《近世代数》模拟试题及答案

合集下载

《近世代数》模拟试题及答案

《近世代数》模拟试题及答案

近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。

G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。

A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕg a是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪-⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解: e 是R 的单位元。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。

答案:半群2. 一个群G的所有子群的集合构成一个________。

答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。

答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。

答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。

答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。

答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。

正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。

2. 请解释什么是群的同态和同构。

答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。

群的同构是同态,并且是双射,即存在逆映射。

3. 请解释什么是环的零因子和非零因子。

答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。

如果环R中不存在零因子,则称R为无零因子环。

《近世代数》模拟试题1及答案.pdf

《近世代数》模拟试题1及答案.pdf

近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。

G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。

A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪−⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕ是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪−⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解:e 是R 的单位元。

近世代数期末考试题库

近世代数期末考试题库

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( c ) A 、满射而非单射 B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( d )个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是(b )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数(c )A 、不相等B 、0C 、相等D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的(d )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。

2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的单位元。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个变换全。

6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是 1 ,元a 的逆元是1-a 。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。

9、一个除环的中心是一个-域-----。

三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:⎥⎦⎤⎢⎣⎡=6417352812345678σ,⎥⎦⎤⎢⎣⎡=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。

近世代数期末模拟考试与答案

近世代数期末模拟考试与答案

近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( f )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( f )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( t )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

(t )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( f )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( t )7、如果环R 的阶2≥,那么R 的单位元01≠。

( t )8、若环R 满足左消去律,那么R 必定没有右零因子。

( t )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( f )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( f )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( 2 ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( 3 )4①在整数集Z 上,abba b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

近世代数模拟试题及答案

近世代数模拟试题及答案

近世代数模拟试题一、单项选择题每题5分,共25分1、在整数加群Z,+中,下列那个是单位元;A 0B 1C -1D 1/n,n是整数2、下列说法不正确的是;A G只包含一个元g,乘法是gg=g;G对这个乘法来说作成一个群B G是全体整数的集合,G对普通加法来说作成一个群C G是全体有理数的集合,G对普通加法来说作成一个群D G是全体自然数的集合,G对普通加法来说作成一个群3、下列叙述正确的是;A 群G是指一个集合B 环R是指一个集合C 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在D 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在4、如果集合M的一个关系是等价关系,则不一定具备的是;A 反身性B 对称性C 传递性D 封闭性S的共轭类;5、下列哪个不是3A 1B 123,132,23C 123,132D 12,13,23二、计算题每题10分,共30分S的正规化子和中心化子;1.求S={12,13}在三次对称群32.设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶;3.设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,求出其右零因子;三、证明题每小题15分,共45分1、设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,证明⎪⎪⎭⎫ ⎝⎛0,00,0是其零因子;2、设Z 是整数集,规定a ·b =a +b -3;证明:Z 对此代数运算作成一个群,并指出其单位元;3、证明由整数集Z和普通加法构成的Z,+是无限阶循环群;近世代数模拟试题答案一、单项选择题每题5分,共25分1. A2. D3. C4. D5. B二、计算题每题10分,共30分1. 解:正规化子NS ={1,23};;;;;;;;;;;;6分中心化子CS ={1};;;;;;;;;;;;;;;;;;4分2. 解:群G 中的单位元是1;;;;;;;;;;;;;;;;;;;;;;;;2分1的阶是1,-1的阶是2,i 和-i 的阶是4;;;;4×2分3. 解:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,xb xa =0;;;;;;;;;;;;;;;3分因为x 任意,所以a =b =0;;;;;;;;;;;;;;;;;;;;3分因此右零因子为⎪⎪⎭⎫⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;2分三、证明题每小题15分共45分 1.证明:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;5分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;8分同理设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;10分 所以⎪⎪⎭⎫ ⎝⎛0,0,b a ⎪⎪⎭⎫ ⎝⎛0,0,y x =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;12分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;14分因此零因子为⎪⎪⎭⎫ ⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;15分2.明:首先该代数运算封闭;;;;;;;;;;;;;;;;;;;;3分其次我们有:a ·b ·c =a +b -3·c =a +b -3+c -3=a +b +c -3-3=a ·b ·c,结合律成立;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;6分令e =3,验证a ·e =a +e -3=a,有单位元;;;;7分对任意元素a,6-a 是其逆元,因为a ·6-a =3;;;8分因此,Z 对该运算作成一个群;显然,单位元是e =3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分3.证明:首先证明Z,+是群,+满足结合律,对任意的Z x ∈,x x x =+=+00,0是运算+的单位元又由于: ()()0=+-=-+x x x x所以 ,1x x -=-从而Z,+为群;;;;;;;;;2分由于+满足交换律,所以Z,+是交换群;;;;4分Z,+的单位元为0,对于1Z ∈,由于 1+-1=0,所以111-=-,;;;5分于是对任意Z k ∈,若0=k ,则:010=;若0>k ,则k k =+++=1111 ;;;;;;;;;;;8分若0<k ,则()()()k k k k ------===111111)1()1()1(---++-+-=个k))(1(k --= k = ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分综上,有k k =1,对任意的Z k ∈. 因而,{}Z k Z k ∈=1,从而Z,+是无限阶循环群;;;;;;;;;;;;;;;;;;15分。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、单项选择题(每题3分,共30分)1. 群的元素a的阶是指最小的正整数n,使得a^n=e,其中e是群的()。

