第一节定积分的元素法
(完整版)同济大学高等数学上第七版教学大纲(64学时)
![(完整版)同济大学高等数学上第七版教学大纲(64学时)](https://img.taocdn.com/s3/m/e1d9dd1adaef5ef7ba0d3cb6.png)
福建警察学院《高等数学一》课程教学大纲课程名称:高等数学一课程编号:学分:4适用对象:一、课程的地位、教学目标和基本要求(一)课程地位高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。
高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。
(二)教学目标通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。
(三)基本要求1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。
2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。
二、教学内容与要求第一章函数与极限【教学目的】通过本章学习1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分解,掌握基本初等函数的性质及其图形,理解初等函数的概念。
2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。
3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与左、右极限之间的关系,了解函数极限的性质。
4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。
5、掌握极限运算法则。
6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
定积分的元素法,平面图形的面积
![定积分的元素法,平面图形的面积](https://img.taocdn.com/s3/m/04e5cac44028915f804dc2e3.png)
•P(r, )
令
a
v
r .
r0
v
,
••
OM
x
特别地,当 r0 0 时,等速螺线的极坐标方程为 r a .
注:附录Ⅱ中常用的曲线的极坐标方程。
18
3.极坐标与直角坐标的关系
x r cos y r sin
r2 x2 y2
tan y
x
y
r
•
O
x
x, y
x
r ( )
d
O
21
例4 计算阿基米德螺线
r a (a 0)
上相应于 从0 变到2π的一段弧与极轴所围成的图形的面积。
解:积分变量为 , 积分区间为
0,2 , 在此区间上任取小区间
2a
, d , 面积元素为
O
x
dA 1 (a )2 d
2
2
所以曲边扇形的面积为:
d
O
r ( )
x
圆扇形面积公式为 A 1 R2 2
A
1 (
2
)2
d
20
极 点 在 图 形 外 ( 曲 边 环扇 形 )
面 积 元 素: 面积:
dA
1 2
出 (
)2 d
1 2
入
(
)2 d
A
1 2
0
0
3
9
例2 计算抛物线 y2 2x与直线 y x 4 所围成的
图形的面积。
y
解(1) 解方程组
3.3 定积分的应用医学高等数学课件
![3.3 定积分的应用医学高等数学课件](https://img.taocdn.com/s3/m/12c51ec1195f312b3169a5f4.png)
以dx 为底的窄边梯形绕x 轴旋转而成的薄片的 体积为
r dV x dx h
圆锥体的体积
2
y
P
r
o
h
x
V
h
0
h r hr x dx . 0 2 h 3 3 h
2
r 2 x3
2
类似地,如果旋转体是由连续曲线
1 2
3
1
情形3 我们如图做出面积微元,这时我 们所求阴影部分的面积即为
f1(x)
dA1
dA 1 f1 ( x) f 2 ( x)dx dA2 f 2 ( x) f1 ( x)dx
a
c
dA2
f2(x)
c
b c
b
A A1 A2 f1 f 2 dx f 2 f1 dx
b
b x
面积表示为定积分的步骤如下
(1)把区间[a , b]分成 n个长度为 x i 的小区间, 相应的曲边梯形被分为 n个小窄曲边梯形,第 i 个小窄曲边梯形的面积为 Ai ,则 A Ai .
n i 1
(2)计算Ai 的近似值
Ai f ( i )xi
i [ xi 1, xi ]
i 1 n
直角坐标情形
设曲线弧为 y f ( x ) (a x b) ,其中 f ( x ) 在[a , b]上有一阶连续导数
取积分变量为x ,在[a , b ] 上任取小区间[ x , x dx ],
y
dy
o a x x dx b
x
以对应小切线段的长代替小弧段的长
小切线段的长 (dx )2 (dy )2 1 y 2 dx
6.1 定积分的元素法
![6.1 定积分的元素法](https://img.taocdn.com/s3/m/4d6d52ea524de518964b7dba.png)
(4)则所求的量 Q 的值可用定积分表示为:
Q= dQ = f ( x)dx
a a
b
b
Q= dQ lim f ( x) x
b a
0
y f ( x)
f ( x) dQ
a
x x
b
我们将用微元法建立平 面图形的面积、体积、 平面曲线的弧长、功、 水压力、引力等的积分 模型.
