2.1.2求曲线的方程

合集下载

课件15:2.1.1 曲线与方程~2.1.2 求曲线的方程

课件15:2.1.1 曲线与方程~2.1.2 求曲线的方程
【答案】①②③
知识点2 曲线与方程关系的应用
讲一讲
2.已知方程x2+(y-1)2=10.
(1)判断点P(1,-2),Q( 2,3)是否在此方程表示的
曲线上;
(2)若点M(

2
,-m)在此方程表示的曲线上,求m的值;
(3)求该方程的曲线与曲线x+3=0的交点的坐标.
解:(1)∵12+(-2-1)2=10,
不是所给方程的曲线”时,主要依据就是“曲线的
方程与方程的曲线”的定义中所列的两个条件,二
者缺一不可.即一方面要证明曲线上任意一点的
坐标都是方程的解,另一方面又要证明以这个方
程的解为坐标的点都在这条曲线上.
练一练
1.命题“曲线C上的点的坐标都是方程f(x,y)=0的
解”是真命题,下列命题中正确的是(
(3)联立
将 x+3=0 化为 x=-3,
x+3=0,
代入 x2+(y-1)2=10,解得 y=0 或 y=2,
x=-3, x=-3,
即方程组的解为

y=0
y=2.
因此两曲线的交点坐标是(-3,0)和(-3,2).
类题通法
(1)判断点是否在某个方程表示的曲线上,就是检验
该点的坐标是否是方程的解,是否适合方程.若适
曲线C上的充要条件是什么?
提示:若点P在曲线C上,则f(x0,y0)=0;若f(x0,y0)
=0,则点P在曲线C上,所以点P(x0,y0)在曲线C上
的充要条件是f(x0,y0)=0
课堂互动
知识点1 曲线与方程的概念
思考
若方程f(x,y)=0是曲线C的方程,应满足
什么条件?
名师指津:(1)曲线C上的点的坐标都是方程f(x,y)

2.1.2.圆的参数方程

2.1.2.圆的参数方程

返回
返回
作业
x t 2 1、直线 cos 4与曲线 (t参数)相交于A, B两点,求|AB|. 3 y t
3 已知曲线
x=3+2sin θ, C: y=-2+2cos θ
(θ 为参数),求
(1)x y的取值范围 y (2) 的取值范围 x
返回
3. 求原点到曲线
解: (1)把点M 1的坐标(0,1)代入方程组,解得 t 0 所以M 1在曲线C上。 5 3t 把点M 2 (5,4)代入方程组,得到 2 4 2 t 1 这个方程组无解,所以 点M 2不在曲线C上。
返回
(2)、因为点M 3 (6, a )在曲线C上,所以 6 3t 解得 t 2 , a 9 2 a 2t 1 所以,a 9
返回
换个角度看问题 .
y
v 100m/s
500
A 由物理知识, 物资投出机 M 舱后, 它的运动是下列两 种运动的合成: O x 沿Ox方向以100m / s的速 图2 2 度作匀速直线运动 ; 沿Oy的反方向作自由落体运 动. 物资出舱后 , 在时刻t ,它在水平方向的位移量 x 1 2 100t , 离地面的高度 y 500 gt , 即 2 x 100t 2 ① g是重力加速度 g 9.8m / s . 1 y 500 g t 2 2 返回
y
1、方程组有3个变量,其中的x,y表示点的坐标, 变量t叫做参变量,而且x,y分别是t的函数。
2、由物理知识可知,物体的位置由时间t唯一决 定,从数学角度看,这就是点M的坐标x,y由t唯 一确定,这样当t在允许值范围内连续变化时, x,y的值也随之连续地变化,于是就可以连续地 描绘出点的轨迹。 3、平抛物体运动轨迹上的点与满足方程组的有 序实数对(x,y)之间有一一对应关系。

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.2.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.2.1

合作探究 课堂互动
由方程确定椭圆的性质

已知椭圆的方程为4x2+9y2=36.
• (1)求椭圆的顶点坐标、焦点坐标、长轴长、短轴长以及离心率;
• (2)结合椭圆的对称性,运用描点法画出这个椭圆.
[思路点拨] (1) 化为标准方程 → 求出a,b,c → 焦点位置 → 得其几何性质
(2) 将方程变形 → 列表 → 描点 → 得出图形
__ay_22+__bx_22=__1_(a_>_b_>_0_) ____
图形
范围 ___-__a_≤__x_≤__a_,__-__b_≤__y_≤__b____ -__b_≤__x≤__b_,__-_a_≤__y≤__a_
顶点
___(_±__a_,0_)_,__(0_,__±__b_)___
____(_0_,__±__a_),__(_±__b_,_0_) __
焦点的位置,这样便于直观地写出a,b的数值,进而求出c,求出椭圆的长轴和短
轴的长、离心率、焦点和顶点的坐标等几何性质.
• (2)本题在画图时,利用了椭圆的对称性,利用图形的几何性质,可以简化画 图过程,保证图形的准确性.
1.已知椭圆 x2+(m+3)y2=m(m>0)的离心率 e= 23,求 m
的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.
(2)将方程变形为 y=±23 9-x2(-3≤x≤3). 由 y=23 9-x2,在 0≤x≤3 的范围内计算出一些点的坐标(x, y),列表如下:
x0123 y 2 1.9 1.5 0 先用描点法画出椭圆在第一象限内的部分图象,再利用椭圆 的对称性画出整个椭圆.

(1)求椭圆的性质时,应把椭圆化为标准方程,注意分清楚

2.1.1-2.1.2 圆的标准方程 圆的一般方程(课件)高二数学(沪教版2020选择性必修第一册)

2.1.1-2.1.2 圆的标准方程 圆的一般方程(课件)高二数学(沪教版2020选择性必修第一册)
△ABC的外接圆的标准方程.
解: 法一:待定系数法
设所求的方程是 ( − ) + ( − ) = ①
因为 A(5,1),B(7,-3),C(2,-8)三点都在圆上,所
以它们的坐标都满足方程①.
( − + − =
+ − − + =
02
圆的一般方程
问题:
前面,我们学习直线方程,都研究了哪些问题 ?
提示:
确定直线位置的几何要素:点、
方向
直线的倾斜角和斜率
直线的点斜式方程、直线的两点
式方程等
直线的一般式方程
问题2
类比直线方程的研究过程,我们如何研究圆的方程?
提示:
确定圆的几何要素:圆心、半径
圆的标准方程
圆的一般式方程?
问题3
圆心O的坐标是方程组 + + = 的解.
半径是 =
圆心O(2,-3)
( − ) +( + ) =
所以,△ABC的外接圆的标准方程是( − ) + ( + ) = .
例3 已知圆心为C的圆经过A(1,1) B(2,-2)两点,且圆心C在直线 l: x-y+1=0 上,
圆的标准方程是 (
)
A.(x-1)2+(y-2)2=5
B.(x-5)2+y2=25
C.(x-1)2+(y-2)2=25
D.(x-5)2+y2=5
解析: 因为圆的一条直径的端点分别是 A(0,0),B(2,4),
所以利用中点坐标公式求得圆心为(1,2),
2
2
从而可求得半径为 (0-1) + (0-2) = 5,

2.1.2求曲线方程

2.1.2求曲线方程
2.对称图形,
以该二直线为坐标轴.
以对称图形的对称轴为坐标轴.
3.已知长度的线段, 以线段所在直线为坐标· 轴,端点或中点为原点.
练习: 1.方程(x - 4) +(y - 4) = 0 表示的图形是 A.两条直线 C.两个点 B.四条直线 D.四个点
2 2 2 2
|x| 2.方程y = 2 表示的图形是 x
x 2y 5 0
交轨法
例4.两杆各绕点A(a,0),B(-a,0)旋转, 且它们在y轴上的截距乘积bb1 = a (a为常数) 求旋转杆交点的轨迹方程.
2
定义法
例5.已知点B(- 2, 1)和点C(3,2),直角三 角形ABC以BC为斜边,求直角顶点A的轨迹方程.
综合方法提升: 1.已知方程y a | x |, 和y x a (a 0)所 确定的两条曲线有两个交点,则a的取 值范围是: A a 1 C 0 a 1或a 1 B 0 a 1 D a
y x6
2
练习1.已知A(-2,0),B(2,0),点C、D满足 1 |AC|= 2, AD = (AB + AC).求D点的轨迹方程. 2
x y 1
2 2
相关点法
例2.Δ ABC的顶点坐标分别为B(0.0),和C(4,0), AB边上的中线的长为3, 求顶点A的轨迹方程.
1.解析几何与坐标法: 我们把借助于坐标系研究几何图形的方法叫做 坐标法. 在数学中,用坐标法研究几何图形的知 识形成了一门叫解析几何的学科.因此,解析几何 是用代数方法研究几何问题的一门数学学科. 2.平面解析几何研究的主要问题: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 说明:本节主要讨论求曲线方程的一般步骤.

高中数学 第2章 圆锥曲线与方程 2.1.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质应用案

高中数学 第2章 圆锥曲线与方程 2.1.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质应用案

第1课时 椭圆的简单几何性质[A 基础达标]1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6D .10、6、0.6解析:选B.把椭圆的方程写成标准形式为x 29+y 225=1,知a =5,b =3,c =4.所以2a =10,2b =6,ca=0.8.2.一椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则该椭圆的标准方程是( )A.x 216+y 29=1或x 29+y 216=1 B.x 225+y 29=1或y 225+x 29=1 C.x 225+y 216=1或y 225+x 216=1 D .椭圆的方程无法确定解析:选C.由题可知,a =5且c =3,所以b =4, 所以椭圆方程为x 225+y 216=1或y 225+x 216=1.3.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是( )A.x 24+y 216=1或x 216+y 24=1B.x 24+y 216=1 C.x 216+y 24=1 D.x 216+y 220=1 解析:选C.由已知a =4,b =2,椭圆的焦点在x 轴上,所以椭圆方程是x 216+y 24=1.故选C.4.已知焦点在x 轴上的椭圆:x 2a2+y 2=1,过焦点作垂直于x 轴的直线交椭圆于A ,B两点,且|AB |=1,则该椭圆的离心率为( )A.32B.12C.154D.33解析:选A.椭圆的焦点坐标为(±a 2-1,0),不妨设A ⎝ ⎛⎭⎪⎫a 2-1,12,可得a 2-1a 2+14=1,解得a =2,椭圆的离心率为e =a 2-1a =32.故选A.5.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,若存在点P 为椭圆上一点,使得∠F 1PF 2=60°,则椭圆离心率e 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫0,22 C.⎣⎢⎡⎭⎪⎫12,1 D.⎣⎢⎡⎭⎪⎫12,22 解析:选C.在△PF 1F 2中,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,得(2c )2=m 2+n 2-2mn cos 60°,配方得(m +n )2-3mn =4c 2,所以3mn =4a 2-4c 2,所以4a 2-4c 2=3mn ≤3·⎝ ⎛⎭⎪⎫m +n 22=3a 2,即a 2≤4c 2,故e 2=c 2a 2≥14,解得12≤e <1.故选C.6.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________. 解析:依题意得椭圆的焦点坐标为(0,5),(0,-5),故c =5,又2b =45,所以b =25,a 2=b 2+c 2=25,所以所求椭圆方程为x 220+y 225=1.答案:x 220+y 225=17.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的标准方程为________.解析:设椭圆的长半轴长为a ,由2a =12知a =6. 又e =c a =32,故c =33, 所以b 2=a 2-c 2=36-27=9.所以椭圆标准方程为x 236+y 29=1.答案:x 236+y 29=18.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点.已知点P (a ,b ),△F 1PF 2为等腰三角形,则椭圆的离心率e =________.解析:设F 1(-c ,0),F 2(c ,0)(c >0),由题意得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c .把b 2=a 2-c 2代入,整理得2⎝ ⎛⎭⎪⎫c a 2+ca-1=0,解得c a =-1(舍去)或c a =12.所以e =c a =12.答案:129.求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)短轴的一个端点与两焦点组成一个正三角形,且焦点到长轴上同侧顶点的距离为3.解:(1)由题意知,2c =8,c =4,所以e =c a =4a =12,所以a =8,从而b 2=a 2-c 2=48,所以椭圆的标准方程是y 264+x 248=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,所以⎩⎨⎧a =23,c = 3.从而b 2=9,所以所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1. 10.如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率.解:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0).如题图所示,则有F 1(-c ,0),F 2(c ,0),A (0,b ),B (a ,0),直线PF 1的方程为x =-c ,代入方程x 2a 2+y 2b2=1,得y =±b 2a ,所以P ⎝⎛⎭⎪⎫-c ,b 2a . 又PF 2∥AB , 所以△PF 1F 2∽△AOB .所以|PF 1||F 1F 2|=|AO ||OB |,所以b 22ac =ba,所以b =2c .所以b 2=4c 2,所以a 2-c 2=4c 2,所以c 2a 2=15.所以e =c a =55. [B 能力提升]11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:选C.由题意得F (-1,0),设点P (x 0,y 0),则y 20=3⎝ ⎛⎭⎪⎫1-x 204(-2≤x 0≤2), OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14(x 0+2)2+2,当x 0=2时,OP →·FP →取得最大值为6.12.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由题意得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c ,0),则由∠BFC =90°得BF →·CF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2·⎝ ⎛⎭⎪⎫c -32a ,-b 2=c 2-⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫-b 22=0⇒3c 2=2a 2⇒e =63.答案:6313.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有|OA |=|OF 2|,即b =c . 所以a =2c ,e =c a =22. (2)由题意知A (0,b ),F 1(-c ,0),F 2(c ,0). 其中,c =a 2-b 2,设B (x ,y ). 由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32⇒b 2-c 2=1,即有a 2-2c 2=1.②由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.14.(选做题)已知椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,左、右顶点分别为A ,C ,上顶点为B ,过F ,B ,C 三点作⊙P ,且圆心在直线x +y =0上,求此椭圆的方程.解:设圆心P 的坐标为(m ,n ),因为圆P 过点F ,B ,C 三点,所以圆心P 既在FC 的垂直平分线上,也在BC 的垂直平分线上,FC 的垂直平分线方程为x =1-c2.① 因为BC 的中点为⎝ ⎛⎭⎪⎫12,b 2, k BC =-b ,所以BC 的垂直平分线方程为y -b 2=1b ⎝⎛⎭⎪⎫x -12②由①,②联立,得x =1-c 2,y =b 2-c2b ,即m =1-c 2,n =b 2-c2b.因为P (m ,n )在直线x +y =0上, 所以1-c 2+b 2-c2b =0,可得(1+b )(b -c )=0, 因为1+b >0,所以b =c ,结合b 2=1-c 2得b 2=12,所以椭圆的方程为x 2+y 212=1,即x 2+2y 2=1.。

