一次函数图像与性质优秀教案
一次函数性质与图像教案
![一次函数性质与图像教案](https://img.taocdn.com/s3/m/b8c1eabb4bfe04a1b0717fd5360cba1aa8118cb5.png)
一次函数性质与图像教案教学目标:1. 理解一次函数的定义和性质;2. 学会绘制一次函数的图像;3. 能够分析一次函数的图像特征。
教学重点:1. 一次函数的定义和性质;2. 一次函数图像的绘制方法;3. 一次函数图像的特征分析。
教学准备:1. 教学课件或黑板;2. 练习题;3. 绘图工具(如直尺、圆规等)。
教学过程:第一章:一次函数的定义与性质1.1 引入一次函数的概念1. 解释一次函数的定义;2. 举例说明一次函数的形式。
1.2 学习一次函数的性质1. 引导学生观察一次函数的图像,分析其斜率和截距的性质;2. 探讨一次函数的增减性和过原点的情况。
1.3 巩固练习1. 给出一些一次函数的表达式,让学生判断其斜率和截距;2. 让学生绘制一次函数的图像,并分析其性质。
第二章:一次函数图像的绘制2.1 学习一次函数图像的绘制方法1. 介绍一次函数图像的绘制步骤;2. 演示如何绘制一次函数图像。
2.2 实践绘制一次函数图像1. 让学生自主绘制一次函数图像;2.3 巩固练习1. 给出一些一次函数的表达式,让学生绘制其图像;2. 分析一次函数图像的特征。
第三章:一次函数图像的特征分析3.1 学习一次函数图像的特征1. 解释一次函数图像的斜率和截距对图像形状的影响;2. 探讨一次函数图像与坐标轴的交点情况。
3.2 分析一次函数图像的案例1. 给出一些一次函数图像,让学生分析其特征;2. 引导学生通过图像判断斜率和截距的关系。
3.3 巩固练习1. 给出一些一次函数的表达式,让学生分析其图像特征;2. 让学生通过绘制图像来验证一次函数的性质。
第四章:一次函数图像的应用4.1 学习一次函数图像的应用1. 解释一次函数图像在实际问题中的应用;2. 举例说明一次函数图像解决实际问题的方法。
4.2 实际问题案例分析1. 给出一些实际问题,让学生运用一次函数图像解决;2. 引导学生通过图像来分析和解答问题。
4.3 巩固练习1. 给出一些实际问题,让学生运用一次函数图像解决;1. 回顾一次函数的定义和性质;5.2 复习练习1. 给出一些一次函数的相关问题,让学生进行复习;2. 让学生通过绘制一次函数图像来巩固所学知识。
一次函数的图象和性质教案人教版
![一次函数的图象和性质教案人教版](https://img.taocdn.com/s3/m/bb27a4e5c67da26925c52cc58bd63186bdeb926a.png)
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教材分析
本节课的教学内容是“一次函数的图象和性质”,所使用的是人教版教材。该章节内容主要涉及一次函数的图象特点、斜率与截距的概念、以及一次函数的性质。学生在学习本节课之前,应已掌握一次函数的基本概念,如函数、自变量、因变量等。
- 自主阅读预习资料:按照预习要求,自主阅读预习资料,理解一次函数的基本概念。
- 思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
三、学习者分析
1. 学生已经掌握了哪些相关知识:在开始本节课之前,学生应该已经学习了初中阶段的一次函数、直线方程等相关知识,对于函数的基本概念、自变量与因变量的关系有一定的了解。他们应该能够理解函数的基本性质,如单调性、连续性等,并能够运用这些知识解决一些简单的问题。
2. 学生的学习兴趣、能力和学习风格:学生的兴趣可能在于通过观察和实验来发现一次函数的图象和性质,他们可能对通过实际例子来理解数学概念感兴趣。在学习能力方面,学生可能需要通过具体的例子和实践活动来理解和掌握一次函数的图象和性质。他们的学习风格可能偏向于动手操作和合作学习。
3. 实践评价:通过实践活动,了解学生对一次函数的应用能力,及时发现问题并进行解决。教师可以通过设计实践活动,如小组讨论、实验等,了解学生对一次函数的应用能力,针对存在的问题进行针对性教学。
4. 期末评价:通过期末考试,了解学生对一次函数的图象和性质的掌握程度,及时发现问题并进行解决。期末考试是对学生学习成果的一次全面检验,教师应认真分析考试结果,针对存在的问题进行针对性教学。
一次函数的图像和性质教案
![一次函数的图像和性质教案](https://img.taocdn.com/s3/m/fc77fdbbafaad1f34693daef5ef7ba0d4a736da8.png)
一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。
2. 让学生能够绘制一次函数的图像,理解图像的性质。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学重点1. 一次函数的概念及表示方法。
2. 一次函数图像的性质。
