B)=-cos C,因此有sin C=1-cos C,即sin C+cos C=1,从而有sin(C+)=.考虑到0<C<π,得C+=,所以C=,故选C.6.若0≤A,B≤,且A+B=,则cos2A+cos2B的最小值和最大值分别为( C )(A), (B),(C), (D),解析:因为A+B=,所以cos2A+cos2B=+=1+(cos 2A+cos 2B)=1+[cos 2A+cos(-2A)]=1+(cos 2A+coscos 2A+sin sin 2A)=1+(cos 2A-sin 2A)=1+cos(2A+).又因为0≤A,B≤,且A+B=,得≤A≤,≤2A+≤,则-1≤cos(2A+)≤-,从而有≤cos2A+cos2B≤,故有最大值为,最小值为,故选C.二、填空题7.定义运算a⊕b=ab2+a2b,则sin 15°⊕cos 15°= .解析:依题意得sin 15°⊕cos 15°=sin15°cos215°+sin215°²cos 15°=sin 15°cos 15°(sin 15°+cos 15°)=sin30°²sin(15°+45°)=.答案:8.已知<β<α<,cos(α-β)=,sin(α+β)=-,则sin 2α的值是.解析:由已知<β<α<,可知π<α+β<,0<α-β<.又因为cos(α-β)=,sin(α+β)=-,得sin(α-β)=,cos(α+β)=-,所以sin 2α=sin [(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-³+(-)³=-.答案:-9.已知sin(x+20°)=cos(x+10°)+cos(x-10°),则tan x的值是.解析:由条件可化为sin xcos 20°+cos xsin 20°=2cos xcos 10°,两边同除以cos x,得tan x=====.答案:10.已知α=,则+++的值是.解析:法一因为===tan 4α-tan 3α,同理可得=tan 3α-tan 2α,=tan 2α-tan α,所以原式=tan 4α=tan =.法二原式=sin α²+sinα²=+=sin 2α²=sin 2α²=tan 4α=tan =.答案:11.如果cos5θ-sin5θ<7(sin3θ-cos3θ),θ∈[0,2π),那么θ的取值范围是.解析:原不等式等价于sin3θ+sin5θ>cos3θ+cos5θ.又因为f(x)=x3+x5是(-∞,+∞)上的增函数,所以sin θ>cos θ.又因为θ∈[0,2π),所以θ的取值范围是(,).答案:(,)12.函数f(x)=4cos2cos(-x)-2sin x-|ln(x+1)|的零点个数为.解析:因为f(x)=2(1+cos x)sin x-2sin x-|ln(x+1)|=sin2x-|ln(x+1)|,所以函数f(x)的零点个数转化为函数y=sin 2x与y=|ln(x+1)|图象的交点的个数.由图象可得交点有2个,故f(x)的零点也有2个.答案:2三、解答题13.已知函数f(x)=sin xsin(x+).(1)求f(x)的最小正周期;(2)当x∈[0,]时,求f(x)的取值范围.解:(1)由题意得f(x)=sin2x+sin xcos x=²+sin 2x=sin 2x-cos 2x+=sin(2x-)+,所以最小正周期为T=π.(2)由0≤x≤,得-≤sin(2x-)≤1,所以f(x)的取值范围是[0,].14.已知tan(π+α)=-,tan(α+β)=.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)因为tan(π+α)=-,所以tan α=-,从而有tan(α+β)====.(2)tan β=tan [(α+β)-α]===.15.如图,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:tan =;(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan的值.(1)证明:tan ===.(2)解:由A+C=180°,得C=180°-A,D=180°-B.由(1),有tan +tan +tan +tan=+++=+.连接BD(图略),在△ABD中,有BD2=AB2+AD2-2AB²ADcos A,在△BCD中,有BD2=BC2+CD2-2BC²CDcos C,所以AB2+AD2-2AB²ADcos A=BC2+CD2+2BC²CDcos A. 则cos A===.于是sin A===.连接AC,同理可得cos B===,于是sin B===.