工程数学基础-试卷
工程数学基础第一次作业第一次答案
⼯程数学基础第⼀次作业第⼀次答案《⼯程数学基础(Ⅰ)》第⼀次作业答案你的得分:100.0完成⽇期:2013年09⽉03⽇20点40分说明:每道⼩题括号⾥的答案是您最⾼分那次所选的答案,标准答案将在本次作业结束(即2013年09⽉12⽇)后显⽰在题⽬旁边。
⼀、单项选择题。
本⼤题共20个⼩题,每⼩题4.0 分,共80.0分。
在每⼩题给出的选项中,只有⼀项是符合题⽬要求的。
1.( D )A.(-6, 2, -4)B.(6, 2, 4)TC.(2, 6, 4)D.(3, 6, 4)T2.( D )A.B.C.D.3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进⾏的运算是 ( )( B )A.AC T BB.AC T B TC.ACB TD.ACB4.设A是可逆矩阵,且A+AB=I,则A-1 等于 ( )( C )A.BB.1+ BC.I + BD.(I-AB)-15. ( D )A.|A+B|=| A |+|B|B. | A B|=n| A||B|C. |kA|=k|A|D.|-kA|=(-k)n|A|6. ( D )A. 6B.-6C.8D.-87.设A B均为n阶⽅阵,则成⽴的等式是( )( B )A.|A+B|=| A |+|B|B.| A B|=| BA|C.(AB)T= A T B TD.AB= BA8.设A,B,C均为n阶⽅阵,下列各式中不⼀定成⽴的是 ( )( A )A.A(BC)=(AC)BB.(A+B)+C=A+(C+B)C.(A+B)C=AC+BCD.A(BC)=(AB)C9.设α1,α2,α3是3阶⽅阵A的列向量组,且齐次线性⽅程组Ax=b有唯⼀解,则 ( )( B )A.α1可由α2,α3线性表出B.α2可由α1,α3线性表出C.α3可由α1,α2线性表出D.A,B,C都不成⽴10.设向量组A是向量组B的线性⽆关的部分向量组,则 ( )( D )A.向量组A是B的极⼤线性⽆关组B.向量组A与B的秩相等C.当A中向量均可由B线性表出时,向量组A,B等价D.当B中向量均可由A线性表出时,向量组A,B等价11.设n阶⽅阵A的⾏列式|A|=0则A中( )( C )A.必有⼀列元素全为0B.必有两列元素对应成⽐例C.必有⼀列向量是其余向量线性表⽰D.任⼀向量是其余向量的线性组合12. ( A )A.B.C.D.13. ( A )A.B.C.D.14. ( C )A.0B.-1C. 2D.-215.( B )A.B.C.D.16. ( C )A.B.C.D.17.( B )A.有唯⼀解B.⽆解C.只有0解D.有⽆穷多解18.( A)A. 1B. 2C. 3D. 419.( D )A.B.C.D.20.( D )A.B.C.D.三、判断题。
工程数学试题A及答案
工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
工程数学基础试题及答案
工程数学基础试题及答案一、单项选择题(每题2分,共10分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于一个确定的值,这个值称为该点的极限。
以下哪个选项正确描述了极限的定义?A. 函数值在某点的值B. 函数值在某点的导数C. 函数值在某点的差分D. 函数值在某点的趋近值答案:D2. 以下哪个选项是连续函数的定义?A. 在某点可导B. 在某区间内可导C. 在某点有极限D. 在某区间内函数值无突变答案:D3. 微分中,dy/dx表示的是:A. 函数y的导数B. 函数y的积分C. 函数y的微分D. 函数y的不定积分答案:A4. 以下哪个选项是不定积分的定义?A. 函数的原函数B. 函数的导数C. 函数的微分D. 函数的极限答案:A5. 以下哪个选项是定积分的定义?A. 函数的原函数B. 函数在区间上的极限C. 函数在区间上的累积和D. 函数在区间上的导数答案:C二、填空题(每题3分,共15分)1. 函数f(x)=x^2在区间[0,1]上的定积分表示为∫_0^1 x^2 dx,其值为____。
答案:1/32. 函数f(x)=sinx的不定积分是____。
答案:-cosx + C3. 函数f(x)=e^x的导数是____。
答案:e^x4. 函数f(x)=lnx的导数是____。
答案:1/x5. 函数f(x)=x^3的二阶导数是____。
答案:6x三、计算题(每题10分,共20分)1. 计算定积分∫_0^π/2 sinx dx。
答案:12. 计算不定积分∫x^2 dx。
答案:1/3x^3 + C四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。
答案:略2. 证明函数f(x)=e^x在区间(-∞, +∞)上是连续函数。
答案:略五、应用题(每题20分,共20分)1. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+2x+100,其中x为生产数量。
工程数学基础2019级答案
2019–2020学年第二学期《工程数学基础》试卷标准答案及评分标准考试时间:2020-9-12一、判断题1.×2.×3.×4.5.×6.7.8.×9.×10. 11.×12. 13.×14. 15.×16. 17. 18.×19.×20.×二、填空题1.A c ∩B c 2.−3 3.Y 4.0 5.b−a 6.07.λ−18.09.110.2+√211.0cos x3−x2sin x3e x2x1e x2012.213.−2/5<α<014.16/4515.h2[f(a)+2∑n−1i=1f(x i)+f(b)]16.f(4)(ξ)4!x2(x−2)2,ξ∈(0,2)17.618.2126x+21319.15(b5−a5)20.(0,0.278]三、解:¯A=22−1141−10−14−2−1−8−→4−2−1−81−10−122−114(1分)−→4−2−1−80−1214103−1218−→4−2−1−803−12180−12141−→4−2−1−803−121800164(3分)回代解得x3=24,x2=10,x1=9,即x=(9,10,24)T.(4分)Jacobi迭代格式为x(k+1)1=14·(−2x(k)2−2x(k)3+1),x(k+1)2=12·(−x(k)1−x(k)3+3),x(k+1)3=12·(−x(k)1−x(k)2+7),k=0,1,···.(6分)Jacobi迭代矩阵为M=D−1(L+U)=141212·0−2−2−10−1−1−10=0−12−12−120−12−12−12,由|λE−M|=λ3−34+14=(λ+1)(λ−12)2=0解得M的特征值为λ1,2=12,λ3=−1,所以ρ(M)=1,从而Jocobi迭代发散.(8分)四、解:构造差商表如下(3分)表1:差商表x y 一阶差商二阶差商三阶差商012−3−23−4−1135234315三次Newton 插值多项式N 3(x )=1−2(x −0)+13(x −0)(x −2)+15(x −0)(x −2)(x −3)=15x 3−23x 2−2215x +1,(4分)Newton 插值公式的余项R 3(x )=f [0,2,3,5,x ]x (x −2)(x −3)(x −5).(6分)五、解:(1)λE −A =λ020λ−10−10λ−3−→ −10λ−30λ−10λ02 −→ −10λ−30λ−10002+(λ−3)·λ−→ 10λ−30λ−1000λ2−3λ+2,(4分)所以A 的最小多项式m (λ)=λ2−3λ+2=(λ−1)(λ−2),且J =200010001,C = 10000−2013.(7分)(2)由A 的最小多项式为φ(λ)=(λ−1)(λ−2),设e tA =a 0(t )+a 1(t )A =T (tA ),(2分)因为T (tA )与e tA 在σ(A )={1,2}上的值相同,故有a 0(t )+a 1(t )=e t ,a 0(t )+2a 1(t )=e 2t ,(4分)解得a 1(t )=e 2t −e t ,a 0(t )=2e t −e 2t ,所以e tA =(2e t −e 2t )E +(e 2t −e t )A=2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t2e 2t −e t(6分)所以初值问题的解e tA= 2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t 02e 2t −e t · 101= 4e t −3e 2t 03e 2t −2e t.(8分)六、解:做变换x =12(1+t ),t ∈[−1,1],故t =2x −1.代入得f (x )=14(1+t )2 φ(t ).(2分)对φ(t )在[−1,1]上用Legendre 多项式做最佳平方逼近,设其为¯S ∗1(t )=a 0P 0(t )+a 1P 1(t )则a 0=12∫1−114(t +1)2dt =13,a 1=32∫1−114(t +1)2·tdt =12,(4分)因此有¯S ∗1(t )=13+12t,S ∗1(x )=13+12(2x −1)=x −16.(6分)平方误差为δ2=12∥φ(t )−¯S ∗1(t )∥22=12∫11142(t +1)4dt −121∑k =022k +1a 2k =12(25−2·132−23·122)=1180≈5.56×10−3.(8分)七、解:S 22=4T 23−T 224−1,从而有1=T 23=(3S 22+T 22)/4≈0.401812.其它的有2=S 21=4T 22−T 214−1≈0.400432,3=C 21=42S 22−S 2142−1≈0.400053.八、解:令z =y ′,初值问题化为y ′=z,z ′=(1+x 2)y +1,(0<x ≤1),y (0)=1,z (0)=3.(2分)解此问题的标准Runge-Kutta 格式为y n +1=y n +h 6(k 1+2k 2+2k 3+k 4),z n +1=z n +h 6(l 1+2l 2+2l 3+l 4),k 1=z n ,l 1=(1+x 2n )y n +1,k 2=z n +h 2l 1,l 2=[1+(x n +h 2)2](y n +h2k 1)+1,k 3=z n +h 2l 2,l 2=[1+(x n +h 2)2](y n +h 2k 2)+1,k 4=z n +hl 3,l 4=[1+(x n +h )2](y n +hk 3)+1,y 0=1,z 0=3,(n =0,1,···,N −1)(6分)九、证明:(1)由于(x n )和(y n )都是X 中的Cauchy 序列,则对∀ε>0,∃N 1,N 2∈N ,使得当m,n >N 1时,∥x m −x n ∥<ε;当m,n >N 2时,∥y m −y n ∥<ε.令N =max {N 1,N 2},则当m,n >N 时,有|∥x m −y m ∥−∥x n −y n ∥|≤∥(x m −y m )−(x n −y n )∥≤∥x m −y m ∥+∥x n −y n ∥<ε2+ε2=ε这表明(∥x n −y n ∥)是R 中Cauchy 的序列,由R 的完备性知,数列(∥x n −y n ∥)收敛.(5分)(2)由A 为Hermite 正定矩阵知,存在n 阶酉矩阵U 使得U H AU =diag (λ1,···,λn ).由于A为正定矩阵,因此λi>0,i=1,···,n.令P1=U·diag(1/√λ1, (1)√λn),则P1非奇异,且P H1AP1=E.(3分)同时,显然P H1BP1是Hermite矩阵,因此存在n阶酉矩阵P2,使得P H 2(P H1BP1)P2=diag(µ1,µ2,···,µn),这里µ1,µ2,···,µn为Hermite矩阵P H1BP1的特征值,故为实数.(4分)令P=P1P2,则P非奇异,且P H AP=P H2(P H1AP1)P2=E,P H BP=P H2(P H1BP1)P2=diag(µ1,µ2,···,µn).(5分)。
《工程数学基础》试卷
子组为
.
