紫外固化胶粘剂作用机理及研究进展

紫外固化胶粘剂作用机理及研究进展
紫外固化胶粘剂作用机理及研究进展

紫外固化胶粘剂作用机理及研究进展

摘要:阐述了UV胶(紫外固化胶粘剂)的作用机理、应用现状和新的研究进展。

关键词:UV固化;胶粘剂;研究进展,结构胶,发展前景。

1.前言:

紫外线胶又称无影胶、光敏胶、UV胶,它是指必须通过紫外线光照射才能固化的一类胶粘剂,它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。紫外线固化技术,被认为是一种环境友好的绿色技术,近些年取得了快速发展,主要应用于涂料、油墨、胶粘剂等领域。在辐射固化领域中,UV固化胶粘剂虽然所占的比例仅为1%,但发展却是最为迅速的。UV固化胶粘剂中,结构性UV胶约占UV胶的20%。

近年来,自由基和阳离子引发体系、杂化引发体系以及双重固化体系都有大量研究报道,有很多成果应用于时间。预聚物和活性稀释单体的种类及质量都有很大提高,这些都促进了辐射固化胶粘剂的发展。

2.作用机理

粘结机理:人们对粘结机理进行了大量的研究,提出了很多粘结理论,其中主要有以下5种。

①机械理论

机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上媳妇的空气,才能产生粘接作用。

②吸附理论

吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫浸润,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶黏

剂进入固体表面的凹陷与孔隙就形成良好润湿。

③扩散理论

扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长脸大分子聚合物时,扩散理论基本是适用的。

④经典理论

经典理论又称为双电层理论,由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。但经典理论无法解释性能相同或相近的聚合物之间的粘接。

⑤弱边界层理论

弱边界层理论认为,当粘接破获被认为是界面破坏时,实际上往往是内聚破坏或若边界层被破坏。

固化原理:UV固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联和接枝化学反应,使粘合剂在数秒内由液态转化为固态。

3.结构型UV胶的组成与传统结构胶的比较

结构型紫外线固化胶粘剂的固化属于光引发的自由基,其基本组成为:基础聚合物,即光交联性聚合物(相对分子质量一般在1000~5000);光聚合性单体,即单体或活性稀释剂(常带有可自由基聚合的乙烯基官能团);助剂,如阻聚剂(或稳定剂)、着色剂、触变剂、增粘剂、填充剂、增塑剂等;光引发剂,在紫外光照射下可产生活性自由基。

光交联性聚合物对UV固化胶粘剂的性能有决定性的影响,主要有聚酯类,聚醚类,环氧类,氨基甲酸酯类(甲基)丙烯酸酯等。合理选择光交联性聚合物,可以满足不同使用要求和不同性能紫外线固化胶的要求。配方设计时,要综合平衡胶液固化前的工艺性、稳定性以及固化物的特性和价格。

经过配方设计,结构型UV固化胶可以达到传统结构胶的各种性能。而室温固化环氧结构胶10~120min初固,7d才能达到最高强度;第二代丙烯酸酯结构胶1~30min 初固,24h才能达到最高强度;结构型UV胶1~5s初固,1h即可达到最高强度,可以满足自动化生产线节奏的需要,这是其他类结构胶无法比拟的。

4.UV固化胶粘剂的研究进展

自由基光引发体系应用较早,技术也较为成熟,是目前UV固化胶粘剂的主流。国内外研究了各种具有不同特性的自由基光引发胶粘剂。如马家举等研制的有聚氨酯丙烯酸酯和环氧丙烯酸酯组成的用于光纤并带的UV固化胶粘剂,用酰基磷氧化物光引发剂合成的UV固化胶粘剂,以用于制造光盘,此种胶固化后在80℃、90%相对湿度下,一周后粘合力优良。Acheson公司以丙烯酸-2-苄氧乙酯、聚丁二烯丙烯酸酯、聚氨酯基丙烯酸酯为主原料开发了耐湿耐热的UV固化胶粘剂。李桂芝等研究了聚氨酯甲基丙烯酸酯胶/环氧丙烯酸酯胶自由基混合体系,改善了胶的综合性能。

倪晓军等人用甲基丙烯酸改性环氧树脂,用BDMB(Aldrich)作为光引发剂、二苯甲酮作为光敏剂,以铜粉作为填料,制成紫外固化的各向异性导电胶,可用于对高温敏感的液晶显示。电致发光技术中ITO玻璃与激励电路的连接。

Dccker、Ngugen等人研制的光固化丙烯腈丁二烯橡胶基热熔粘合剂,添加二丙烯酸酯或三官能基单体以增大聚合速度和交联密度。这种粘合剂具有耐热性和耐化学性,适用于层压制作安全玻璃和柔性印刷版。

Schaeffer等合成了一系列新型丙烯酸酯预聚物以及多官能团丙烯酸酯单体。这些新型的预聚物对一系列未经电晕处理的基材有良好的粘附力、耐化学腐蚀性且柔韧性优良。

阳离子光引发体系是在上世纪70年代末发展起来的,它不仅在链终止阶段可产生新的引发中心,而且在光照消失后仍进行后固化,是光线不以达到的部位固化充分。存在的问题是光固化速率慢、预聚体和稀释剂及光引发剂品种少,价格偏高,受温度和碱氛围影响大。

日本专利JP11424用环状化合物和橡胶态聚合物,配以增粘剂、阳离子引发剂配制UV固化胶粘剂,对不锈钢有极强的粘接性;JP1017843以液态环氧树脂(如Adeka Ep-4100或Epikote828)与固态环氧树脂(如YCN-701)为基料,加阳离子引发剂Sp-170制成UV固化胶粘剂,该胶有良好的初粘力及润湿性能。

芳茂铁盐对环氧的聚合引发活性较低,一般在光照后需适当加热,已完成固化交联,这种固化滞后看似一种缺陷,但对一些特殊应用场合具有独特的价值。

针对自由基光固化体系和阳离子固化体系的优缺点,近年杂化体系脱颖而出。此种体系既可自由基聚合又可阳离子聚合,得到的自由基-阳离子杂化体系兼有两种体系的优点,总和性能更好。

为了组成杂化体系,可以简单地将自由基固化体系和阳离子固化体系配合,或者

将阳离子和自由基聚合两种不同的反应统一于一体。杨治中等合成了改性环氧-莰烯衍生物基聚合物,以自由基-阳离子为光引发剂,具有良好的粘接能力。

由于光固化体系的固化过程是由光引发的,因此光固化体系也有如下缺点:固化深度有限、在有色和不透明蔡志忠难以应用、固化对象的形状不能太复杂等。为此又发展了将光固化与其他固化方式结合起来的双重固化体系:即体系的交联或聚合是通过两个独立的阶段完成的,一个阶段是通过紫外光引发,另一个阶段是通过加热、湿气或厌氧进行固化。这样就拓宽了UV固化胶的研究和应用领域。

5.结构型UV胶的发展前景

据资料报道,2000年欧洲结构型紫外光固化胶粘剂合计用量为175t,其中电子、电气、汽车45t,医疗20t,玻璃20t,光电子90t.2005年欧洲结构型紫外光固化胶粘剂市场预测为696t,其中光电子575t。美国和日本结构型紫外光固化胶粘剂市场在未来几年的增长率也将超过25%。因此,今后几年僵尸紫外光固化胶粘剂市场一个快速发展时期。而我国今后五年预计市场年增长将大于40%。