Revised May, 2004 May, 2003
y f ( x)
A
a
v v(t )
s
b
T1
Revised May, 2004
T2
May, 2003
(2)量 Q 具有区间可加性:
Q Qi Q
i 1
n
y f ( x)
Q2
Qi
Qn
Q
Q1
a
b
Revised May, 2004 May, 2003
(3)Q 可以近似表示为 f ( x)x
6.1 定积分的元素法
Revised May, 2004 May, 2003
定积分的微元法 在定积分的应用中,我们经常采用 微元法(也称为元素法). 微元法是用来化实际问题为定积分 问题的一种简便方法,是物理学、力 学、工程技术中建立积分模型时普遍 采用的方法.
Revised May, 2004 May, 2003
Hale Waihona Puke 用微元法建立定积分模型的步骤如下: (1)所求的某量 Q 与定义在一个区间 [a, b]上的连续函数 f(x) 有关.
如区间[a, b]上的一曲线 y=f(x) 与 x 轴所围成的曲 边梯形的面积 A 与函数 f(x) 有关; 以 速 度 v=v(t) 作 变 速 直 线 运 动 的 物 体 在 区 间 [T1, T2]上所经过的路程 s 与速度函数 v(t) 有关.
定积分的元素法
![定积分的元素法](https://img.taocdn.com/s3/m/7e4d6ce529ea81c758f5f61fb7360b4c2e3f2aab.png)
二、元素法 1. 能用定积分计算的量,应满足下列三个条件 (1) U 与变量人的变化区间[a ,b ]有关; (2) U 对于区间[a ,b ]具有可加性; (3) U 部分量A U .可近似地表示成f (& i) •电i 。
2. 写出计算U 的定积分表达式步骤 (1) 根据问题,选取一个变量x 为积分变量,并确定它的变化区间[a , b ]; (2) 设想将区间[a ,b ]分成若干小区间,取其中的任一小区间任,x + d ], 求出它所对应的部分量A U 的近似值 A U 机f (x )dx ( f (x )为[a ,b ]上一连续函数) 则称f (x ')dx 为量U 的元素,且记作dU = f (x )dx 。
(3) 以U 的元素dU 作被积表达式,以[a , b ]为积分区间,得 U = f f (x )dx a 这个方法叫做元素法,其实质是找出U 的元素dU 的微分表达式 dU = f (x )dx (a < x < b ) 因此,也称此法为元素法。
课后作业教学后记 教学过程二、 体积1. 旋转体的体积求由曲线y = f (x ),直线x = a , x = b 及x 轴所围的曲边梯形绕x 轴旋转 一周而成的旋转体体积。
V =兀卜平2(y )dy 例5求y = x 3, x = 1及x 轴所围图形分别绕x 、y 轴旋转一周而成的旋转体体 积。
例6求y = sin x 和它在x = y 处的切线及x =兀所围图形绕x 轴旋转而成的 旋转体体积。
2. 截面积为已知的立体的体积 某立体的垂直于x (或y )轴的截面面积为已知,体积V = j b A(x)dx a 例7求以半径为R 的圆为底,平行且等于底圆直径的线段为顶,高为h 的正劈 锥体的体积。
三、 平面曲线的弧长 1. 直角坐标情形 s — j b %:1 + (y 心dx a 例8求y — ln x 对应于13 < x 〈胰一段弧长。
§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)
![§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)](https://img.taocdn.com/s3/m/f448366bfc4ffe473368ab9d.png)
则对应该小区间上曲边扇形面积的近似值为
dA 1 ( )2 d
2
所求曲边扇形的面积为
r ( ) d
A 1 2 ( ) d 2
x
《高等数学》
返回
下页
结束
例4. 计算阿基米德螺线 到 2 所围图形面积 .
解:
A
2
0
1 (a )2 d
2
02
y
ox
R x
《高等数学》
返回
下页
结束
微分的几何意义与切线段的长度
dy f (x)dx
y y f (x)
y
ds dy dx
o
x
x
切线段的长度
x dx
此直角三角形称为: 微分三角形
ds (d x)2 (d y)2 1 f 2 (x)dx (弧微分公式)
曲线 y f (x) C[a,b], s b 1 f 2 (x)dx.
4 3 a2
3
对应 从 0 变
2 a
o
x
d
例5. 计算心形线
所围图形的面积 .
解:
1 (1 cos )2 d
2
2
2
1 (3cos
)2
d
2
3
5.