3. 设 A C 3 3 的 Jordan 标 准 形 J
2
12
,则 A 的 有理标 准形
2
C _______________ .
1 i0
4. 设 A
2
11
则
A= F
.
i 01
T
5. A(t ) [ aij (t )]n n 可导,则 dA (t)
.
dt
et t 2
1
6. 已知 A(t)
则 A(t)dt =
3
四. 证明题(每小题 5 分,共 10 分) 1. 对任意集合 E, A, B, 试证明:
E ( A B) = ( E A) (E B) . 2. 若 A, B C n n 都是 Hermite 矩阵 , 则 AB 是 Hermite 矩阵的充要条件为 AB BA .
4
低为
.
10. 方阵 A 可对角化的充要条件是 : A 的最小多项式
.
三.计算题 (每小题 10 分,共 70 分) 1. 设
4 60 A 3 50 ,
3 61
2
( 1)求 E A 的初等因子组; (2) 求 A 的 Jordan 标准形 J .
2. 设 1 26
A 1 0 3, 1 14
( 1)求 E A 的不变因子;( 2)求 A 的有理标准形 C .
2 位)。
5. 设
求
d dt
(sin
At) .
10 0 A 0 2 0,
003
6. 用列主元法求解以下线性方程组
3 x1 x 2 x 3 1
x1 3x2
2
x1 x2 2x2 3
7. 写出用标准 Runge—Kutta 法求解初值问题
工程数学基础(新版教材)习题解答
, 即
E11
a
0c
0 T,
E12
a c
b 0 d 0
1 0
0 0
a
c
0E11
aE12
0E21
cE22
, 即
E12
0
a
0 c T,
E21
a c
b 0 d 1
0 0
b d
0
0
bE11
0E12
dE21
0E22
, 即
E21
b
0d
0 T,
3
E22
a c
b 0 d 0
0 1
d1() d2 () d3 () 1 , d 4 ( ) ( 1)4 .
00 1
2. 解 (1)∵ det A() ( 2)4 ,∴ D4 () ( 2)4 ,又∵ 0 1
1 2
2 1 0 , 0
∴ D3 () 1 ,从而 D1() D2 () 1 .于是不变因子为 d1() d 2 () d3 () 1 ,
3.满; 4. sup E 2 , inf E 3; 5. 0 ; 6.0; 7. n ; 8.Y .
B
1. 证 y f (A B) , x A B 使 得 y f (x) . 由 x A B , 得 x A , 且 x B 故 y f (x) f (A) 且 y f (B) ,即 y f (A) f (B) ,因此 f (A B) f (A) f (B) .
1
∴ A~ J i .
i
3 1 0 0 1 3 0 0
(3)∵ E A
4 7
1 0
0
1
1 2 1 1,2 1
4 7
0
工程数学试卷及答案
一、 选择填空题1. 某数x 的有四位有效数字且绝对误差限是4105.0-⨯的近似值是(A ) (A )0.693 (B)0.6930 (C )0.06930 (D)0.006930 2. n 次拉格朗日插值多项式的余项是( A)(A))()!1()()(1)1(x n f x R n n n +++=ωξ (B)()()()()!n n n f R x x n ξω= (C))!1()()()1(+=+n f x R n n ξ (D)()()()!n n f R x n ξ=3. 求积公式)1()1()(11f f dx x f +-≈⎰-具有(A )次代数精度(A )1 (B )2 (C )4 (D )34. 用牛顿法计算)0(>a a n ,构造迭代公式时,下列方程不可用的是(A )(A )0)(=-≡n a x x f (B )0)(=-≡n a x x f (C )0)(=-≡nx a x f (D )01)(=-≡nx ax f 5. 由数据0051152252171 022 42......x y --- 所确定的插值多项式是次数不大于( D )的多项式.(A )二次 (B )三次 (C )四次 (D )五次 6. 在牛顿—柯特斯公式()()()()nbn i i ai f x dx b a C f x =≈-∑⎰中,当系数()n i C 有负值时,公式的稳定性不能保证,所以实际应用中,当n ( B )时的牛顿—柯特斯公式不使用。
(A )10≥ (B )8≥ (C )6≥ (D )4≥ 7. 经过点)3,2(),2,1(),1,0(C B A 的插值多项式=)(x P ( B ) 8. (A )x (B ) 1+x (C )12+x (D )12+x 9. 给定向量Tx )4,3,2(-=,则∞xx x,,21分别为( A )(A )4,29,9 (B )5,29,9 (C )4,29,5.8 (D )5,29,5.8 10. 精确值x =36.85用四舍五入保留三位有效数字的近似数为 36.9 。
天津大学工程数学基础新版习题答案.pdf
4.
证
设 Y D
是线性空间
X的一族子空间ຫໍສະໝຸດ 要证DY也是X的线性子空间
.显然
D
Y
,z
只需证明
D
Y
对X的线性运算是封闭的.
事实上,x,
y
D
Y
及
, ,从而对每一个 D ,
有
x,
y
Y
,故
x
y
Y
,
x
Y
.于是,
x
y
D
Y
,
x
D
Y
.因此,
D
Y
是
X
的线性子空间.
5. 证 显然W包含零多项式,故非空;又f , g W,及 ,有
(2)y1, y2 Y及1, 2 , x1, x2 X ,s.t.y1 Tx1, y2 Tx2 ,即x1 T 1( y1), x2 T 1( y2 ).于是有
T 1(1 y1 +2 y2 ) T 1[1T (x1) 2T (x2 )] T 1[T (1x1 2 x2 )] 1x1 2 x2 1T 1( y1) 2T 1( y2 ),
故T 1 : Y X是线性的. 7. 解 首先验证: 22 22是线性的,然后求其在即B下的矩阵A.
X1, X2 22 ,k1, k2 ,由的定义,有
( B
1 0
0 0 1 0 0 0 , 0 0 , 1 0 , 0
(k1 X1 +k2 X2 ) A0 (k1 X1 +k2 X2 ) k1 A0 X1 +k2 A0 X2 k1 (X1)+k2 (X2 ),
故: 22 22是线性的.
)0 0
1
关键是求基元E1
工程数学考试试卷B
广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程(2015-2016 √ 考试 A 卷 √ 闭卷一、单项选择题(每题2分,共20分)1、假设事件A 与事件B 相互对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C)发生的概率为1 (D)是必然事件 2、掷一枚质地均匀的骰子,则在出现奇数点的条件下出现1点的概率为( )。
(A)1/3 (B)1/2 (C)1/6 (D)2/3 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )。
(A) P (A)=1- P(B)(B) P(AB)=P(A)P(B)(C)P(B A )=1(D)P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)=( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、⎰=z (A)2πi (D)以上都不对 6、复数i e -3对应的点在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 7、设)2()(2222y xy bx i y axy x z f +++-+=在复平面内处处解析,(其中a,b 为常数)则( ) (A) a=2,b=1 (B) a=1,b=2 (C) a=2,b=-1 (D)a=-1,b=28、单位脉冲函数δ(t)的Fourier 变换为( )(A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)班级: 姓名:学号:试题共密封GDOU-B-11-302Cx 2y,9、设f(t)=u(t)cost ,则f(t)的Lapalace 变换为( )(A)1/(s 2+1) (B) 1/[s(s 2+1)] (C) s/(s 2+1)(D)1/s10、若f(t)的Fourier 变换为F(ω),则f(t+2)的Fourier 变换为( )(A)e 2j ωF(ω) (B)e -2j ωF(ω) (C)F(ω+2)(D)F(ω-2)二、填空题(每空2分,共20分)3、已知随机变量X 的概率密度函数为⎩⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。
大学工程数学试题及答案
大学工程数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是微分方程的解?A. \( y = e^x \)B. \( y = e^{-x} \)C. \( y = x^2 \)D. \( y = \ln(x) \)答案:A2. 矩阵的行列式值表示了什么?A. 矩阵的面积B. 矩阵的体积C. 矩阵的旋转角度D. 矩阵的缩放因子答案:D3. 以下哪个是线性代数中的基本概念?A. 微分B. 积分C. 向量空间D. 极限答案:C4. 傅里叶变换用于解决什么问题?A. 微分方程B. 积分方程C. 信号处理D. 线性代数答案:C5. 欧拉公式 \( e^{ix} = \cos(x) + i\sin(x) \) 中,\( i \) 代表什么?A. 虚数单位B. 矩阵C. 行列式D. 向量答案:A6. 以下哪一项是拉普拉斯变换的基本性质?A. 线性性质B. 微分性质C. 积分性质D. 反演性质答案:A7. 泰勒级数展开是用于什么目的?A. 近似计算B. 精确计算C. 矩阵计算D. 向量计算答案:A8. 以下哪个函数是周期函数?A. \( y = x^2 \)B. \( y = e^x \)C. \( y = \sin(x) \)D. \( y = \ln(x) \)答案:C9. 以下哪一项是偏微分方程的解?A. \( u(x, y) = x^2 + y^2 \)B. \( u(x, y) = e^{x+y} \)C. \( u(x, y) = \ln(x+y) \)D. \( u(x, y) = \sin(x)\cos(y) \)答案:D10. 以下哪个选项是复数的性质?A. 可加性B. 可乘性C. 可除性D. 所有选项答案:D二、填空题(每题4分,共20分)1. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),则 \( f'(x) \) 等于 _______。
答案:\( 3x^2 - 12x + 11 \)2. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det(A) \) 等于 _______。
工程数学基础试卷2019级
三、(8分) (1)用列主元Gauss 消去法求解下列线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----8114124011122321x x x .(2) 给定线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡731211121224321x x x ,写出对应的Jacobi 格式并分析收敛性。
四、(6分) 已知)(x f 的数据表 x 0 2 3 5)(x f 1 −3 −4 2求)(x f 的3次Newton 插值多项式,并给出相应的插值余项。
五、(1) (8分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=301010200A ,用初等变换求A E -λ的Smith 标准型,并写出A 的最小多项式)(λm ,Jordan 标准型J 和有理标准型C 。
(2) (8分)求解以A 为系数矩阵的初值问题 ⎩⎨⎧=⋅=',)1,0,1()0(),()(Tx t x A t x 这里Tx x x t x ),,()(321=。
八、(6分)写出用标准Runge-Kutta 方法解初值问题⎩⎨⎧='=∈=+-'' ,3)0( ,1)0(],1,0( ,1)1(2y y x y x y的计算格式。
九、(1) (5分) 设)(n x 和)(n y 是赋范线性空间X 中任意两个Cauchy 序列,证明数列||)(||n n y x -收敛。
(2) (5分) 设B A ,为n 阶Hermite 对称矩阵,且A 是正定矩阵。
证明存在n 阶可逆矩阵P ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==n HH BP P E AP P μμμO21,,且nμμμ , , ,21Λ为实数。
电大《工程造价专》高等数学基础测试.doc
B.尤轴D . y = x B. y = xcosxD. y = ln(l + x)6.当 X->0时,sinxA. ------X.1 c. xsin —B. /(工)在点A :。
的某个邻域内有定义D. lim f (x) = lim /(x)工程造价专-高等数学基础测验(-) 单项选择题1. 下列各函数对中,(C)中的两个函数相等。