参考文献:

1.王涛,吕希光,马家举,江校.UV固化胶粘剂应用研究进展.中国胶水网2007.12

2.周立国,段洪东,刘伟,精细化学品化学,化学工业出版社,2007.07

3.赵建新,翟海潮,李文晓,结构型紫外线固化胶粘剂的研究,粘接,2005年01期

精细化学品化学论文

-紫外固化胶粘剂作用机理及研究进展

班级:0720411班

学号:16号

姓名:王奇

紫外光固化胶粘剂参数(耐酒精,耐水煮,玻璃粘合金属)

光固化胶粘剂 UV-903
产品简介 产品简介
UV-903 是为液晶显示器(LCD)专用的单组分无溶剂型紫外光固化胶粘剂,用于 LCD产 品封口以及LCD管脚装配。
产品特点 产品特点
1.优异的固化能力,可在较低照度下实现完全固化。 2.良好的与玻璃和金属的粘接能力,能确保外界杂质不会进入液晶盒内。 3.高纯度及稳定性,对液晶及PI无不良影响。 4.极佳的可靠性,具有优良的耐水煮和抗冷热冲击性能。
技术特性 技术特性
1.固化前特性 主要成分: 改性丙烯酸酯树脂 外 粘 比 观: 淡黄色透明液体 度: 20000±1000mPa.s(20℃,JD-1 型旋转粘度计,转速 6rpm) 重: 约 1.1(20℃,重量杯法,参照 GB/T 13354-92)
2
2.标准固化方法 紫外线照射量:1200mJ/cm 3.固化物特性 外 观:无色透明固体
2
粘接强度:10MPa(不锈钢/玻璃@1200mJ/cm 曝光量) 铅笔硬度:1~2B(测试方法:参照 GB6379-86)
包装规格 包装规格
遮光塑料瓶包装,1Kg/瓶
有效期限 有效期限
密封避光冷藏(5±5℃):6 个月。
注意事项 注意事项
1.避光冷藏(5±5℃)保存,避免受热和吸潮。使用前先不要开盖,常温下回温2小时 以上后再开盖。 2.本品一经倒出的未用完胶液不可倒回原包装瓶,以免造成污染。
文件编号 产品名称 版 次 更新日期
FR-SMS-B903 Fisher UV-903 A/00 2011.04.11

写 核 准
戚仁宏 王胜林 刘呈贵 2011.04.11
产品说明书
审 批
生效日期

UV胶紫外光固化胶优缺点与操作事项

U V胶紫外光固化胶优缺点与操作事项 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

U V胶(紫外光固化胶)优缺点与操作事项 产品特点 UV胶适用范围极广、塑料与各种材料的粘接都有极好的粘接效果;粘接强度高、通过破坏试验的测试可达到塑料本体破裂而不脱胶,东莞天诺科技TN-231UV胶可几秒钟定位、一分钟达到最高强度、极大地提高了工作效率;固化后完全透明、产品长期不变黄、不白化;对比传统的瞬干胶粘接、具有耐环测、不白化、柔韧性好等优点;P+R按键(油墨或电镀按键)破坏实验可使硅橡胶皮撕裂;耐低温、高温高湿性能极优;可通过自动机械点胶或网印施胶、方便操作。 优点 环境/安全 ●无VOC挥发物,对环境空气无污染; ●胶粘剂成分在环保法规中限制或禁止的比较少; ●无溶剂,可燃性低 经济性 ●固化速度快,几秒至几十秒即可完成固化,有利于自动化生产线,提高劳动生产率 ●固化后即可进行检测以及搬运,节约空间 ●节省能源,例如生产1g光固化压敏胶的所需能量仅需相应水性胶粘剂的1%,溶剂型胶粘剂的4%。可用于不宜高温固化的材料,紫外光固化所消耗的能量与热固化树脂相比可节约能耗90% ●固化设备简单,仅需灯具或传送带,节约空间 ●单组分系统,无需混合,使用方便 相容性 ●对于温度,溶剂和潮湿敏感的材料可以使用 ●控制固化,等待时间可以调整,固化程度可以调整 ●可以重复施胶多次固化 ●紫外灯可以容易地安装在已有的生产线,不需较大改动 缺点 ●原料成本高,不含低成本的溶剂和填料,胶粘剂价格高 ●紫外光对某些塑料或半透明材料穿透力较弱,固化深度有限,可固化产品的几何形状受到限制,不透光的部位及紫外光照射不到的死角不易固化 ●一般的UV胶只能粘接透光材料,粘接不透光材料需要配合其他技术,例如光延迟(阳离子)固化,光热双固化,光-湿气双固化等。 操作原理 无影胶上胶过程无影胶又叫紫外线胶水,它必须是通过紫外线照射到胶液的前提下才能固化,也就是无影胶中的光敏剂与接触到紫外线会与单体相接合,理论上没有紫外线光源的照射下无影胶几乎永远不固化。 紫外线的来源有自然日光和人造光源两种。紫外线越强固化速度越快一般固化时间在10-60秒不等。对于自然日光而言,晴朗的天气阳光中的紫外线会比较强固化速度越快。但是,没有强烈阳光时只能用人造紫外线光源了。人工紫外

胶粘剂的基础知识

胶粘剂的定义和历史 定义:胶粘剂又称粘合剂,简称胶(bonding agent, adhesive),是使物体与另一物体紧密连接为一体的非金属媒介材料。在两个被粘物面之间胶粘剂只占很薄的一层体积,但使用胶粘剂完成胶接施工之后,所得胶接件在机械性能和物理化学性能方面,能满足实际需要的各项要求。能有效的将物料粘结在一起。 历史:考古学证据显示粘合剂的应用历史已经超过6000多年,我们可以看到在博物馆里展出的许多物体在经 过3000多年后依然由粘合剂固定在一起。进入20世纪,人类发明了应用高分子化学和石油化学制造的“合成粘结剂”,其种类繁多,粘结力强。产量也有了飞跃发展。 胶粘剂的应用和分类 应用:电子,汽车,工业,化工,建筑业等各个领域都有用到胶粘剂。 分类:胶粘剂种类繁多,组分各异,有不同的分类方法。 1 按化学类型分类 无机胶粘剂(sauereisen的高温水泥) 有机胶粘剂:分为天然胶粘剂和合成胶粘剂 合成胶粘剂按化学成分主要分为:Epoxy, PU, Silicone, Acrylic, etc. 2 按物理形态分类 水基型:基料分散于水中形成水溶液或乳液,水挥发而固化。 溶液型:基料在可挥发溶剂中配成一定黏度的溶液,靠溶剂挥发而固化。 膏状和糊状:基料在可挥发溶剂中配成高黏度的胶粘剂,用于密封和嵌缝。 固体型:把热塑性合成树脂制成粒状或块状,加热熔融,冷却时固化。 膜状:将胶粘剂涂于基材上,呈薄膜状胶带 3 按固化方式分类 热固化:通过加热的方式使粘合剂发生聚合反应而固化,温度和时间根据不同的产品有很大区别。 湿气固化:与空气中的水汽发生聚合反应达到固化。 UV固化:光引发剂紫外光照射下,形成自由基或阳离子从而引发粘合剂的聚合反应而固化。厌氧固化:在隔绝空气的条件下,发生自由基聚合反应,空气存在会阻碍聚合反应。 催化固化:在催化剂作用下使粘合剂发生聚合反应达到固化。 4 按工艺分类 粘合剂(Adhesive):特殊有导电胶,导热胶,芯片的粘结。 密封剂(Sealant) 灌封胶(Potting & Encapsulation) 敷形涂敷(Conformal Coating) 底部填充胶(Underfill) 顶部包封(Glob Top) 5 按受力情况 (1)结构胶(2)非结构胶 常见胶粘剂的固化机理 1 环氧树脂(Epoxy) 固化机理:固化剂分两类:胺类及其衍生物,和酸酐类。 其中胺类固化剂是与高分子链中的环氧基发生开还聚合反应,酸酐类固化剂是与高分子链上的羟基发生酯化反应,最终都是形成三维网状结构。 常见的环氧树脂是:双酚A型最典型,线型甲酚型,酚醛环氧树脂等。