三、教学难点1. 一次函数图像的性质的理解和应用。
四、教学准备1. 教学课件或黑板。
2. 练习题。
五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。
2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。
3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。
4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。
5. 练习:让学生绘制一些一次函数的图像,并分析其性质。
7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。
六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。
2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。
七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。
八、课后作业1. 完成练习册上的一次函数相关习题。
2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。
九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。
2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。
十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。
2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。
3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。
一次函数的图像和性质教案3篇
![一次函数的图像和性质教案3篇](https://img.taocdn.com/s3/m/792a129d1711cc7930b71625.png)
一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
一次函数的图象教案(优秀4篇)
![一次函数的图象教案(优秀4篇)](https://img.taocdn.com/s3/m/e4cbb1374b7302768e9951e79b89680203d86b27.png)
一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
一次函数性质与图像教案
![一次函数性质与图像教案](https://img.taocdn.com/s3/m/46b54658bfd5b9f3f90f76c66137ee06eef94e56.png)
一次函数性质与图像教案教学目标:1. 理解一次函数的定义和性质;2. 能够绘制一次函数的图像;3. 能够分析一次函数的图像特征;4. 能够应用一次函数的性质和图像解决实际问题。
教学重点:1. 一次函数的定义和性质;2. 一次函数图像的绘制和分析。
教学准备:1. 教学PPT或黑板;2. 教学用具(如直尺、圆规等);3. 练习题和答案。
教学过程:第一章:一次函数的定义1.1 引入:通过实际例子引导学生思考如何用数学方式表示实际问题中的线性关系;1.2 讲解:定义一次函数,解释一次函数的形式和参数含义;1.3 互动:让学生举例说明一次函数的应用场景,并进行讨论;1.4 练习:让学生完成一些一次函数的例子,并解释其含义。
第二章:一次函数的性质2.1 引入:通过图像引导学生观察一次函数的性质;2.2 讲解:讲解一次函数的斜率和截距的性质,包括正比例函数和反比例函数的特殊情况;2.3 互动:让学生通过实际例子来说明一次函数的性质,并进行讨论;2.4 练习:让学生完成一些关于一次函数性质的练习题。
第三章:一次函数的图像3.1 引入:通过实际例子引导学生思考如何绘制一次函数的图像;3.2 讲解:讲解一次函数图像的特点和绘制方法;3.3 互动:让学生通过实际例子来说明如何绘制一次函数的图像,并进行讨论;3.4 练习:让学生完成一些绘制一次函数图像的练习题。
第四章:一次函数图像的分析4.1 引入:通过实际例子引导学生思考如何分析一次函数图像;4.2 讲解:讲解如何通过一次函数图像来分析函数的性质和行为;4.3 互动:让学生通过实际例子来说明如何分析一次函数图像,并进行讨论;4.4 练习:让学生完成一些关于一次函数图像分析的练习题。
第五章:一次函数的应用5.1 引入:通过实际例子引导学生思考如何应用一次函数解决实际问题;5.2 讲解:讲解一次函数在实际问题中的应用方法和步骤;5.3 互动:让学生通过实际例子来说明如何应用一次函数解决实际问题,并进行讨论;5.4 练习:让学生完成一些关于一次函数应用的练习题。