A. /(A )= (Vx)\ g(X )= XB. f(X )= Tx 7,g(X )= X2 X 2 - 1c. f(x) = Inx , g(x) = 31nx D. f(x) = x + L g(x)= -------------------x-1 2.设函数的定义域为(一00,+00),贝IJ 函数/(X )+ /(-X )的图形关于(C)对称. A.坐标原点 C. y 轴3.下列函数中为奇函数是(B) . A. y = ln(l + x 2) a x +。
一、c. y = ----------- , 24.卜冽函数中为基本初等函数是(C) . A. y = x + \B. y = -XJ21 , X <。
C. y = xD. y =〈., [1,x>05.下列极限存计算不正•确的是(D)・变量(C)是无穷小量.1 B. 一 X D. ln(x + 2) 7.若函数在点%满足(A),则/'(尤)在点易连续。
A. lim/(x) = /(x 0) c. lim/(x) =/(x 0) (二)填空题X2A. lim c A * + 2B. limln(l + A ) = 0x->0,・ sinxc. lim ------- =0 D. limxsin — = 0 I” x2x — l 解:y = 1g有意义,要求〈E 〉o解得, x^Ox >—或x<02x 。
0则定义域为 x\x< 0 或尤 > 一 21 .函数 /(x) = — --- - + ln(l + X )的定义域是(3,+00).x-3-------2. 已知函数/(X+ 1) = X 2+ X ,则 /(X)- x 2-x .1 - 3.lim(l + ——)' =/.x* 2x24.若函数 = <(1 +,)', ,<°,在 X = 0 处连续,则 k = cx + k , x > 0 x + 1, x > 0 .的间断点是x=0.sinx , x < 06.若lim f(x) = A ,则当工7与时,f(x) 一 A 称为x T x()时的无穷小量。
工程数学考试试卷A
广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程号: (2015-2016-1)-16621001x2 -163006-1√ 考试 √ A 卷 √ 闭卷 □ 考查 B 卷 □ 开卷(每题2分,共20分)1、事件表达式B A ⋂的意思是( ) (A)事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C)事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 2、投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A)5/18 (B)13 (C)12 (D)以上都不对 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( ) 。
(A) P (A)=1- P(B) (B) P(AB)=P(A)P(B) (C)P(B A )=1 (D) P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= ( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、=⎰=-12z ( ) (A)2πi (B)0 (C)4πi (D)以上都不对 6、下列说法正确的是( ) (A)如果)(0z f '存在,则f (z)在z 0处解析 (B)如果u (x,y)和v(x,y)在区域D 内可微,则),(),()(y x iv y x u z f +=在区域D 内解析 (C)如果f (z)在区域D 内解析,则)(z f 在区域D 内一定不解析 (D)如果f (z)在区域D 内处处可导,则f (z)在区域D 内解析 7、解析函数f(z)的实部为u=e x siny ,根据柯西-黎曼方程求出其虚部为( )。
(A) e x cosy+C (B) -e x cosy+C (C) e -x cosy+C (D)e x siny+C 8、单位脉冲函数δ(t)的Fourier 变换为( ) (A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)9、设f(t)=cosat(其中a 为常数),则f(t)的Lapalace 变换为( )(A)1/(s 2+a) (B) 1/(s 2+a 2) (C) s/(s 2+a 2) (D)1/(s+a)10、若f(t)的Fourier 变换为F(ω),则f (t+1)的Fourier 变换为( ) 班级:姓名: 学号: 试题共 2页加白纸1张密封线GDOU-B-11-302(A)e j ωF(ω) (B)e -j ωF(ω) (C)F(ω+1) (D)F(ω-1)3、已知随机变量X 的概率密度函数为⎩⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。
工程数学基础教程课后习题答案
.工程数学基础习题解答习 题 一A一、判断题1.√;,2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.√;10.×.二、填空题1.;C C A B2.111(){1,2,3,4},(){,,},(){,,},(){1,4},(){2,3};f f a b e f A a b e f B f b --=====D R3.满;4.2sup =E ,3inf -=E ; 5.0; 6.0; 7. n ; 8.Y .B1.证 ()y f A B ∀∈⋂,x A B ∃∈⋂使得)(x f y =.由x A B ∈⋂,得x A ∈,且x B ∈故()()y f x f A =∈且()y f B ∈,即()()y f A f B ∈⋂,因此()()()f A B f A f B ⋂⊂⋂.当f 是单射时,只需证明()()()f A f B f A B ⋂⊂⋂即可: ()()(),y f A f B f ∀∈⋂⊂R f 由是单射知,().(),(),1X y f x y f A y f B x ∃=∈∈∈使得且,,()(),x A x B x A B y f x f A B ∴∈∈∈⋂=∈⋂且即从而故()()()f A f B f A B ⋂⊂⋂.是可能的,例如,2:,[2, 0],[1, 3],[1, 0].f xx A B A B =-=-⋂=-取则()([1,0])[0, 1], f A B f ⋂=-=于是而[][]()()0, 4[0, 9]0, 4.f A f B ⋂=⋂=从而有 .2. 证(1)n ∀∈,有)2 ,2(12 ,12][-⊂-+-n n ,故 ∞=-⊂-+-1)2 ,2(12 12][n n ,n .另一方面,)2 ,2(-∈∀x ,k ∃∈,使][12 ,12k k x -+-∈,故 ∞=-+-∈1][12 12n n ,n x ,于是⊂-)2 ,2( ∞=-+-1][12 12n n,n .因此, ∞=-+-=-1][12 ,12)2 ,2(n nn .(2)n ∀∈,有)12 ,12(]2 ,2[n n +--⊂-,故 ∞=+--⊂-1)12 ,12(]2 ,2[n n n .另一方面,对任意]2 ,2[-∉x ,即2>x ,k ∃∈,使得212>+>kx ,即)12 ,12(k k x +--∉,从而 ∞=+--∉1)12 ,12(n n n x ,故 ∞=-⊂+--1]2,2[)12 ,12(n n n .因此,∞=+--=-1)12,12(]2,2[n nn . 3. sup ,sup ,sup ,.A A A μμμμ''===证设且要证唯一只需证明即可sup ,,,sup ,,;.inf .A A A A A μμμμμμμμμμ'''=≤=''≤= 因为是最小上界而是的上界故又因为是最小上界而是的上界故因此 类似地可以证明是唯一的 4. 证 设{}D Y αα∈是线性空间X 的一族子空间,要证D Y X αα∈⋂也是的线性子空间.显然D Y αα∈⋂≠∅,z 只需证明.D Y X αα∈⋂对的线性运算是封闭的事实上,,Dx y Y αα∈∀∈⋂及,λ∀∈,从而对每一个D ∈α,有,x y Y α∈,故x y Y α+∈,x Y αλ∈.于是,D x y Y αα∈+∈⋂,D x Y ααλ∈∈⋂.因此,DY αα∈⋂是X 的线性子空间. 5. ,,,W f g W λ∀∈∀∈证显然包含零多项式故非空;又及,有()(0)()(0)(0)(0)(0)(0)[(0)(0)][(0)(0)]000,f g f g f g f g f f g g '''''+++=+++=+++=+=即;()(0)()(0)(0)(0)[(0)(0)]00,.f g W f f f f f f f W λλλλλλλ'''+∈+=+=+==∈即[0, 1].n W P 所以,是的线性子空间1111021121001121 [0, 1],(),()2.(0)(0)0,0,,()(1).n n n n n n n n n n n f W P f x a x a x a x a f x na x a x a f f a a a a f x a x a x a x a x -----'∀∈⊂=++++=+++'+=+==-=++++-设则由得即故23(1,,,,),dim .n x x x x W W n -=由上可知,是的一个基故6. 1(1),(0)0.()0,0.T T T x T T x -⇒===“”:因为是线性的故有于是,若则由存在知是单射,从而有 1T T -⇐“”:要证存在,只需证明是单射:121212121212,,((),()()()0,0,,.x x X T x T x T x x T x T x x x x x T ∀∈=-=-=-==当)即时由条件得即故是单射 1112121211221122(2),,,,,s.t.,,(),().y y Y x x X y Tx y Tx x T y x T y λλ--∀∈∀∈∃∈====及即于是有1111111221122112211221122(+)[()()][()]()(),T y y T T x T x T T x x x x T y T y λλλλλλλλλλ-----=+=+=+=+1:.T Y X -→故是线性的7. 2222:,.B A σ⨯⨯→解首先验证是线性的然后求其在即下的矩阵221212,,,,X X k k σ⨯∀∈∀∈由的定义,有 10010000,,,0001001()B ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1122011221012021122(+)(+)+()+(),k X k X A k X k X k A X k A X k X k X σσσ===2222:.σ⨯⨯→故是线性的1112212210010000,,,00001001E E E E B ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦关键是求基元的像在基下的坐标:()()()11111221221110000000,00,Tab acd cE aE E cE E E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()12111221221201000000,00,Tab a cd c E E aE E cE E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()21111221222100010000,00,T ab bcd d E bE E dE E E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()2211122122200001000,00,Tab b cd d E E bE E dE E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 0000.0000aba b A c d c d ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦习 题 二A一、判断题1.√;2.×;3.√;4.√;5.×;6.√;7.×;8.×;9.√;10.√;11.×;12.×.二、填空题1.x ;2.n ;3.2,(1),i,i λλλλ-+-;4. 1,1λλ-+;5.200004014⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;6.200020012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;7.O ; 8.O ;9.1λ-;10.6.三、单项选择题1.(d);2. (b);3. (b);4. (d);5. (a).B1.