紫外光固化胶粘剂粘接强度的研究结果

紫外光固化胶粘剂粘接强度的研究结果 UV(紫外光)固化胶具有固化速率快、可大面积施工和生产效率高等优点,已在电子电器、医疗器械等领域中得到广泛应用。UV固化胶的粘接强度主要与配方、被粘接材料及其表面处理技术等有关,并且UV固化胶中低聚物的选择及配方设计极其重要。其粘接强度的影响因素如下: 1、稀释单体种类对胶粘剂粘接强度的影响 通过实验得知,当稀释单体为四氢呋喃丙烯酸酯和丙烯酸异冰片酯时,相应胶粘剂的粘接强度相对较高,体积收缩率相对较低。这是由于这两种稀释单体均属于单官能团单体,并且两者侧基体积均较大,故相应胶粘剂的体积收缩率均相对较低;另外,四氢呋喃丙烯酸酯对大多数塑料(包括PC)的溶胀能力均较强,从而有利于改善相应胶粘剂与塑料间的粘接强度。综合考虑,本研究选择四氢呋喃丙烯酸酯作为UV固化胶的稀释单体。 2、偶联剂种类及用量对胶粘剂粘接强度的影响 KH-560、KH-570对胶粘剂附着力的贡献相对较大(这是由于前者分子中环氧基与PC的亲和力较好,后者分子中双键可在UV辐照下参与固化反应,故相应胶接件的剥离强度明显提高)。综合考虑,选择KH-560为偶联剂时较适宜。 通过实验可知,胶粘剂剥离强度随KH-560用量增加基本上呈先快速上升后趋于稳定态势;当w(KH-560)=1.50%时,胶粘剂的剥离强度相对最高。这是由于过少的KH-560不能完全润湿、覆盖被粘物表面,致使胶接件的剥离强度相对较低;过多的KH-560会与水在胶接界面处发生缩合反应,致使胶粘剂的剥离强度不升反降。综合考虑成本与性能因素,选择w(KH-560)=1.00%时较适宜。 3、填料种类及用量对胶粘剂粘接强度的影响 填料既可以调节体系黏度,又具有补强作用,因此填料种类对胶粘剂性能影响较大。在其他条件保持不变的前提下[如w(二官能团PUA)=64%、w(四氢呋喃丙烯酸酯)=30%、w(KH-560)=1.00%、w(填料)=2.0%和w(HCPK)=3.0%等],通过改变填料类型来考察胶粘剂剥离强度的变化情况。 由实验可知,胶粘剂的剥离强度随填料种类不同而异;当填料为TiO2时,相应胶粘剂的剥离强度相对最低;当填料为nano-SiO2时,相应胶粘剂的剥离强度相对最高。这是由于TiO2能吸收大量UV辐射能,致使相应胶粘剂固化不完全,表现为胶粘剂的粘接强度极低;硅灰粉

氰基丙烯酸酯类伤口快速胶粘剂研究进展

氰基丙烯酸酯类伤口快速胶粘剂研究进展[1657] 前言 伤口快速胶粘剂,是一种医用胶粘剂,而医用胶粘剂又可为两大类:一是适于粘连骨骼等 的硬组织胶粘剂,如甲基丙烯酸甲酯骨水泥;另一类是适于粘接皮肤、脏器、神经、肌肉、血管、粘膜等的软组织胶粘剂。一般采用α-氰基丙烯酸酯类为医用化学合成型胶(α-cyanoacrylate)或纤维蛋白生物型胶(fibringlue),如WBA生物胶粘剂。纤维蛋白生物型胶是从异体或自体血液中产生的,它富含纤维蛋白原和因子Ⅷ,对脆弱拟杆菌、大肠杆菌和金葡杆菌等有杀菌作用。耳鼻喉科专家们把这种蛋白胶用于各种动物和人的伤口上,结果令人满意。但是使用异体血制的蛋白胶有传染肝炎和爱滋病的可能性。自体血产品较安全,但不适合急症医治需要,因为要临时从伤员自己身上抽血制取纤维蛋白生物 胶再来粘合自己的伤口,这是很难做到的[2]。并且纤维蛋白生物胶粘合速度慢、强度不高,不适合紧急治疗,因而人们把注意力放在氰基丙烯酸酯类胶粘剂的研究上。 1 氰基丙烯酸酯类胶粘剂的历史发展 1959年美国发明了Eastman910粘接剂(α-氰基丙烯酸甲酯)[3],它具有对玻璃、五金、橡胶、塑料等材料的快速粘连作用。Coover等人[4]发现它能粘结生物组织、被作为一类新型医用胶粘剂使用。20世纪60年代初生物粘接剂风靡一时,在动物实验和临床应用中取得了丰硕成果]。但到70年代中期,世界各国对它的兴趣有所减弱,主要原因唯恐引起癌症。但20多年来,数以千万计的病例还没有发现产生肿瘤的后果。因此,目前国内外对医用胶粘剂的研究又活跃起来。在临床应用方面,氰基丙烯酸酯类胶粘剂用于闭合创口、皮肤移植、管腔器官连接以及肝、肾、肺、脾、胰、胃肠道等损伤的止血。此外,眼科、骨科、口腔科都广泛地使用了氰基丙烯酸酯类胶粘剂。氰基丙烯酸酯类胶粘剂主要成分是长链酯单体,用于组织后,在室温下就能形成一层薄膜覆盖伤口。早期产品有引起局部炎症和骨