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

2021人教版高中数学同步a版选修2-1(理科必考)模块练习题--2.1.1 曲线与方程

第二章圆锥曲线与方程2.1 曲线与方程*2.1.1 曲线与方程2.1.2 求曲线的方程基础过关练题组一曲线与方程的概念1.已知曲线C的方程为x3+x+y-1=0,则下列各点中在曲线C上的点是( )A.(0,0)B.(-1,3)C.(1,1)D.(-1,1)2.(2018天津耀华中学高二上学期月考)直线x-y=0与曲线xy=1的交点坐标是( )A.(1,1)B.(-1,-1)C.(1,1),(-1,-1)D.(0,0)3.已知0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为( )A.π3 B.5π3C.π3或5π3D.π3或π64.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2√x”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件题组二 方程的曲线5.方程4x 2-y 2+6x-3y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y+3=0C.直线2x-y=0和直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=06.下列四个选项中,方程与曲线相符合的是( )7.方程|x|+|y|=1表示的曲线所围成图形的面积为 .题组三 求曲线的方程8.设A 为圆(x-1)2+y 2=1上的动点,PA 是圆的切线,且|PA|=1,则点P 的轨迹方程是( )A.(x-1)2+y 2=2B.(x-1)2+y 2=4C.y 2=2xD.y 2=-2x9.在平面直角坐标系中,O 为坐标原点,点A(1,0),B(2,2).若点C 满足OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ ),其中t∈R ,则点C 的轨迹方程为 .10.(2018湖南岳阳一中高二上学期期末)已知M 为直线l:2x-y+3=0上的一动点,A(4,2)为一定点,点P 在直线AM 上运动,且AP ⃗⃗⃗⃗⃗ =3PM ⃗⃗⃗⃗⃗⃗ ,求动点P 的轨迹方程.11.已知△ABC 中,AB=2,AC=√2BC. (1)求点C 的轨迹方程; (2)求△ABC 的面积的最大值.能力提升练一、选择题1.(2018海南海口一中高二上学期月考,★★☆)方程xy 2+x 2y=1所表示的曲线( )A.关于x 轴对称B.关于y 轴对称C.关于原点中心对称D.关于直线y=x 对称 2.(2020鄂东南九校高二期中联考,★★☆)方程(3x-y+1)(y-√1-x 2)=0表示的曲线为( ) A.一条线段和半个圆 B.一条线段和一个圆 C.一条直线和半个圆 D.两条线段3.(2020北京朝阳高三期末,★★☆)笛卡儿、牛顿都研究过方程(x-1)(x-2)(x-3)=xy,关于这个方程的曲线有下列说法:①该曲线关于y 轴对称;②该曲线关于原点对称;③该曲线不经过第三象限;④该曲线上有且只有三个点的横、纵坐标都是整数.其中正确的是( ) A.②③ B.①④ C.③ D.③④4.(2019江西南昌高三开学摸底考试,★★☆)在平面直角坐标系xOy 中,已知M(-1,2),N(1,0),动点P 满足|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN ⃗⃗⃗⃗⃗⃗ |,则动点P 的轨迹方程是( )A.y 2=4xB.x 2=4yC.y 2=-4xD.x 2=-4y5.(★★☆)方程x 2+y 2=1(xy<0)表示的曲线形状是( )6.(2018吉林长春五县期末,★★★)已知定点M(-3,0),N(2,0),若动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形的面积等于( )A.100π9 B.142π9C.10π3D.9π二、填空题7.(2020贵州贵阳高二期末,★★☆)以古希腊数学家阿波罗尼斯命名的阿波罗尼斯圆,是指到两定点的距离之比为常数λ(λ>0,λ≠1)的动点M的轨迹.已知A(-2,0),B(2,0),动点M满足|MA||MB|=√2,此时阿波罗尼斯圆的方程为.8.(2020北京房山高二期末,★★☆)已知曲线W的方程为|y|+x2-5x=0.①请写出曲线W的一条对称轴方程: ;②曲线W上的点的横坐标的取值范围是.三、解答题9.(2019贵州铜仁一中高二入学考试,★★☆)已知动点M到点A(-1,0)与点B(2,0)的距离之比为2∶1,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点P(5,-4)作曲线C的切线,求切线方程.10.(2019上海七宝中学高二期末,★★★)在平面直角坐标系xOy中,曲线Γ:x2+y2=1(y≥0).(1)如图1,点B为曲线Γ上的动点,点A(2,0),求线段AB的中点的轨迹方程;(2)如图2,点B为曲线Γ上的动点,点A(2,0),将△OAB绕点A顺时针旋转90°得到△DAC,求线段OC长度的最大值.答案全解全析 基础过关练1.B 点P(x 0,y 0)在曲线f(x,y)=0上⇔f(x 0,y 0)=0.经验证知点(-1,3)在曲线C 上.2.C 由{x -y =0,xy =1,得{x =1,y =1或{x =-1,y =-1.故选C.3.C 将点P 的坐标代入方程(x-2)2+y 2=3,得(cos α-2)2+sin 2α=3,解得cos α=12.又0≤α<2π,所以α=π3或5π3.4.B 设M(x 0,y 0),由点M 的坐标满足方程y=-2√x ,得y 0=-2√x 0,∴y 02=4x 0,∴点M 在曲线y 2=4x 上.反之不成立,故选B.5.C ∵4x 2-y 2+6x-3y=(2x+y)(2x-y)+3(2x-y)=(2x-y)(2x+y+3)=0, ∴原方程表示直线2x-y=0和2x+y+3=0.6.D 对于A,点(0,-1)满足方程,但不在曲线上,排除A;对于B,点(1,-1)满足方程,但不在曲线上,排除B;对于C,由于曲线上第三象限的点的横、纵坐标均小于0,不满足方程,排除C.故选D.7.答案 2解析 方程表示的图形是边长为√2的正方形(如图所示),其面积为(√2)2=2.8.A 设圆(x-1)2+y 2=1的圆心为C,半径为r,则C(1,0),r=1,依题意得|PC|2=r 2+|PA|2,即|PC|2=2,所以点P 的轨迹是以C 为圆心,√2为半径的圆,因此点P 的轨迹方程是(x-1)2+y 2=2. 9.答案 y=2x-2解析 设点C(x,y),则OC ⃗⃗⃗⃗⃗ =(x,y).因为点A(1,0),B(2,2),所以OA ⃗⃗⃗⃗⃗ +t(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ )=(1+t,2t),所以{x =t +1,y =2t ,消去t,得点C 的轨迹方程为y=2x-2. 10.解析 设M(x 0,y 0),P(x,y), 则AP⃗⃗⃗⃗⃗ =(x-4,y-2),PM ⃗⃗⃗⃗⃗⃗ =(x 0-x,y 0-y), 由题意可得{x -4=3(x 0-x ),y -2=3(y 0-y ),所以{x 0=4x -43,y 0=4y -23.因为点M(x 0,y 0)在直线2x-y+3=0上, 所以2×4x -43-4y -23+3=0,即8x-4y+3=0,所以点P 的轨迹方程为8x-4y+3=0.11.解析 (1)以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,则A(-1,0),B(1,0).设C(x,y),由AC=√2BC,得(x+1)2+y 2=2[(x-1)2+y 2],即(x-3)2+y 2=8,又在△ABC 中,y≠0,所以点C 的轨迹方程为(x-3)2+y 2=8(y≠0).(2)因为AB=2,所以S △ABC =12×2×|y|=|y|.因为(x-3)2+y 2=8(y≠0), 所以0<|y|≤2√2,所以S △ABC ≤2√2,即△ABC 的面积的最大值为2√2.能力提升练一、选择题1.D 设P(x 0,y 0)是曲线xy 2+x 2y=1上的任意一点,则x 0y 02+x 02y 0=1.设点P 关于直线y=x 的对称点为P',则P'(y 0,x 0),因为y 0x 02+y 02x 0=x 0y 02+x 02y 0=1,所以P'在曲线xy 2+x 2y=1上,故该曲线关于直线y=x 对称.2.A 由方程(3x-y+1)(y-√1-x 2)=0得y=√1-x 2(y≥0)或3x-y+1=0,且满足-1≤x≤1,即x 2+y 2=1(y≥0)或3x-y+1=0(-1≤x≤1),∴方程(3x-y+1)(y-√1-x 2)=0表示一条线段和半个圆.3.C 将x=-x 代入得到(x+1)(x+2)(x+3)=xy,方程改变,故该曲线不关于y 轴对称; 将x=-x,y=-y 代入得到(x+1)(x+2)(x+3)=-xy,方程改变,故该曲线不关于原点对称; 当x<0,y<0时,(x-1)(x-2)(x-3)<0,xy>0,显然方程不成立,∴该曲线不经过第三象限;令x=-1,易得y=24,即(-1,24)在曲线上,同理可得(1,0),(2,0),(3,0)也在曲线上,∴该曲线上有且只有三个点的横、纵坐标都是整数是错误的.4.A 设P(x,y),因为M(-1,2),N(1,0),所以PM ⃗⃗⃗⃗⃗⃗ =(-1-x,2-y),ON ⃗⃗⃗⃗⃗⃗ =(1,0),PN ⃗⃗⃗⃗⃗⃗ =(1-x,-y),因为|PM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ |=|PN⃗⃗⃗⃗⃗⃗ |,所以|1+x|=√(1-x )2+(-y )2, 整理得y 2=4x.5.C 方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部分,故选C. 6.A 设P(x,y),则由|PM|=2|PN|,得(x+3)2+y 2=4[(x-2)2+y 2],化简,得3x 2+3y 2-22x+7=0, 即(x -113)2+y 2=1009,所以所求图形的面积S=100π9.二、填空题7.答案 x 2+y 2-12x+4=0 解析 设M(x,y),因为|MA ||MB |=√2, 所以√(x+2)2+y 2√(x -2)+y 2=√2,整理得x 2+y 2-12x+4=0.8.答案 ①y=0(或x =52) ②[0,5]解析 ①由W 的方程知,若(x,y)是曲线上的点,则(x,-y)也是曲线上的点,因此直线y=0是曲线W的一条对称轴.同理,点(52-x,y)与(52+x,y)也都是曲线上的点,因此直线x=52也是曲线W的一条对称轴.②由|y|+x2-5x=0得|y|=-x2+5x,因为|y|≥0,所以-x2+5x≥0,解得0≤x≤5.三、解答题9.解析(1)设动点M的坐标为(x,y),则|MA|=√(x+1)2+y2,|MB|=√(x-2)2+y2所以√(x+1)2+y2√(x-2)+y2=2,化简得(x-3)2+y2=4.因此,动点M的轨迹方程为(x-3)2+y2=4.(2)当过点P的直线斜率不存在时,直线方程为x-5=0,圆心C(3,0)到直线x-5=0的距离等于2,此时直线x-5=0与曲线C相切; 当过点P的切线斜率存在时,不妨设斜率为k,则切线方程为y+4=k(x-5),即kx-y-5k-4=0,由圆心到切线的距离等于半径,得√k2+1=2,解得k=-34.所以切线方程为3x+4y+1=0.综上所述,切线方程为x-5=0和3x+4y+1=0.10.解析(1)设点B的坐标为(x0,y0),则y0≥0,设线段AB的中点为M(x,y), 因为点B在曲线Γ上,所以x02+y02=1.①因为M为线段AB的中点,所以{x=x0+22,y=y02,则{x0=2x-2,y0=2y,代入①式得(2x-2)2+4y2=1,化简得(x-1)2+y2=14,其中y≥0.则线段AB的中点的轨迹方程为(x-1)2+y2=14(y≥0).(2)如图所示,将△OAB绕点A顺时针旋转90°得到△DAC,易知点D(2,2),结合图形可知,点C在曲线(x-2)2+(y-2)2=1(x≥2)上运动,则问题转化为求原点O到曲线(x-2)2+(y-2)2=1(x≥2)上一点C的距离的最大值,连接OD并延长交曲线(x-2)2+(y-2)2=1(x≥2)于点C',当点C与C'重合时,|OC|取得最大值,且|OC|max=|OD|+1=2√2+1.。