解(1)E A λ-()[]−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----=-+212]3,2[]2,1[020012201200120012λλλλλλλ ()[]()[]()[]()[]222311322132232)2(00)2(10001020)2(10201-⋅+-⋅-⋅--⋅+−−→−⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----λλλλλλλλ ()[]⎥⎥⎦⎤⎢⎢⎣⎡-−−→−⎥⎥⎦⎤⎢⎢⎣⎡---⋅3123)2(11)2(00010001λλ, 3123()()1, ()(2).d d d λλλλ∴===-(2)E A λ-[][]()[]−−→−⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------=+-λλλλλλλ13123,1111111111111()[][]3211222311111011010011012λλλλλλλλλλ+⋅-⎡⎤⎣⎦+----⎡⎤⎡⎤⎢⎥⎢⎥+--−−−→+−−−→⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦[]()[]⎥⎥⎦⎤⎢⎢⎣⎡-++−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-++---⋅-+)2)(1(11)2)(1(0001011117312λλλλλλλλ, 1()1d λ∴=,1)(2+=λλd ,)2)(1()(3-+=λλλd .(3)E A λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=52340100010012345100010001λλλλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---→542300100100012λλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++--→543200100010001232λλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++→5432111234λλλλ, 12()()()1d d d λλλ∴===,5432)(2344++++=λλλλλd .(4)[]1,2310013004100140071211721761671E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=−−→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦ ()[]()()()21122314162131113001000021000(1)0004210(4)210611106111λλλλλλλλλλλλλλ+-+⎡⎤⎣⎦-+-⎡⎤⎣⎦+⋅-⎡⎤⎣⎦⋅-⎡⎤⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥−−−−→−−−−→⎢⎥⎢⎥-----+--⎢⎥⎢⎥--⎣⎦⎣⎦[]()2243232100010000(1)000(1)000621062106101010(1)0λλλλλλλλ+⋅⎡⎤⎣⎦+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→−−−−→⎢⎥⎢⎥------⎢⎥⎢⎥---⎣⎦⎣⎦()()()2421[4()][24(1)]10[246][41][342]2210001000(1)0(1)0000010********(1)(1)0100101010λλλλλλ-⋅-⋅-+⋅-⋅-+⋅-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦[][]242,4(2)3,4[32]1041000100(1)010001110(1)λλλ-+⋅⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 123()()()1d d d λλλ∴===,44)1()(-=λλd .2. 解 (1)∵4det ()(2)A λλ=-+,∴44)2()(+=λλD ,又∵01021210100≠-=++λλ,∴1)(3=λD ,从而1)()(21==λλD D .于是不变因子为1)()()(321===λλλd d d ,44)2()(+=λλd ;初等因子组为4)2(+λ. (2)2210010010010()00000()000()B λαλαλαλαλλαλαλαλα++⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥≅≅⎢⎥⎢⎥+-+⎢⎥⎢⎥+-+⎣⎦⎣⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++≅22)()(11αλαλ, 故不变因子为 1)()(21==λλd d ,23)()(αλλ+=d ,24)()(αλλ+=d ; 初等因子组为 22)(,)(αλαλ++.(3)显然313()1,det ()(1)()D C D λλλλ==+=,而2(1)(5)08(1)adj ()3(1)(1)6(1)2(1)0(1)(3)C λλλλλλλλλλ+++⎡⎤⎢⎥=+++⎢⎥⎢⎥-++-⎣⎦, ∴1)(2+=λλD .因此2321)1()(,1)(,1)(+=+==λλλλλd d d ; 初等因子组:2)1(,1++λλ.(4)由第1题(4)知1)()()(321===λλλd d d ,44)1()(+=λλd .也可这样解:由行列式的Laplace 展开定理得43121det ()(1)411D λλλλλλ----=⋅=-+,故44)1()(-=λλD ;又)(λD 的左下角的三阶子式372471672170142+-=---+λλλλ与)(4λD 是互质的,所以1)(3=λD ,从而1)()(12==λλD D .因此44321)1()(,1)()(,1)(-====λλλλλd d d d ;初等因子组:4)1(-λ.3.解(1)∵12020(1)(1)(2)211E A λλλλλλλ---=-=+--+,∴1~12A J ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(2)∵E A λ-611123034371230343104252373-+-+-=-++-+-=--+--=λλλλλλλλλλλλ 611123036411022-+-+++----=λλλλλλλ)i )(i )(1(123+--=-+-=λλλλλλ,∴~A J ⎥⎥⎦⎤⎢⎢⎣⎡-=i i 1. (3)∵[]1,231001300410014007121172117616171E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦[][][])1(12)1(13)6(14+⋅+-⋅+⋅+−−−→−λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------λλλλλλλλλλ2222)1()1(0100000)1(000011160124000)1(00031⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→22)1()1(11λλ, ∴初等因子组为2)1(-λ,2)1(-λ,于是⎥⎦⎤⎢⎣⎡=11011J ,⎥⎦⎤⎢⎣⎡=11012J ,故12111111JJ J ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (4)0001001E A λλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎣⎦,()det()n nD E A λλλ=-=,又有一个1-n 阶子式0)1(1111≠-=----n λλλ,∴1)()(11===-λλD D n ,故1)()()(121====-λλλn d d d ,n n d λλ=)(;初等因子组为n λ,所以010~110A J ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. (事实上,A 本身就是一个Jordan 块)4.解(1)由第1题(2)知1)(1+=λλϕ,2)2)(1()(22--=-+=λλλλλϕ,所以12100~002011CA C C -⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (2)由第1题(3)知5432)(234++++=λλλλλϕ,故B 的有理标准是0005100401030012C -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦.5.解 由J 立即可知A 的初等因子组为2)1(-λ,2-λ,2)2(-λ,于是不变因子为1)()()(321===λλλd d d ,()24-=λλd ,225)2()1()(--=λλλd .即2)(1-=λλϕ,412136)(2342+-+-=λλλλλϕ,故200000000401001200101300016C ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦.6.解 (1)744744()481099418418f E A λλλλλλλλλ----=-=-+=++++2)9)(9(71490847+-=++--=λλλλλ.因为2441644(9)(9)4171 4114117411A E A E O ---⎡⎤⎡⎤⎢⎥⎢⎥-+=---=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦,所以最小多项式为)9)(9()(+-=λλλm .(2)32310()det()0132(2)(1)23D E B λλλλλλλλλ-=-=-=--=-+--,∵有一个二阶子式01101≠=--λ,∴1)()(21==λλD D .因此,23)1)(2()()(+-==λλλλd m . (3)对E C λ-施行初等变换得其Smith 标准形23()diag(1, 1, 1,(3),(3))S λλλ=--,∴35)3()()(-==λλλd m .7.证 若A 可对角化,则A 的最小多项式)(λm 无重零点,必要性得证. 若A 有一个无重零点的零化多项式)(λϕ,则因为)(deg )(deg λϕλ≤m ,故)(λm 也无重零点,由定理2.16知A 可对角化.8. 证 (1) 22A A E +=,22A A E O +-=,∴)1)(2(2)(2+-=-+=λλλλλϕ是A 的一个无重零点的零化多项式,故A 可对角化. (2)mA E =,∴1-mλ是A 的零化多项式,其零点2i ek mk πλ=(0,1,,1)k m =-是互不相同的,故A 可对角化.习 题 三A一、判断题1.√;2.√;3.√;4.√;5.√;6.√;7.√;8.×;9.√;10.×;11.√;12.√;13.×; 14.× 15.√;16.√;17.√;18.√;19.√;20.×;21.√;22√;.23.×;24.√;25.√.二、填空题1.0;2.0y ;3.()T111,,,2n;4. 12;5.Banach ;6.1;7.3;8.15,2FA A A∞==+=;9.3.三、单项选择题1.(c);2. (c);3. (b);4. (a);5. (b);6.(c).B1. 证 仅验证三角不等式,其余是显然的.设Tn ),,(1ξξ =x ,T n ),,(1ηη =y 是n中的任意两个元素.∑∑∑∑====+=+=+≤+=+n i ni ni i ni i i i i i 1111111)(y x y x ηξηξηξ;i ni i ni i i ni i ni ηξηξηξ≤≤≤≤≤≤≤≤∞+≤+≤+=+11111max max }{max max y x∞∞+=y x .2. 证 因为[],, x y C a b ∀∈及∈∀α,有(N 1) t t x x bad )( 1⎰=0≥,显然若0=x ,即0)(≡t x ,则01=x ;反之,若01=x ,即0d )( =⎰t t x ba,则由)(t x 的连续性,知0)(≡t x ,即0=x ;(N 2) 11d )(d )(x t t x t t x xba b aαααα===⎰⎰;(N 3) t t y t t x t t y t x yx bab ab ad )(d )(d )()(1⎰⎰⎰+≤+=+11y x +=;所以1 ⋅是[], C a b 上的范数.3.解121i 1i 22,max{1,i ,1i}x x x ∞=+-++===-+= 4.解1max{101,210,i 11i }max{2,3,22max{12i ,011,101i }max{4,2,1 4.A A ∞=++-++-+-+-===++-++--++-==5.证 (1)lim ,lim ,.n n n n x x X x y Y x y →∞→∞=∈=∈=设又只需证明即可 {}0lim lim lim lim lim 000,0,0,.n n n n n n n n n n n x y x y x x x y x x x y x x x y x y x y x y →∞→∞→∞→∞→∞≤-=-=-+-≤-+-=-+-=+=∴-=-==故即122lim ,1,,1,1, 1. max{,,,,1},,().n n n n n n N n n x x X N n N x x x x x x x x M x x x x n x M x ε→∞=∈=∃∈>-≤-≤-≤≤+=+∀∈≤ ()设则对使得当时,恒有从而有即取则,有故有界6.