一次函数的图象和性质教案
![一次函数的图象和性质教案](https://img.taocdn.com/s3/m/9fff7b8cb04e852458fb770bf78a6529647d35d4.png)
一次函数的图象和性质教案一、教学目标1. 让学生理解一次函数的图象和性质,掌握一次函数的图象特征和函数值的计算方法。
2. 培养学生运用一次函数解决实际问题的能力,提高学生的数学应用意识。
3. 培养学生合作学习、积极探究的学习态度,提高学生的自主学习能力。
二、教学内容1. 一次函数的图象特征2. 一次函数的性质3. 一次函数在实际问题中的应用三、教学重点与难点1. 教学重点:一次函数的图象特征,一次函数的性质,一次函数在实际问题中的应用。
2. 教学难点:一次函数的图象与系数的关系,一次函数在实际问题中的灵活应用。
四、教学方法1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 利用数形结合法,让学生直观地理解一次函数的图象特征。
3. 运用实例分析法,培养学生运用一次函数解决实际问题的能力。
五、教学过程1. 导入新课:引导学生回顾一次函数的一般形式,提出本节课要研究的一次函数的图象和性质。
2. 探究一次函数的图象特征:让学生分组讨论,总结一次函数图象的斜率和截距与函数图象的关系。
3. 讲解一次函数的性质:结合图象,讲解一次函数的单调性、增减性、对称性等性质。
4. 应用练习:给出几个实际问题,让学生运用一次函数解决问题,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
6. 布置作业:布置一些有关一次函数图象和性质的练习题,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的准确性以及与同学的互动情况,评价学生的学习态度和理解程度。
2. 练习完成情况评价:通过学生完成的练习题,评估学生对一次函数图象和性质的理解及应用能力。
3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、问题探究能力和创新思维。
七、教学资源1. 教学PPT:制作包含一次函数图象和性质的PPT,用于课堂演示和讲解。
2. 练习题库:准备一系列一次函数图象和性质的练习题,用于课堂练习和学生课后自学。
人教版数学八年级下册19.1.2一次函数的图象和性质教学设计
![人教版数学八年级下册19.1.2一次函数的图象和性质教学设计](https://img.taocdn.com/s3/m/4e48ce8c27fff705cc1755270722192e45365896.png)
2.对于一次函数中斜率k和截距b的理解,学生可能会存在困难。教师应结合实际情境,让学生在实际问题中感知k、b的意义,提高学生的理解程度。
3.在学习过程中,学生可能会对一次函数的性质产生混淆,如斜率的正负与函数图象的关系等。教师应通过对比、总结等方法,帮助学生梳理清楚这些关系。
2.引导学生思考:让学生尝试用数学语言描述上述问题中的关系,从而引出一次函数的定义。在此过程中,教师要注意引导学生从实际问题中抽象出数学模型,培养学生的建模意识。
(二)讲授新知
1.一次函数的标准形式:y=kx+b。详细讲解k、b分别代表的含义,以及在实际问题中的应用。
2.一次函数的图象:通过绘制一次函数的图象,让学生直观地认识一次函数的走势。同时,引导学生观察图象上任意两点的坐标,发现它们连线的斜率是定值k。
3.拓展作业:选择课本练习题19.1中的一道或两道拓展题进行思考,鼓励同学们挑战更高难度的题目,培养解决问题的创新思维。
-拓展题:结合一次函数的性质,探讨如何解决一些实际问题,例如最优化问题、行程问题等。
4.小组合作作业:布置一道需要小组合作的作业,要求同学们在课后分组讨论,共同完成。
-设计一道综合性的问题,涉及一次函数的多个知识点,要求小组合作,共同分析问题、建立模型、解决问题,并在下次课堂上进行展示和分享。
3.培养学生能够通过一次函数的图象,分析其性质,如单调性、截距等,并能够运用这些性质解决相关问题。
4.让学生学会运用数形结合的思想,将一次函数的图象和性质相互印证,提高解决问题的能力。
(二)过程与方法
1.通过直观的图象展示,引导学生观察、分析、总结一次函数的性质,培养学生的观察能力和逻辑思维能力。
一次函数的图像和性质教案
![一次函数的图像和性质教案](https://img.taocdn.com/s3/m/2898f260590216fc700abb68a98271fe910eaf25.png)
一次函数的图像和性质教案第一章:一次函数的定义和表达式1.1 引入一次函数的概念通过实际生活中的问题,如“小华每天步行速度为5km/h,他从家出发,以这个速度行走,多少小时后他到达图书馆?”引入一次函数的概念。
1.2 一次函数的表达式解释一次函数的表达式为y = kx + b,其中k是斜率,b是截距。