人教新课标版数学高二选修2-1讲义 2.1曲线与方程

人教新课标版数学高二选修2-1讲义 2.1曲线与方程

2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程1.结合已学过的曲线与方程的实例,了解曲线与方程的对应关系.(了解)2.理解“曲线的方程”与“方程的曲线”的概念.(重点)3.通过具体的实例掌握求曲线方程的一般步骤,会求曲线的方程.(难点)[基础·初探]教材整理1曲线的方程与方程的曲线阅读教材P34~P35例1以上部分内容,完成下列问题.一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是____________;(2)以这个方程的解为坐标的点都是__________,那么,这个方程叫做________,这条曲线叫做方程的曲线.【答案】这个方程的解曲线上的点曲线的方程设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,则下列命题正确的是()A.坐标满足方程f(x,y)=0的点都不在曲线C上B.曲线C上的点的坐标都不满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上D.一定有不在曲线C上的点,其坐标满足f(x,y)=0【解析】本题考查命题形式的等价转换,所给命题不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故选项A、C错,选项B显然错.【答案】 D教材整理2求曲线方程的步骤阅读教材P36“例3”以上部分,完成下列问题.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是____________.【解析】设P(x,y),∵△MPN为直角三角形,∴MP2+NP2=MN2,∴(x+2)2+y2+(x-2)2+y2=16,即x2+y2=4.∵M,N,P不共线,∴x≠±2,∴轨迹方程为x2+y2=4(x≠±2).【答案】x2+y2=4(x≠±2)[小组合作型]对曲线的方程和方程的曲线的定义的理解(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)到两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限角平分线上的点与方程x+y=0之间的关系.【导学号:37792038】【精彩点拨】曲线上点的坐标都是方程的解吗?以方程的解为坐标的点是否都在曲线上?【自主解答】(1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解,但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)到两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此到两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限角平分线上的点的坐标都满足x+y=0,反之,以方程x+y =0的解为坐标的点都在第二、四象限角平分线上.因此第二、四象限角平分线上的点的轨迹方程是x+y=0.1.分析此类问题要严格按照曲线的方程与方程的曲线的定义.2.定义中有两个条件,这两个条件必须同时满足,缺一不可.条件(1)保证了曲线上所有的点都适合条件f (x ,y )=0;条件(2)保证了适合条件的所有点都在曲线上,前者是说这样的轨迹具有纯粹性,后者是说轨迹具有完备性.两个条件同时成立说明曲线上符合条件的点既不多也不少,才能保证曲线与方程间的相互转化.[再练一题]1.已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M ⎝ ⎛⎭⎪⎫m 2,-m 在此方程表示的曲线上,求实数m 的值. 【解】 (1)因为12+(-2-1)2=10,(2)2+(3-1)2=6≠10,所以点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,-m 在方程x 2+(y -1)2=10表示的曲线上, 所以x =m 2,y =-m 适合方程x 2+(y -1)2=10,即⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10. 解得m =2或m =-185.故实数m 的值为2或-185.由方程研究曲线(1)(x +y -1)x -1=0;(2)2x 2+y 2-4x +2y +3=0;(3)(x -2)2+y 2-4=0.【精彩点拨】 (1)方程(x +y -1)x -1=0中“x +y -1”与“x -1”两式相乘为0可作怎样的等价变形?(2)在研究形如Ax 2+By 2+Cx +Dy +E =0的方程时常采用什么方法?(3)由两个非负数的和为零,我们会想到什么?【自主解答】 (1)由方程(x +y -1)x -1=0可得 ⎩⎪⎨⎪⎧ x -1≥0,x +y -1=0或x -1=0, 即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1.(2)对方程左边配方得2(x -1)2+(y +1)2=0.∵2(x -1)2≥0,(y +1)2≥0,∴⎩⎪⎨⎪⎧ 2(x -1)2=0,(y +1)2=0,解得⎩⎪⎨⎪⎧x =1,y =-1. 从而方程表示的图形是一个点(1,-1).(3)由(x -2)2+y 2-4=0,得⎩⎪⎨⎪⎧ x -2=0,y 2-4=0,∴⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =2,y =-2.因此,原方程表示两个点(2,2)和(2,-2).1.判断方程表示什么曲线,就要把方程进行同解变形,常用的方法有:配方法、因式分解或化为我们熟悉的曲线方程的形式,然后根据方程、等式的性质作出准确判定.2.方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线,另外,当方程中含有绝对值时,常借助分类讨论的思想.[再练一题]2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x-y=0对称【解析】同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.【答案】 C[探究共研型]求曲线的方程探究1【提示】建立坐标系的基本原则:(1)让尽量多的点落在坐标轴上;(2)尽可能地利用图形的对称性,使对称轴为坐标轴.建立适当的坐标系是求曲线方程的首要一步,应充分利用图形的几何性质,如中心对称图形,可利用对称中心为原点建系;轴对称图形以对称轴为坐标轴建系;条件中有直角,可将两直角边作为坐标轴建系等.探究2求曲线方程时,有些点的条件比较明显,也有些点的条件要通过变形或转化才能看清,有些点的运动依赖于另外的动点,请你归纳一下求曲线方程的常用方法?【提示】一般有三种方法:一直接法;二定义法;三相关点法,又称为代入法.在解题中,我们可以根据实际题目选择最合适的方法.求解曲线方程过程中,要特别注意题目内在的限制条件.在Rt△ABC中,斜边长是定长2a(a>0),求直角顶点C的轨迹方程.【导学号:37792039】【精彩点拨】(1)如何建立坐标系?(2)根据题意列出怎样的等量关系?(3)化简出的方程是否为所求轨迹方程?【自主解答】取AB边所在的直线为x轴,AB的中点O为坐标原点,过O与AB垂直的直线为y轴,建立如图所示的直角坐标系,则A(-a,0),B(a,0),设动点C为(x,y).由于|AC|2+|BC|2=|AB|2,所以((x+a)2+y2)2+((x-a)2+y2)2=4a2,整理得x2+y2=a2.由于当x=±a时,点C与A或B重合,故x≠±a.所以所求的点C的轨迹方程为x2+y2=a2(x≠±a).1.求曲线方程的一般步骤(1)建系设点;(2)写几何点集;(3)翻译列式;(4)化简方程;(5)查漏排杂:即证明以化简后方程的解为坐标的点都是曲线上的点.2.一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明,另外,根据情况,也可以省略步骤(2),直接列出曲线方程.3.没有确定的坐标系时,要求方程首先必须建立适当的坐标系,由于建立的坐标系不同,同一曲线在坐标系的位置不同,其对应的方程也不同,因此要建立适当的坐标系.[再练一题]3.已知一曲线在x轴上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.【解】设曲线上任一点的坐标为M(x,y),作MB⊥x轴,B为垂足,则点M属于集合P={M||MA|-|MB|=2}.由距离公式,点M适合的条件可表示为x2+(y-2)2-y=2.化简得x2=8y.∵曲线在x轴上方,∴y>0.∴(0,0)是这个方程的解,但不属于已知曲线.∴所求曲线的方程为x2=8y(y≠0).1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)()A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上【解析】将M(2,1)代入直线l和曲线C的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M既在直线l上,又在曲线C上.【答案】 B2.在直角坐标系中,方程|x|·y=1的曲线是()【解析】 当x >0时,方程为xy =1,∴y >0,故在第一象限有一支图象;当x <0时,方程为-xy =1,∴y >0,故在第二象限有一支图象.【答案】 C3.已知两点M (-2,0),N (2,0),点P 满足PM →·PN →=4,则点P 的轨迹方程为________.【解析】 设点P 的坐标为P (x ,y ),由PM →·PN →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=4,得x 2+y 2=8,则点P 的轨迹方程为x 2+y 2=8.【答案】 x 2+y 2=84.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.【导学号:37792040】【解】 法一:如图所示,设OQ 为过O 的一条弦,P (x ,y )为其中点,连接CP ,则CP ⊥OQ .OC 的中点为M ⎝ ⎛⎭⎪⎫12,0,连接MP ,则|MP |=12|OC |=12,得方程⎝ ⎛⎭⎪⎫x -122+y 2=14. 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.法二:如图所示,由垂径定理,知∠OPC =90°,所以动点P 在以M ⎝ ⎛⎭⎪⎫12,0为圆心,OC 为直径的圆上. 由圆的方程,得⎝ ⎛⎭⎪⎫x -122+y 2=14, 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.。

2024-2025年北师大版数学选择性必修第一册2.2.1双曲线及其标准方程(带答案)

2024-2025年北师大版数学选择性必修第一册2.2.1双曲线及其标准方程(带答案)