证 设x 是,()n X x X x 中任意一点是中收敛于的任一序列.()():,lim ()();:,lim ()().lim()()()(),:.n n n n n n n f X Y Y f x f x g Y Z Z g f x g f x g f x g f x g f X Z x →∞→∞→∞→=→==∴→ 由连续知在中有又由连续知在中有即在点处连续,:.x X g f X Z ∈→由的任意性知是连续映射7. 证 由于()n x 和()n y 都是X 中的Cauchy 序列,则0>∀ε,12,N N ∃∈,使得当1,N m n >时,2ε<-m n x x ; 当2,N m n >时,2ε<-m n y y .令},m ax {21N N N =,则当N n m >,时,有)()( m m n n m m n n y x y x y x y x ---≤---εεε=+<-+≤22m n m n y y x x ,这表明()n n x y -是中Cauchy 的序列,由的完备性知,数列()n n x y -收敛.100001110101010121 (1)[0, 1],0,[0, 1],()0,max ()()0,(N ).d(())d(())[0, 1],,max ()maxmax ()max ,d d (N ). ,[0,dx d ddx x x x d f C f x f x f f x f x f x f x f C f f x f x fx x f g C λλλλλλλ≤≤≤≤≤≤≤≤≤≤∀∈≠∃∈>≥≥>⋅∀∈∀∈=+=+=⋅∀∈8.证且即使得故即满足即满足01010101010d(()())1],max ()()maxd d ()dg() max ()()max d d max ()max dx x x x x f x g x f gf xg x xf x x f xg x x x f x ≤≤≤≤≤≤≤≤≤≤++=++⎡⎤≤⎡+⎤++⎢⎥⎣⎦⎣⎦≤+101010101010131d ()dg()()max maxd d d ()dg()max ()maxmax ()max ,d d (N ).,[0, 1].x x x dd x x x x d d f x x g x x x f x x f x g x f g x x C ≤≤≤≤≤≤≤≤≤≤≤≤≤≤++⎡⎤⎡⎤=+++=+⎢⎥⎢⎥⎣⎦⎣⎦⋅⋅即满足 所以是上的范数(2):D ]1 ,0[1C ]1 ,0[C →显然是线性的.因为1[0, 1]f C ∀∈,有110101d ()d ()maxmax ()max ,d d dx x t f x f x Df f x f x x≤≤≤≤≤≤=≤+=故D 是有界的. 9. 证 由于 ⋅是n n⨯上的方阵范数,故,n nA B ⨯∀∈及α∀∈,有(1)1*0AS AS -=≥,并且11*0A S AS S AS O A O --==⇔=⇔=;(2)11**A S AS O S AS A αααα--====;(3)()11111*A B S A B S S AS S BS S AS S BS -----+=+=+≤+**A B =+;(4)111*()()AB S ABS S AS S BS ---==11**S AS S BS AB --≤=;因此,* ⋅是n n⨯上的方阵范数.10. 2;F A 解 21i()det(),()0;i1f E A A λλλλρλ--=-==∴=-+H HH 21i 1i 22i 22i,(4),()4,i 1i 12i 22i 22.A A E A A A A A λλλλρλ---⎡⎤⎡⎤⎡⎤==-==-=⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦∴=11. 证 显然A λ≤.∵λ是可逆阵A 的特征值,则λ1是1A -特征值,故11A λ-≤,即11Aλ-≥. ∴11A A λ-≤≤.12.证 要证0(),x T ∈N 只需证明00.Tx =()0()(),0.lim ,,n n nn x T Tx n xx T →∞⊂=∀∈=由知于是当且是有界线性算子时有N0(lim )lim ()lim00,n n n n n Tx T x T x →∞→∞→∞====故0().x T ∈N习 题 四A一、判断题1.×;2.√;3.√;4.×;5.√;6.√;7.×;8.×.二、填空题1.2213e e 001cos x x x x ⎡⎤⎢⎥⎣⎦;2.222(1)tE t -+;3.1;4. 3e t ;5.22222222e e e e e e tt t t tt t t t ------⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 6.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-t t t 2cos 2cos cos ;7.1; 8.3e -. B1. sin cos d (),d cos sin tt A t t tt -⎡⎤=⎢⎥--⎣⎦解 []22d d det ()cos sin 0d d A t t t t t =+=⎡⎤⎣⎦,22sin cos d ()det()sin cos 1.d cos sin t t A t t t t t t-==+=-- 2. 2213e e 0 ().01cos x x x f x ⎡⎤'=⎢⎥⎣⎦解x3. 1 1 0 0 11 10 0 0 110 0e d e d e 11 ()d d2d 11.sin d cos d 1cos1sin1t tt t t A t t t t t t t t t ⎡⎤-⎡⎤⎰⎰⎢⎥⎢⎥==⎰⎰⎰⎢⎥⎢⎥⎢⎥⎢⎥-⎰⎰⎣⎦⎣⎦解 4. 证明(1)d d d d d d ()()()()d d d d d d T T T T T f x x x x Ax Ax x Ax Ax x A t t t t t t==+=+d d d d d ()2;d d d d d T T T T T T T T x x x x x x A x A x A x A x A t t t t t=+=+=.(2)d d d d d d ()()2.d d d d d d T T T T T T T x x x x x x x x x x x x t t t t t t=+=+=5. 证(1)若lim k k A A →∞=,则2lim 0k k A A →∞-=. ∵222()T TTk k k A AA A A A -=-=-(可以证明[1]2222H T A A A A ===),∴2lim 0T Tk k A A →∞-=,即lim T Tk k A A →∞=. 同理可证lim k k A A →∞=,由上已证的结果立即可得lim H H k k A A →∞=.(2)000()lim ()lim ()NNTkT kk Tk k k N N k k k c A c A c A ∞→∞→∞=====∑∑∑0lim()Nk Tk N k c A →∞==∑ 0(lim )N k T k N k c A →∞==∑0()k Tk k c A ∞==∑ 6. 证 令()3200det()11120113E A λλλλλ--=---=-=--得A 的全部特征值均为 2. 于是13B A =的所有特征值都是32,故()213B ρ=<,因此lim k k B O →∞=.7. 证 方法一: 当0=t 时,显然成立,故设0≠t .记010100t t A t ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦. 22det()(i )(i )E A t t t λλλλ-=+=-+,t i 1=λ,t i 2-=λ.对t i 1=λ,解方程(i )0tE A x -=可得11i x ⎡⎤=⎢⎥⎣⎦;对t i 2-=λ解方程(i )0tE A x --=得21i x ⎡⎤=⎢⎥-⎣⎦.令11i i P ⎡⎤=⎢⎥-⎣⎦,则P 可逆且11/2i /21/2i /2P --⎡⎤=⎢⎥⎣⎦.所以01i 10i i 1i 111/2i /2e 0ee diag(e ,e )i i 1/2i /20e tt Attt P P ⎡⎤⎢⎥---⎣⎦--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+---+=----t t t t t t t t t t t t cos sin sin cos )e e (21)e e (i 21)e e (i 21)e e (21i i i i i i i i .方法二:记0110B ⎡⎤=⎢⎥-⎣⎦,21det()11E B λλλλ--==+,{}()i,i B σ=-.B 的最小多项式1)(2+=λλϕ,2)(deg =λϕ. 故设01e ()()tB a t E a t B =+.∵λt e 与λ)()(10t a t a +在()B σ上的值相等,即⎩⎨⎧=-=+-tt t a t a t a t a i 10i 10e )(i )(e )(i )(, ∴t t a t t cos 2e e )(i i 0=+=-,t t a tt sin i2e e )(i i 1=-=-.因此0110cos sin ecos sin sin cos t t t tE tB t t ⎡⎤⎢⎥-⎣⎦⎡⎤=+=⎢⎥-⎣⎦.8. 2eJordan ,e e e .e e e 2ttAtt t tt A t t t ------⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦解是块 9. 解 2214det()02(2)(1)031E A λλλλλλ----=-=----.∵(2)()A E A E O --≠,∴A 的最小多项式)1()2()(2--=λλλϕ.3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=. 由()f t λ与()T t λ在{}()1,2A σ=上的值相等,于是(1)对()e Atf At =有⎪⎩⎪⎨⎧=+=++=++tttt t a t a t a t a t a t a t a t a 2212210210e )(4)(e )(4)(2)(e )()()(,解得⎪⎩⎪⎨⎧+-=-+-=+-=t t t t t t t t t t t a t t a t t a 222221220e e e )(e 3e 4e 4)(e 2e 3e 4)(所以22100e (4e 3e 2e )010001tA t t t t ⎡⎤⎢⎥=-+⎢⎥⎢⎥⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+130020412)e 3e 4e 4(22t t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+19004012164)e e e (22t t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=ttt t t t t t t tt e e 3e 300e 0e 4e 4e 13e 12e 12e 222222(2)对()sin()f At At =有01201212()()()sin ()2()4()sin 2()4()cos 2a t a t a t t a t a t a t t a t a t t t ++=⎧⎪++=⎨⎪+=⎩,解得⎪⎩⎪⎨⎧+-=-+-=+-=tt t t t a t t t t t a t t t t t a 2cos 2sin sin )(2cos 32sin 4sin 4)(2cos 22sin 3sin 4)(210. ∴2012sin()()()()At a t E a t A a t A =++sin 212sin 12sin 213cos 24sin 4sin 20sin 2003sin 3sin 2sin t t t t t t t t t t t -+-+⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦(注)可利用(1)的结果求(2)(或cos()At ):在(1)中分别以t i 和t i -替代t 得i e tA 和i etA-,再由公式i i i i e e e e sin()(cos())2i 2tA tA tA tAAt At ---+==或即得. 10. 解 210det()01(+1)01+2E A λλλλλλ-==-()A A E O -≠且,故A 的最小多项式2()(1)φλλλ=+,3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=,即012100010001()()010()001()012001012023f At a t a t a t -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦012021212012()()()0()()()2()0()2()()2()3()a t a t a t a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥=--+⎢⎥⎢⎥--+⎣⎦. 