4
《高等数学》
返回
与圆
(
3
,
(利用对称性)
)
23
d
o
2x
下页
结束
二、体积
1.平行截面面积为已知函数的立体体积
§6 定积分的应用
§6.1 定积分的元素法(微元法) §6.2 几何应用 §6.3 物理应用
定积分元素法课件
![定积分元素法课件](https://img.taocdn.com/s3/m/c5b54141ba68a98271fe910ef12d2af90242a8c4.png)
02
确定被积函数
03
建立积分方程
根据物理或工程问题的数学模型 ,确定被积函数,即需要求解的 未知函数。
根据定积分的定义和性质,将问 题转化为数学模型中的积分方程 。
离散化方程的推导
离散化方法
将连续的积分元素离散化为有限个离散点,常用的离散化方法有矩形法、三角形法等。
离散化方程推导
根据离散化方法和定积分的性质,推导离散化方程,即将积分方程转化为有限元方程。
二维问题的求解
总结词
定积分元素法在解决二维问题时,通过 将二维平面离散化为网格,将复杂的二 维积分运算转化为一系列的一维积分运 算,降低了求解难度。
VS
详细描述
二维问题涉及平面上的形状、面积、体积 等的求解。定积分元素法将二维平面离散 化为网格,每个网格点上的积分值相等。 通过求解每个网格点的积分值,再求和得 到整体解。这种方法简化了二维积分运算 ,提高了计算精度和效率。
三维问题的求解
总结词
定积分元素法在解决三维问题时,通过将三 维空间离散化为体素,将复杂的三维积分运 算转化为一系列的二维积分运算,降低了求 解难度。
详细描述
三维问题涉及空间中的形状、体积等的求解 。定积分元素法将三维空间离散化为体素, 每个体素上的积分值相等。通过求解每个体 素的积分值,再求和得到整体解。这种方法 简化了三维积分运算,提高了计算精度和效 率。
步骤 1. 将问题分解为若干个元素或单元;
定积分元素法的应用场景
物理问题
定积分元素法广泛应用于物理问题的求解 ,如静力学、动力学、热力学等领域。
工程问题
在土木工程、机械工程、航空航天等领域 ,定积分元素法也被广泛应用。
数值分析
在数值分析中,定积分元素法是数值求解 微分方程的重要方法之一。
定积分元素法课件
![定积分元素法课件](https://img.taocdn.com/s3/m/0c0c959e51e2524de518964bcf84b9d528ea2c07.png)
元素法的应用范围
01 02 03
适用于被积函数为连续函数的定积 分计算。
适用于被积函数为分段函数的定积 分计算。
适用于被积函数为周期函数的定积 分计算。
03
元素法的具体应用
求解定积分的具体方法
01
矩形法
将积分区间[a,b]分成n个小区间,每个小区间的长度为$\Delta x$,用
矩形近似代替该小区间上的曲线,求出矩形面积之和,即得定积分的近
计算方法则是通过数值计算方法(如梯形法、辛普森法等)来求解近似值。 • 两者都可以得到较为精确的结果,但数值计算方法需要更多的计算量。
元素法与物理方法的比较研究
元素法是通过数学模型和数值计 算方法来得到近似解,而物理方 法则是通过实验测量数据来得到 近似解。
在求解积分问题时,物理方法通 常是通过实验测量数据来得到近 似解。
元素法在求解积分问题时,将积分区间划分为若干个小区间,用近似函数代替被积 函数,从而将积分转化为求和。
微积分提供了一般的理论框架,而元素法是一种具体的计算方法,两者相辅相成。
元素法与数值计算方法的比较研究
• 数值计算方法是一种通过数值计算求解数学问题的方法,包括数值积分、数值微分、数值求解方程等。 • 元素法与数值计算方法在求解积分问题时,都采用了近似代替的方法。 • 元素法在求解积分问题时,将积分区间划分为若干个小区间,用近似函数代替被积函数,从而将积分转化为求和。而数值
近似方法的选取
根据具体问题的特点,选择合适的近 似方法(矩形法、梯形法或辛普森法 ),以保证近似值的精度和计算效率 。
求解定积分的实例分析
计算定积分$\int_{0}^{1}e^{x}dx$
通过矩形法、梯形法和辛普森法分别计算该定积分的近似值,并比较其精度和计算效率 。
定积分元素法的步骤
![定积分元素法的步骤](https://img.taocdn.com/s3/m/671ab3a44bfe04a1b0717fd5360cba1aa8118cce.png)
定积分元素法的步骤
定积分元素法的基本步骤如下:
1.确定元素:首先需要确定积分区间[a,b],并将其划分为n个小区间,小区间的长度记为
Δx。
2.近似代替:在每个小区间上任取一点ξi(i=1,2,...,n),以f(ξi)Δx近似代替该小区间上
曲边梯形的面积。
3.求和计算:将n个近似小矩形面积加起来,即求得原曲边梯形的面积S的近似值。
即
S=∑f(ξi)Δx。
4.取极限:当Δx趋向于0时,求极限,即可得定积分的值。
即lim(Δx→0)∑f(ξi)Δx=
∫baf(x)dx。
以上就是定积分元素法的基本步骤,需要注意的是,在选取元素时,应尽可能使近似值与精确值之间的差距变小,这需要选取适当的ξi和合适的Δx。
同时,在求和计算时,应注意计算的准确性,避免计算错误导致的结果偏差。
6.1 元素法
![6.1 元素法](https://img.taocdn.com/s3/m/291149d6c1c708a1284a447d.png)
利用元素法解决: 利用元素法解决 定积分在几何上的应用 定积分在物理上的应用
第一节 定积分的元素法
第六章 六
一、什么问题可以用定积分解决 ? 二 、如何应用定积分解决问题 ?