§2 双曲线2.1 双曲线及其标准方程必备知识基础练知识点一 双曲线的定义1.动点P 到点M (1,0)及点N (5,0)的距离之差为2a ,则当a =1和a =2时,点P 的轨迹分别是( )A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条射线D .双曲线的一支和一条直线 2.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆 C .双曲线的一支 D .椭圆 知识点二 双曲线的标准方程3.“m >1且m ≠2”是“方程x 22-m -y 2m -1=1表示双曲线”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.求适合下列条件的双曲线的标准方程:(1)焦点分别为(-2,0),(2,0),且经过点(2,3); (2)焦点在y 轴上,且经过点(2,-5),a =25 ;(3)以椭圆x 28+y 25=1的长轴端点为焦点,且经过点(3,10 );(4)经过点A (2,233),B (3,-22 );(5)与双曲线x 216-y 24=1有公共焦点,且经过点(32 ,2).知识点三 双曲线的定义及方程的应用5.若双曲线E :x 29 -y 2160=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=15,则|PF 2|=( )A .9B .21C .9或21D .186.已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .207.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.关键能力综合练一、选择题1.已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.双曲线x 225 -y 29=1上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .23.已知双曲线的一个焦点为F 1(-5 ,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的标准方程是( )A .x 24 -y 2=1B .x 2-y 24=1C .x22-y23=1 D .x23-y 22=1 4.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5 ,0)和(-5 ,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A .x 22-y 23=1 B .x 23-y 22=1C .x24 -y 2=1 D .x 2-y24=15.[易错题]已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线上任一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( )A .1B .2C .4D .12二、填空题6.[双空题]若方程y 24 -x 2m +1=1表示双曲线,则实数m 的取值范围是____________;若表示椭圆,则m 的取值范围是____________.7.已知双曲线与椭圆x 227 +y 236=1有相同的焦点,且与椭圆的一个交点的纵坐标为4,则双曲线的方程为________.8.[探究题]已知双曲线C :x 2-y 23=1的左焦点为F 1,点Q (0,23 ),P 是双曲线C右支上的动点,则|PF 1|+|PQ |的最小值为________.三、解答题9.在①m >0,且C 的右支上任意一点到左焦点的距离的最小值为3+23 ;②C 的焦距为43 ;③C 上一点到两焦点距离之差的绝对值为6,这三个条件中任选一个,补充在下面的问题中并解答.问题:已知双曲线C :x 23m -y 2m=1,________,求C 的方程.注:如果选择多个条件分别解答,则按第一个解答计分.学科素养升级练1.[多选题]已知点P 在双曲线C :x 216 -y 29=1上,F 1,F 2是双曲线C 的左、右焦点,若△PF 1F 2的面积为20,则下列说法正确的有( )A .点P 到x 轴的距离为203B .|PF 1|+|PF 2|=503C .△PF 1F 2为钝角三角形D .∠F 1PF 2=π32.[情境命题——生活情境]某地发生地震,为了援救灾民,救援员在如图所示的P 处收到一批救灾药品,现要把这批药品沿道路PA ,PB 运送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线,并求出其方程.2.1 双曲线及其标准方程必备知识基础练1.解析:由题意,知|MN |=4,当a =1时,|PM |-|PN |=2a =2<4,此时点P 的轨迹是双曲线的一支;当a =2时,|PM |-|PN |=2a =4=|MN |,点P 的轨迹为以N 为端点沿x 轴向右的一条射线.答案:C2.解析:由题意两定圆的圆心坐标分别为O 1(0,0),O 2(4,0),半径分别为1,2.设动圆圆心为C ,动圆半径为r ,则|CO 1|=r +1,|CO 2|=r +2,∴|CO 2|-|CO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.答案:C3.解析:若方程x 22-m -y 2m -1 =1表示双曲线,则(2-m )·(m -1)>0,解得1<m <2.当1<m <2时,可推出“方程x 22-m-y 2m -1 =1表示双曲线”,故“m >1且m ≠2”是“方程x 22-m-y 2m -1=1表示双曲线”的必要不充分条件.答案:B4.解析:(1)∵双曲线的焦点在x 轴上,∴设双曲线的标准方程为x 2a 2 -y 2b2 =1(a >0,b >0).由题知c =2,∴a 2+b 2=4 ①.又∵点(2,3)在双曲线上, ∴22a 2 -32b2 =1 ②. 由①②解得a 2=1,b 2=3,所求双曲线的标准方程为x 2-y 23=1.(2)因为双曲线的焦点在y 轴上,所以可设双曲线的标准方程为y 2a 2 -x 2b2 =1(a >0,b >0).由a =25 ,点(2,-5)在双曲线上,可得⎩⎪⎨⎪⎧a =25,25a 2-4b2=1, 解得b 2=16.故所求双曲线的标准方程为y 220 -x 216=1.(3)由题意得,双曲线的焦点在x 轴上,且c =22 .设双曲线的标准方程为x 2a 2 -y 2b2 =1(a >0,b >0),由点(3,10 )在双曲线上,可得⎩⎪⎨⎪⎧a 2+b 2=c 2=8,9a 2-10b2=1, 解得⎩⎪⎨⎪⎧a 2=3,b 2=5, 故所求双曲线的标准方程为x 23-y 25=1.(4)可设双曲线的方程为mx 2+ny 2=1(mn <0).因为点A ⎝⎛⎭⎪⎫2,233 ,B (3,-22 )在双曲线上,所以⎩⎪⎨⎪⎧4m +43n =1,9m +8n =1, 解得⎩⎪⎨⎪⎧m =13,n =-14,故所求双曲线的标准方程为x 23-y 24=1.(5)易知双曲线x 216 -y 24=1的焦点在x 轴上,且c 21 =16+4=20,则待求双曲线的焦点也在x 轴上,且c 22=c 21=20.设其标准方程为x 2a 22 -y 220-a 22=1(a 22 <20) ①,因为点(32 ,2)在双曲线上,所以将(32 ,2)代入①中,得18a 22 -420-a 22=1,得a 2=12或a 2=30(舍去),故所求双曲线的标准方程为x 212 -y 28=1.5.解析:由于|PF 1|=15<c +a =13+3=16,所以点P 在双曲线E 的左支上,所以由双曲线的定义,得|PF 2|-|PF 1|=2a =6,即|PF 2|-15=6,故|PF 2|=21.答案:B6.解析:由已知,得|AB |+|AF 2|+|BF 2|=20.因为|AB |=4,所以|AF 2|+|BF 2|=16.根据双曲线的定义,知2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.答案:B 7.解析:由双曲线定义,知|PF 1|-|PF 2|=22 ,a =b =2 .∵|PF 1|=2|PF 2|,∴|PF 2|=22 ,|PF 1|=42 ,|F 1F 2|=2c =2a 2+b 2=4,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2| =32+8-162×42×22=34 .答案:34关键能力综合练1.解析:因为|PM |-|PN |=4=|MN |,所以动点P 的轨迹是一条射线.故选C. 答案:C2.解析:因为a 2=25,所以a =5.设双曲线的左、右焦点分别为F 1,F 2,双曲线上一点为P . 由双曲线的定义可得||PF 1|-|PF 2||=10, 不妨设|PF 1|=12,所以|PF 1|-|PF 2|=±10, 所以|PF 2|=22或2.故选A. 答案:A3.解析:设双曲线的标准方程为x 2a 2 -y 2b 2 =1(a >0,b >0),因为c =5 ,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2 -y 25-a2 =1,因为线段PF 1的中点坐标为(0,2),所以点P 的坐标为(5 ,4),将P (5 ,4)代入双曲线方程,得5a 2 -165-a2 =1,解得a 2=1或a 2=25(舍去),所以双曲线的标准方程为x 2-y 24=1.故选B.答案:B4.解析:由题可得⎩⎨⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2,得(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又因为c =5 ,所以b =1,所以双曲线的方程为x 24-y 2=1,故选C.答案:C5.解析:不妨在双曲线右支上取点P ,延长PF 2,F 1H ,交于点Q ,由角平分线性质可知|PF 1|=|PQ |,根据双曲线的定义得,|PF 1|-|PF 2|=2,从而|QF 2|=2,在△F 1QF 2中,OH 为其中位线,故|OH |=1.故选A.答案:A6.解析:若表示双曲线,则应有m +1>0,即m >-1;若表示椭圆,则有⎩⎪⎨⎪⎧m +1<0,m +1≠-4,解得m <-1且m ≠-5.答案:(-1,+∞) (-∞,-5)∪(-5,-1)7.解析:椭圆的焦点为F 1(0,-3),F 2(0,3),故可设双曲线方程为y 2a 2 -x 2b 2 =1(a >0,b >0),其中a 2+b 2=9,因为双曲线与椭圆的一个交点的纵坐标为4,所以该点的坐标为(15 ,4)或(-15 ,4),故16a 2 -15b2 =1.解方程组⎩⎪⎨⎪⎧a 2+b 2=9,16a 2-15b 2=1, 得⎩⎪⎨⎪⎧a 2=4,b 2=5,所以所求双曲线的方程为y 24-x 25=1.答案:y 24-x 25=18.解析:设双曲线的右焦点为F 2,如图,连接PF 2,QF 2.根据双曲线的定义可知|PF 1|-|PF 2|=2a =2,所以|PF 1|=|PF 2|+2,所以|PF 1|+|PQ |=|PF 2|+|PQ |+2≥|QF 2|+2,而Q (0,23 ),F 2(2,0),所以|QF 2|=22+(23)2 =4,所以|PF 1|+|PQ |的最小值为6.9.解析:选①:因为m >0,所以a 2=3m ,b 2=m ,c 2=a 2+b 2=4m , 则a =3m ,c =2m ,因为C 的右支上任意一点到左焦点的距离的最小值为3+23 ,所以3m +2m =(3 +2)m =3+23 ,解得m =3,C 的方程为x 29-y 23=1.选②:若m >0,则a 2=3m ,b 2=m ,c 2=a 2+b 2=4m ,c =2m ,因为C 的焦距为43 ,所以2c =4m =43 ,m =3,C 的方程为x 29-y 23=1;若m <0,则a 2=-m ,b 2=-3m ,c 2=a 2+b 2=-4m ,c =2-m ,因为C 的焦距为43 ,所以2c =4-m =43 ,m =-3,C 的方程为y 23-x 29=1,综上所述,C 的方程为x 29-y 23=1或y 23-x 29=1.选③:若m >0,则a 2=3m ,a =3m ,因为C 上一点到两焦点距离之差的绝对值为6,所以2a =23m =6,m =3,C 的方程为x 29-y 23=1;若m <0,则a 2=-m ,a =-m ,因为C 上一点到两焦点距离之差的绝对值为6,所以2a =2-m =6,m =-9,C 的方程为y 29-x 227=1,综上所述,C 的方程为x 29-y 23=1或y 29-x 227=1.学科素养升级练1.解析:因为在双曲线x 216-y 29=1中,a =4,b =3,所以c =16+9 =5,因为S △PF 1F 2=12·2c ·|y P |=5|y P |=20,所以|y P |=4,所以P 到x 轴的距离为4,故A 错误;不妨取P (203 ,4),又因为F 1(-5,0),F 2(5,0),则|PF 1|=(203+5)2+16 =373,|PF 2|= (203-5)2+16 =133 ,所以|PF 1|+|PF 2|=503 ,故B 正确;因为kPF 2=4-0203-5 =125>0,所以∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,故C 正确;因为S △SS 1S 2=12|PF 1|·|PF 2|sin ∠F 1PF 2,即12 ×133 ×373 sin ∠F 1PF 2=20,则sin ∠F 1PF 2=360481 ,所以∠F 1PF 2≠π3,故D 错误.2.解析:灾民区ABCD中的点可分为三类,第一类沿道路PA送药较近,第二类沿道路PB送药较近,第三类沿道路PA和PB送药一样近.依题意,知界线是第三类点的轨迹.设M为界线上的任一点,则|PA|+|MA|=|PB|+|MB|,即|MA|-|MB|=|PB|-|PA|=50,因为|AB|=1002+1502-2×100×150×cos 60°=507>50,所以界线是以A,B为焦点的双曲线的右支的一部分.如图所示,以AB所在直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系.设所求双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),易知a=25,c=257,所以b2=c2-a2=3 750.故双曲线的标准方程为x2625-y23 750=1.注意到点C的坐标为(257,60),故y的最大值为60,此时x=35,故界线的曲线方程为x2625-y23 750=1(25≤x≤35,0≤y≤60).。

【优化方案】2012高中数学 第2章2.1.2求曲线的方程课件 新人教A版选修2-1

【优化方案】2012高中数学 第2章2.1.2求曲线的方程课件 新人教A版选修2-1

互动探究 1 → → OP·QF, 其他条件不变, 的方程. 其他条件不变, 求动点 P 的轨迹 C 的方程.
→ → 若本例中的等式关系改为QP 若本例中的等式关系改为 ·FP =
解:设点 P(x,y),则 Q(-1,y). , , - , . → → → → 由QP·FP=OP·QF, ,-y), 得(x+1,0)·(x-1,y)=(x,y)·(2,- , + - , = , ,- 2 2 2 2 ∴x -1=2x-y ,∴x +y -2x-1=0. = - - = 2 2 即轨迹 C 的方程为 x +y -2x-1=0. - =
定义法求曲线方程 如果所给几何条件正好符合所学过的已知曲 线的定义, 线的定义 , 则可直接利用这些已知曲线的方 程写出动点的轨迹方程. 程写出动点的轨迹方程. 例2 长为 的线段的两个端点分别在 轴 、 y 长为4的线段的两个端点分别在 的线段的两个端点分别在x轴 轴上滑动,求此线段的中点的轨迹方程. 轴上滑动,求此线段的中点的轨迹方程. 思路点拨】 【 思路点拨 】 利用直角三角形斜边的中线 等于斜边的一半, 求出中线长, 等于斜边的一半 , 求出中线长 , 再利用圆的 定义求中点的轨迹方程. 定义求中点的轨迹方程.
动点M在曲线 上移动, 和定 动点 在曲线x2+y2=1上移动,M和定 在曲线 上移动 连线的中点为P, 点的轨迹方程. 点B(3,0)连线的中点为 ,求P点的轨迹方程. 连线的中点为 点的轨迹方程
设M,P点坐标 → 由中点坐标公式列方程 , 点坐标
例3
【思路点拨】 思路点拨】
点坐标表示M点坐标 点坐标代入曲线x → 用P点坐标表示 点坐标 → 把M点坐标代入曲线 2+y2=1 点坐标表示 点坐标代入曲线 → 得P点的轨迹方程 点的轨迹方程