举例说明斜率和截距的含义和计算方法。
第二章:一次函数的图像2.1 绘制一次函数的图像利用图形计算器或绘图软件,绘制一次函数y = 2x + 3的图像。
解释图像的斜率和截距与函数表达式之间的关系。
2.2 分析一次函数的图像特征讨论一次函数图像的斜率和截距对图像形状和位置的影响。
探索一次函数图像的单调性和截距的正负对图像与坐标轴的交点情况。
第三章:一次函数的性质3.1 斜率的性质解释斜率的含义:斜率表示函数图像的倾斜程度。
探讨斜率的正负与函数图像的左降右升关系。
3.2 截距的性质解释截距的含义:截距表示函数图像与y轴的交点。
探讨截距的正负与函数图像与y轴的交点位置。
第四章:一次函数的应用4.1 线性方程的解法解释线性方程的解法,包括代入法、消元法和图解法。
通过例题演示线性方程的解法并解释解的意义。
4.2 实际问题中的应用以实际问题为例,如“一辆汽车以60km/h的速度行驶,行驶3小时后停止,求汽车行驶的距离。
”演示一次函数的应用。
第五章:一次函数的综合练习5.1 练习题提供一些关于一次函数的练习题,包括选择题、填空题和解答题。
解答这些练习题并解释答案的正确性。
5.2 小组讨论分学生为小组,让他们讨论一次函数的图像和性质,并分享他们的发现。
鼓励学生提出问题并互相解答,促进学生之间的互动和学习。
第六章:一次函数的斜率和截距的计算6.1 斜率的计算解释斜率的计算方法:斜率k等于函数图像上任意两点的纵坐标之差与横坐标之差的比值,即k = (y2 y1) / (x2 x1)。
通过例题演示如何计算一次函数的斜率。
6.2 截距的计算解释截距b的计算方法:截距b等于函数图像与y轴的交点的纵坐标,即当x = 0时的y值。
《一次函数的图象和性质》教学设计(优秀7篇)
![《一次函数的图象和性质》教学设计(优秀7篇)](https://img.taocdn.com/s3/m/4854c760bf23482fb4daa58da0116c175f0e1e97.png)
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
一次函数的图像和性质教案
![一次函数的图像和性质教案](https://img.taocdn.com/s3/m/353313de82d049649b6648d7c1c708a1284a0a2f.png)
一次函数的图像和性质教案一、教学目标知识与技能:1. 理解一次函数的概念,掌握一次函数的表示方法。
2. 学会绘制一次函数的图像,并能分析图像的性质。
3. 能够运用一次函数解决实际问题。
过程与方法:1. 通过实例引入一次函数,引导学生发现一次函数的规律。
2. 利用数形结合的思想,让学生通过绘制函数图像来理解函数的性质。
3. 运用合作交流的方式,培养学生解决问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性。
2. 培养学生勇于探索、积极思考的科学精神。
3. 培养学生合作交流的良好习惯。
二、教学重点与难点重点:1. 一次函数的概念及表示方法。
2. 一次函数图像的特点。
3. 一次函数的性质。
难点:1. 一次函数图像的绘制。
2. 一次函数性质的理解与应用。
三、教学准备教师准备:1. 教学课件或黑板。
2. 函数图像的示例。
3. 实际问题情境的材料。
学生准备:1. 学习一次函数的相关知识。
2. 准备绘图工具(如直尺、圆规、橡皮等)。
四、教学过程1. 导入:通过一个实际问题情境,引入一次函数的概念。
2. 新课导入:讲解一次函数的定义,引导学生掌握一次函数的表示方法。
3. 课堂讲解:讲解一次函数的图像特点,让学生通过绘制函数图像来理解函数的性质。
4. 课堂练习:给出一些一次函数的实例,让学生分析其图像和性质。
5. 课堂小结:总结一次函数的图像和性质,引导学生掌握一次函数的解题方法。
五、课后作业1. 绘制一些一次函数的图像,并分析其性质。
2. 运用一次函数解决实际问题。
3. 准备课堂交流分享。
六、教学评估1. 课堂讲解:通过观察学生在课堂讲解中的参与程度和理解程度,评估学生对一次函数概念和表示方法的掌握情况。
2. 课堂练习:通过检查学生在课堂练习中的解答,评估学生对一次函数图像和性质的理解。
3. 课后作业:通过批改学生的课后作业,评估学生对一次函数图像和性质的掌握情况以及解决实际问题的能力。
一次函数图像及性质教案
![一次函数图像及性质教案](https://img.taocdn.com/s3/m/4ceb98ac112de2bd960590c69ec3d5bbfc0ada4e.png)
一次函数图像及性质教案教案标题:一次函数图像及性质教案教案目标:1. 了解一次函数的定义及其基本性质;2. 掌握一次函数的图像特征和变化规律;3. 能够通过一次函数的图像分析其性质和解决相关问题。
教学重点:1. 一次函数的定义及其性质;2. 一次函数图像的特征和变化规律。
教学难点:1. 通过一次函数的图像分析其性质和解决相关问题。