胶粘剂的种类与介绍

胶粘剂的种类与介绍 α-氰基丙烯酸酯胶是单组分、低粘度、透明、常温快速固化胶粘剂。又称为瞬干胶。粘接面广,对绝大多数材料都有良好的粘接能力,是重要的室温固化胶种之一。不足之处是反应速度过快,耐水性较差,脆性大,耐温低(<70℃),保存期短,耐久性不好,故配胶时要加人相应的助剂,多用于临时性粘接。主体材料为特定的氰基丙烯酸酯,再加一些辅助物质如稳定剂、增稠剂、增塑剂、阻聚剂等。配胶时应尽可能隔绝水蒸气,包装容器也应用透气性小或不透气的。国产胶种有501,502,504,661等。 反应型丙烯酸酯(结构)胶粘剂最常用的基料为甲基丙烯酸甲酯。这种胶的特点是固化快、粘接强度大、粘接面广,胶接物表面不需严格处理,双组分胶的各组分用量也勿需严格要求。缺点是气味不好闻。单纯的(甲基)丙烯酸酯单体形成的胶固化后较脆,抗冲击性能差,故常加入其他一些化合物以改善胶层韧性,提高胶层的力学性能和耐环境性能。如果加入的化合物在胶液固化时不参与反应,仅存在于其中起增韧剂作用,这类胶称为第一代丙烯酸酯结构胶(FGA)。若加入的化合物在胶液固化时可与单体进行接枝共聚,从分子内进行增改性,这类胶称为第二代丙烯酸酯胶粘剂(SGA)。还有一类在配胶时以光敏剂、增感剂代替过氧化物引发剂与促进剂,则构成了以紫外光或电子束固化的第三代丙烯酸酯胶粘剂(TGA),其固化更快、贮存更稳定,并且是单组分的。 ===合成胶粘剂介绍==== 1.胶粘特点 用胶粘剂把物品连接在一起的方法叫胶接,也称粘接。具有以下特点: 1)整个胶接面都能承受载荷,强度较高,避免了应力集中,耐疲劳强度好。 2)可连接不同种类的材料。 3)胶接结构质量轻,表面光滑美观。 4)具有密封作用 5)胶接工艺简单,操作方便。 2.胶粘剂的组成 又称粘接剂、胶合剂或胶水。有天然胶粘剂和合成胶粘剂之分,也可分为有机胶粘剂和无机胶粘剂。主要组成基料+固化剂+填料+增塑剂+增韧剂+稀释剂。 3.常用胶粘剂 (1)环氧胶粘剂基料主要使用环氧树脂,我国用于最广的是双酚A型,俗称“万能胶”。 (2)改性酚醛胶粘剂耐热性、耐老化性好,粘接强度也高,但脆性大、固化收缩率大。 (3)聚氨酯胶粘剂柔韧性好,可低温使用,但不耐热、强度低。 (4)α-氰基丙烯酸酯胶常温快速固化胶粘剂,又称“瞬干胶”,但耐热性和耐溶性较差。 (5)厌氧胶这是一种常温下有氧时不能固化,当排掉氧后即能迅速固化的胶。主要成分是甲基丙烯酸的双酯。

紫外光固化技术及UV压敏胶的介绍

紫外固化技术及UV压敏胶的介绍 广州市常疆商贸有限公司 https://www.360docs.net/doc/445861061.html,/

什么是紫外光固化技术 UV固化油墨或涂料(上光油)由:液态预聚固化油墨或涂料(上光油)由液态预聚物、单体、颜料、添加剂和光活性化合物(光引发剂)混合而成。当有适当波长和光强的紫外光投射该涂层时,其中的光引发剂便分解成游离基,游离基引发预聚物和单体上的不饱和基团发生快速的加成聚合反应。上的不饱和基团发生快速的加成聚合反应由于采用的是多功能单体和预聚物,以及游离基反应(例如接枝)的化学特性(快速加成聚合),使涂层迅速转化成不可溶性交联网状结构。

3该增长键近一步反应形成类似于乙烯基溶液聚合物3. 该增长键近步反应,形成类似于乙烯基溶液聚合物的那些聚合物链。如果增长着的分子含有一个以上的双键,则就会产生交联网状结构。 例如 例如:P* + CH 2=CHOOC—COOCH=CH 2 + CH 2=CH—R—CH= CH 2游离基稀释剂(单体)预聚物→~CH 2—CH—R—CH—CH 2—CHOOC—COOHC—CH 2P |||| CH 2CH 2交联聚合物网络|| CH CH R CH —CH—CH 2—R—CH | | 4UV 体系会因紫外灯源的红外辐射而经受额外的温升 4. UV 体系会因紫外灯源的红外辐射,而经受额外的温升。

紫外(UV)光谱 注:任何一种紫外线灯,都会同时产生紫外(UV)、可见光(VL)、红外线(IR ),紫外线和红外线都不可见,其中紫外线是固化过程所需要的,而红外线则是热量的主要来源。

UV灯(高压汞灯)灯管结构

胶粘剂的固化

为了便于胶粘剂对被粘物面的浸润,胶粘剂在粘接之前要制成液态或使之变成液态,粘接后,只有变成固态才具有强度。通过适当方法使胶层由液态变成固态的过程称为胶粘剂的固化。不同的胶粘剂往往采用不同的固化方式 热熔胶的固化 热塑性高分子物质加热熔融了之后就获得了流动性,许多高分子熔融体可以作为胶粘剂来使用。高分子熔融体在浸润被粘表面之后通过冷却就能发生固化,这种类型的胶粘剂称为热熔胶。 热熔胶的固化是一种简单的热传递过程,即加热熔化涂胶粘合,冷却即可固化。固化过程受环境温度影响很大,环境温度低,固化快。为了使热熔胶液能允分湿润被粘物,使用时必须严格控制熔融温度和晾置时间,对于粘料具结晶性的热熔胶尤应重视,否则将因冷却过头使粘料结晶不完全而降低粘接强度。 溶液型胶粘剂固化 热塑性的高分子物质可以溶解在适当的溶剂中成为高分子溶液而获得流动性,在高分子溶液浸润被粘物表面之后将溶剂挥发掉就会产生—定的粘附力。许多高分子溶液可以当作胶粘剂来使用,最常遇到的治液溶液胶粘剂剂是修补自行车内胎用的橡胶溶液,许多胶粘剂是溶液型的。 溶液型胶强剂固化过程的实质是随着溶剂的挥发。溶液浓度不断增大,最后达到一定的强度。溶液胶的固化速度决定于溶剂的挥发速度,还受环境温度、湿度、被粘物的致密程度与含水量、接触面大小等因素的影响。配制溶液胶时应选样特定溶剂改组成混合溶剂以调节固化速度。选用易持发的溶剂,易影响结晶料的结晶速度与程度,甚至造成胶层结皮而降低粘接强度,此外快速挥发造成的粘接处降温凝水对粘接强度也是不利的。选用的溶剂挥发太慢,固化时间长,效率低,还可能造成胶层中溶剂滞留,对粘接不利。在使用溶液胶时还应严格注意火灾与中毒现象。 乳液型胶粘剂的固化