机动
目录
上页
下页
返回
结束
一、什么问题可以用定积分解决 ?
1) 所求量 U 是与区间[a , b]上的某分布 f (x) 有关的 一个整体量 ; 2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小 常代变 近似和 取极限” 大化小, 常代变, 近似和, 取极限” 大化小 表示为
第二节 目录 上页 下页 返回 结束
b
定积分定义
机动 目录 上页 下页 返回 结束
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量 的 微分表达式 近似值
dU = f (x) dx
第二步 利用“
U = ∫a f (x) dx
这种分析方法成为元素法 (或微元分析法 元素法 微元分析法) 微元分析法 元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
定积分的元素法
![定积分的元素法](https://img.taocdn.com/s3/m/152308ca27d3240c8547ef03.png)
课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )课 时 计 划 ( 教 案 ) 一、()()=n y f x 型的微分方程 解法: 积分n 次 1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, …… 例1 求微分方程y '''=e 2x cos x 的通解.。
例2 求微分方程x x y cos sin -=''满足初始条件1)0(,2)0(='=y y 的特解。
二、),(y x f y '=''型的微分方程 解法: 设y '=p 则方程化为 p '=f (x , p ). 设p '=f (x , p )的通解为p =(x ,C 1), 则 ),(1C x dx dy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ. 例3 求微分方程 (1x 2)y ''=2xy 满足初始条件 y |x =0=1, y '|x =0=3的特解. 例4设由一质量分布均匀,柔软的细绳,其两端固定,求它在自身重力作用下的曲线方程.三、),(y y f y '=''型的微分方程 解法: 设y '=p ,有dy dp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p =. 设方程),(p y f dy dp p =的通解为y '=p =(y , C 1), 则原方程的通解为21),(C x C y dy +=⎰ϕ. 例5 求微分yy ''y '2=0的通解。
四、习题讲解329P Ex2(5)(6),4五、课堂小结、布置作业课时计划 ( 教案 )课时计划 ( 教案 )课时计划 ( 教案 )。
第一节 定积分的元素法
![第一节 定积分的元素法](https://img.taocdn.com/s3/m/1b1079762af90242a895e57f.png)
大的曲边梯形也就分成了 n 个小的曲边梯形,
n
y
A Ai ;
i 1
Step2 近似
y f (x)
Ai f (i )xi (xi1 i xi ) ;
Step3 求和
n
Oa
bx
A f (i )xi ;
i 1
lim Step4 取极限
n
b
A
0
f (i )xi
i 1
a
f (x)dx .
把区间[a , b] 而 U等于所有部分量的和.
(3) 那么 U 可用元素法计算.
第一节 定积分的元素法
元素法的步骤:
Step1 选取积分变量 选择一个变量(例如 x) 作为积分
变量,并确定它的变化区间 [a , b];
Step2 求元素 设想把区间 [a , b] 分成 n 个小区间,
取其中任一小区间并记作 [x , x + x],求出相应于这个
第一节 定积分的元素法
一、引例
二、元素法的步骤
第一节 定积分的元素法
一、引例
引例 曲边梯形的面积
回顾第五章第一节,曲边梯形的面积计算:
b
y
A a f (x)dx .
y f (x)
得到上述计算公式的步骤如下: Oa
A
bx
第一节 定积分的元素法
Step1 分割 把区间 [a , b] 任意分成 n 个小区间,
小区间的部分量 U 的近似值 dU = f (x) dx ;
U的元素
Step3 构造定积分
U
bf (x)dx .a来自第一节 定积分的元素法
在工程技术中,如旋转体的体积、平行截面面积 为已知的立体立体、曲线构件的长度、变力沿直线所 作的功、水压力、引力等,这些量的计 算都要用这种 方法转化为定积分的计算.
S6-1定积分的元素法
![S6-1定积分的元素法](https://img.taocdn.com/s3/m/24edc14df46527d3240ce03f.png)
n
S f ( i )xi
i 1
.