所以tan +tan +tan +tan=+=+=.第6节三角函数的图象与性质一、选择题1.函数y=tan(-x)的定义域为( A )(A){x|x≠kπ-,k∈Z} (B){x|x≠2kπ-,k∈Z}(C){x|x≠kπ+,k∈Z} (D){x|x≠2kπ+,k∈Z}解析:令-x≠kπ+,k∈Z,所以x≠--kπ,即x≠kπ-,k∈Z.2.(2016²山东卷)函数f(x)=(sin x+cos x)(cos x-sin x)的最小正周期是( B )(A)(B)π (C) (D)2π解析:f(x)=3sin xcos x-sin2x+cos2x-sin xcos x=sin 2x+cos 2x=2sin(2x+).最小正周期T==π,故选B.3.(2017²全国Ⅲ卷)设函数f(x)=cos(x+),则下列结论错误的是( D )(A)f(x)的一个周期为-2π(B)y=f(x)的图象关于直线x=对称(C)f(x+π)的一个零点为x=(D)f(x)在(,π)单调递减解析:f(x)=cos(x+)中,x∈(,π),x+∈(,),则f(x)=cos(x+)不是单调函数.故选D.4.如果函数y=3cos(2x+ϕ)的图象关于点(,0)对称,那么|ϕ|的最小值为( A )(A) (B) (C) (D)解析:由题意得3cos(2³+ϕ)=3cos(+ϕ+2π)=3cos(+ϕ)=0,所以+ϕ=kπ+,k∈Z,所以ϕ=kπ-,k∈Z,取k=0,得|ϕ|的最小值为.5.(2016²浙江卷)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( B )(A)与b有关,且与c有关(B)与b有关,但与c无关(C)与b无关,且与c无关(D)与b无关,但与c有关解析:f(x)=sin2x+bsin x+c=+bsin x+c=-+bsin x+c+,其中当b=0时,f(x)=-+c+,此时周期是π;当b≠0时,周期为2π,而c不影响周期.故选B.6.(2016²全国Ⅰ卷)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,](C)[-,] (D)[-1,-]解析:f′(x)=1-cos 2x+acos x=1-²(2cos2x-1)+acos x=-cos2x+acos x+,f(x)在R上单调递增,则f′(x)≥0在R上恒成立.令cos x=t,t∈[-1,1],则-t2+at+≥0在[-1,1]上恒成立,即4t2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t2-3at-5,则解得-≤a≤,故选C.二、填空题7.已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1,则常数a= ;设g(x)=f(x+),则g(x)的单调增区间为 .解析:因为x∈[0,],所以2x+∈[,],所以sin(2x+)∈[-,1],所以-2asin(2x+)∈[-2a,a].所以f(x)∈[b,3a+b].又因为—5≤f(x)≤1,所以b=-5,3a+b=1,解得a=2,b=-5.所以f(x)=-4sin(2x+)-1,g(x)=f(x+)=-4sin(2x+)-1=4sin(2x+)-1,当-+2kπ≤2x+≤+2kπ,k∈Z时,g(x)单调递增,即-+kπ≤x≤+kπ,k∈Z.所以g(x)的单调增区间为[-+kπ,+kπ],k∈Z.答案:2 [-+kπ,+kπ](k∈Z)8.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.解析:f(x)=sin ωx+cos ωx=sin(ωx+),因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f(ω)必为一个周期上的最大值,所以有ω²ω+=2kπ+,k ∈Z,所以ω2=2kπ+,k∈Z.又2[ω-(-ω)]≤,即ω2≤,所以ω2=,所以ω=.答案:9.已知函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x+ )+1的图象的对称轴完全相同,若x∈[0,],则f(x)的取值范围是. 解析:因为f(x)与g(x)的图象的对称轴完全相同,所以f(x)与g(x)的最小正周期相等,因为ω>0,所以ω=2,所以f(x)=3sin(2x-),因为0≤x≤,所以-≤2x-≤,所以-≤sin(2x-)≤1,所以-≤3sin(2x-)≤3,即f(x)的取值范围是[-,3].答案:[-,3]10.