A. 单位元B. 零元C. 负元D. 逆元答案:A2. 环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R 是()。

A. 交换环B. 非交换环C. 整环答案:A3. 向量空间V中,如果存在非零向量α,使得对于V中任意向量β,都有α⊥β,则称α是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:C4. 有限域F中,如果存在元素a∈F,使得a^p=a对于所有a∈F 成立,则称F是()。

A. 素域B. 特征域C. 完全域答案:B5. 群G的一个子群H,如果对于任意的h∈H,g∈G,都有ghg^-1∈H,则称H是G的一个()。

A. 正规子群B. 非正规子群C. 子群D. 群答案:A6. 环R中,如果对于任意的a,b∈R,都有ab=ba,则称R是()。

A. 交换环B. 非交换环C. 整环答案:A7. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:A8. 群G的一个子群H,如果H=G,则称H是G的一个()。

A. 正规子群B. 非正规子群C. 子群答案:C9. 环R中,如果对于任意的a,b∈R,都有a-b=b-a,则称R 是()。

A. 交换环B. 非交换环C. 整环D. 除环答案:A10. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得这些向量线性无关,并且V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:A二、填空题(每题4分,共40分)1. 群G中,如果对于任意的a,b∈G,都有ab=ba,则称G是________。

答案:交换群2. 环R中,如果对于任意的a,b∈R,都有ab=0,则称R是________。

近世代数期末考试试题库

近世代数期末考试试题库

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分。

1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的( c )A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素.A、2B、5C、7D、103、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是(b )乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c )A、不相等B、0C、相等D、不一定相等。

5、n阶有限群G的子群H的阶必须是n的(d )A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、设集合;,则有。

2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。

3、环的乘法一般不交换。

如果环R的乘法交换,则称R是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A的若干个——变换的乘法作成的群叫做A的一个变换全.6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a 的逆元是a-1。

8、设和是环的理想且,如果是的最大理想,那么———————-—。

9、一个除环的中心是一个-域———--。

三、解答题(本大题共3小题,每小题10分,共30分)1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。

2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和.奇1、解:把和写成不相杂轮换的乘积:可知为奇置换,为偶置换。

近世代数模拟试题--附详细答案

近世代数模拟试题--附详细答案

近世代数模拟试题一一、单项选择题<本大题共5小题,每小题3分,共15分>在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R<实数集>,如果A 到B 的映射ϕ:x →x +2,∀x ∈R,则ϕ是从A 到B 的〔 〕A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,则,A 与B 的积集合A ×B 中含有〔 〕个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b, a,b ∈G 都有解,这个解是〔 〕乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的<两方程解一样> 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数〔 〕A 、不相等B 、0C 、相等D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的〔 〕A 、倍数B 、次数C 、约数D 、指数二、填空题<本大题共10小题,每空3分,共30分>请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。

2、若有元素e ∈R 使每a ∈A,都有ae=ea=a,则e 称为环R 的--------。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个------。

4、偶数环是---------的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。

6、每一个有限群都有与一个置换群--------。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最##想,则---------。

近世代数期末考试题库完整

近世代数期末考试题库完整

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A=B=R(实数集),如果A至UB的映射中:x-x+2,Vx€R,则中是从A至UB的(c)A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合AXB中含有(d)个元素。