分法越细,越接近精确值
o
a x1 x2
xi i xi1
x xn1 b
.
曲边梯形的面积的回顾
f (i) y
oa
x x i i i 1 .
元素法
y=f (x)
1 大化小(分割) 2 常代变(近似)
Si f ( i )xi
3 近似和(求和)
分法越细,越接近精确值
4 取极限
x b
令分法无限变细
n
S =
记
lim
i 1
f
(
i
.). x
i
.
b
f ( x) dx
a
一、什么问题可以用微元分析法(定积分)解决 ?
1) 所求量 U 是与区间[a , b]上的某函数 f (x) 有关的 一个整体量 ;
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
n
S f ( i )xi i 1
分法越细,越接近精确值
4 取极限
x b
令分法无限变细
.. .
曲边梯形的面积的回顾
f (i) y
S
oa
x x i பைடு நூலகம் i 1 .
元素法
y=f (x)
1 大化小(分割) 2 常代变(近似)
Si f ( i )xi
3 近似和(求和)
n
S f ( i )xi i 1
表示为
定积分定义
二 、如何应用微元分析法(定积分)解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
S定积分的元素法
![S定积分的元素法](https://img.taocdn.com/s3/m/d8889484284ac850ad024271.png)
“大化小, 常代变, 近似和, 取极限”
表示为
定积分定义
二 、如何应用微元分析法(定积分)解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量 的 微分表达式 近似值
d U f ( x ) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的 精确值 积分表达式
U a f ( x ) dx
第一节 定积分的元素法
一、微元分析法 ? 二 、微元分析法的步骤 ?
第六章
曲边梯形的面积的回顾 f ( i) y y=f (x)
元素法
1 大化小(分割) 2 常代变(近似)
S i f ( i )xi
3 近似和(求和)
S f ( i )x i
i 1 n
.
分法越细,越接近精确值
x i i x i 1
b
S = lim f ( i ) . x i
记
n
b
i 1
.
.
a
f ( x ) dx
一、什么问题可以用微元分析法(定积分)解决 ?
1) 所求量 U 是与区间[a , b]上的某函数 f (x) 有关的
一个整体量 ;
2) U 对区间 [a , b] 具有可加性 , 即可通过
这种分析方法成为元素法 (或微元分析法) 元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
b
x
.
4 取极限
令分法无限变细
b
.
.
.
曲边梯形的面积的回顾 f ( i) y y=f (x)
元素法
1 大化小(分割) 2 常代变(近似)
S i f ( i )xi
1.元素法、面积
![1.元素法、面积](https://img.taocdn.com/s3/m/4706948cf61fb7360a4c653e.png)
(2)利用曲边扇形面积公式:A 1[()]2 d. 2 作业:P284:T2(2),T3,T4,T8(1), T9
8
围成一曲边扇形,求其面积.
d
其中() 连续 面积元素 dA 1[()]2 d
2
()
d
面积 A 1[()]2 d. 2
o
x
例3 求阿基米德螺线 a (a > 0)上相应于 从0到 2 的一段与极轴围成图形的面积
解
30
y2 2x y x4
选 y 为积分变量 y [2, 4]
dA ( y 4 y2 )dy
2
A
4
(y
4
y2 )dy
2
2
y2 2
4y
y3 4
6
2
=18
选 x 为积分变量
dA1 2 2xdx
dA2 ( 2x x 4)dx
2
8
A 0 2 2xdx 2( 2x x 4)dx
a
2
2
sin
0
1 2
a
2
(1 cos 2)d
0
a2
1 a2 2
1 2
a
2
sin
2
0
3 a2 . 2
求下列图形面积:
1.螺线 a 的第一与第二圈之间及极轴所围图形
2. 由 3cos 及 1cos 所确定图形.