2.1.2_求曲线的方程

2.1.2_求曲线的方程

练习2.已知△ABC,A(-2,0),B(0,-2),第三个顶点 C在曲线y=3x2-1上移动,求△ABC的重心的轨 迹方程.
( x 3) 2 y 2 48 x 2 y 2 25
解:取直线l为x轴,过点A且垂直于直线l的直线为y轴, 建立坐标系xOy, 设点M(x,y)是曲线上任意一点, MB⊥x轴,垂足是B,
MF MB 2
( x 0) 2 ( y 2) 2 y 2 1 2 y x 8
因为曲线在x轴的上方,所以y>0, 所以曲线的方程是
M 1 A 5( y12 6 y1 13) ;
M 1 B ( x1 3)2 ( y1 7)2 (4 2 y1 ) ( y1 7)
2 2
5( y 6 y1 13).
2 1
M1 A M1 B .
即点M1在线段AB的垂直平分线上.
由(1)、(2)可知方程③是线段AB的垂直平分线的方程.
x
O
A(6,0)
特征:所求(从)动点随已知曲线上的(主)动点的
变化而变化 方法:用从动点的坐标(x,y)表示主动点的坐标(x0,y0), 然后代入已知曲线方程,即的从动点轨迹方程.
练习:点A(3,0)为圆x2+y2=1外一点,P为圆上任意一 点,若AP的中点为M,当P在圆上运动时,求点M的 轨迹方程. 分析:利用中点坐标公式,把P点的坐标用M的坐标 表示,利用代入法,代入圆的方程即可.
解 :由题意, 设点M的坐标为 x, y , 点P的坐标为 x 0 , y 0 , 则 2 x x0 3, x0 2 x 3, 又 x 0 , y0 在圆x 2 y 2 1上, 2 y y0 , y0 2 y. 3 2 1 2 2 2 2x 3 4y 1, ( x ) y . 2 4

双曲线及其标准方程解答

双曲线及其标准方程解答

双曲线及其标准⽅程解答2. 2 双曲线2. 2.1 双曲线及其标准⽅程【课标要求】1. 了解双曲线的定义、⼏何图形和标准⽅程的推导过程. 2 ?会利⽤双曲线的定义和标准⽅程解决简单的应⽤问题. 【核⼼扫描】1?⽤定义法、待定系数法求双曲线的标准⽅程. (重点)2 ?与双曲线定义有关的应⽤问题. (难点)01⼆课前探翌学挑醪盘落实⾃学导引1.双曲线的定义把平⾯内与两个定点 F 1、F 2的距离的差的绝对值等于常数 (⼩于IF 1F 2I)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试⼀试:在双曲线的定义中,必须要求“常数⼩于IF 1F 2I”,那么“常数等于IF 1F 2I” ,“常数⼤于IF 1F 2I”或“常数为0”时,动点的轨迹是什么?提⽰ (1)若“常数等于IF 1F 2I”时,此时动点的轨迹是以 F 1, F 2为端点的两条射线F 1A ,F 2B(包括端点),如图所⽰.~A~~P__B~想⼀想:如何判断⽅程予—泊=1(a>0,b>0)和* —詁=1(a>0,b>0)所表⽰双曲线的焦点的位置?提⽰如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不⼀定⼤于b ,因此,不能像椭圆那样⽐较分母的⼤⼩来判定焦点在哪⼀个坐标轴上.名师点睛1.对双曲线定义的理解(1) 把定常数记为 2a ,当2a<|F 1F 2|时,其轨迹是双曲线;当 2a = IF 1F 2I 时,其轨迹是以 F 1、F 2为端点的两条射线(包括端点);当2a>|F 1F 2|时,其轨迹不存在.(2) 距离的差要加绝对值,否则只为双曲线的⼀⽀.若 F 1、F 2表⽰双曲线的左、右焦点,且点P 满⾜|PF 1|— |PF 2|= 2a ,则点P 在右⽀上;若点P 满⾜|PF 2|—|PF 1|= 2a ,则点P 在左⽀上.(3) 双曲线定义的表达式是 ||PF 1|— |PF 2||= 2a(0<2a<|F 1F 2|).(4) 理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且⼩于两定点的距离.”(2)若“常数⼤于IF 1F 2I”,此时动点轨迹不存在. ⑶若“常数为0”,此时动点轨迹为线段 F 1F 2的垂直平分线.2.双曲线的标准⽅程2. 双曲线的标准⽅程(1) 只有当双曲线的两焦点 F i 、F 2在坐标轴上,并且线段 F 1F 2的垂直平分线也是坐标轴时得到的⽅程才是双曲线的标准⽅程.(2) 标准⽅程中的两个参数 a 和b,确定了双曲线的形状和⼤⼩,是双曲线的定形条件,这⾥b 2= c 2— a 2,与椭圆中b 2= a 2— c 2相区别,且椭圆中 a>b>0,⽽双曲线中a 、b ⼤⼩则不确定. (3) 焦点F i 、F 2的位置,是双曲线定位的条件,它决定了双曲线标准⽅程的类型.“焦点跟着正项⾛”,若 x 2项的系数为正,则焦点在 x 轴上;若y 2项的系数为正,那么焦点在 y轴上.(4)⽤待定系数法求双曲线的标准⽅程时,如不能确定焦点的位置,可设双曲线的标准⽅程为Ax 2+ By 2= 1(AB<0)或进⾏分类讨论.02浄课堂讲练互动循循善诱筑类旁通题型⼀求双曲线的标准⽅程【例1】根据下列条件,求双曲线的标准⽅程. (1) 经过点 P 3, 15, Q — 136, 5 ; (2) c= 6,经过点(⼀5,2),焦点在x 轴上.[思路探索]由于(1)⽆法确定双曲线焦点的位置,可设 1(a>0, b>0)两种情况,分别求解?另外也可以设双曲线⽅程为解之得y⼀ — = 1 9 16 '2 2 —+ y= 1(mn<0). m n/ P 、Q 两点在双曲线上,予―古=1(a>0, b>0)和* —討2mx 2 + ny 2= 1(mn<0)或⼀+=1(mn<0),直接代⼊两点坐标求解.对于(2)可设其⽅程为 2x2a221(a>0, b>0)或+=1(0< 肚6).解(1)法⼀若焦点在x 轴上,设双曲线的⽅程为由于点P 3, 15和Q —乎,5在双曲线上,2 2予―皆 1(a>0, b>0),解得a2⼀16,l b ⼀ 9(舍去).2 2若焦点在y 轴上,设双曲线的⽅程为 a — b = 1(a>0, b>0),所以双曲线的标准⽅程为法⼆设双曲线⽅程为所以225 16b将P 、Q 两点坐标代⼊可得225 9站产1, 25 256」+ 225 = i m 16n ' m=— 16, ?? Y 解得*256 , 25 , n= 9. 19m +v =1所求双曲线的标准⽅程为y9—16= i.2 2(2)法⼀依题意,可设双曲线⽅程为 -2 —右=1(a>0, b>0).a b 〒孑+ b 2= 6,依题设有25 4125—产1,法⼆焦点在x 轴上,2设所求双曲线⽅程为 - ⼊6—⼊'双曲线经过点(⼀5,2), 25 4 ? —— = 1,?⼔ 5 或=30(舍去).⼊ 6—⼊2所求双曲线的标准⽅程是 -—y 2= 1.5规律⽅法求双曲线的标准⽅程与求椭圆的标准⽅程的⽅法相似,可以先根据其焦点位置设出标准⽅程的形式,然后⽤待定系数法求出a, b 的值?若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此⽅法思路清晰,但过程复杂,注意到双曲线过两定点,可设其⽅程为 mx 2+ ny 2= 1(mn<0),通过解⽅程组即可确定 m 、n,避免了讨论,实为⼀种好⽅法.【变式1】求适合下列条件的双曲线的标准⽅程: (1) a= 3, c= 4,焦点在x 轴上;(2) 焦点为(0, — 6), (0,6),经过点 A( — 5,6).解⑴由题设知,a= 3, c= 4, 由 c 2= a 2 + b 2, 得 b 2= c 2— a 2 = 42 — 32= 7.2 2因为双曲线的焦点在 x 轴上,所以所求双曲线的标准⽅程为;9 — = 1.(2)由已知得c= 6,且焦点在y 轴上.因为点A( — 5,6)在双曲线上,所以点 A 与两焦点的距离的差的绝对值是常数 2 a,即 2a=| — 5 — 0 2+ 6+ 6 2— — 5 — 0 2+ 6— 6 2|= |13— 5| = 8,贝V a= 4, b 2= c 2—a 2=62— 422 2因此,所求双曲线的标准⽅程是⼯——=1.16 202 2 2 22?若椭圆鶯+ yn = 1(m> n>0)和双曲线x — yb = 1(a>0, b>0)有相同的焦点,P 是两曲线的⼀个交点,贝V |PF 1||PF 2|的值为( )A . m — aB . m — bC. m 2— a 2D . ::「m — , bA 解析:设点P 为双曲线右⽀上的点,由椭圆定义得|PF 1|+ |PF 2= 2 m.由双曲线定义得 |PF 1|— |PF 2|= 2 ,a.^|PF 1= . m+ .a, |PF 2|= m — .a. |PF 1| |PF 2|= m —a 2= 5,b 2= 1,2x— y 2= 1. 5 yc= f, —-^ = 1(其中0< ?<6). 解得所求双曲线的标准⽅程为a.题型⼆双曲线定义的应⽤【例2】2 2如图,若F i , F 2是双曲线--y= 1的两个焦点.9 16(1)若双曲线上⼀点 M 到它的⼀个焦点的距离等于 16,求点M 到另⼀个焦点的距离; ⑵若P 是双曲线左⽀上的点,且 |PF 1||PF 2|= 32,试求△ F 1PF 2的⾯积.||MF 1|-|MF 2||= 2a,则点M 到另⼀焦点的距离易得; (2)结合已知条件及余弦定理即可求得⾯积.2 2解双曲线的标准⽅程为 X - 1f6= 1, 故 a= 3, b= 4, c= a 2+ b 2= 5.(1)由双曲线的定义,得||MF 1|—|MF 2||= 2a = 6,⼜双曲线上⼀点 M ⾄怕的⼀个焦点的距离等于16,假设点M 到另⼀个焦点的距离等于 x,则|16 — x| = 6,解得x= 10或x= 22.故点M 到另⼀个焦点的距离为 6或22.⑵将||PF 2|—|PF 1||= 2a= 6,两边平⽅,得 2 2 |PF 1| + |PF 2| — 2|PF 1| |PF 2|= 36 , |PF『+ |PF 2|2= 36 + 2|PF 1||PF 2|=36 + 2X 32= 100.在⼛F 1PF 2中,由余弦定理,得|PF『+ |PF 2|2—⼫汩2|22|PF 1| |PF 2|1 1S A F 1PF 2= 2|PF 1| |PF 2|= 2X32= 16. 规律⽅法(1)求双曲线上⼀点到某⼀焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另⼀焦点的距离,则根据||PF 1|— |PF 2||= 2a求解,注意对所求结果进⾏必要的验证(负数应该舍去,且所求距离应该不⼩于c — a). ⑵在解决双曲线中与焦点三⾓形有关的问题时,⾸先要注意定义中的条件 ||PF 1|—|PF 2||=2a 的应⽤;其次是要利⽤余弦定理、勾股定理或三⾓形⾯积公式等知识进⾏运算,在运算中要注意整体思想和⼀些变形技巧的应⽤.2 2【变式2】1 ?已知双曲线的⽅程是⼟ —普=1,点P 在双曲线上,且到其中⼀个焦点F 116 8的距离为10,点N 是PF 1的中点,求|0N|的⼤⼩(O 为坐标原点).1 .解:连接ON , ON 是⼛PF 1F 2的中位线,[思路探索](1 )由双曲线的定义,得 cos/ F 1PF 2 = 100—1002|PF 1| ? / F 1PF 2= 90°。