环氧树脂及其胶粘剂的增韧改性研究进展_杨卫朋

环氧树脂及其胶粘剂的增韧改性研究进展 杨卫朋,郝 壮,明 璐 (西北工业大学理学院应用化学系,陕西西安 710129) 摘 要:综述了环氧树脂(EP )及其胶粘剂的增韧改性研究进展。介绍了EP 增韧方法[包括橡胶类弹 性体增韧改性EP 、互穿聚合物网络(IPN )增韧改性EP 、聚硅氧烷(PDMS )增韧改性EP 、纳米粒子增韧改性EP 和超支化聚合物(HBP )增韧改性EP 等]及相关增韧机制。展望了今后EP 及其胶粘剂的增韧改性发展方向。 关键词:环氧树脂;胶粘剂;增韧;改性中图分类号:TQ433.437:TQ323.5 文献标志码:A 文章编号:1004-2849(2011)10-0058-05 收稿日期:2011-05-26;修回日期:2011-06-24。 作者简介:杨卫朋(1987—),陕西咸阳人,在读硕士,主要从事环氧树脂增韧改性等方面的研究。E-mail :yangweipeng.883245@https://www.360docs.net/doc/445861061.html, 0前言 环氧树脂(EP )是指其分子结构中至少含有两个环氧基团的高分子材料。EP 具有良好的综合性能,能以各种形式(如增强塑料、胶接材料、密封剂和涂料等)广泛应用于诸多领域。未改性EP 固化物脆性大、耐冲击强度低且易开裂(韧性不足),从而极大限制了其在某些重点技术领域的应用空间。本研究重点综述了近年来各种改性EP 的增韧方法,其中绝大部分增韧方法可用于EP 胶粘剂的增韧改性。 1 增韧改性EP 及其胶粘剂 1.1 橡胶类弹性体增韧改性EP 1.1.1 有关橡胶类弹性体增韧EP 的理论 橡胶类弹性体是较早用于增韧EP 的方法之 一。早期的增韧理论有Merz 等[1]提出的能量直接吸收理论和Newman 等[2]提出的屈服膨胀理论。早期的理论虽能解释某些试验现象,但不能普遍获得人们的认可。随着科学技术的不断发展,在早期理论基础上,建立了初步的橡胶增韧理论体系。目前被人们普遍接受的增韧理论有Bucknall 等[3-4]提出的银纹-剪切带理论。该理论认为橡胶颗料在增韧体系中发挥两个重要的作用:一是作为应力集中中心诱发大量银纹和剪切带;二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。银纹尖端的应 力场可诱发剪切带的产生,而剪切带也可阻止银纹的进一步发展;大量银纹或剪切带的产生和发展要消耗大量能量,故材料的冲击强度显著提高。另外,影响较大的是Kinloch 等[5]建立的孔洞剪切屈服理论认为:裂纹前段的三向应力场与颗粒相固化残余应力的叠加作用,使颗粒内部或颗粒/基体界面处破裂而产生孔洞;这些孔洞一方面产生体膨胀,另一方面又由于颗粒赤道上的应力集中而诱发相邻颗粒间基体的局部剪切屈服;这种屈服会导致裂纹尖端钝化,进一步达到减少应力集中和阻止断裂的目的。 1.1.2橡胶弹性体的类型 目前用于增韧EP 的反应性橡胶及弹性体主要包 括端羧基丁腈橡胶(CTPB )、端羟基丁腈橡胶(HTBN )、端环氧基丁腈橡胶和聚硫橡胶等。Chikhi [6]等用端氨基丁腈橡胶(ATBN )改善EP 的韧性,并对其热力学性能和玻璃化转变温度(T g )等进行了表征。研究结果表明:ATBN 的引入能显著改善EP 体系的韧性,其缺口处的冲击强度从0.85kJ/m 2增至2.86kJ/m 2,无缺口处的冲击强度从4.19kJ/m 2增至14.26kJ/m 2;其增韧机制是局部塑性剪切变形、T g 降低所致。赵祺等[7]以内亚甲基四氢邻苯二甲酸酐为固化剂,用聚硫橡胶增韧EP 。研究结果表明:加入20%聚硫橡胶后,EP 胶粘剂的拉伸弹性模量、拉伸强度、断裂伸长率、断裂能量和冲击强度分别增加了27%、34%、 22%、48%和330%;聚硫橡胶增韧EP 胶粘剂的综合力学性能明显提高,但其动态模量降低、T g 下降。 中国胶粘剂 CHINA ADHESIVES 2011年10月第20卷第10期 Vol.20No .10,Oct.2011 58--642() DOI:10.13416/j.ca.2011.10.015

有机硅胶粘剂的研究进展

有机硅胶粘剂的研究进展 肖凯斐 (西安工业大学北方信息工程学院,机电信息系,陕西省西安市710032) 摘要 :综述了有机硅胶粘剂的组成、种类、性能及其应用,并对硅橡胶胶粘剂在粘接性、导热性、固化性能的研究进展进行了叙述。 关键词 :硅橡胶硅树脂有机硅压敏胶胶粘剂 Study on high temperature-resistant anaerobic adhesive Xiaokaifei ( Xi'an Technological University North Institute Of Information Engineering,Mechanical and electrical information system ,Shan'xi Province,Xi'an 710032) Abstract: The compositions, categories, properties and applications of organosilicon adhesives were reviewed. Moreover , the bonding ability, heat conductivity and curing of silicone rubber type adhesive w ere introduced. Keywords:Silicone rubber Silicone resin Organosilicon pressure sensitive adhesive Adhesive 有机硅材料是一类性能优异、功能独特、用途极广的新材料,是高分子新型材料

胶粘剂的固化工艺

固化方法胶粘剂的固化通过物理方法,如溶剂的挥发,乳液凝聚和熔融体冷却与化学方法。 (1)热熔胶:高分子熔融体在浸润被粘表面之后通过冷却就能发生固化。 (2)溶液胶粘剂:随着溶剂的挥发、溶液浓度不断增大,渐达到固化具有一定强度。 (3)乳液胶:由于乳液中的水逐渐渗透到多孔性被粘物中并挥发掉,使乳液浓度不断增大,最后由于表面张力的作用,使高分子胶体颗粒发生凝聚。当环境温度较高时,乳液凝聚成连续的胶膜,而环境温度低与最低成膜温度(MFT),就形成白色的不连续胶膜。乳液胶主要是聚醋酸乙烯酯及其共聚物和丙烯酸酯的共聚物。 (4)热固性胶粘剂热固性树脂的多官能团单体或预聚体进行聚合反应,随着分子量的增大同时进行着分子链的变化和交联,形成不溶不熔的凝胶化或叫基本固化。在一定范围的延长固化时间和提高固化温度并不等效,降低固化温度难以用延长时间来补偿。因为胶粘剂和被粘物表面之间需要发生一定化学作用,这就是需要足够高的温度才能进行。固化压力: 有利于胶粘剂对表面的充分浸润;有利于排除胶粘剂固化反应产生的低分子挥发物;有利于排出胶层中残留的挥发性溶剂;有利于控制胶层厚度;粘度大的胶粘剂往往胶层较厚,固化压力的调节控制胶层的厚度范围。 在涂胶后放置一段时间,这叫做预固化。待胶液粘度变大,施加压力,以保证胶层厚度的均匀性。 固化温度 固化温度过低,胶层交联密度过低,固化反应不完全;固化温度过高,易引起胶液流失或使胶层脆化,导致胶接强度下降。加热有利于胶粘剂与胶接件之间的分子扩散,能有利于形成化学键的作用。 (1) 烘箱直接加热法:用鼓风装置,使其均匀传热。 (2) 外加热法:使热量迅速传到胶层内部,大大缩短固化时间。声波加热法:对具有粘弹性的胶粘剂、无溶剂胶液受热固化,不适用于热固性刚性胶。

单组分环氧树脂胶粘剂的研究现状

单组分环氧树脂胶粘剂的研究现状 环氧树脂对各种金属材料、非金属材料、热固性高分子材料等具有优良的粘接性,适应性强,不含挥发性溶剂,不需加压即可固化,且固化收缩率低,耐环境性好,在许多领域得到广泛应用。通常环氧树脂胶粘剂是以主剂和固化剂分开的双组分包装形式提供应用。在环氧树脂中配合固化