30
A 1 4(a)2 d 1 2 (a)2 d 20
y2 2x
高等数学第六版(同济版)第六章复习资料
![高等数学第六版(同济版)第六章复习资料](https://img.taocdn.com/s3/m/f989fcc03186bceb19e8bb66.png)
第六章定积分的应用引入:前面学习了定积分的理论,这一章要应用这些理论来分析和解决一些实际问题中出现的量.用定积分计算这些量,必须把它们表示成定积分,先介绍将所求量表示成定积分的方法——元素法第一节定积分的元素法我们先用定积分的引例——曲边梯形的面积,引出元素以及元素法的概念:一、元素及元素法 1.元素:由连续曲线与直线以及轴所围成的曲边梯形的面积为:.(由微分知识得) 为面积元素或面积微元,记为 2.元素法:用元素法将所求量表示成定积分的方法,称为元素法. 由此可知,曲边梯形的面积是将面积微元累加得到的下面我们通过曲边梯形的面积来总结出实际问题中所求的量能用定积分表示的条件:二、用元素法将所求量能表示成定积分的条件:(设所求量为) 1.量与变量的所在区间有关; 2.量对于区间具有可加性;3.量的部分量有近似值,即. 三、用元素法将所求量能表示成定积分的步骤: 1.由实际情况选一变量如为积分变量,确定该其变化区间.2.分为个小区间,取其中一个小区间,计算其上的部分量,的所求量的一个元素 3.以为被积表达式,在注:元素的几何形状常取为:条,带,段,环,扇,片,壳等内容小结:本节介绍了元素法以及用元素法将所求量表示成定积分的方法与步骤第二节定积分在几何上的应用一、平面图形的面积 1.直角坐标情形:曲线与直线及轴所围成的曲边梯形面积为,因为面积元素为 2.参数方程情形:若曲线的参数方程为,且满足 (1). , (2). 在或上具有连续导数,且连续,则由曲线所围成的曲边图形的面积为:3.极坐标情形:设曲线的极坐标方程为,且在上连续,则由曲线与射线以及所围成图形的面积为 . 由于当在上变动时,极径来计算. 推导:①.取极角为积分变量,②.在上任取一小区间,其上的曲边扇形面积的近似值:③. . 为被积表达式,在上作定积分,得曲边扇形的面积公式:例1. 计算两条抛物线在第一象限所围所围图形的面积 2y解:首先确定图形的范围,由得交点、,y取为积分变量,由于面积元素,所以所求面积为 . 注: . 例2. 计算抛物线与直线所围图形的面积解:由得交点、,若取为积分变量,则有 . 若取为积分变量,则有 . 例3. 求椭圆所围图形的面积解:由于椭圆关于两个坐标轴对称,设椭圆在第一象限所围成的面积为,则所求面积为设,当时,,当时,,且,于是 . 例4.计算阿基米德螺线对应从变到所围图形面积. 解:由题可知,积分变量,于是所求面积为例5.计算心形线所围图形的面积解:心形线所围成的图形关于极轴对称,设极轴上半部分图形的面积为,则心形线所围成的图形面积为.取极角为积分变量,,于是 . 二、体积 1.旋转体的体积: (1).旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体,该直线称为旋转轴注:圆柱体、圆台、球体等都是旋转体,它们都可以看做是由连续曲线与直线以及轴围成的曲边梯形绕轴旋转一周所围成的立体 (2).旋转体的体积:①.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:推导:取为积分变量,,在上任取一小区间轴旋转而成的薄层的体积近似等于以为底面半径、以为高的扁圆柱体的体积,即体积元素为,以为被积表达式,在上作定积分即得所求旋转体的体积:②.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:例6.连接坐标原点及点的直线、直线及轴围成一个直角三角形,将它绕轴旋转构成一个底半径为、高为的圆锥体,求其体积解:过及的直线方程为: . 取为积分变量,,则所求旋转体的体积为例7.计算由椭圆所围成的图形绕轴旋转而成的旋转体的体积解:该旋转椭球体可看做是由半椭圆与轴所围成的绕轴旋转而成的立体,半椭圆方程为: . 取为积分变量,,则所求立体体积为例8.计算由摆线,相应于的一拱,直线所围成的图形分别绕轴、轴旋转而成的旋转体的体积解:记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则. 2.平行截面面积为已知的立体的体积:设一非旋转体的立体介于过点、且垂直于轴的两个平面之间,该立体过轴上的点且垂直于轴的截面面积为,则该立体的体积为:推导:若为连续函数且已知,取为积分变量,,在,其上的薄层的体积近似等于底面积为、高为的扁圆柱体的体积,积元素:,以为被积表达式,在上作定积分,得所求立体的体积公式:例9.一平面经过半径为的圆柱体的底圆的中心,并与底面交成角,计算着平面截圆柱体所得立体的体积解:取该平面与圆柱体的底面的交线为轴,底面上过圆中心且垂直于轴的直线为轴,则底面圆方程为:,该立体中过轴上的点且垂直于轴的截面是一个直角三角形,两直角边分别为和即和,从而截面面积为,于是所求体积为例4.