由()f t λ与()T t λ在A 上的谱值相等,于是(1)对()e Atf At =有001212()1()()()e ()2()e tta t a t a t a t a t a t t --=⎧⎪-+=⎨⎪-=⎩,解得012()1()22e e ()1e e t t t t a t a t t a t t ----=⎧⎪=--⎨⎪=--⎩012021212012()()()e 0()()()2()0()2()()2()3()122e e 1e e 0e e e 0e e e At t t t t t t tt t ta t a t a t a t a t a t a t a t a t a t a t a t t t t t t t -----------⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦-++-+⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦. (2)对()sin()f At At =有001212()0()()()sin ()2()cos a t a t a t a t t a t a t t t =⎧⎪-+=-⎨⎪-=⎩,解得012()0()2sin cos ()sin cos a t a t t t t a t t t t =⎧⎪=-⎨⎪=-⎩.012021212012()()()sin()0()()()2()0()2()()2()3()a t a t a t At a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦02sin cos sin cos 0sin cos cos 0cos sin cos t t t t t t t t t t t t t t t t -+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥--⎣⎦11.tr 2i 332i det(e )e e e .A A +-===解12. 解 此处775885050A --⎡⎤⎢⎥=---⎢⎥⎢⎥-⎣⎦,122()()()()x t x t x t x t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.因为775det()885(5)(5)(15),deg ()3,05E A λλλλλλϕλλ+--=+=-++=故设2012e ()()()()At a t E a t A a t A T At =++=.由tλe 与)(t T λ在(){5,5,15}A σ=--上的值相同,得方程组⎪⎩⎪⎨⎧=+-=+-=++--ttt t a t a t a t a t a t a t a t a t a 1521052105210e )(225)(15)( e )(25)(5)( e )(25 )(5 )(,解得 ⎪⎩⎪⎨⎧+-=-=-+=-----)e e 2(e )( )e (e )( )e 6e (3e )(1555200125510111555810t t t t t t t tt a t a t a ;于是 0121775105800e ()1()885()12014501050404025At a t a t a t --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+-+-+-+---+--++=---------------t t tt t t t t t t t t t tt t t t t t t t t t 551555155555155515555515551555e 5e 5e 2e e 3e 24e e 2e 5e 5e 6e e 3e64e 2e e 5e 5e 4e e 3e 44e e 2101. 所以,解为 55155515551517e 9e 4e 1()e 17e 9e 6e 1017e 9e 2e t t t At t t t t t tx t C ------++⎡⎤⎢⎥==--+⎢⎥⎢⎥-+⎣⎦,即⎪⎪⎩⎪⎪⎨⎧+-=+--=++=------)e 2e 9e 17(101)()e 6e 9e 17(101)()e 49e e 17(101)(155531555215551tt t t t t t t t t x t x t x .习 题 五A一、判断题1.√;2.×;3.√;4.√;5.√;6.×;7.√;8.√;9.×;10.√;11.√;12.×;13.√;14.√ 15.√.二、填空题1.0;2.{}0;3.span A ;4.1;5.3;6.O ;7.123()1,()1,()(1)(2)d d d λλλλλλ==-=--;8.实;9.0; 10.1;11.1,a b c ===.三、单项选择题1.(d);2. (c);3. (c).B1.证 121212(1)(,,,),(,,,),(,,,),,T T T nn n n x y z ξξξηηηςςςλμ∀===∈∀∈及,有1111(I ),(),,;nnnk k k k k k k k k k k k k x y z k k k x z y z λμλξμηςλξςμηςλμ===<+>=+=+=<>+<>∑∑∑211(I ),,;n nk k k k k k k k x y k k y x ξηηξ==<>===<>∑∑231221(I ),0, ,=01,2,,,=01,2,,,00;nk k k nk kk k k x x k x x k k n k n x ξξξξ==<>=≥<>=⇔∀=⇔∀==⇔=∑∑且有有,.nk <⋅⋅>故是上的一种内积(2),,,,n nij ij ij A a B b C c λμ⨯⎡⎤⎡⎤⎡⎤∀===∈∀∈⎣⎦⎣⎦⎣⎦及,有1111111(I ),(),,;nnnnnnij ij ij ij ij ij ij i j i j i j A B C a b c a c b c A C B C λμλμλμλμ======<+>=+=+=<>+<>∑∑∑∑∑∑2111111(I ),,;nnnnnnij ij ij ij ij ij i j i j i j A B a b a b a b B A ======<>====<>∑∑∑∑∑∑2311112211(I ),0, ,0,1,2,,,00;n n n nij ij ij i j i j nnijijij i j A A a a a A A a i j n a a A O ======<>==≥<>==⇔∀===⇔=∑∑∑∑∑∑且有即,.n n⨯<⋅⋅>故是上的一种内积12211.nnij F i j A a A ==⎛⎫>== ⎪⎝⎭∑∑2. 证 右端) , ,(41>--<->++<=y x y x y x y x><+><+><+><=y y x y y x x x ,,,,(41),,,,><-><+><+><-y y x y y x x x 1(4,)4x y =<>=左端.3.证 (1)若⊥∈B x ,则B y ∈∀皆有y x ⊥,由假设B A ⊂,于是对每一个A y ∈皆有y x ⊥,即⊥∈A x ,故⊥⊥⊂A B .(2)若A x ∈,则⊥∈∀A y 皆有y x ⊥,故⊥⊥∈)(A x ,于是⊥⊥⊂)(A A .4.解 显然123.det 20,det 110,det 380,.A A A A A =>=>=>∴是实对称矩阵正定其余略.5. 证 “⇒”: 若n nA ⨯∈正定,则det det 0n A A =>,故A 非奇异.“⇐”: 若A 非奇异,则1det 0ni i A λ==≠∏,从而),,2,1(0n i i =≠λ. 又因为A 半正定,故有0≥i λ,于是),,2,1(0n i i =>λ,所以A 是正定的.6.证 先验证2A 是Hermite 矩阵.22222()()(),Hermite .H H H H H H H H H H H A A AA AA A A AA A AA A AA AA AAA A A A A ======∴是矩阵再证2A 是正定的.12222 ,,Hermite 0(1,2,,).0(1,2,,),.n i i i A n A i n A i n A λλλλλλ∈≠=>=设是的个特征值,由是矩阵且可逆知,且从而的所有特征值故是正定矩阵7. 解 (1)令3i 1i 02010E A λλλλλλ---==-=-得01=λ,22=λ,23-=λ,由此判定A不是正定的.对01=λ解方程组0Ax -=,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000i 0100i 1i 0321ξξξ,亦即⎩⎨⎧==+ 00i 132ξξξ,得⎩⎨⎧==321i 0ξξξ. 若取13=ξ,则有10i 1x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 对22=λ解)0A x -=可得2i 1x ⎢⎥⎢⎥⎣⎦=-.对23-=λ解()0A x -=可得⎥⎥⎦⎤⎢⎢⎣⎡--=1i 23x .由于1x ,2x ,3x 分别对应于A 的不同特征值,故彼此正交.将它们单位化,得10i 1/α⎡⎤⎢⎢⎢⎣=,2i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦=-,3i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦-=-.令[]12301/,,i i /2i /21/21/2U ααα⎡-⎢==--⎢⎥⎢⎥⎢⎥⎣⎦,01/i /21/2i /21/2H U ⎡-⎢=⎢⎥⎢⎥-⎢⎥⎣⎦,则0H U AU ⎡⎤⎢⎥=⎢⎥⎢⎣.习 题 六A一、判断题1.×;2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.×.二、填空题1.1122112201010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;2. (1)()12(1)(1)()213(1)(1)321( 3 24)41(3 30)(0,1,2,)41( 24)4k k k k k k k x x x x x k x x +++++⎧=-+⎪⎪=-++=⎨⎪⎪=-⎩;3.1()D L U --;4.Seidel,Jacobi .B1. 解(1)110000100005000.55000A-⎡⎤⎢⎥⎣⎦-=-, 3.0001A ∞=,120000A-∞=,∴cond 60002A ∞=.(2)1 1.38 2.1810.2106 2.79 4.56B -⎡⎤⎢⎥⎣⎦-=-,17.35B =,1132.00B -=,∴1cond 235.2B =.(3)12212max{,}1009910099,cond (6-3).min{,}99989998C C λλλλλλ--⎡⎤==⎢⎥--⎣⎦是实对称矩阵故见令12122019810,9999cond 39206.C λλλλλλ=--===∴==≈得 2. 解(1)对增广矩阵施行行的初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡330002121041123232300212104112522162134112得到等价的上三角方程组⎪⎩⎪⎨⎧==+-=++330212142332321x x x x x x .进行回代,得方程组的解为:12/)4( ,1)21/(21 ,13/3321323=--==--===x x x x x x .故解为(1,1,1).T x =(2)对增广矩阵施行初等行变换11034110341103421111011590115931123041715003132112314033280001319⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦得到等价的上三角方程组1242343443459313211319x x x x x x x x x ++=⎧⎪---=-⎪⎨+=⎪⎪-=-⎩.进行回代,得方程组的解:43419219/(13), (2113)/3,133x x x =--==-=2341244055(95), 433939x x x x x x =--++==--=-,故解为()5540192,,,.3939313Tx -=3. 解 首先用顺序Gauss 消去法.对增广矩阵施行初等行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1.982.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯-⨯→-65424101798.0104453.0101467.00104441.0108007.0106667.006781.0167.001.0012.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯→-9924109774.0101762.000104441.0108007.0106667.006781.0167.001.0012.0,经回代得547.53=x ,43.722=x ,05.811-=x . 此时,620.174310Ax b -=⨯. 下面用列主元素Gauss 消去法.对增广矩阵施行初等行变换(下画横线者为主元素)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9812.