(2017²嘉兴模拟)已知函数f(x)=3sin(3x+ϕ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有个.解析:令f(x)=3sin(3x+ϕ)=2,得sin(3x+ϕ)=∈[-1,1],又x∈[0,π],所以3x+ϕ∈[ϕ,3π+ϕ];根据正弦函数的图象与性质,可得该方程在正弦函数一个半周期上最多有4个解,即函数y=f(x)的图象与直线y=2的交点最多有4个.答案:411.下列四个函数:①y=sin |x|,②y=cos |x|,③y=|tan x|,④y=-ln|sin x|,以π为周期,在(0,)上单调递减且为偶函数的是___ .(只填序号)解析:①y=sin |x|在(0,)上单调递增,故①错误;②y=cos |x|=cos x 周期为T=2π,故②错误;③y=|tan x|在(0,)上单调递增,故③错误;④ln|sin(x+π)|=ln|sin x|,周期为π,当x∈(0,)时,y=-ln|sin x|=-ln(sin x)在(0,)上单调递减,y=-ln|sin x|为偶函数,故④正确.答案:④12.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则ω的取值范围是.解析:T=≥2(π-)=π,所以0<ω≤2,由<x<π得ω+<ωx+<πω+,由题意知(ω+,πω+)⊆[+2kπ,+2kπ],k∈Z,所以即所以≤ω≤.答案:[,]三、解答题13.(2017²北京卷)已知函数f(x)=cos(2x-)-2sin xcos x.(1)求f(x)的最小正周期;(2)求证:当x∈[-,]时,f(x)≥-.(1)解:f(x)=cos 2x+sin 2x-sin 2x=sin 2x+cos 2x=sin(2x+),所以f(x)的最小正周期T==π.(2)证明:因为-≤x≤,所以-≤2x+≤,所以sin(2x+)≥sin(-)=-,所以当x∈[-,]时,f(x)≥-.14.求函数y=cos2x+sin x(|x|≤)的最大值与最小值.解:令t=sin x,因为|x|≤,所以t∈[-,].所以y=-t2+t+1=-(t-)2+,所以当t=时,y max=,当t=-时,y min=.所以函数y=cos2x+sin x(|x|≤)的最大值为,最小值为. 15.(2017²浙江协作体)已知0≤ϕ<π,函数f(x)=cos(2x+ϕ)+sin2x.(1)若ϕ=,求f(x)的单调递增区间;(2)若f(x)的最大值是,求ϕ的值.解:(1)由题意f(x)=cos 2x-sin 2x+=cos(2x+)+,由2kπ-π≤2x+≤2kπ,得kπ-≤x≤kπ-.所以f(x)的单调递增区间为[kπ-,kπ-],k∈Z.(2)由题意f(x)=(cos ϕ-)cos 2x-sin ϕsin 2x+,由于函数f(x)的最大值为,即+=1,从而cos ϕ=0,又0≤ϕ<π,故ϕ=.第7节函数y=Asin(ωx+φ)+b的图象与性质一、选择题1.为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点( A )(A)向左平行移动1个单位长度(B)向右平行移动1个单位长度(C)向左平行移动π个单位长度(D)向右平行移动π个单位长度2.(2016²全国Ⅰ卷)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+) (B)y=2sin(2x+)(C)y=2sin(2x-) (D)y=2sin(2x-)解析:因为T==π,=,所以y=2sin(2x+)y=2sin[2(x-)+],所以y=2sin(2x-).故选D.3.函数y=sin 2x的图象向右平移φ(φ>0)个单位,得到的图象恰好关于x=对称,则φ的最小值为( A )(A)π(B)π(C)π(D)以上都不对解析:y=sin 2x的图象向右平移φ个单位得到y=sin 2(x-φ)的图象,又关于x=对称,则2(-φ)=kπ+(k∈Z),2φ=-kπ-(k∈Z),即φ=--,取k=-1,得φ=π.4.设a∈R,b∈[0,2π],若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( B )(A)1 (B)2 (C)3 (D)4解析:由已知,3x-=ax+b+2kπ或3x-+ax+b=π+2kπ,k∈Z,所以或k∈Z,所以或满足条件的有序实数对(a,b)的对数为2.5.将函数f(x)=sin 2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)-g(x2)|=2的x1,x2,有=.