求以半径为的圆为底、以平行且等于底圆直径的线段为顶、高为的正劈锥体的体积解:取底面圆所在的平面为平面,圆心为原点,并使轴与正劈锥体的顶平行,底面圆方程为:,过轴上的点作垂直于轴的平面截正劈锥体得等腰三角形,截面面积为,于是,所求正劈锥体的体积为三、平面曲线的弧长引入:我们知道,用刘徽的割圆术可以定义圆的周长,即利用圆的内接正多边形的周长当边数无限增加时的极限来确定,现在将刘徽的割圆术加以推广,来定义平面曲线的弧长,从而应用定积分来计算平面曲线的弧长. 1.平面曲线弧长的相关概念 (1).平面曲线弧长:若在曲线弧上任取分点,,依次连接相邻分点得到该曲线弧的一内接折线,记限增加且每一个小弧段都缩向一点,即时,折线的长的极限存在,则称此极限值为曲线弧的弧长,并称该曲线弧是可求长的,记作 (2).光滑曲线:若曲线上每一点处都存在切线,且切线随切点的移动而连续转动,则称该曲线为光滑曲线 (3).定理:光滑曲线可求长. 2.光滑曲线弧长的计算 (1).直角坐标情形:设曲线弧的直角坐标方程为,,若在上具有一阶连续函数,则曲线弧长为推导:取为积分变量,曲线上的相应于上任意小区间上的一段弧的长度近似等于曲线在点处切线上相应的一段的长度,又切线上相应小段的长度为,从而有弧长元素,以为被积表达式,在上作定积分,得弧长公式:(2).参数方程情形:设曲线弧的参数方程为,,若及在具有连续导数,则曲线弧长为推导:取参数为积分变量,曲线上相应于上任意小区间上的一段弧的长度的近似值即为弧长元素,以为被积表达式,在上作定积分,得弧长公式: (3).参数方程情形:设曲线弧的极坐标方程为,,若在上具有连续导数,则曲线弧长为:推导:由直角坐标与极坐标的关系得:,,即为曲线的以极角。
定积分的元素法-平面图形的面积省公开课获奖课件说课比赛一等奖课件
![定积分的元素法-平面图形的面积省公开课获奖课件说课比赛一等奖课件](https://img.taocdn.com/s3/m/7c19eab480c758f5f61fb7360b4c2e3f5627257a.png)
但若要求r 0,0 2 ,除极点O外,平面上旳点与极坐标
之间就一一相应了。
在一般情况下,我们要求: r 0 ,而极角能够取任意实数。
16
2.极坐标方程
曲线上点旳极坐标 r 与 之间旳关系能够用式 r r 表达, 称 r r 为曲线旳极坐标方程。
以极点O为圆心,以 a为半径旳旳圆旳极坐标方程: r a.
解方程组:rr
1 3
cos cos
3 , 2 3 •
3
得交点 3 , , 3 , .
2 32 3
O
A1 2
x
A
2
3 0
1 2
(1
cos
)2 d
2
1
2
3
2
(3cos )2 d
2
3 2
2 sin
1 sin 2
4
3 0
9 2
1 sin 2
2
2
5 .
4
3
23
(1)拟定积分变量,和它旳变化区间[a,b]; (2)写出积分元素
U dU f xdx
(3)写出 U 旳积分体现式,即:
b
U a f ( x)dx
6
第二节 平面图形旳面积
y
( x)
一、直角坐标情形
A
b
a
(
x)
(
x )dx
oa
(x)
x x dx b x
二、极坐标情形
A
1 2
(
)2
d
d
4ab
0sin 2
tdt
2
2
4ab 2 sin 2 tdt ab 0
当a b时,椭圆变为圆, A a2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元素法的一般步骤:
1) 根据问题的具体情况,选取一个变量例如 x 为积分变量,并确定它的变化区间[a, b];
2) 设想把区间[a, b]分成n个小区间,取其中任 一小区间并记为[ x, x d x],求出相应于这
小区间的部分量U 的近似值.如果U 能近
似地表示为[a, b]上的一个连续函数在 x处的 值 f ( x)与dx的乘积,就把 f ( x)dx称为量U 的元素且记作dU ,即dU f ( x)dx;
成的图形的面积.
解 两曲线的交点
y2 2x y x4
(2,2), (8,4).
y x4
y2 2x
选 y 为积分变量 y [2, 4]
dA
y4
y2 2
dy
4
A dA 18. 2
例4
求椭圆 x 2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
第七节 定积分的几何应用
一、定积分的元素法 二、平面图形的面积 三、旋转体的体积 四、平行截面面积已知的
立体的体积 五、小结
一、定积分的元素法
回顾 曲边梯形求面积的问题
曲边梯形由连续曲线 y
y f ( x)( f ( x) 0) 、
x 轴与两条直线x a 、
x b所围成。
oa
b
A a f ( x)dx
于是所求面积 A A1 A2
A 0 ( x3 6x x2 )dx 3(x2 x3 6 x)dx
2
0
253. 12
说明:注意各积分区间上被积函数的形式.