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-6744.01670.0105500.00101179.0105909.04584.009812.41200320022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-5329.0109610.000101179.0105909.04584.009812.41200320012, 经回代得46.17,76.45,545.5123=-==x x x . 此时,289.22=-b Ax .列主元素Gauss 消去法比顺序Gauss 消去法的精度高.4. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ). 计算结果如下表:解为767354.01=x ,138410.12=x ,125368.23=x .Seidel 迭代格式与计算结果如下:()()()⎪⎪⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k );5. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ), 因为()()21113300044335110,det(),1,444481100044M E M M λλλλλρλ⎡⎤-⎢⎥⎢⎥=--=-=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以Jacobi 迭代格式收敛.Seidel 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ).因为系数矩阵A 对称,且123det 40,det 70,det 240,,A A A A =>=>=>从而正定故Seidel 迭代格式收敛.6. 解(1)Jacobi 迭代矩阵1111022()10111022M D L U -⎡⎤-⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎣⎦;215det()()4E M λλλ-=+,1()1M ρ=>.因此,Jacobi 迭代格式发散.Seidel 迭代矩阵12111000222011111()100010222000111000222M D L U -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--⎣⎦⎣⎦; 221det()()2E M λλλ-=+,21()2M ρ=.因此Seidel 迭代格式收敛.(2)Jacobi 迭代矩阵1100022022010101101001220220M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦;31det()E M λλ-=,1()0M ρ=.因此, Jacobi 迭代格式收敛.Seidel 迭代矩阵2100022022110001023021000002M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦;()22det()2E M λλλ-=-,2()21M ρ=>.因此, Seidel 迭代格式发散.*7.用追赶法解线性方程组12123233 1, 247, 259.x x x x x x x +=-⎧⎪++=⎨⎪+=⎩解 系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520142013A .31=u ,3/2/212==u l ,3/101422=⋅-=l u ,5/3/223==u l ,5/221533=⋅-=l u ;11-=y ,3/237122=-=y l y ,5/229233=-=y l y ;1/333==∴u y x ,2/)1(2322=⋅-=u x y x ,1/)1(1211-=⋅-=u x y x .即解为(1,2,1).Tx =- 8. 解 把方程组调整为⎪⎩⎪⎨⎧=+=+=++22846231312123x x x x x x x , 此时系数矩阵为312041102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.Seidel 迭代矩阵111200033301211()000010044000111106263M D L U -⎡⎤⎡⎤--⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦, 11det()(66E M λλλλ-=---+,()1M ρ=<.因此,此时Seidel 迭代格式()()()()()()()⎪⎪⎩⎪⎪⎨⎧-=-=--=++++ )2(21)8(41)26(3113111121213k k k k k k k x x x x x x x 收敛.习 题 七A一、判断题1.×;2.√;3.×;4.×.二、填空题1.1,1n +;2. 11:455;:;:33-一阶差商,,二阶差商1,三阶差商;3.16.640,0.096,16.736.B1. 解 因为0120.15,0.00,0.10,0.20.x x x x ====故取则2(0.150.10)(0.150.20)(0.15)(0.15)0.000(0.000.10)(0.000.20)(0.150.00)(0.150.20)0.0998(0.100.00)(0.100.20)(0.150.00)(0.15 f L --≈=⨯----+⨯----+0.10)0.1987(0.200.00)(0.200.10)00.074850.074510.1494.⨯--=++= 521(0.15)(0.150.00)(0.150.10)(0.150.20) 6.2510.3!R -≤---=⨯2.解 对于点76.35x =,取076x =,177x =,278x =,379x =. 作差商表于是有2(1)(76.35)(76.35)2.832670.0689(76.3576)0.00306(76.3576)(76.3577) 2.832670.024120.00070 2.85609.f N ≈=+-+--=+-=32(2)(76.35)(76.35)(76.35)0.00017(76.3576)(76.3577)(76.3578) 2.856090.00006 2.85615.f N N ≈=+---=+=3. 解 选01220.20,0.40,0.60,0.80x x x x ====.作差商表:。
电大本科 工程数学-期末复习试卷含答案
工程数学综合练习(一)一、单项选择题A. 1B. -1C. 0D. 24. A.B 都是〃阶矩阵(〃:>1),则下列命题正确的是(). A.AB=BAB,若AB = O ,则 A = 0或8 = 0C. (A-B)2 =A 2-2AB + B 2D.仇耳=凤同 5. 若A 是对称矩阵,则等式()成立. A. A -1 = A f B. A = —A C. A = A'D. A ,= -A1 2 6. 若 A = 3 5,则A. 0 9. 向量组a, =[1 2 3]',%=[2 2 4]',%=[1 极大无关组可取为().B. a,,a 2C.D. %,。
2,%,。
410. 向量组 %=[1,0,-2],%=[2,3,5],%=[1,2,1],则 2a,+a 2-3a 3 =b a 2 b 2a 3 a 2 3角-如C 2a 33%-打 C3B 是矩阵,则下列运算中有意义的是(). A'B D AB' 3. 己知A7.若人=2 2 2 23 3 3 3 44 4 4C. 2A. 4 2]',%= [2 3 5]'的一个 C 2 C 3C|设A 是〃xs 矩阵, AB B. BA C.2. A. 0 0 -a,若 AB = ,则。
=(8.向量组A. 1,-3,2B. 1,-3,-2]C. 1,3,-2]D. 1,3,2]11. 线性方程组」X,+X2=+X2=解的情况是(). x 2 + x 3 = 0A.无解 D.只有零解 C.有唯一非零解 D.有无穷多解12, 若线性方程组AX=O 只有零解,则线性方程组AX=b (). A.有唯一解 B.有无穷多解C.可能无解 D.无解 13. 若〃元线性方程组AX=O 有非零解,则()成立. A. r(A) < n B. r(A) = n C. |A| = 0D. A 不是行满秩矩阵14. 下列事件运算关系正确的是(). C. D. B = BA+BA15. 对于随机事件A,B.下列运算公式()成立. A. P(A + B) = P(A) + P(B) - P(AB) B. P(AB) = P(A)P(B) C. P(AB) = P(8)P(B|A) D. P(A + B) = P(A) + P(B)16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球的概率是(). A. AB. Ac. AD .210 20 252517.若随机事件满足AB = 0,则结论()成立 A. A 与8是对立事件 B. A 与B 互不相容C. A 与B 相互独立D. 1与京互不相容 18.若A, B 满足() ,则A 与8是相互独立. A. P(A + B) = P(A) + P(B) B. P(A-B) = P(A)-P(B)Dpg端 中的数组可以作为离散型随机变量的概率分布.A. B = BA + BAB. A = BA + BAC. P(AB) = P(A)P(B) 19.下列数组中,(1 1 1 3 1 1 3 12 4 16 162 4 8 820. 设X123则 P(X <2)=0.1 0.3 0.4 0.2A. 0.1B. 0.4C. 0.3D. 0.221. 随机变量X 〜8(3,:), 则 P(X <2)=()A. 0B.C.1D782822.已知X 〜N(2,22),若aX+b~ N(O,1),那么(). A. a = 2,b = -2 B.。
工程数学试卷与答案汇总(完整版)
)是
无偏估计.
二、填空题(每小题 3 分,共 15 分)
6.设 A, B 均为 3 阶方阵, A 2, B 3 ,则 3AB1 -18 .
7.设 A 为 n 阶方阵,若存在数和非零 n 维向量 X ,使得 AX X ,则称为 A 的特
征值.
0 1 2
8.设随机变量
X
~
0.2
0.5
a
(2 分) (2 分)
故 a 是 A 的一个特征向量。
又 A 对称,故 A 必相似于对角阵
(1 分)
设 A∽ diag(λ1,λ2,…,λn)=B, 其中λ1,λ2,…,λn 是 A 的特征值 (1 分)
因 rank(A)=1, 所以 rank(B)=1
(1 分)
从而λ1,λ2,…,λn 中必有 n-1 个为 0, 即 0 是 A 的 n-1 重特征值 (3) A 对称,故 A 必相似于对角阵Λ,
利用初等行变换得112100235010324001112100011210012301?????????????????????????????????????????????????????????????112100011210001511112100011210001511?????????????????????????????????110922010721001511100201010721001511即a?????????????????1201721511由矩阵乘法和转置运算得xab???????????????????????????????????????????1201721511201151111136212
,则
x
=
。
1 1 0 0 0 1
工程数学复习题