高中数学:第2章 第2章 2.1.2 函数的表示方法

高中数学:第2章 第2章 2.1.2 函数的表示方法

2.1.2 函数的表示方法1.会用列表法、图象法、解析法来表示一个函数.2.会求一些简单函数的解析式.(重点)3.理解分段函数的含义,能分析其性质.(重点)4.会作一些简单函数的图象.(难点)基础·初探]教材整理1函数的表示方法阅读教材P38~P39“例1”以上部分,完成下列问题.1.列表法通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法.2.图象法用“图形”表示函数的方法叫做图象法.3.解析法(公式法)如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析法(也称为公式法).1.判断(正确的打“√”,错误的打“×”)(1)任何一个函数都可以用列表法表示.()(2)任何一个函数都可以用解析法表示.()(3)函数的图象一定是定义区间上一条连续不断的曲线.()【答案】(1)×(2)×(3)×2.下列图形可表示函数y =f (x )图象的只可能是()A B C D【解析】 借助函数的定义可知,函数的图象应保证对定义域内的任意一个x 有唯一的y 与之对应,故选D.【答案】 D教材整理2 分段函数阅读教材P 42“分段函数”~P 43“例5”以上的内容,完成下列问题.在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.函数f (x )=⎩⎪⎨⎪⎧x -1,x >0,0,x =0,x +1,x <0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12的值是( )A.12 B .-12 C.32D .-32【解析】 ∵f ⎝ ⎛⎭⎪⎫12=-12,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12=-12+1=12.【答案】 A小组合作型]函数的表示法(1)函数f (x )=x +|x |x 的图象是( )(2)某商场新进了10台彩电,每台售价3 000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.【精彩点拨】 (1)对x 进行讨论将函数f (x )=x +|x |x 转化为所熟知的基本初等函数即可作图.(2)函数的定义域是{1,2,3,…,10},值域是{3 000,6 000,9 000,…,30 000},可直接列表、画图表示,分析题意得到表示y 与x 关系的解析式,注意定义域.【自主解答】 (1)当x >0时,f (x )=x +1,故图象为直线f (x )=x +1(x >0的部分);当x <0时,f (x )=x -1,故图象为直线f (x )=x -1(x <0的部分); 当x =0时,f (x )无意义即无图象.综上,f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0的图象为直线y =x +1(x >0的部分)和y=x -1(x <0的部分),即两条射线,故选C.【答案】 C (2)①列表法如下:x (台) 1 2 345y (元) 3 000 6 000 9 000 12 000 15 000 x (台) 678910y (元)18 000 21 000 24 000 27 000 30 000③解析法:y=3 000x,x∈{1,2,3,…,10}.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.再练一题]1.购买某种饮料x听,所需钱数y元.若每听2元,试分别用列表法、解析法、图象法将y表示成x(x∈{1,2,3,4})的函数,并指出函数的值域.【导学号:60210035】【解】解析法:y=2x,x∈{1,2,3,4},则y∈{2,4,6,8}.列表法:x/听123 4y/元2468图象法:求函数的解析式(1)已知f (x +1)=x -2x ,则f (x )=________;(2)已知函数y =f (x )是一次函数,且f (x )]2-3f (x )=4x 2-10x +4,则f (x )=________;(3)已知函数f (x )对于任意的x 都有f (x )-2f (-x )=1+2x ,则f (x )=________.【精彩点拨】 (1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.【自主解答】 (1)法一 换元法:令t =x +1,则t ≥1,x =(t -1)2,代入原式有f (t )=(t -1)2-2(t -1)=t 2-4t +3,f (x )=x 2-4x +3(x ≥1).法二 配凑法:f (x +1)=x +2x +1-4x -4+3=(x +1)2-4(x +1)+3,因为x +1≥1,所以f (x )=x 2-4x +3(x ≥1). (2)设f (x )=kx +b (k ≠0),则f (x )]2-3f (x )=(kx +b )2-3(kx +b )=k 2x 2+(2kb -3k )x +b 2-3b =4x 2-10x +4,所以⎩⎪⎨⎪⎧k 2=4,2kb -3k =-10,b 2-3b =4,解得k =-2,b =4,或k =2,b =-1, 故f (x )=-2x +4,或f (x )=2x -1.(3)由题意,在f (x )-2f (-x )=1+2x 中,以-x 代x 可得f (-x )-2f (x )=1-2x ,联立可得⎩⎪⎨⎪⎧f (x )-2f (-x )=1+2x ,f (-x )-2f (x )=1-2x ,消去f (-x )可得f (x )=23x -1.【答案】 (1)x 2-4x +3(x ≥1) (2)-2x +4或2x -1 (3)23x -1求函数解析式的四种常用方法1.待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.2.换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可. 3.配凑法:对f (g (x ))的解析式进行配凑变形,使它能用g (x )表示出来,再用x 代替两边所有的“g (x )”即可.4.方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.再练一题]2.已知函数f (x )的定义域为(0,+∞),且f (x )=2·f ⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.【解析】 在f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1中,用1x 代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,得f (x )=23x +13. 【答案】 23x +13分段函数已知f (x )=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.若f (x )>2,求x 的取值范围.【精彩点拨】 分段求解,再求并集.【解】 当x ≥-2时,f (x )=x +2,由f (x )>2,得x +2>2,解得x >0,故x >0;当x <-2时,f (x )=-x -2,由f (x )>2,得-x -2>2,解得x <-4,故x <-4.∴x 的取值范围是{x |x >0或x <-4}.求解分段函数问题的注意点(1)求f f (a )]的值时,应从内到外依次取值,直到求出值为止. (2)已知函数值,求自变量的值时,切记要进行检验.解题时一定要注意自变量的范围,只有在自变量确定的范围内才可以进行运算.(3)已知f (x ),解关于f (x )的不等式时,要先在每一段内求交集,最后求并集.再练一题]3.本题中解析式不变求f (-3),f (f (-3)),f (f (f (-3)))的值. 【解】 f (-3)=-(-3)-2=1, f (f (-3))=f (1)=1+2=3, f (f (f (-3)))=f (3)=3+2=5.探究共研型]作函数的图象探究1 【提示】 列表,描点,连线.探究2 作一次函数与二次函数的图象时,要注意哪些事项?【提示】作一次函数与二次函数的图象时,应标出某些关键点.如图象的顶点、端点、与坐标轴的交点等,要分清这些关键点是实心点还是空心点.作出下列函数的图象:(1)y=x+1(x∈Z);(2)y=x2-2x(x∈0,3)).【精彩点拨】解答本题可根据函数的定义域及图象中的关键点,通过描点、连线画出图象.【自主解答】(1)这个函数的图象由一些点组成,这些点都在直线y=x+1上,如图(1)所示.(2)因为0≤x<3,所以这个函数的图象是抛物线y=x2-2x介于0≤x<3之间的一部分,如图(2)所示.1.画函数图象时首先要考虑函数的定义域.2.要标出关键点,如图象的顶点、端点、与坐标轴的交点等,要分清这些关键点是实心点还是空心点.3.要掌握常见函数的特征.4.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等.再练一题]4.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).【解】(1)y=x+1(x≤0)表示一条射线,图象如图(1).(2)y=x2-2x=(x-1)2-1(x>1,或x<-1)是抛物线y=x2-2x去掉-1≤x≤1之间的部分后剩余曲线.如图(2).1.下列表示函数y=f(x),则f(11)=()x 0<x<55≤x<1010≤x<1515≤x≤20y 234 5A.C.4 D.5【解析】由表可知f(11)=4.【答案】 C2.已知f(x-1)=x2+4x-5,则f(x)的表达式是()A.f(x)=x2+6xB.f(x)=x2+8x+7C.f(x)=x2+2x-3D.f(x)=x2+6x-10【解析】法一设t=x-1,则x=t+1,∵f(x-1)=x2+4x-5,∴f(t)=(t+1)2+4(t+1)-5=t2+6t,即f(x)的表达式是f(x)=x2+6x.法二∵f(x-1)=x2+4x-5=(x-1)2+6(x-1),∴f(x)=x2+6x.∴f(x)的表达式是f(x)=x2+6x,故选A.【答案】 A3.f (x )=|x -1|的图象是( )【导学号:60210036】【解析】 ∵f (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,当x =1时,f (1)=0,可排除A 、C.又x =-1时,f (-1)=2,排除D.【答案】 B4.如图2-1-4,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (f (2)))=________.图2-1-4 【解析】 由题意f (2)=0,f (0)=4,f (4)=2, 所以f (f (f (2)))=f (f (0))=f (4)=2. 【答案】 25.已知函数f (x )=x 2-2x (-1≤x ≤2). (1)画出f (x )图象的简图; (2)根据图象写出f (x )的值域. 【解】 (1)f (x )图象的简图如图所示.(2)观察f(x)的图象可知,f(x)图象上所有点的纵坐标的取值范围是-1,3],即f(x)的值域是-1,3].。

厦门市高中数学教材人教A版目录(详细版)

厦门市高中数学教材人教A版目录(详细版)

考试范围:文科:必考内容:必修①②③④⑤+选修1-1,1-2选考内容:无选考内容理科:必考内容:必修①②③④⑤+选修2-1,2-2,2-3 选考内容(三选二):选修4-2,4-4,4-5文、理科必考内容:数学①必修第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示1.1.2 集合间的基本关系1.1.3 集合的基本运算1.2 函数及其表示1.2.1 函数的概念1.2.2 函数的表示法1.3 函数的基本性质1.3.1 单调性与最大(小)值1.3.2 奇偶性第二章基本初等函数(I)2.1 指数函数2.1.1 指数与指数幂的运算2.1.2 指数函数及其性质2.2 对数函数2.2.1 对数与对数运算2.2.2 对数函数及其性质2.3 幂函数第三章函数的应用3.1 函数与方程3.1.1 方程的根与函数的零点3.1.2 用二分法求方程的近似解3.2 函数模型及其应用3.2.1 几类不同增长的函数模型3.2.2 函数模型的应用实例数学②必修第一章空间几何体1.1 空间几何体的结构1.1.1 柱、锥、台、球的结构特征1.1.2 简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 空间几何体的三视图1.2.2 空间几何体的直观图1.2.3 平行投影与中心投影1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程3.2.3 直线的一般式方程3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离3.3.3 点到直线的距离3.3.4 两条平行直线间的距离第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程4.1.2 圆的一般方程4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用4.3 空间直角坐标系4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.2 基本算法语句1.2.1 输入语句、输出语句和赋值语句1.2.2 条件语句1.2.3 循环语句1.3 算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 随机事件的概率3.1.1 随机事件的概率3.1.2 概率的意义3.1.3 概率的基本性质3.2 古典概型3.2.1 古典概型3.2.2 整数值随机数(random numbers)的产生3.3 几何概型3.3.1 几何概型3.3.2 均匀随机数的产生数学④必修第一章三角函数1.1 任意角和弧度制1.1.1 任意角1.1.2 弧度制1.2 任意角的三角函数1.2.1 任意角的三角函数1.2.2 同角三角函数的基本关系1.3 三角函数的诱导公式1.4 三角函数的图像和性质1.4.1 正弦函数、余弦函数的图像1.4.2 正弦函数、余弦函数的性质1.4.3 正切函数的性质和图像1.5 函数y=Asin(ωx+ψ)的图像1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.1.1 向量的物理背景与概念2.1.2 向量的几何表示2.1.3 相等向量与共线向量2.2 平面向量的线性运算2.2.1 向量加法运算及其几何意义2.2.2 向量减法运算及其几何意义2.2.3 向量数乘运算及其几何意义2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义2.4.2 平面向量数量积的坐标表示、模、夹角2.5 平面向量应用举例2.5.1 平面几何中的向量方法2.5.2 向量在物理中的应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式3.1.2 两角和与差的正弦、余弦、正切公式3.1.3 二倍角的正弦、余弦、正切公式3.2 简单的三角恒等变换数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式√ab≤﹙a+b﹚/2文科必考内容:数学选修1-1第一章常用逻辑用语1.1 命题及其关系1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2 充分条件与必要条件1.2.1 充分条件与必要条件1.2.2 充要条件1.3 简单的逻辑关联词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的简单几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.3 双曲线的简单几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的简单几何性质第三章导数及其应用3.1 变化率与导数3.1.1 变化率问题3.1.2 导数的概念3.1.3 导数的几何意义3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则3.3 导数在研究函数中的应用3.3.1 函数的单调性与导数3.3.2 函数的极值与导数3.3.3 函数的最大(小)值与导数3.4 生活中的优化问题举例数学选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法和分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.3.1 数系的扩充和复数的概念3.3.2 复数的几何意义3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算第四章框图4.1 流程图4.2 结构图理科必考内容:数学选修2-1第一章常用逻辑用语1.1 命题及其关系1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2 充分条件与必要条件1.2.1 充分条件与必要条件1.2.2 充要条件1.3 简单的逻辑关联词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程2.2 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的简单几何性质2.3 双曲线2.2.1 双曲线及其标准方程2.2.3 双曲线的简单几何性质2.4 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的简单几何性质第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量及其加减运算3.1.2 空间向量的数乘运算3.1.3 空间向量的数量积运算3.1.4 空间向量的正交分解及其坐标表示3.1.5 空间向量运算的坐标表示3.2 立体几何中的向量方法数学选修2-2第一章导数及其应用1.1 变化率与导数1.1.1 变化率问题1.1.2 导数的概念1.1.3 导数的几何意义1.2 导数的计算1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.3.2 函数的极值与导数1.3.3 函数的最大(小)值与导数1.4 生活中的优化问题举例1.5 定积分的概念1.5.1 曲边梯形的面积1.5.2 汽车行驶的路程1.5.3 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用1.7.1 定积分在几何中的应用1.7.2 定积分在物理中的应用第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法和分析法2.2.2 反证法2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.3.1 数系的扩充和复数的概念3.3.2 复数的几何意义3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算数学选修2-3第一章计数原理1.1 分类加法计数原理与分布乘法计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 “杨辉三角”与二项式系数的性质第二章随机变量及其分布2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.2 二项分布及其应用2.2.1 条件概率2.2.2 事件的相互独立性2.2.3 独立重复试验与二项分布2.3 离散型随机变量的均值与方差2.3.1 离散型随机变量的均值2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用理科选考内容(三选二):数学选修4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用1.恒等变换2.旋转变换3.切变变换4.反射变换5.投影变换第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1. 逆变换与逆矩阵2. 逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1. 二元一次方程组的矩阵形式2. 逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1. 特征值与特征向量2. 特征值与特征向量的计算二特征向量的应用1. A^nα的简单表示2. 特征向量在实际问题中的应用数学选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系1. 平面直角坐标系2. 平面直角坐标系中的伸缩变换二极坐标系1. 极坐标系的概念2. 极坐标和直角坐标的互化三简单曲线的极坐标方程1. 圆的极坐标方程2. 直线的极坐标方程四柱坐标系与球坐标系简介1. 柱坐标系2. 球坐标系第二讲参数方程一曲线的参数方程1. 参数方程的概念2. 圆的的参数方程3. 参数方程和普通方程的互化二圆锥曲线的参数方程1. 椭圆的参数方程2. 双曲线的参数方程3. 抛物线的参数方程三直线的参数方程四渐开线与摆线1. 渐开线2. 摆线数学选修4-5不等式选讲第一讲不等式与绝对值不等式一不等式1. 不等式的基本性质2. 基本不等式3. 三个正数的算术-几何平均不等式二绝对值不等式1. 绝对值三角不等式2. 绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式的柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式。