问题:积分变量只能选 x吗?
观察下列图形,选择合适的积分变量求其面积:
y
y
x 1( y)
d
d
x ( y)
x 2( y)
A
b
a [ f2 ( x) f1( x)]dx
b o a x x x
x
如何用元素法分析? dA= f2 x f1 xdx
例 1 计算由两条抛物线y2 x 和y x2 所围成的
图形的面积.
解 两曲线的交点
(0,0) (1,1) 选 x 为积分变量 x [0,1]
x y2 y x2
面积元素 dA ( x x2 )dx
y f (x)
bx
面积表示为定积分的步骤如下
(1)把区间[a, b]分成n个长度为xi的小区间,
相应的曲边梯形被分为n个小窄曲边梯形,第i 个
n
小窄曲边梯形的面积为Ai ,则 A Ai .
i 1
(2)计算Ai 的近似值 Ai f (i )xi i xi
n
(3)求和,得A的近似值 A f (i )xi . i 1
x
A f xx
二、平面图形的面积
y y f (x)
a b o
x x x
如何用元素法分析?
第一步:取其中任 一小区间并记为
[ x, x dx],求出
相应于这小区间的 部分量 A 的近似
值,记作dA;
x
dA=f xdx
二、平面图形的面积
y y f (x)
第二步:写出面积 表达式。
a b o
(4)求极限,得A的精确值
n
A
lim
0
i 1
f
(i )xi
b
f ( x)dx
a
提示
若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx,
于是 A f ( x)dx
面 积 元 素
dA
y f(x)
A lim f ( x)dx
b
a f ( x)dx.
c
c
o
x
o
x
考虑选择x为积分变量,如何分析面积表达式?
观察下列图形,选择合适的积分变量:
y
y
x 1( y)
d
d
y y y
y y
x ( y) y
x 2( y)
c
c
o
x
o
x
d
A c ( y)dy
d
A c [2( y) 1( y)]dy
考虑选择y为积分变量,如何分析面积表达式?
例 3 计算由曲线y2 2x 和直线 y x 4所围
o a x x dx b x
当所求量U 符合下列条件:
(1)U 是与一个变量x的变化区间a, b有关的量;
(2)U 对于区间a, b具有可加性,就是说,如 果把区间a, b分成许多部分区间,则U 相应地分
成许多部分量,而U 等于所有部分量之和;
(3)部分量Ui 的近似值可表示为 f (i )xi ;
y
y f2(x)
第一步:取其中任 一小区间并记为
[ x, x dx],求出
相应于这小区间的
y f1(x) 部分量 A 的近似
值,记作dA;
b o a x x x
x
如何用元素法分析? dA= f2 x f1 xdx
二、平面图形的面积
y
y f2(x)
第二步:写出面积
表达式。
y f1(x)
3) 以所求量U 的元素 f ( x)dx为被积表达式,在
b
区间[a, b]上作定积分,得U f ( x)dx ,即 a
为所求量U 的积分表达式.
这个方法通常叫做元素法.
应用方向: 平面图形的面积,体积。 经济应用。其他应用。
二、平面图形的面积
y y f (x)
a b o
x x x
如何用元素法分析?
x x x
如何用元素法分析?
b
A a f ( x)dx
x
dA=f xdx
二、平面图形的面积
y
y f2(x)
y f1(x)
b o a x x x
x
如何用元素法分析?
第一步:取其中任 一小区间并记为
[ x, x dx],求出
相应于这小区间的 部分量 A 的近似
值,记作dA;
dA=?
二、平面图形的面积
A
1
(
0
x
x2 )dx
2 3
3
x2
x3 3
1 0
1. 3
例 2 计算由曲线 y x3 6x 和 y x2 所围成
的图形的面积.
解 两曲线的交点
y x3 6x
y
x2
y x2
y x3 6x
(0,0), (2,4), (3,9).
选 x 为积分变量 x [2, 3]
(1) x [2, 0], dA1 ( x3 6x x2 )dx (2) x [0,3], dA2 ( x2 x3 6x)dx
由对称性知总面积等于4倍第一象限部分面积.
第一步:取其中任 一小区间并记为
[ x, x dx],求出
相应于这小区间的 部分量 A 的近似
值记作dA;
x
dA=? ,
二、平面图形的面积
y y f (x)
a b o
x x x
如何用元素法分析?
第一步:取其中任 一小区间并记为
[ x, x dx],求出
相应于这小区间的 部分量 A 的近似
值,记作dA;