一、1、522211211=a a a a ,则=--120020221221112a a a a _______2、计算=600300301395200199204100103_______3、若622211211=a a a a ,则=--120022022211211a a a a _______4、⎥⎦⎤⎢⎣⎡b a (1,1)=_______5、矩阵A=⎥⎦⎤⎢⎣⎡d c b a 的伴随矩阵A *=_______6、矩阵A=⎥⎦⎤⎢⎣⎡--8321的伴随矩阵A -1=_______7、=--1300020001_______8、已知点P (x,y )的坐标满足⎪⎩⎪⎨⎧≥≥≤+14x x y y x ,点O 为坐标原点,则PO的最大值_______9、当x=_______时,齐次方程组⎩⎨⎧=+=+002121x x x x λ只有零解 10、向量组x 1=(1,2,-1),x 2=(2,-3,-1),x 3=(4,1,-1)的秩为_______11、已知x 1=(1,4,3)T ,x 2=(2,t ,-1)T ,x 3=(-2,3,1)T 线性相关,则t=_______12、向量组x 1=(1,2,-1,1),x 2=(2,0,3,0),x 3=(0,-4,5,-2)的秩为_______13、如果x 1,x 2都是方程组A x =b 的解,则x 1-x 2一定是方程_______的解14、设函数F (x )=⎩⎨⎧<≥--0002x x be a x ,为连续型随机变量x 的分布函数,则=+b a _______15、同时抛掷3枚均称的硬币,恰好两枚正面向上的概率为_______16、用"C"连接B A B A B ,,-⋃_,Ω,φ为_______17、一批电子元件共100个,次品率为0.05,连续两次不放回从中任取一个,则第二次才取到正品概率为_______18、设每次试验的成功率为P (0<P<1),独立进行几次重复试验,则恰好有r 次试验取得成功的概率为_______19、函数f (x)=sinwt 的拉普拉斯变换为_______20、同时掷两骰子,出现点数三和为10的概率为_______21、设x~z (0,1),φ(x )是x 的分布函数,则Φ(0)=_______22、设x 为连续型随机变量,则p {}100=x =_______二、选择题1、行列式453175934中,代数余子式A 21=( )A 、33B 、-33C 、5D 、-52、设A 为n 阶方阵,则det (KA )=( )A 、k n detAB 、kdetAC 、k detAD 、(kdetA)n3、若n 阶方阵A 与B 都可逆,则下列命题中错误的是( )A 、AB+3B=(A+3)B B 、(AB)T =B T A TC 、(AB)-1=B -1A -1D 、线性齐次方程(AB)x=0只有零解4、设A 是5×4的矩阵,A 的秩为3,则齐次线性方程组A x =0的一个基础解系含有的个数为( )A 、4B 、3C 、2D 、15、设A 是5×4的矩阵,A 的秩为3,则齐次线性方程组A x =0,下列说法正确的是( )A 、方程组A x =0的一个基础解系中含有解得个数为3B 、方程组A x =0的一个基础解系中含有解得个数为2C 、方程组A x =0的一个基础解系中含有解得个数为1D 、方程组A x =0不存在基础解系6、袋中油5个黑球,3个白球,从中任取4个,则所取4个中恰好有3个白球的概率为( )A 、83B 、81.)83(5C 、81.)83(548CD 、485C7、设x~n(0,1),F(x)是x 的分布函数,则F (0)=( )A 、1B 、0C 、π21D 、218、设x 为连续随机变量,则p {}100=x =( )A 、0B 、31C 、1D 、219、设x 与y 是任意两个相互独立的连续型随机变量,它们的概率密度分别为p 1(x)和p 2(y),分布函数分别为F 1(x)和F 2(y),则( )A 、p 1(x)+p 2(y)必为某一随机变量的概率密度B 、p 1(x)、p 2(y)必为某一随机变量的概率密度C 、F 1(x)+F 2(y)必为某一随机变量的分布函数D 、F 1(x)-F 2(y)必为某一随机变量的分布函数10、假设A 、B 为两个互斥事件,则下列关系中不一定正确的是( )A 、P(A+B)=P(A)+P(B)B 、P(A)=1-P(B)C 、P(AB)=0D 、P(A/B)=011、设Ex 与Dx 都存在,而Y=-x+Ex ,则下列结论错误的是( )A 、EY=0B 、E(x+Y)=Ex+EYC 、DY=-DxD 、 D(x+Y)=012、对于单正态总体的假设检验,方差σ2未知,检验假设H 0:0--=U U ,则( ) A 、若拒绝H 0,则总体的真实均值-U 不可能等于给定值0-U B 、若接受H 0,则总体的真实均值-U 恰好等于给定值0-U C 、应采用t 一检验法,选取统计量T=n sU x .0--- D 、应采用-U 一检验法,选取统计量U=n U x .0σ---13、设随机变量的分布函数F(y)=1100103>≤≤<⎪⎩⎪⎨⎧y y y y ,则E(Y)=( )A 、dy y 20⎰+∞B 、dy y 2103⎰C 、ydy dy y ⎰⎰∞+0410D 、dy y 3103⎰三、多项选择题1、若A 、B 、C 都是n 阶方阵,则下列命题错误的是( )A 、所有零矩阵都相等B 、若AB=E ,则AB 都可逆C 、AB+3A=A(B+3)D 、BA+CA=(B+C)A2、设A 、B 均为n 阶可逆矩阵,则下列错误的公式是( )A 、(A 2)-1=(A -1)2B 、(KA)-1=KA -1 (K ≠0)C 、(A+B)-1=A -1+B -1D 、(A+B)(A-B)=A 2-B 23、设A 、B 、C 是n 阶可逆矩阵,则下列命题正确的是( )A 、若AB=CB,则A=CB 、AB=BAC 、det(AB)=detA·detbD 、秩R(A)=R(B)=R(C)4、设A 、B 均为n 阶矩阵,且(AB)2=E ,则下列命题中正确的是( )A 、(BA)2=EB 、A -1=BC 、r(A)=r(B)D 、A -1=BAB5、若A 是4阶方阵,A*是A 得伴随矩阵,A 可逆且逆矩阵A -1,则下列命题中正确的是( )A 、detA -1=(detA)-1B 、detA*=(detA)3C 、A*=(detA)A -1D 、AA*=detA6、若n 元线性齐次方程组Ax=0只有唯一解,则下列命题中正确的是( )A 、R(A)=nB 、detA ≠0C 、R(A) <nD 、A 不可逆7、下列命题中错误的是( )A、若整个向量组线性相关,则必有部分组也线性相关B、若整个向量组线性相关,则其中必有零向量C、若有一部分向量组线性无关,则其整个向量组必线性无关D、若有一部分向量组线性相关,则其整个向量组必线性有关8、设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,且Ax=0有非零解,则下列命题正确的是()A、r=nB、r<nC、A可逆D、detA=09、设线性方程组Ax=6有n个未知量,m个方程,且(A)=r,则对比方程组下列说法错误的是()A、r=m时,有解B、r=n时,有唯一解C、m=n时,有唯一解D、r<n时,有无穷多解四、判断题1、若A≠0,且AB=AC,则一定有B=C ( )2、若A可逆,数λ≠0,则又(λA)-1=λA-1()3、任何两个矩阵都能相乘()4、克拉默法则只适合系数矩阵A为方阵的线性方程组Ax=b的求解 ( )5、矩阵A通过有限次初等变换后,其秩一定不变()6、对向量组x1、x2……x n,若其中有一部分向量组线性相关,则整个向量组x1、x2……x n必线性相关()7、如果x1是线性方程组Ax=b的解,x2是线性组Ax=b对应的齐次方程组的解,则x1+x2一定是方程组Ax=b的解( )8、设A 是5×4矩阵,r(A)=4,则齐次线性方程组Ax=0不存在基础解系 ( )9、若K 1=K 2……=Kn=0,只K 1X 1+K 2X 2+……KnXn=0,则向量组X 1、X 2……Xn 线性无关 ( )10、互斥事件必为互逆事件 ( )11、在假设检验问题中,检验水平X 的意义是原假设H 0成立,经检验被拒绝的概率 ( )12、若P(A-B)=P(A)-P(B)成立,则A 、B 独立 ( )13、设A 、B 、C 为三个时间,则A 、B 、C 中至少有一个发生课表示为C B A ⋃⋃或---C B A 或Ω----C B A ( )14、若E(x)、D(x)都存在,且Y=-x+E(x),则D(Y)=-D(x) ( )15、A 与B 是两个相互独立事件,则-A 与-B 相互独立 ( )五、计算题1、解矩阵方程⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡243152X2、设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=161620101A 满足AX+E=A 2+X ,求矩阵X3、已知实数x 、y满足条件⎪⎩⎪⎨⎧≥≥≤--≥+-0,003304221x x y x y x ,求z=x+2y 的解4、求线性规划问题,maxs=x 1+2x 2,⎪⎩⎪⎨⎧≥≥≤+≤+0,012261553211121x x x x x x 的最大优解与最优值5、已知⎪⎩⎪⎨⎧≥≥-≤+00632y y x y x ,求z=3x+y 的最大值6、某公司有60万元资金,计划投资甲、乙两个项目,按需求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1 万元可获得0.4万元利润,对项目乙每投资1万元可获得0.6万元的利润,求该公司正确理财后,在两个项目上共可获得的最大利润7、在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200x y sy x y x ,当s=3与s=5时,求目标函数z=3x+2y 的最大值8、某公司计划2012年再甲乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲乙电视台的广告收费标准分别为500元/分钟和200万元/分钟,规定甲乙两个电视台为该公司做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲乙两个电视台的广告时间,才能使公司的收益最大,最大的利润是多少万?9、求齐次线性方程组⎪⎩⎪⎨⎧=++-=+--=++-010********2432143214321x x x x x x x x x x x x 的基础解系,并写出其通解10、求方程2x 1+x 2-2x 3+3x 4=1对应齐次方程组的基础解系,并写出该方程组的解11、求向量组x 1=(1,4,1,0)T ,x 2=(2,5,-1,-3)T ,x 3=(-1,2,5,6)T ,x 4=(0,2,2,-1)T 的秩,并指出一个极大无关组12、求方程组⎪⎩⎪⎨⎧=+++=-++=-++0243204202432143214321x x x x x x x x x x x x 的基础解系,并写出其通解13、求矩形脉冲函数f (t)=⎩⎨⎧≤≤其他O A τ10的傅里叶变换14、有3个参加考试抽签,共有10个签,其中有4个难,每人抽一个考签,甲先乙后,丙最后,试猜想3个人抽到难签的概率是否相等,并证明你的结论15、设随机变量x 的概率密度为P(x)=⎩⎨⎧<<其他0102x Ax 求:(1)常数A (2)P(21>x )(3)E D (4)E(10x+5) D(10x+5)16、四川省今年三诊数学测验平均分为68,现在从某中学随机抽取6份试卷,其分数如下:72、68、78、62、61、85试问该学校三诊平均成绩与全省是否一致(x=0.05)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 判断 (10
分)
1.设X 是数域K 上的线性空间,12,M M 是X 的子空间, 则12⋂M M 是X 的线性子空间. ( ) 2.设A C A n
n ,⨯∈相似于对角阵的充分必要条件是其特征多项式无重零点 .
( )
3.设是],[b a 上以b x x x a n ≤<<<≤Λ10为节点的Lagrange 插值基函数,则
()1==∑n
k k l x . ( )
4. 解线性方程组Ax b =,若A 是正定矩阵,则G-S 迭代格式收敛。
( )
5. 设(,)x X ∈g ,当0x ≠时,必有0x >. ( )
6. 差商与所含节点的排列顺序无关. ( )
7.对任意
,n n
A ⨯∈£A e 可逆.( ) 8. 若Jacobi 迭代格式收敛,则Seidel 迭代格式收敛.( ) 9. 设(,)∈⋅x,y X ,则00,x,y x =⇔=或0y =.( )
10.设3
3⨯∈C A 的Jordan 标准形⎥⎥
⎥⎦⎤⎢⎢⎢⎣⎡=2212J ,则A 的最小多项式为 2(2)λ-. ( )
二. 填空(10分)
1. 设 201361A ⎡⎤
⎢⎥=⎢⎥
⎢⎥-⎣⎦
, 则A 的Jordan 标准型为 . 2. 具有1n +个不同求积节点的插值型求积公式,至少具有 次代
数精度
3.设200010011A -⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
,则=∞)(A Cond . 4. Cotes 求积系数()
n k
C
满足()0n
n k k C ==∑ 。
5. 2
()2-1f x x =,则0
1
2
3
[2,2,2,2]f = 。
三 . (12分) 设122224242A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦
,求A 的Jordan 标准形J .和有理标准形C .
四. (14分) 设
011
110
101
A
-
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
⎣⎦
, (1)求A的最小多项式()
ϕλ; (2)求e At.
五. (12分) 已知线性方程组为
1
2
3
2136
1408
2112
x
x
x
⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥
=-
⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦
(1) 写出Jacob迭代格式和Seidel迭代格式,(2) 判断迭代格式收敛性.
(1)用3次Newton插值多项式计算(78.60)
f的近似值(结果保留到小数点后第5位)。
七.(14分) 对积分
1
3
1
1
dx
x
+
⎰,用Romberg方法计算积分的近似值,并将结果填入下表(结果保留至小数点后第五位).
八.(8分)已知
010
001
254
A
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
-
⎣⎦
,求A的谱半径()A
ρ和
1
,
A A
∞。
九.(8分)设⋅是n n
C ⨯上的范数,n n
S C
⨯∈是可逆矩阵。
若对任意n n
A C
⨯∈,
定义:1S
A S AS -=,试证明:S ⋅也是n n C ⨯上的范数。