则φ等于( D )(A) (B)(C)(D)解析:由已知得g(x)=sin(2x-2φ),满足|f(x1)-g(x2)|=2,不妨设此时y=f(x)和y=g(x)分别取得最大值与最小值,又|x1-x2|min=,令2x1=,2x2-2φ=-,此时|x1-x2|=-φ=,又0<φ<,故φ=.故选D.6.已知函数f(x)=Asin(x-),g(x)=k(x-3).已知当A=1时,函数h(x)=f(x)-g(x)所有零点和为9.则当A=2时,函数h(x)=f(x)-g(x)所有零点和为( A )(A)15 (B)12(C)9 (D)与k的取值有关解析:如图,函数y=f(x)与y=g(x)图象均过的点(3,0),且均关于点(3,0)对称.所以h(x)零点关于x=3“对称”,因为当A=1时,h(x)所有零点和为9,所以此时,函数y=f(x)与y=g(x)图象有三个公共点,此时,f(6)<g(6),得k>.当A=2时,f(6)>g(6)且g(9)=6k>2=f max(x),所以h(x)有5个零点x1,x2,x3,x4,x5,且x1+x5=x2+x4=6,x3=3.所以x1+x2+x3+x4+x5=15.故选A.7.(2016²全国Ⅰ卷)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( B )(A)11 (B)9 (C)7 (D)5解析:因为f(x)=sin(ωx+φ)的一个零点为x=-,x=为y=f(x)图象的对称轴,所以²k=(k为奇数).又T=,所以ω=k(k为奇数).又函数f(x)在(,)上单调,所以≤³,即ω≤12.若ω=11,又|φ|≤,则φ=-,此时,f(x)=sin(11-x-),f(x)在(,)上单调递增,在(,)上单调递减,不满足条件.若ω=9,又|φ|≤,则φ=,此时f(x)=sin(9x+),满足f(x)在(,)上单调的条件.故选B.二、填空题8.(2017²温州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,将f(x)的图象向左平移个单位,得到g(x)的图象,则函数g(x)的解析式为 .解析:由题意得=-=,所以T=π,所以ω=2,又因为2³+φ=π,所以φ=,所以f(x)=sin(2x+).因为g(x)的图象是由f(x)的图象向左平移个单位得到,所以g(x)=sin [2(x+)+]=sin(2x+).答案:g(x)=sin(2x+)9.(2016²全国Ⅲ卷)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移个单位长度得到.解析:y=sin x-cos x=2sin(x-),y=sin x+cos x=2sin(x+),y=2sin(x+)的图象至少向右平移个单位长度得到y=2sin(x+-)=2sin(x-)的图象.答案:10.若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为.解析:将函数y=2sin 2x的图象向左平移个单位长度,得到函数y=2sin [2(x+)]=2sin(2x+)的图象.由2x+=kπ+(k∈Z),得x=+(k∈Z),即平移后图象的对称轴为x=+(k∈Z).答案:x=+(k∈Z)11.(2016²浙江卷)已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A= ,b= .解析:2cos2x+sin 2x=sin(2x+)+1,所以A=,b=1.答案: 112.(2016²江苏卷)定义在区间[0,3π]上的函数y=sin 2x的图象与y=cos x的图象的交点个数是.解析:联立两曲线方程,得两曲线交点个数即为方程组解的个数,也就是方程sin 2x=cos x解的个数.方程可化为2sin xcos x=cos x,即cos x(2sin x-1)=0,所以cos x=0或sin x=.①当cos x=0时,x=kπ+,k∈Z,因为x∈[0,3π],所以x=,π,π,共3个;②当sin x=时,因为x∈[0,3π],所以x=,π,π,π,共4个.综上,方程组在[0,3π]上有7个解,故两曲线在[0,3π]上有7个交点.答案:7三、解答题13.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC 的面积为π.(1)求函数f(x)的解析式;(2)若f(α-)=,求cos 2α的值.解:(1)因为S△MBC=³2³BC=BC=π,所以周期T=2π=,ω=1,由f(0)=2sin φ=,得sin φ=,因为0<φ<,所以φ=,所以f(x)=2sin(x+).