剂,会立刻开始反应,随时间推移粘度上升,经过适用期达到不能使用为止。但是双组分混合给使用带来不方便,有以下缺点:增加了包装和贮运的麻烦;双组分胶粘剂使用时,混合比例的准确性和均一性将影响粘接强度;在树脂和固化剂混合后使用时间短。胶粘剂中固化剂种类不同其使用期不同,如脂肪胺类为数十分钟,叔胺或芳香胺类为几小时,酸酐类为一天至数天,不能长期存放;配置的胶液若不能及时用完会造成浪费。由于粘度随时间上升,改变了操作工艺性,不能用于自动粘接。而单组分胶粘剂避免了上述缺点,它可以使胶接

工艺简化,并适于自动化操作。将固化剂和环氧树脂混合起来配制单组分胶粘剂,主要是依靠固化剂的化学结构或者是采用某种技术手段把固化剂对环氧树脂的开环活化暂时冻结起来,然后在热、光、机械力或化学作用下使固化剂活性被激发,进而使环氧树脂迅速固化。目前国内外市场出售的单组分环氧树脂胶粘剂几乎都是采用潜伏性固化剂或自固化性环氧树脂,产品的形态有液态、糊状、粉末状和膜状。具有实用价值的单组分环氧胶粘剂主要有以下几种:湿气固化型;微胶囊包覆型:将固化剂封人微胶囊内,与环氧树脂混合后

不会发生固化反应。成膜物质有明胶、乙烯基纤维素、聚乙烯醇缩醛等。胶囊靠加热或加压而破裂,固化剂和环氧树脂便发生反应;潜伏性固化剂型:使用在规定温度以上才能被活化发生反应的热反应性固化剂,包括中温固化型及高温快固化型;阳离子光固化型。 1 单组分环氧胶粘剂的研究进展 1 1湿气固化型

紫外光固化胶粘剂综述及应用

紫外光固化胶粘剂综述及应用 紫外光固化是辐射固化的一类,辐射固化是利用电磁辐射,如紫外线(UV)或电子束(EB)照射涂层,产生辐射聚合、辐射交联和辐射接技等反应。迅速将低分子量物质转变成高分子量产物的化学过程,固化是直接在不加热的底材上进行的,体系中不含溶剂或含极少量溶剂,辐照后液膜几乎100%固化,因而VOC(挥发性有机化合物)排放量很低。因此,自60年代末以来,这一技术在国际上得到飞速发展,其产品在许多行业都得到广泛应用。 一、概述: 紫外光固化是辐射固化的一类,辐射固化是利用电磁辐射,如紫外线(UV)或电子束(EB)照射涂层,产生辐射聚合、辐射交联和辐射接技等反应。迅速将低分子量物质转变成高分子量产物的化学过程,固化是直接在不加热的底材上进行的,体系中不含溶剂或含极少量溶剂,辐照后液膜几乎100%固化,因而VOC(挥发性有机化合物)排放量很低。因此,自60年代末以来,这一技术在国际上得到飞速发展,其产品在许多行业都得到广泛应用。 1、分类: 辐射固化按应用可分为辐射固化胶粘剂、辐射固化涂料、辐射固化油墨。按所用的辐射源可分为紫外(UV)光固化、电子束(EB)固化、可见光固化。如下图(1)、(2)。 2、紫外光基本知识: 紫外线(简称UV)是属于电磁波辐射的一段,电磁波谱包括无线电波、红处线、可见光、紫外线、X射线、γ射线,波长范围从10-14米至106米,如图3所示。紫外线只其中很窄的一段,波长范围为10~400nm(nm:纳米,1nm=10-9 m)可划分为长波紫外线(UVA)、中波紫外(UVB)、短波紫外线(UVC)、超短波紫外线。波长越短,能量越强,穿透能力越弱。 长波UVA,波长介于320~400nm,具有较强的穿透能力,能穿透玻璃,这一波段的紫外线能量与多数化学键能相当,容易引光化学反应,通常用于光固化的即是UVA。

紫外固化胶粘剂作用机理及研究进展

紫外固化胶粘剂作用机理及研究进展 摘要:阐述了UV胶(紫外固化胶粘剂)的作用机理、应用现状和新的研究进展。 关键词:UV固化;胶粘剂;研究进展,结构胶,发展前景。 1.前言: 紫外线胶又称无影胶、光敏胶、UV胶,它是指必须通过紫外线光照射才能固化的一类胶粘剂,它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。紫外线固化技术,被认为是一种环境友好的绿色技术,近些年取得了快速发展,主要应用于涂料、油墨、胶粘剂等领域。在辐射固化领域中,UV固化胶粘剂虽然所占的比例仅为1%,但发展却是最为迅速的。UV固化胶粘剂中,结构性UV胶约占UV胶的20%。 近年来,自由基和阳离子引发体系、杂化引发体系以及双重固化体系都有大量研究报道,有很多成果应用于时间。预聚物和活性稀释单体的种类及质量都有很大提高,这些都促进了辐射固化胶粘剂的发展。 2.作用机理 粘结机理:人们对粘结机理进行了大量的研究,提出了很多粘结理论,其中主要有以下5种。 ①机械理论 机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上媳妇的空气,才能产生粘接作用。 ②吸附理论 吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫浸润,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶黏

剂进入固体表面的凹陷与孔隙就形成良好润湿。 ③扩散理论 扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长脸大分子聚合物时,扩散理论基本是适用的。 ④经典理论 经典理论又称为双电层理论,由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。但经典理论无法解释性能相同或相近的聚合物之间的粘接。 ⑤弱边界层理论 弱边界层理论认为,当粘接破获被认为是界面破坏时,实际上往往是内聚破坏或若边界层被破坏。 固化原理:UV固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联和接枝化学反应,使粘合剂在数秒内由液态转化为固态。 3.结构型UV胶的组成与传统结构胶的比较 结构型紫外线固化胶粘剂的固化属于光引发的自由基,其基本组成为:基础聚合物,即光交联性聚合物(相对分子质量一般在1000~5000);光聚合性单体,即单体或活性稀释剂(常带有可自由基聚合的乙烯基官能团);助剂,如阻聚剂(或稳定剂)、着色剂、触变剂、增粘剂、填充剂、增塑剂等;光引发剂,在紫外光照射下可产生活性自由基。 光交联性聚合物对UV固化胶粘剂的性能有决定性的影响,主要有聚酯类,聚醚类,环氧类,氨基甲酸酯类(甲基)丙烯酸酯等。合理选择光交联性聚合物,可以满足不同使用要求和不同性能紫外线固化胶的要求。配方设计时,要综合平衡胶液固化前的工艺性、稳定性以及固化物的特性和价格。 经过配方设计,结构型UV固化胶可以达到传统结构胶的各种性能。而室温固化环氧结构胶10~120min初固,7d才能达到最高强度;第二代丙烯酸酯结构胶1~30min 初固,24h才能达到最高强度;结构型UV胶1~5s初固,1h即可达到最高强度,可以满足自动化生产线节奏的需要,这是其他类结构胶无法比拟的。