圆锥曲线(导学案)

圆锥曲线(导学案)

§2.1.1 曲线与方程(1)1.理解曲线的方程、方程的曲线;2.求曲线的方程.3436,找出疑惑之处)复习1:画出函数22y x=(12)x-≤≤的图象.复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程.二、新课导学※学习探究探究任务一:到两坐标轴距离相等的点的集合是什么?写出它的方程.问题:能否写成y x=,为什么?新知:曲线与方程的关系:一般地,在坐标平面内的一条曲线C与一个二元方程(,)0F x y=之间,如果具有以下两个关系:1.曲线C上的点的坐标,都是的解;2.以方程(,)0F x y=的解为坐标的点,都是的点,那么,方程(,)0F x y=叫做这条曲线C的方程;曲线C叫做这个方程(,)0F x y=的曲线.注意:1︒如果……,那么……;2︒“点”与“解”的两个关系,缺一不可;3︒曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法;4︒曲线与方程的这种对应关系,是通过坐标平面建立的.试试:1.点(1,)P a在曲线2250x xy y+-=上,则a=___ .2.曲线220x xy by+-=上有点(1,2)Q,则b= .新知:根据已知条件,求出表示曲线的方程.※典型例题例 1 证明与两条坐标轴的距离的积是常数(0)k k>的点的轨迹方程式是xy k=±.变式:到x轴距离等于5的点所组成的曲线的方程是50y-=吗?例2设,A B两点的坐标分别是(1,1)--,(3,7),求线段AB的垂直平分线的方程.变式:已知等腰三角形三个顶点的坐标分别是(0,3)A,(2,0)B-,(2,0)C.中线AO(O为原点)所在直线的方程是0x=吗?为什么?反思:BC边的中线的方程是0x=吗?小结:求曲线的方程的步骤:①建立适当的坐标系,用(,)M x y表示曲线上的任意一点的坐标;②写出适合条件P的点M的集合{|()}P M p M=;③用坐标表示条件P,列出方程(,)0f x y=;④将方程(,)0f x y=化为最简形式;⑤说明以化简后的方程的解为坐标的点都在曲线上.※动手试试练1.下列方程的曲线分别是什么?(1)2xyx=(2)222xyx x-=-(3) log a xy a=练2.离原点距离为2的点的轨迹是什么?它的方程是什么?为什么?三、总结提升※学习小结1.曲线的方程、方程的曲线;2.求曲线的方程的步骤:①建系,设点;②写出点的集合;③列出方程;④化简方程;⑤验证.※知识拓展求轨迹方程的常用方法有:直接法,定义法,待定系数法,参数法,相关点法(代入法),交轨法等.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 与曲线y x=相同的曲线方程是().A.2xyx=B.y=C.y=D.2log2xy=2.直角坐标系中,已知两点(3,1)A,(1,3)B-,若点C满足OCu u u r=αOAu u u r+βOBu u u r,其中α,β∈R,α+β=1,则点C的轨迹为( ) .A.射线B.直线C.圆D.线段3.(1,0)A,(0,1)B,线段AB的方程是().A.10x y-+=B.10x y-+=(01)x≤≤C.10x y+-=D.10x y-+=(01)x≤≤4.已知方程222ax by+=的曲线经过点5(0,)3A和点(1,1)B,则a= ,b= .5.已知两定点(1,0)A-,(2,0)B,动点p满足12PAPB=,则点p的轨迹方程是.1.点(1,2)A-,(2,3)B-,(3,10)C是否在方程2210x xy y-++=表示的曲线上?为什么?2 求和点(0,0)O,(,0)A c距离的平方差为常数c的点的轨迹方程.§2.1.2 曲线与方程(2)1. 求曲线的方程;2. 通过曲线的方程,研究曲线的性质.3637,找出疑惑之处)复习1:已知曲线C 的方程为 22y x = ,曲线C 上有点(1,2)A ,A 的坐标是不是22y x = 的解?点(0.5,)t 在曲线C 上,则t =___ .复习2:曲线(包括直线)与其所对应的方程(,)0f x y =之间有哪些关系?二、新课导学 ※ 学习探究 引入:圆心C 的坐标为(6,0),半径为4r =,求此圆的方程.问题:此圆有一半埋在地下,求其在地表面的部分的方程.探究:若4AB =,如何建立坐标系求AB 的垂直平分线的方程.※ 典型例题例1 有一曲线,曲线上的每一点到x 轴的距离等于这点到(0,3)A 的距离的2倍,试求曲线的方程.变式:现有一曲线在x 轴的下方,曲线上的每一点到x 轴的距离减去这点到点(0,2)A ,的距离的差是2,求曲线的方程.小结:点(,)P a b 到x 轴的距离是 ;点(,)P a b 到y 轴的距离是 ; 点(1,)P b 到直线10x y +-=的距离是 .例2已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在l 的上方,它上面的每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.※动手试试练1.有一曲线,曲线上的每一点到x轴的距离等于这点到直线10x y+-=的距离的2倍,试求曲线的方程.练2. 曲线上的任意一点到(3,0)A-,(3,0)B两点距离的平方和为常数26,求曲线的方程.三、总结提升※学习小结1. 求曲线的方程;2. 通过曲线的方程,研究曲线的性质.※知识拓展圆锥曲线的统一定义:到定点的距离与到定直线的距离之比为常数e 的点的轨迹是圆锥曲线.01e<<:椭圆;1e=:抛物线;1e>:双曲线.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.方程[]2(3412)log(2)30x y x y--+-=的曲线经过点(0,3)A-,(0,4)B,(4,0)C,57(,)34D-中的().A.0个B.1个C.2个D.3个2.已知(1,0)A,(1,0)B-,动点满足2MA MB-=,则点M的轨迹方程是(). A.0(11)y x=-≤≤B.0(1)y x=≥C.0(1)y x=≤-D.0(1)y x=≥3.曲线y=与曲线0y x+=的交点个数一定是().A.0个B.2个C.4个D.3个4.若定点(1,2)A与动点(,)P x y满足4OP OA•=vv,则点P的轨迹方程是.5.由方程111x y-+-=确定的曲线所围成的图形的面积是.1.以O为圆心,2为半径,上半圆弧的方程是什么?在第二象限的圆弧的方程是什么?2.已知点C的坐标是(2,2),过点C的直线CA与x 轴交于点A,过点C且与直线CA垂直的直线CB与y轴交于点B.设点M是线段AB的中点,求点M 的轨迹方程.§2.2.1椭圆及其标准方程(1)1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义; 3.掌握椭圆的标准方程.3840,文P 32~ P 34找出疑惑之处) 复习1:过两点(0,1),(2,0)的直线方程 . 复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学※ 学习探究取一条定长的细绳, 把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 . 如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 .试试: 已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数2a F F >.新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b a c =-若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 . ※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,ac =y 轴上; ⑶10,a b c +==.变式:方程214x ym +=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练 1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ). A . B .6C .D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ). A .椭圆 B .圆C .无轨迹D .椭圆或线段或无轨迹 2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ). A .(0,)+∞ B .(0,2) C .(1,)+∞ D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ). A .4 B .14 C .12 D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是.5.如果点(,)M x y 在运动过程中,总满足关系式10=,点M 的轨迹是 ,它的方程是 .1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=.2. 椭圆2214x y n+=的焦距为2,求n 的值.§2.2.1 椭圆及其标准方程(2)1.掌握点的轨迹的求法;2.进一步掌握椭圆的定义及标准方程.4142,文P 34~ P 36找出疑惑之处)复习1:椭圆上221259x y+=一点P 到椭圆的左焦点1F 的距离为3,则P 到椭圆右焦点2F 的距离 是 .复习2:在椭圆的标准方程中,6a =,b =则椭圆的标准方程是 .二、新课导学 ※ 学习探究问题:圆22650x y x +++=的圆心和半径分别是什么?问题:圆上的所有点到 (圆心)的距离都等于 (半径) ;反之,到点(3,0)-的距离等于2的所有点都在 圆 上.※ 典型例题例1在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?变式: 若点M 在DP 的延长线上,且32DM DP =,小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆.例2设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程 .变式:点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么?※ 动手试试 练1.求到定点()2,0A 与到定直线8x=的距离之比练2.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.三、总结提升 ※ 学习小结1. ①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.※ 知识拓展椭圆的第二定义:到定点F 与到定直线l 的距离的比是常数e (01)e <<的点的轨迹. 定点F 是椭圆的焦点; 定直线l 是椭圆的准线; 常数e 是椭圆的离心率.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 22αα曲线是椭圆,则α在( ).A .第一象限B .第二象限C .第三象限D .第四象限 2.若ABC ∆的个顶点坐标(4,0)A -、(4,0)B ,ABC ∆的周长为18,则顶点C 的轨迹方程为( ).A .221259x y +=B .221259y x += (0)y ≠C .221169x y +=(0)y ≠D .221259x y +=(0)y ≠3.设定点1(0,2)F - ,2(0,2)F ,动点P 满足条件124(0)PF PF m m m+=+>,则点P 的轨迹是( ).A .椭圆B .线段C .不存在D .椭圆或线段 4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是 . 5. 设12,F F 为定点,|12F F |=6,动点M 满足12||||6MF MF +=,则动点M 的轨迹是 .1.已知三角形ABC V 的一边长为6,周长为16,求顶点A 的轨迹方程. 2.点M 与定点(0,2)F 的距离和它到定直线8y =的距离的比是1:2,求点的轨迹方程式,并说明轨迹是什么图形.§2.2.2 椭圆及其简单几何性质(1)1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;程研究它的性质,画图.4346,文P37~ P40找出疑惑之处)复习1:椭圆2211612x y+=上一点P到左焦点的距离是2,那么它到右焦点的距离是.复习2:方程2215x ym+=表示焦点在y轴上的椭圆,则m的取值范围是.二、新课导学※学习探究问题1:椭圆的标准方程22221x ya b+=(0)a b>>,它有哪些几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:刻画椭圆程度.椭圆的焦距与长轴长的比ca称为离心率,记cea=,且01e<<.试试:椭圆221169y x+=的几何性质呢?图形:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:cea== .反思:ba或cb的大小能刻画椭圆的扁平程度吗?※典型例题例1 求椭圆221625400x y+=的长轴和短轴的长、离心率、焦点和顶点的坐标.变式:若椭圆是22981x y+=呢?小结:①先化为标准方程,找出,a b,求出c;②注意焦点所在坐标轴.例 2 点(,)M x y与定点(4,0)F的距离和它到直线25:4l x=的距离的比是常数45,求点M的轨迹.小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆 .※ 动手试试练1.求适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,6a =,13e =;⑵焦点在y 轴上,3c =,35e =;⑶经过点(3,0)P -,(0,2)Q -;⑷长轴长等到于20,离心率等于35.三、总结提升 ※ 学习小结1 .椭圆的几何性质:图形、范围、对称性、顶点、长轴、短轴、离心率;2 .理解椭圆的离心率.※ 知识拓展(数学与生活)已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆,且篮球与地面※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量:5分钟 满分:10分)计分:1.若椭圆2215x y m+=的离心率e =则m的值是( ).A.3 B .3或253C D 2.若椭圆经过原点,且焦点分别为1(1,0)F ,2(3,0)F ,则其离心率为( ).A .34 B.23 C .12 D .143.短轴长为,离心率23e =的椭圆两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为( ).A .3B .6C .12D .244.已知点P 是椭圆22154x y +=上的一点,且以点P 及焦点12,F F 为顶点的三角形的面积等于1,则点P 的坐标是 .5.某椭圆中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是 .1.比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ;⑵22936x y +=与221610x y += .2.求适合下列条件的椭圆的标准方程: ⑴经过点(P -,Q ;⑵长轴长是短轴长的3倍,且经过点(3,0)P ; ⑶焦距是8,离心率等于0.8.§2.2.2 椭圆及其简单几何性质(2)1.根据椭圆的方程研究曲线的几何性质;2.椭圆与直线的关系.一、课前准备(预习教材理P 46~ P 48,文P 40~ P 41找出疑惑之处)复习1: 椭圆2211612x y +=的焦点坐标是( )( ) ;长轴长 、短轴长 ;离心率 .复习2:直线与圆的位置关系有哪几种?如何判定?二、新课导学 ※ 学习探究问题1:想想生活中哪些地方会有椭圆的应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆的位置如何判定?※ 典型例题例 1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F ,已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =,试建立适当的坐标系,求截口BAC 所在椭圆的方程.变式:若图形的开口向上,则方程是什么?小结:①先化为标准方程,找出,a b ,求出c ; ②注意焦点所在坐标轴.(理)例2 已知椭圆221259x y +=,直线l :45400x y -+=。