(2)由f(α-)=2sin α=,得sin α=,所以cos 2α=1-2sin2α=.14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f(x-),求g(x)的单调递减区间.解:(1)函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π, 所以T==π,ω=2,又x=为f(x)图象的一条对称轴,所以2³+φ=kπ+,k∈Z,解得φ=kπ+,k∈Z,又|φ|≤,所以φ=.(2)由(1)知,f(x)=sin(2x+),所以g(x)=f(x)+f(x-)=sin(2x+)+sin 2x=sin 2x+cos 2x+sin 2x =sin(2x+),令+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,所以g(x)的单调递减区间是[+kπ,+kπ],k∈Z.15.函数f(x)=cos(πx+φ)(0<φ<)的部分图象如图所示.(1)求φ及图中x0的值;(2)设g(x)=f(x)+f(x+),求函数g(x)在区间[-,]上的最大值和最小值.解:(1)由题图得f(0)=,所以cos φ=,因为0<φ<,故φ=.法一由于f(x)的最小正周期T==2,由题图可知1<x0<2,故<πx0+<,由f(x0)=得cos(πx0+)=,所以πx0+=,x0=.法二求离原点最近的正的最小值点,令πx+=π+2kπ,得x=+2k,k∈Z,令k=0得x=,所以=,x0=.(2)因为f(x+)=cos [π(x+)+]=cos(πx+)=-sin πx,所以g(x)=f(x)+f(x+)=cos(πx+)-sin πx=cos πxcos -sin πxsin -sin πx=cos πx-sin πx=sin(-πx)=-sin(πx-).当x∈[-,]时,πx∈[-,],(πx-)∈[-,], 所以sin(πx-)∈[-1,],-sin (πx-)∈[-,],当πx-=-,即x=-时,g(x)取得最大值;当πx-=,即x=时,g(x)取得最小值-.易错点训练:忽视函数值造成范围扩大一、选择题1.的值是( A )(A)sin 40° (B)cos 40° (C)cos 130°(D)±cos 50°解析:因为==-cos 130°=sin 40°,故选A.2.已知sin α=2sin β,tan α=3tan β,则cos α的值是( D )(A) (B)-(C)± (D)±或±1解析:由条件tan α=3tan β,得=.又因为sin α=2sin β,所以=.当sin β=0时,sin α=0,显然成立,故有cos α=±1;当sin β≠0时,3cos α=2cos β,从而有(sin α)2+(3cos α)2=4,解得cos2α=,所以cos α=±,故选D.3.在△ABC中,若sin A=,cos B=,则cos C的值是( B )(A) (B)(C)或 (D)以上都不对解析:因为cos B=,所以sin B=.又因为sin A=<=sin B,若A 为钝角,则sin(π-A)<sin B,得π-A<B,π<A+B矛盾.因此A肯定是锐角,所以cos A=,从而有cos C=-cos(A+B)=sin Asin B-cos Acos B=,故选B.4.已知3sin2x+2sin2y=2sin x,则sin2x+sin2y的最值情况是( D )(A)最大值为,最小值为-(B)最大值为,最小值为0(C)最大值为,最小值为-(D)最大值为,最小值为0解析:由0≤sin2y=(2sin x-3sin2x)≤1,可解得0≤sin x≤,则sin2x+sin2y=sin2x+(2sin x-3sin2x)=-sin2x+sin x=-(sin x-1)2+,所以sin2x+sin2y的最大值为,最小值为0.5.已知方程x2+4ax+3a+1=0(a>1)的两根为tan α,tan β,且α,β∈(-,),则tan 的值是( A )(A)-2 (B)(C)-2或(D)2或-解析:由韦达定理可知tan α,tan β同为负值,可得α,β∈(-,0),所以∈(-,0).又因为所以tan(α+β)===.又因为tan(α+β)==,解得tan =-2或,取tan =-2.二、填空题6.已知sin θ+cos θ=,其中θ∈(0,π),则tan θ的值是.。
一轮复习专题18 三角函数(知识梳理)
专题18三角函数(知识梳理)一、知识点(一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl=α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ;rad 01745.01801≈π= 。