教学准备:1. 教材:包含一次函数的定义、性质和图像特征的教材;2. 教具:黑板、彩色粉笔、投影仪;3. 学具:直尺、铅笔、计算器。
教学过程:一、导入(5分钟)1. 利用投影仪或黑板上展示一次函数的图像,并引导学生观察图像特征;2. 提问:你能从图像中看出一次函数的哪些性质?二、知识讲解(15分钟)1. 介绍一次函数的定义:y = ax + b,其中a和b为常数,且a≠0;2. 解释一次函数的性质:斜率代表变化率,截距代表起点位置;3. 讲解一次函数图像的特征:直线、斜率、截距;4. 引导学生通过实例计算一次函数的斜率和截距。
三、图像分析与性质探究(20分钟)1. 给出一次函数的图像,让学生分析其性质(如斜率、截距、单调性等);2. 学生分组讨论,并展示自己的分析结果;3. 教师引导学生总结一次函数图像与性质之间的关系。
四、练习与巩固(15分钟)1. 学生根据给定的一次函数,绘制其图像;2. 学生通过图像分析一次函数的性质;3. 学生解决一些相关问题,如求解方程、确定函数的定义域和值域等。
五、拓展与应用(10分钟)1. 学生通过实际问题,运用一次函数图像分析解决问题;2. 学生分享自己的思路和解决方法。
六、总结与反思(5分钟)1. 教师总结一次函数图像及性质的教学要点;2. 学生回答问题:你在本节课中有什么收获和困惑?教学延伸:1. 学生可通过计算器或在线图形绘制工具绘制一次函数的图像,并观察其变化规律;2. 学生可尝试推导一次函数的斜率公式和截距公式,并解释其意义。
教学评估:1. 教师观察学生在课堂上的参与度和表现;2. 课后布置一些练习题,检验学生对一次函数图像及性质的理解程度。
《一次函数的图象和性质》教学设计优秀5篇
![《一次函数的图象和性质》教学设计优秀5篇](https://img.taocdn.com/s3/m/a5769dbeb8d528ea81c758f5f61fb7360b4c2b26.png)
《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。
第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
一次函数的图像和性质教案
![一次函数的图像和性质教案](https://img.taocdn.com/s3/m/1d1a19acaff8941ea76e58fafab069dc50224723.png)
一次函数的图像和性质教案一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的表示方法。
2. 让学生能够绘制一次函数的图像,理解图像的性质。
3. 培养学生运用一次函数解决实际问题的能力。
二、教学内容:1. 一次函数的概念及表示方法。
2. 一次函数图像的性质。
3. 一次函数图像的绘制方法。
4. 一次函数在实际问题中的应用。
三、教学重点与难点:1. 重点:一次函数的概念,一次函数图像的性质,一次函数图像的绘制方法。
2. 难点:一次函数图像的性质的理解与应用。
四、教学方法:1. 采用讲授法,讲解一次函数的概念、表示方法、图像性质等。
2. 采用演示法,展示一次函数图像的绘制过程。
3. 采用案例分析法,分析一次函数在实际问题中的应用。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,激发学生的学习兴趣。
2. 新课导入:讲解一次函数的概念、表示方法。
3. 案例分析:分析一次函数在实际问题中的应用。
4. 课堂互动:让学生上台演示一次函数图像的绘制过程,其他学生进行评价。
6. 课后作业:布置有关一次函数的练习题,巩固所学知识。
六、教学评价:1. 通过课堂互动、课后作业和课堂表现,评价学生对一次函数概念和表示方法的掌握情况。
2. 通过绘制一次函数图像和分析图像性质,评价学生对一次函数图像性质的理解和应用能力。
3. 通过解决实际问题,评价学生运用一次函数解决实际问题的能力。
七、教学资源:1. PPT课件:展示一次函数的概念、表示方法、图像性质等内容。
2. 黑板:用于板书重要概念和公式。
3. 练习题:用于巩固所学知识。
4. 实际问题案例:用于引导学生运用一次函数解决实际问题。
八、教学进度安排:1. 第1-2课时:讲解一次函数的概念和表示方法。
2. 第3-4课时:讲解一次函数图像的性质。
3. 第5-6课时:讲解一次函数图像的绘制方法。
4. 第7-8课时:分析一次函数在实际问题中的应用。
九、教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、作业完成情况等。
一次函数的图像和性质优秀教案
![一次函数的图像和性质优秀教案](https://img.taocdn.com/s3/m/afa94517905f804d2b160b4e767f5acfa1c783fb.png)
一次函数的图像和性质优秀教案教案主题:一次函数的图像和性质教案目标:1. 了解一次函数的概念和定义。