粘合剂的配方,工艺,注意事项等等

粘合剂 配方 淀粉粘合剂是水、生淀粉、熟浆糊、苛性钠、硼砂和甲醛的混合物,大概比例是:水80%;淀粉20%(其中生淀粉占85%,熟淀粉占15%);苛性钠(淀粉总量的)2.4-2.8%; 硼砂(淀粉总量的)2.7-3.2%,约10摩尔;甲醛微量。 美国一些纸箱厂使用的淀粉大多是玉米淀粉。有的是未经处理的纯玉米粉,有的则经过了化学处理,特别是经过处理的专用淀粉具有良好的稳定粘性和极好的含水性能。有些淀粉呈粉状,有些为粒状。颗粒只是粉末围成的松块,用于下糊糟中调配整批糊。 有的工厂使用经过特殊处理的玉米淀粉专门制造一种单一粘度的粘合剂,其胶化点为61℃开始,63℃完成。虽然胶化点较低,但粘合剂在粘结时像一般的双面机糊一样,胶化迅速。粘度通常在27~32秒之间。680加仑的浆糊用500公斤淀粉。 淀粉在常温水中搅动后,其质点分散成乳状,但不会溶解,也不会吸收水分。如果停止搅动,淀粉则沉淀于底部逐渐结成硬块,一旦硬块型成,再分散就不那么容易了。分散于水中的淀粉,加热时即开始吸收水分而膨胀。粘合剂配方中使用的是生淀粉,大约在70℃开始膨胀。温度升高到90℃,膨胀作用完成。胶化的淀粉很粘稠,其程度视水中的淀粉量而定。 原料工艺 硼砂 硼砂也有粉状和粒状之分,细粒状的硼砂最好。硼砂根据强度分两种级别。10摩尔硼砂有10个水分子,称10级水硼砂。5摩尔硼砂有5个水分子,称5级水硼砂。5摩尔硼砂的浓度较高。0.35公斤的5摩尔硼砂相当于0.454公斤10摩尔硼砂。同样量的两种硼砂用错的话,产生的后果是严重的。如果将硼砂加入生淀粉和水乳液中,然后将混合物加热,淀粉吸水后迅速膨胀,并变得比没加硼砂时更粘稠。 硼砂的添加量有一定的限度,否则的话,会影响淀粉的膨胀,胶化的浆糊会变脆,干燥时呈粉末状态。

UV胶紫外光固化胶优缺点与操作事项

UV胶(紫外光固化胶)优缺点与操作事项 产品特点 UV胶适用范围极广、塑料与各种材料的粘接都有极好的粘接效果;粘接强度高、通过破坏试验的测试可达到塑料本体破裂而不脱胶,东莞天诺科技TN-231UV胶可几秒钟定位、一分钟达到最高强度、极大地提高了工作效率;固化后完全透明、产品长期不变黄、不白化;对比传统的瞬干胶粘接、具有耐环测、不白化、柔韧性好等优点;P+R按键(油墨或电镀按键)破坏实验可使硅橡胶皮撕裂;耐低温、高温高湿性能极优;可通过自动机械点胶或网印施胶、方便操作。 优点 环境/安全 ●无VOC挥发物,对环境空气无污染; ●胶粘剂成分在环保法规中限制或禁止的比较少; ●无溶剂,可燃性低 经济性 ●固化速度快,几秒至几十秒即可完成固化,有利于自动化生产线,提高劳动生产率 ●固化后即可进行检测以及搬运,节约空间 ●节省能源,例如生产1g光固化压敏胶的所需能量仅需相应水性胶粘剂的1%,溶剂型胶粘剂的4%。可用于不宜高温固化的材料,紫外光固化所消耗的能量与热固化树脂相比可节约能耗90% ●固化设备简单,仅需灯具或传送带,节约空间 ●单组分系统,无需混合,使用方便 相容性 ●对于温度,溶剂和潮湿敏感的材料可以使用 ●控制固化,等待时间可以调整,固化程度可以调整 ●可以重复施胶多次固化 ●紫外灯可以容易地安装在已有的生产线,不需较大改动

●原料成本高,不含低成本的溶剂和填料,胶粘剂价格高 ●紫外光对某些塑料或半透明材料穿透力较弱,固化深度有限,可固化产品的几何形状受到限制,不透光的部位及紫外光照射不到的死角不易固化 ●一般的UV胶只能粘接透光材料,粘接不透光材料需要配合其他技术,例如光延迟(阳离子)固化,光热双固化,光-湿气双固化等。 操作原理 无影胶上胶过程无影胶又叫紫外线胶水,它必须是通过紫外线照射到胶液的前提下才能固化,也就是无影胶中的光敏剂与接触到紫外线会与单体相接合,理论上没有紫外线光源的照射下无影胶几乎永远不固化。 紫外线的来源有自然日光和人造光源两种。紫外线越强固化速度越快一般固化时间在10-60秒不等。对于自然日光而言,晴朗的天气阳光中的紫外线会比较强固化速度越快。但是,没有强烈阳光时只能用人造紫外线光源了。人工紫外线光源的种类很多,功率差异也非常巨大,小功率的可以小到几瓦,大功率的可以达到上万瓦。 不同厂家生产的无影胶或不同的型号固化速度不同。用于无影胶必须被光照射才能固化,因此用于粘接的无影胶一般只能粘接透明的两个物件或其中之一必须是透明的,以便是紫外线光可以透过而照射到胶液上面。 操作指导 1、将被粘接的两物体有一个是透明的且表面清洗干净、干燥并无油脂; 2、将UV无影胶涂在其中的一个表面上,合拢两平面,用合适波长(通常为365nm -400nm)及能量的紫外灯或照明用高压汞灯进行照射,光照时要从中央向周边,并确认光线确实能照透至粘合部位; 3、建议光照6s左右、初步定位时,去除工件上剩余胶水再重新光照至完全固化; 4、固化时间应根据不同的备战材料、胶厚、紫外线强度的不同而有所区别。建议用户购置紫外线强度测试仪,粘接前作光线强度测试以减少废品率; 5、气温对胶水的活性也有少许影响,气温低时固化时间应适当延长; 6、操作时不应用力挤压和反复磨擦需粘接的材料,并建议使用固定工具; 7、塑料粘接时,应考虑塑料中的紫外线吸收剂的含量,偏高的含量将严重影响紫外线的透过率,因而也对胶水的固化效率产生明显的影响,甚至导致胶水无法