3、特殊角的三角函数值30 45 60 90 120 135 150 18006π4π3π2π32π43π65ππsin 021222312322210cos 1232221021-22-23-1-tan3313⨯3-1-33-0210 225 240 270 300 315 330 36067π45π34π23π35π47π611ππ24、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅n πk 2第一象限角平分线36045⋅+n π+πk 24x 轴负半轴360180⋅+n π+πk 2第二象限角平分线 360135⋅+n π+πk 243x 轴 180⋅n πk 第三象限角平分线360225⋅+n π+πk 245y 轴正半轴36090⋅+n π+πk 22第四象限角平分线 360315⋅+n π+πk 247y 轴负半轴 360270⋅+n π+πk 223第一、三象限角平分线18045⋅+n π+πk 4y 轴18090⋅+n π+πk 2第二、四象限角平分线 180135⋅+n π+πk 43坐标轴90⋅n 2πk 象限角平分线9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
2024届高三数学一轮复习-三角函数与解三角形 第1练 任意角和弧度制及三角函数的概念(解析版)
第1练任意角和弧度制及三角函数的概念一、单选题B.A.8π33.(2023·福建福州·福建省福州第一中学校考模拟预测)为解决皮尺长度不够的问题,实验小组利用自行车来测量A,B上与点A接触的地方标记为点直),直到前轮与点B接触.经观测,当前轮与点B接触时,标记点度为0.45m.已知前轮的半径为A.20.10m B.19.94m4.(2023秋·甘肃天水·高二天水市第一中学校考开学考试)种结构样式,多见于亭阁式建筑、园林建筑.如图所示的带有攒尖的建筑屋顶可近似看作一个圆锥,其底面积为9π,侧面展开图是圆心角为A.122π5.(2023·河北衡水·河北衡水中学校考模拟预测)A.32-6.(2023·全国·高一专题练习)已知角重合.若角α终边上一点A.32-7.(2023春·广东深圳·高二深圳外国语学校校考期末)在平面直角坐标系中,已知点为角α终边上一点,若二、多选题9.(2023春·江西九江·高一校考期中)如图,在平面直角坐标系中,以原点O 为圆心的圆与x 轴正半轴交于点()1,0A .已知点()11,B x y 在圆O 上,点T 的坐标是()00,sin x x ,则下列说法中正确的是()A.若AOB α∠=,则 ACB α=B.若C.10sin y x =,则 0ACB x =D.若10.(2023春·湖北恩施·高一校联考期中)如图所示,以x 轴非负半轴为始边作锐角α,β,αβ-,它们的终边分别与单位圆相交于点P ,则下列说法正确的是()A. AP的长度为αβ-B.扇形11OA P 的面积为αβ-C.当1A 与P 重合时,12sin AP β=D.当3πα=时,四边形11OAA P 面积的最大值为11.(2023·全国·高三专题练习)如图,A ,B 是在单位圆上运动的两个质点.初始时刻,质点A 在(1,0)处,质点B 在第一象限,且AOB ∠=向运动,质点B 同时以rad /s 12π的角速度按逆时针方向运动,则(A.经过1s 后,扇形AOB B.经过2s 后,劣弧 AB 的长为C.经过6s 后,质点B 的坐标为D.经过22s 3后,质点A ,12.(2023秋·浙江杭州·高三浙江省杭州第二中学校考阶段练习)已知点点P 为圆C :2268x y x y +--+A.PAB 面积的最小值为C.∠PAB 的最大值为5π1213.(2023春·浙江衢州·高一校考阶段练习)0<φ<π)的图像与x 轴相邻两个交点之间的最小距离为与x 轴的所有交点的横坐标之和为A.123f π⎛⎫=- ⎪⎝⎭B.f (x )在区间,66ππ⎛⎫- ⎪⎝⎭内单调递增C.f (x )的图像关于点512π⎛- ⎝D.f (x )的图像关于直线x =14.(2023·全国·高二专题练习)在平面直角坐标系中,角与x 轴的非负半轴重合,终边经过点A.2±B.±1三、填空题16.(2023春·河南濮阳·高一濮阳一高校考阶段练习)已知圆锥侧面展开图的圆心角为底面周长为2π,则这个圆锥的体积为17.(2023·全国·高三专题练习)已知单位长度,再向下平移两个单位长度,得到为.18.