2. 学习如何绘制一次函数的图像。
3. 掌握一次函数的性质和特点。
教学步骤:一、导入(5分钟)1. 引入一次函数的概念,并和学生一起回顾线性函数的知识。
2. 提问:什么是一次函数?一次函数的一般形式是什么?二、讲解一次函数的基本特征(10分钟)1. 一次函数的一般形式是:y = kx + b,其中k和b分别代表斜率和截距。
2. 解释斜率的含义:斜率代表了直线的倾斜程度。
当斜率为正时,直线向上倾斜;当斜率为负时,直线向下倾斜;当斜率为零时,直线水平。
3. 解释截距的含义:截距代表了直线和y轴的交点。
三、绘制一次函数的图像(15分钟)1. 选择适当的坐标轴,确定x和y的取值范围。
2. 找出两个点来确定直线的位置。
可以选择x=0和x=1,计算对应的y值得到两个点的坐标。
3. 画出两个点,并用直线连接它们,得到一次函数的图像。
四、一次函数的性质(15分钟)1. 斜率的影响:斜率决定了直线的倾斜程度和方向。
斜率越大,直线越陡;斜率越小,直线越平缓。
2. 截距的影响:截距决定了直线与y轴的交点。
截距越大,直线越高;截距越小,直线越低。
3. 水平线的一次函数:当斜率为零时,直线水平,此时的函数表示为y=b,b是截距。
4. 垂直线的一次函数:当斜率不存在时,直线垂直于x轴,此时的函数表示为x=a,a是横坐标。
五、练习及交流(15分钟)1. 让学生分组练习绘制一次函数的图像,以及根据图像猜测函数表达式。
2. 让学生进行交流和讨论,分享他们的答案和思路。
六、归纳总结(5分钟)1. 一次函数是一个直线,可以用y=kx+b来表示。
2. 斜率决定了直线的倾斜程度和方向,截距决定了直线和y轴的位置。
3. 一次函数的图像可以通过找出两个点来确定,并用直线连接它们。
七、拓展延伸(5分钟)1. 提问:当一次函数的斜率为1时,这条直线和45度角的直线有什么关系?2. 提问:当一次函数的截距为0时,这条直线和x轴有什么关系?3. 提问:当一次函数的斜率为0时,这条直线和y轴有什么关系?教学反思:本节课通过引入一次函数的概念,讲解了一次函数的基本特征和性质,并让学生通过绘制图像和讨论来巩固所学知识。
一次函数图像与性质教学设计(8篇)
![一次函数图像与性质教学设计(8篇)](https://img.taocdn.com/s3/m/830df9295e0e7cd184254b35eefdc8d376ee140b.png)
一次函数图像与性质教学设计(8篇)第1篇:一次函数图像性质教学反思《一次函数的图象和性质》教学反思从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。
究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。
这样,教师才能灵活的把握课堂教学。
而现在,教师缺乏的正是这一点,还是为了教而教。
按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。
而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。
从这一角度讲,教师应在把握知识的基础上。
结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。
新教材在知识安排上,往往从实例引入,抽象出数学模型。
通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。
侧重于学生能力的培养,让学生知道学什么,如何学。
因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。
一是通过画函数图象理解一次函数图象的形状。
二是两点法画一次函数的图象。
三是探究一次函数的图象与 k、b 符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。
值得老师们探讨。
为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。
如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。
在活动三中,探究 k、b 符号与直线经过的象限与增减性的关系。
学生目标明确,操作性强,受到了较好的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。
一次函数性质与图像教案
![一次函数性质与图像教案](https://img.taocdn.com/s3/m/2c325f6feffdc8d376eeaeaad1f34693daef1020.png)
一次函数性质与图像教案一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的性质和图像。
2. 培养学生运用一次函数解决实际问题的能力。
3. 培养学生合作学习、积极探究的学习态度。