2.1.2 圆的参数方程

2.1.2 圆的参数方程

[悟一法]
(1)解决此类问题的关键是根据圆的参数方程写出点的坐标, 并正确确定参数的取值范围. (2)利用圆的参数方程求参数或代数式的取值范围的实质是 利用正、余弦函数的有界性.
[通一类]
x=1+cos θ 3.设方程 y= 3+sin θ
(θ 为参数)表示的曲线为 C,求在曲线 C
x= 4t 2 1+t 答案: 4t2 y= 1+t2
[研一题] [例 2] 已知点 P(2,0),点 Q
x=cos θ 是圆 y=sin θ
(θ 为参数)上一
动点,求 PQ 中点的轨迹方程,并说明轨迹是什么曲线?
[精讲详析]
本题主要考查圆的参数方程的应用及轨迹的求
义是:OM0(M0 为 t=0 时的位置)绕点 O 逆 时针旋转到 OM 的位 置时,OM0 转过的角度.
[小问题· 大思维]
x=Rcos θ 1.方程 y=Rsin θ
(θ 为参数,0≤θ<2π)是以坐标原点为圆心,
以 R 为半径的圆的参数方程,能否直接由圆的普通方程转化 得出?
提示:以坐标原点为圆心,以 R 为半径的圆的标准方程为 x2 x 2 y 2 +y =R ,即(R) +(R) =1,令
②当 M 在 x 轴下方时,∠MO′x=-2φ,
x=r+rcos -2φ, ∴ y=-rsin -2φ. x=r+rcos 2φ, 即 y=rsin 2φ.
π ③当 M 在 x 轴上时,对应 φ=0 或 φ=± . 2 综上得圆的参数方程为
x=r+rcos y=rsin 2φ
[读教材· 填要点] 如图,设圆 O 的半径是 r,点 M 从初始位置 M0(t=0 时的位 置)出发,按逆时针方向在圆 O 上作匀速圆周运动, 点 M 绕点 O 转动的角速度为 ω,以圆心 O 为原点,OM0 所在的直线为 x 轴,建立直角坐标系. (1)在 t 时刻,M 转过的角度是 θ,点 M 的坐标是(x,y),那 么 θ=ωt(ω 为角速度).设|OM|=r,那么由三角函数定义,有 cos y x ωt= r ,sin ωt= r ,即圆心在原点 O,半径为 r 的圆的参数方程

2.1.2椭圆的简单几何性质_课件-湘教版数学选修1-1

2.1.2椭圆的简单几何性质_课件-湘教版数学选修1-1

于是a=5,b=4,c= 25-16=3.
因此,椭圆的长轴和短轴的长分别是2a=10和2b=8,
离心率e=
c a

3 5
,两个焦点坐标分别是F1(-3,0)和F2(3,
0),四个顶点坐标分别是A1(-5,0),A2(5,0),B1(0,-4)和 B2(0,4).
点评 解决这类问题关键是将所给方程正确地化为标准情势,然后根据方程 判断出椭圆的焦点在哪个坐标轴上,再利用a,b,c之间的关系求椭圆的几何 性质.
①可得到两个不同的公共点坐标,此时直线与椭圆有两个公共 点;
当m=- 5 或m= 5 时,Δ=0,方程③有两个相等的实数
根,代入①可得到一个公共点坐标,此时直线与椭圆有一个公共 点;
当m<- 5或m> 5时,Δ<0,方程③没有实数根,直线与椭
圆没有公共点.
点评 (1)直线与椭圆公共点个数的判断方法为:联立直线与 椭圆方程,消去方程组中的y(或x)得到关于x(或y)的一元二次方
2b2 r1r2
-1≥
(r12+2b2r2)2-1=2ab22-1(当且仅当r1=r2时取“=”号).
由此可知当P点为短轴的端点时θ角最大,设∠F1PF2的最大
角为θ0,当θ0<90°时,椭圆上不存在点P使得∠F1PF2=90°;当
θ0=90°,椭圆上存在两个点使得∠F1PF2=90°;当θ0>90°
2c
对称轴 x轴y轴 ,对称中心原点 e=ac(0<e<1)
自主探究 1.能否用a和b表示椭圆的离心率e?
提示
可以,由于e=ac,又c= a2-b2,
故e=ac= a2a-b2=
1-ba22.
2.
如图所示,椭圆中的△OF2B2,能否找出a,b,c,e对应的线 段或量? 提示 a=|F2B2|,b=|OB2|,c=|OF2|,e=ac=||FO2FB22||=cos∠OF2B2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 = 4-2y12+y1-72= 5y1 -6y1+13.
所以|M1A|=|M1B|,即点 M1 在线段 AB 的垂直平分线上. 由①②可知,方程①是线段 AB 的垂直平分线的方程.
研一研· 问题探究、课堂更高效
2.1.2
问题 2
你能根据以上的求解过程归纳出求曲线方程的一
般步骤吗?
答 求曲线的方程,一般有下面几个步骤: (1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任 意一点 M 的坐标;
2.1.2
2.1.2
求曲线的方程
1.了解求曲线方程的步骤. 2.会求简单曲线的方程.
通过建立直角坐标系得到曲线的方程,从曲线方程 研究曲线的性质和位置关系,进一步感受坐标法的作用 和数形结合思想.
研一研· 问题探究、课堂更高效
2.1.2
引言
上一节,我们已经建立了曲线的方程来自方程的曲线的概念.利用这两个重要概念,就可以借助于坐标系,用坐标 表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲 线上点的坐标(x,y)所满足的方程 f(x, y)=0 表示曲线,通 过研究方程的性质间接地来研究曲线的性质. 这就是我们反 复提到的坐标法.数学中,用坐标法研究几何图形的知识形 成的学科叫做解析几何.从前面的学习中可以看到,解析几 何研究的主要问题是: (1)根据已知条件,求出表示曲线的方程; (2)通过曲线的方程,研究曲线的性质.
虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲 1 2 线,所以曲线的方程应是 y= x (x≠0). 8
研一研· 问题探究、课堂更高效
2.1.2
小结
①求曲线方程时,建立的坐标系不同,得到的方程
也不同. ②求曲线轨迹方程时,一定要注意检验方程的解与曲线上 点的坐标的对应关系,对于坐标适合方程但又不在曲线上 的点应注意剔除.
由两点间的距离公式,点 M 适合的条件可表示为
如图所示,取直线 l 为 x 轴,过点 F 且
垂直于直线 l 的直线为 y 轴,建立坐标系
动画演示
研一研· 问题探究、课堂更高效
2.1.2

x2+ y-22-y=2, 将①式移项后两边平方,得 x2+(y-2)2=(y+2)2, 1 2 化简得 y=8x . 因为曲线在 x 轴的上方,所以 y>0.
研一研· 问题探究、课堂更高效
2.1.2
问题 3 求曲线方程要“建立适当的坐标系”, 这句话怎样 理解.
答案 坐标系选取的适当,可使运算过程简化,所得方程 也较简单,否则,如果坐标系选取不当,则会增加运算的 繁杂程度.
研一研· 问题探究、课堂更高效
2.1.2
结论
建立坐标系的基本原则
(1)让尽量多的点落在坐标轴上. (2)尽可能地利用图形的对称性,使对称轴为坐标轴. 建立适当的坐标系是求曲线方程首要一步,应充分利用图 形几何性质,如中心对称图形,可利用对称中心为原点建 系;轴对称图形以对称轴为坐标轴建系;条件中有直角, 可将两直角边作为坐标轴建系等.
(2)写出适合条件 p 的点 M 的集合 P={M|p(M)}; (3)用坐标表示条件 p(M),列出方程 f(x,y)=0;
(4)化方程 f(x,y)=0 为最简形式;
(5)说明以化简后的方程的解为坐标的点都在曲线上.
一般地,化简前后方程的解集是相同的,步骤 (5) 可以省 略不写,如有特殊情况,可以适当说明.另外,也可以根 据情况省略步骤(2),直接列出曲线方程.
研一研· 问题探究、课堂更高效
2.1.2
例 1 已知一条直线 l 和它上方的一个点 F,点 F 到 l 的距 离是 2.一条曲线也在 l 的上方,它上面的每一点到 F 的 距离减去到 l 的距离的差都是 2,建立适当的坐标系,求 这条曲线的方程.
解 xOy.
设点 M(x, y)是曲线上任意一点, 作 MB⊥x 轴, 垂足为 B, 那么点 M 属于集合 P={M ||MF|-|MB |=2}.
研一研· 问题探究、课堂更高效
2.1.2
跟踪训练 1 在正三角形 ABC 内有一动点 P,已知 P 到三 顶点的距离分别为 |PA|、|PB|、 |PC|,且满足 |PA|2= |PB|2 +|PC|2,求 P 点的轨迹方程.

以 BC 的中点为原点,BC 所在的直
线为 x 轴,BC 的垂直平分线为 y 轴,建 立直角坐标系(如图所示),设点 P(x,y), B(-a,0),C(a,0),A(0, 3a).
答案 (1)能直接写出点的条件进而代入坐标写出方程的 求法,可称为直接法,常用的曲线方程求法还有:
上式两边平方并整理得 x+2y-7=0. ①
研一研· 问题探究、课堂更高效
2.1.2
我们证明方程①是线段AB的垂直平分线的方程. ①由求方程的过程可知,垂直平分线上每一点的坐 标都是方程①的解;
②设点 M1 的坐标(x1,y1)是方程①的解, 即 x1+2y1-7=0,x1=7-2y1.
点 M1 到 A,B 的距离分别是 |M1A|= x1+12+y1+12 = 8-2y12+y1+12= 5y2 1-6y1+13; |M1B|= x1-32+y1-72
∵|PA |2=|PB |2+|PC|2,
有 x2+(y- 3a)2=(x+a)2+y2+(x-a)2+y2, 化简得 x2+(y+ 3a)2=(2a)2, 即所求的轨迹方程为 x2+(y+ 3a)2=4a2 (y>0).
研一研· 问题探究、课堂更高效
2.1.2
探究点二 求曲线方程的常用方法 问题 求曲线方程时,有时点的条件比较明显,也有些点 的条件要通过变形或转化才能看清,有些点的运动依赖 于另外的动点,请你归纳一下求曲线方程的常用方法?
研一研· 问题探究、课堂更高效
2.1.2
探究点一
求曲线方程的一般步骤
问题 1 设 A、B 两点的坐标分别是(-1,-1),(3,7),如 何求线段 AB 的垂直平分线的方程?
解 如图所示,设点 M(x,y)是线段 AB 的垂直平分线上的任意一点,也就是点 M 属于集合 P={M||MA|=|MB|}. 由两点间的距离公式,点 M 适合的条 件可表示为 x+12+y+12= x-32+y-72.
相关文档
最新文档