(2023·安徽安庆·安庆市第二中学校考模拟预测)已知函数四、解答题(1)求扇形AOB的周长;(2)当点C在什么位置时,矩形参考答案:则有113l l r l R -==,所以1l =所以圆台的侧面积为(πR r +故选:C.3.D【分析】由题意,前轮转动了【详解】解:由题意,前轮转动了所以A ,B 两点之间的距离约为故选:D.4.D【分析】根据底面圆面积可求底面圆半径,从而可求底面圆周长,即可求扇形半径,再根据3如图所示:则圆锥的高h =则圆锥的体积2133V π=⨯⨯故选:D 5.C【分析】利用诱导公式,逆用正弦和角公式计算出答案.【详解】cos198cos132︒︒+cos18sin 42cos 42sin18=︒︒+︒故选:C 6.A【分析】计算得到1,2P ⎛- ⎝【详解】2π2πcos ,sin 33P ⎛对于A,PAB 面积的最小值为点12PAB M S AB y =⋅⋅= 对于B,连接,A C 交圆于22(31)42-=++-AC RC 对于C,当AP 运动到与圆Q ,2sin 4∠==QC CAQ AC ∠∠∠∴=+PAB CAQ CAN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数 2018年6月考纲要求:基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制 (1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义. (2)能利用单位圆中的三角函数线推导出2π±α,π±α的正弦、余弦、正切的诱导公式,能画出y =s i n x ,y =c o s x , y = t a n x 的图象,了解三角函数的周期性.(3)理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、 最大值和最小值、以及与x 轴的交点等),理解正切函数在,22ππ⎛⎫-⎪⎝⎭内的单调性. (4)理解同角三角函数的基本关系式:sin 2x +cos 2x = 1,sin tan .cos xx x= (5)了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.对于三角函数与三角恒等变换的考查:1.涉及本专题的选择题、填空题一般考查三角函数的基本概念、三角恒等变换及相关计算,同时也考查三角函数的图象与性质的应用等,解答题的考查则重点在于三角函数的图象与性质的应用.2.从考查难度来看,本专题试题的难度相对不高,以三角计算及图象与性质的应用为主,高考中通常考查对三角的计算及结合图象考查性质等.3.从考查热点来看,三角恒等变换、三角函数的图象与性质是高考命题的热点,要能够熟练应用三角公式进行三角计算,能够结合正弦曲线、余弦曲线,利用整体代换去分析问题、解决问题.同时要注意两者之间的综合.对于解三角形的考查:1.涉及本专题的选择题、填空题一般利用正弦定理、余弦定理及三角形的面积公式,考查三角形边、角、面积等的相关计算,同时注重与三角函数的图象与性质、基本不等式等的综合.2.从考查难度来看,本专题试题的难度中等,主要考查正弦定理、余弦定理及三角形的面积公式的应用,高考中主要以三角形的方式来呈现,解决三角形中相关边、角的问题. 3.从考查热点来看,正弦定理、余弦定理及三角形的面积公式的应用是高考命题的热点,要能够熟练应用公式进行三角形的边、角求值,三角形形状的判断及面积的相关计算等.注意三角形本身具有的性质的应用.考向一三角恒等变换样题1 (2017年高考北京卷)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若1sin3α=,则cos()αβ-=___________.【答案】7 9 -样题2 已知324βαπ<<<π,12cos()13αβ-=,3sin(),5αβ+=-则sin 2α=ABCD 【答案】B解给值求值型问题的一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值,注意根据角的象限确定符号. 这类求值问题关键在于结合条件和结论中的角,合理拆、配角.考向二 三角函数的图象和性质样题3 (2017年高考新课标Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D样题4(2017年高考新课标Ⅲ卷)设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D样题5 (2017年高考浙江卷)已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.