二、教学内容:1. 一次函数的概念及表达式。
2. 一次函数的性质:斜率、截距、单调性、奇偶性。
3. 一次函数的图像:直线、斜率、截距与图像的关系。
4. 实际问题中的一次函数应用。
三、教学重点与难点:1. 重点:一次函数的概念、性质和图像。
2. 难点:一次函数在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的性质和图像。
2. 利用多媒体辅助教学,直观展示一次函数的图像。
3. 结合实例,培养学生运用一次函数解决实际问题的能力。
五、教学过程:1. 导入:引导学生回顾初中阶段学习过的函数知识,为新课的学习做好铺垫。
2. 自主学习:让学生通过阅读教材,了解一次函数的概念和表达式。
3. 课堂讲解:讲解一次函数的性质,如斜率、截距、单调性、奇偶性。
4. 实践操作:让学生利用多媒体软件,绘制一次函数的图像,观察斜率、截距与图像的关系。
5. 案例分析:结合实际问题,讲解一次函数在实际中的应用。
6. 课堂练习:布置练习题,巩固所学知识。
7. 总结与反思:让学生总结一次函数的性质和图像,反思自己在学习过程中的收获和不足。
8. 拓展延伸:引导学生思考一次函数在其他领域的应用,激发学生的学习兴趣。
9. 课后作业:布置作业,让学生进一步巩固一次函数的知识。
10. 教学评价:通过课堂表现、练习成绩等途径,对学生的学习效果进行评价。
六、教学资源:1. 教材:为学生提供最新版的一次函数相关教材。
2. 多媒体设备:用于展示一次函数的图像和实例。
3. 练习题库:包括不同难度的一次函数题目,用于课堂练习和课后作业。
4. 实际问题案例:收集一些与一次函数相关的生活、科学问题。
七、教学进度安排:1. 第一课时:介绍一次函数的概念和表达式。
一次函数的图象和性质教案设计
![一次函数的图象和性质教案设计](https://img.taocdn.com/s3/m/8d63c52503768e9951e79b89680203d8ce2f6a95.png)
一次函数的图象和性质教案设计一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
三、教学难点:1. 一次函数的图象和性质的理解和运用。
2. 实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。
2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。
3. 案例分析:给出实际问题,让学生运用一次函数解决。
4. 巩固练习:设计相关练习题,让学生巩固所学知识。
6. 课后作业:布置相关作业,巩固所学知识。
教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
三、教学难点:1. 一次函数的图象和性质的理解和运用。
2. 实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。
2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。
3. 案例分析:给出实际问题,让学生运用一次函数解决。
4. 巩固练习:设计相关练习题,让学生巩固所学知识。
6. 课后作业:布置相关作业,巩固所学知识。
教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
一次函数的图象和性质教案设计
![一次函数的图象和性质教案设计](https://img.taocdn.com/s3/m/1babba5477c66137ee06eff9aef8941ea76e4be2.png)
一次函数的图象和性质教案设计第一章:一次函数的定义与表达式1.1 引入一次函数的概念通过实际生活中的问题,如“某商品的售价与购买数量之间的关系”,引出一次函数的概念。
解释一次函数的表达式为y = kx + b,其中k 是斜率,b 是截距。
1.2 理解斜率和截距的含义解释斜率k 表示函数图象的倾斜程度,斜率为正表示图象向上倾斜,斜率为负表示图象向下倾斜。
解释截距b 表示函数图象与y 轴的交点。
1.3 例题解析提供几个一次函数的例题,让学生理解并应用一次函数的定义与表达式。
1.4 练习题设计一些练习题,让学生巩固对一次函数的定义与表达式的理解。
第二章:一次函数的图象2.1 绘制一次函数的图象解释一次函数图象是一条直线,并且讨论斜率和截距对直线位置的影响。
利用图形计算器或在线绘图工具,让学生绘制一次函数的图象。
2.2 分析一次函数图象的性质讨论一次函数图象的斜率和截距与直线的位置关系。
解释一次函数图象与坐标轴的交点。
2.3 例题解析提供几个关于一次函数图象的例题,让学生理解并应用一次函数图象的性质。
2.4 练习题设计一些练习题,让学生巩固对一次函数图象的理解。
第三章:一次函数的性质3.1 斜率的性质解释斜率的正负与函数图象的倾斜方向的关系。