超低温胶粘剂及其应用研究进展

超低温胶粘剂及其应用研究进展 对超低温胶粘剂的研究进展进行了综述,重点概述了改性环氧树脂胶粘剂、聚氨酯胶粘剂的研究现状,并对其发展前景进行了展望。 關键词:超低温;改性环氧树脂;环氧封端聚氨酯;胶粘剂 超低温胶粘剂是指工作在深冷环境(低于-160 ℃)下并具有足够粘接强度的胶粘剂,作为一种深冷环境中的连接材料,广泛应用于航空航天、人造卫星[1]、超导磁体、绝热杜瓦[2,3]、LNG[4]、深冷液体的贮箱设备以及核能等领域。超低温胶粘剂由于工作环境苛刻,除了具有一般胶粘剂常温下的粘接强度、适用期、黏度等常规性能外,还必须在超低温环境中保持足够的粘接强度、韧性、耐腐蚀性、耐磨性以及抗疲劳性等,有些甚至要求良好的真空密封性。目前超低温胶粘剂按照基体材料,主要可分为:改性环氧胶粘剂、聚氨酯胶粘剂及其他类型胶粘剂。 1 环氧及改性胶粘剂的研究 环氧胶粘剂具有许多优点,如价格低、粘接强度高、化学稳定性好、耐腐蚀、收缩率低等,是目前综合性能较好的胶粘剂,因此广泛用于建筑、汽车、电子等工程领域[5]。但由于未改性的环氧树脂固化后交联密度高,呈三维网状结构,不易通过胶层结构变形来缓解应力集中,从而使固化物存在胶层脆,剥离强度低,耐冲击性差,容易开裂等缺点,故未改性环氧在超低温应用有很大的局限性[6,7]。因此通过对环氧树脂进行增韧改性,使其应用于超低温领域是目前研究的热点。 环氧增韧改性方式主要有:聚醚胺、改性芳香胺等柔性固化剂增韧环氧;多官能团环氧树脂、端环氧基聚氨酯等增韧环氧;添加橡胶弹性体、尼龙纤维、刚性粒子等增韧环氧。通过对环氧增韧改性改善环氧树脂在超低温下的脆性,从而提高超低温下的力学性能。 1.1 柔性固化剂增韧环氧树脂 韩孝族等[8]用自制的柔性固化剂并配以固化促进剂对双酚A型环氧树脂进行增韧,制备出一种在超低温下使用的胶粘剂,该胶粘剂在液氮(-196 ℃)下的剪切强度(特种合金)能达到5.88 MPa,并将粘接好的试样经过高低温循环(在70 ℃烘箱中放置2 h,取出后立即放入液氮中,0.5 h后取出再放入70 ℃烘箱中,循环6次)和温度冲击试验(在80 ℃烘箱中放置10 min,取出后立即放入液氮中3 min,再回到80 ℃,为一个循环,经过27个循环)后,元件仍粘接牢固,且具有很好的真空密封效果,可用于绝热杜瓦瓶。 胡小龙等[9~11]用间苯二甲胺和聚醚胺作为混合固化剂,含柔性聚醚链段固化剂使其在超低温下具有一定韧性;芳香胺固化剂可使其在高温仍具有较高的

胶粘剂术语

中华人民共和国国家标准 GB/T 2943-94 代替GB 2943-82 胶粘剂术语 Terms of adhesive 1.一般术语 粘合 adhesion 两个表面依靠化学力、物理力或两者兼有的力使之结合在一起的状态。 同义词:粘附 内聚 cohesion 单一物质内部各粒子靠主价力、次价力结合在一起的状态。 机械粘合 mechanical adhesion 两个表面通过胶粘剂的咬合作用而产生的结合。 同义词:机械粘附 粘附破坏 adhesive failure;adhesion failure 胶粘剂和被粘物界处发生的目视可见的破坏现象。 内聚破坏 cohesive failure;cohesion failure 胶粘剂或被粘物中发生的目视可见的破坏现象。 相容性 compatibility 两种或多种物质混合时具有相互亲和的能力。 胶粘剂 adhesive 通过粘合作用,能使被粘物结合在一起的物质。 被粘物 adherend 准备胶接的物体或胶接后胶层两边的物体。 基材 substrate 用于在表面涂布胶粘剂的材料。 注:这是比“被粘物”更广义的术语。 湿润 wetting 液体对固体的亲和性。两者间的接触角越小,固体表面就越容易被液体湿润。 同义词:润湿 干燥 dry

通过蒸发、吸收,使溶剂或分散介质减少,以改变被粘物上胶粘剂物理状态的过程。 胶接 bond 用胶粘剂将被粘物表面连接在一起。 同义词:粘接 固化 curing;cure 胶粘剂通过化学反应(聚合、交联等)获得并提高胶接强度等性能的过程。 硬化 setting;set 胶粘剂通过化学反应或物理作用(如聚合反应、氧化反应、凝胶化作用、水合作用、冷却、挥发性组分的蒸发等),获得并提高 胶接强度、内聚强度等性能的过程。 胶层 adhesive layer 胶接件中的胶粘剂层。 交联 crosslinking;crosslink 在分子间形成化学键,并产生一个三维空间网络结构的过程。 分层 delamination 在层压制品中,由胶粘剂、被粘物或它们的界面破坏所引起的层间分离现象。 溢胶 squeeze-out 对装配件加压后,从胶层中挤出的胶粘剂。 粘连 blocking 材料之间出现的一种不希望有的粘合现象。 干粘性 dry tack;aggressive tack 某些胶粘剂(特别是非硫化的橡胶型胶粘剂)的一种特性。当胶粘剂中挥发性的组分蒸发至一室程度,在手感似乎是干的情况 下,本身接触就会相互粘合。 胶瘤 fillet 填充在两被粘物交角处的那部分胶粘剂(如蜂窝夹芯与面材胶接时,夹芯端部所形成的胶粘剂圆角)。固化度 degree of cure 胶粘剂固化时所表征的化学反应程度。 老化 ageing 胶接件的性能随时间变化的现象。 粘性 tack

三种防水胶水 固化方法各不相同

三种防水胶水固化方法各不相同 胶水在我们的生活中常常见到,但如果是卫生间或者其他有水的地方需要胶水,比如水箱漏水了,得封上,就要用到防水胶水。玻璃胶玻璃胶是很多家庭常用的一种黏合剂,比如卫生间安装马桶的时候都会用到。其中有一种是单组份的硅酮胶,这种玻璃胶一般在解除了空气中的水分后产生物理性质的改变,从而形成固化。从固化原理来看是适用于卫生间的防水胶水。还有一种是防霉性的硅酮密封胶。这种防水胶水的使用时间比一般的玻璃胶更长、牢固,而且不宜脱落,对于卫浴、厨房这类比较潮湿、容易长霉菌的环境都挺适用的。一般的玻璃胶很难避免变黑发霉的微粒体,即使是有防水性的玻璃胶也无法完全避免,因此如果是长期有水或者浸水的地方不宜用这种胶施工,或者选用防霉性的硅酮密封胶。对于玻璃胶的施工还有一点需要注意的是,因其要有空气中的水分参与才能固化,所以对于密闭、干燥的空间,普通玻璃胶是无法使用的。有机硅胶粘剂有机硅胶粘剂是一种半透明膏体状的防水胶,一般涂抹在粘接处后自然固化。这种胶粘剂之所以被成为防水胶水,是因为有比较高的透水性能,不会由于被水浸泡就改变本来的状态。环氧树脂胶在需要硬质高强度粘接时,就要用到环氧树脂胶这种专门的防水胶水。环氧树脂胶的主题也就是环氧树脂,胶水不会自然

固化,一般还需要添加环氧树脂固化剂。环氧树脂胶的品种很丰富,包括了耐低温胶、水下用胶、潮湿面用胶等多达16种的胶水,不仅能用于一般环境,对于有防水、耐油、耐强酸强碱的环境也适用。环氧树脂胶是两液混合硬化胶的别称,就是用本胶和固化剂相混而得。因为环氧树脂自己是不能固化的,所以大家在购买时应该购买相同类型的固化剂,使用时按照1:1的比例调和均匀,再涂抹在要粘接的物体表面。这种胶水是热固型胶水,常温下要24小时才能固化。要说明的一点是,不管是上述的哪一种防水胶水,在涂刷之前都要先把接着物体的表面清理干净,并且在使用防水胶水前,要保持物体表面的干燥。只有在胶水干透以后物品才能入水。

相关文档
最新文档