考向三 利用正、余弦定理解三角形样题6 (2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是______,cos ∠BDC =_______.样题7 (2017新课标全国Ⅰ理科)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin B.sin C ;(2)若6cos B.cos C =1,a =3,求ABC △的周长.样题8 (2017新课标全国Ⅱ理科)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .考向四解三角形的应用样题9 宇宙飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱B C D).当返回舱距地预计到达的区域安排了同一条直线上的三个救援中心(记为,,面1万米的P点时(假定以后垂直下落,并在A点着陆),C救援中心测得返回舱位于其南偏东60°方向,仰角为60°,B救援中心测得返回舱位于其南偏西30°方向,仰角为30°,D救援中心测得着陆点A位于其正东方向.(1)求,B C两救援中心间的距离;(2)求D救援中心与着陆点A间的距离.三角函数本省历年高考题总结2011年(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45-(B )35- (C )35 (D )45(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 2012年(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2](17)(本小题满分12分)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A (2)若2a =,ABC ∆的面积为3;求,b c 。
2013年15.设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.17.(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA .2014年 8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=16. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .2015年(2)sin 20°cos 10°-cos 160°sin 10°=(A ) (B (C )12- (D )12(8)函数f (x )=错误!未找到引用源。
的部分图像如图所示,则f (x )的单调递减区间为(A )(错误!未找到引用源。
),k 错误!未找到引用源。
(b )(错误!未找到引用源。
),k 错误!未找到引用源。
(C )(错误!未找到引用源。
),k 错误!未找到引用源。
(D )(错误!未找到引用源。
),k 错误!未找到引用源。
(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 2016年12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5 (17)(本题满分为12分)ABC 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ; (II )若7,c ABC =的面积为332,求ABC 的周长.2018年各省三角函数高考题总结北京卷:(7)在平面直角坐标系中,记d 为点到直线x的距离,当m 变化时,d 的最大值为(A )1(B )2(C )3(D )4 (11)设函数f (x )= ,若f对任意的实数x 都成立,则的最小值为______(15)(本小题13分)在△ABC 中,a =7,b =8,cos B =-,(Ⅰ)求∠A :(Ⅱ)求AC 边上的高。
江苏卷:7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 . 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=.(1)求cos2α的值;(2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.全国卷2:6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.215.已知sin α+cos β=1,cos α+sin β=0,则sin (α+β)=________。