讨论斜率的绝对值与函数图象的陡峭程度的关系。
3.2 截距的性质解释截距的正负与函数图象与y 轴的交点位置的关系。
讨论截距的绝对值与函数图象与y 轴的距离的关系。
3.3 例题解析提供几个关于一次函数性质的例题,让学生理解并应用一次函数的性质。
3.4 练习题设计一些练习题,让学生巩固对一次函数性质的理解。
第四章:一次函数的应用4.1 线性方程的解法解释如何利用一次函数的性质解决线性方程的问题。
提供一些线性方程的例题,让学生理解并应用解法。
4.2 实际问题应用提供几个实际问题,如“某商品的售价与购买数量之间的关系”,让学生应用一次函数的知识解决问题。
4.3 例题解析提供几个关于一次函数应用的例题,让学生理解并应用一次函数的知识解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.2一次函数的图象与性质(1)
一、教学目标
1、了解一次函数y=kx+b 的图象的特点。
2、能熟练地作出一次函数的图象。
3、理解一次函数及其图象的有关性质。
4、理解一次函数的代数表达式与图象之间的对应关系。
二、能力目标
1、进一步培养学生数形结合的意识和能力。
2、通过议一议,培养学生的探索精神和合作交流意识。
三、情感目标
1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2、加强新旧知识的联系,促进学生新的认知结构的建构。
3、让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。
四、教学重点
1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数及其图象的有关性质。
4、理解一次函数的代数表达式与图象之间的对应关系。
五、教学过程
(一)、新课导入
上节课我们学习了如何画正比例函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画正比例函数的图象不需要许多点,只要找两点即可,还明确了正比例函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
(二)、讲授新课
1、在同一坐标系内分别作出下列一次函数的图象
(1)据上节课学习的内容作正比例函数y=2x 的图像
52
1,4,2-=+==x y x y x y
(2)作出一次函数y=x+4的图象
解:列表:
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y=2x+1的图象,它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:
(1)列表;(2)描点;(3)连线。
(3)一次函数图像是什么? 怎样更简便的画一次函数图像?
小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b 的图象也称为直线y-kx+b 。
(4)作函数 的图像 (5)讨论
观察三个函数图象,随着 x 值的变化,y 的值在怎样变化? 2、在同一坐标系内分别作出下列一次函数的图象. y=-x+6、y=-2x 、y=12
--3 讨论
观察三个函数图象,随着 x 值的变化,y 的值在怎样变化?
小结:
函数性质:
当k>0时,y 随x 的增大而增大;
当k<0时,y 随x 的增大而减小.
3、在同一坐标系内分别作出下列一次函数的图象.
y=x 、y=x+4、y=x-5
讨论:
(1)这三个图像有怎样的位置关系?
(2)直线y=x 经过怎样的运动得到直线y=x+3?直线y=x 经过怎样的运动得到直线y=x-5?
(3)如何根据两条直线的函数解析式来判断两条直线的位置关系?
(4)直线y=kx 经过怎样的运动得到直线y=kx+b?
小结:
(1) 一次函数的性质
5-21x y =
当k>0时,y随x的增大而增大;图像必过一三象限。
当k<0时,y随x的增大而减小;图像必过二四象限。
常数项b决定一次函数图像与y轴交点的位置。
(2)同一平面内,不重合的两直线的位置关系由k决定。
(三)课堂练习
1、试一试
(1)直线经过一三四象限
(2)直线经过原点,且y随x增大而增大
(3)直线经过第四象限,且y随x增大而减小
(4)直线经过第三象限,且y随x增大而增大
2、练一练:
(1)判断下列各组直线的位置关系:
(A)y=x、y=x+4、
(B)y=3x-0.5、y=-x-0.5
(2)已知直线y=3x-0.5与一条经过原点的直线平行,则这条直线的函数关系式为
(3)一次函数y=x-1的图象经过的象限是()
A.第一、二、三象限
B.第一、二、四象限
C.第二、三、四象限
D.第一、三、四象限
(四)、课堂小结
1、作一次函数的步骤。
2、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了。
3、明确一次函数及其图象的有关性质
六、课后作业
习题4.4。