A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b6G都有解,这个解是(b)乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c)A、不相等B、0C、相等D、不一定相等。

5、n阶有限群G的子群H的阶必须是n的(d)A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合A“T0」>;B=42},则有BMA=。

2、若有元素e6R使每a6A,都有ae=ea=a,则e称为环R的单位元。

3、环的乘法一般不交换。

如果环R的乘法交换,则称R是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A的若干个-变换的乘法作成的群叫做A的一个变换全。

6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。

8、设I和S是环R的理想且1=S=R,如果I是R的最大理想,那么。

9、一个除环的中心是一个-域-----。

三、解答题(本大题共3小题,每小题10分,共30分)[写成对换的乘积。

2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

奇1、解:把仃和工写成不相杂轮换的乘积:二三(1653)(247)(8).=(123)(48)(57)(6)可知仃为奇置换,七为偶置换。

近世代数期末考试题库完整

近世代数期末考试题库完整

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A=B=R(实数集),如果A至UB的映射中:x-x+2,Vx€R,则中是从A至UB的(c)A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合AXB中含有(d)个元素。

A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b6G都有解,这个解是(b)乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c)A、不相等B、0C、相等D、不一定相等。

5、n阶有限群G的子群H的阶必须是n的(d)A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合A“T0」>;B=42},则有BMA=。

2、若有元素e6R使每a6A,都有ae=ea=a,则e称为环R的单位元。

3、环的乘法一般不交换。

如果环R的乘法交换,则称R是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A的若干个-变换的乘法作成的群叫做A的一个变换全。

6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。

8、设I和S是环R的理想且1=S=R,如果I是R的最大理想,那么。

9、一个除环的中心是一个-域-----。

三、解答题(本大题共3小题,每小题10分,共30分)[写成对换的乘积。

2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

奇1、解:把仃和工写成不相杂轮换的乘积:二三(1653)(247)(8).=(123)(48)(57)(6)可知仃为奇置换,七为偶置换。

近世代数模拟试题及答案

近世代数模拟试题及答案

近世代数模拟试题及答案一、选择题1. 下列哪个集合不是群?A. 自然数集NB. 整数集ZC. 有理数集QD. 实数集R答案:A2. 在群G中,若a, b属于G,且a*b=b*a对所有a, b成立,则称G 为交换群。

以下哪个不是交换群?A. 整数加法群B. 奇数乘法群C. 偶数乘法群D. 所有实数的加法群答案:C二、填空题1. 一个环R,如果满足乘法交换律,则称R为_________。

答案:交换环2. 有限群的阶是指群中元素的个数,设群G的阶为n,则群G的拉格朗日定理表明,G的任何子群的阶都是n的_________。

答案:因数三、简答题1. 解释什么是子群,并给出一个例子。

答案:子群是指一个群G的一个非空子集H,使得H中的元素在G的运算下封闭,并且包含G的单位元。

例如,整数集Z在加法运算下构成自然数集N的一个子群。

2. 描述什么是环的零因子,并给出一个例子。

答案:在环R中,如果存在非零元素a和b,使得a*b=0,则称a和b为零因子。

例如,在模6的剩余类环Z6中,元素3和3是零因子,因为3*3=9≡0 (mod 6)。

四、计算题1. 给定群G={1, a, a^2, a^3},其中a^4=1,求证G是一个群,并找出它的所有子群。

答案:首先验证群的四个基本性质:- 封闭性:对于任意g, h属于G,g*h也属于G。

- 结合律:对于任意g, h, k属于G,(g*h)*k = g*(h*k)。

- 单位元:1是G的单位元,因为对于任意g属于G,1*g = g*1 = g。

- 逆元:对于任意g属于G,存在g的逆元g^(-1),使得g*g^(-1) = g^(-1)*g = 1。

例如,a的逆元是a^3。

G的子群有:- {1}:平凡子群。

- {1, a^2}:由a^2的幂构成的子群。

- G本身:{1, a, a^2, a^3}。

2. 证明在任何交换环中,如果a和b是可逆元素,则它们的乘积ab也是可逆的。

答案:设a和b是交换环R中的可逆元素,存在a^(-1)和b^(-1)使得a*a^(-1)=1且b*b^(-1)=1。

近世代数参考答案

近世代数参考答案

《近世代数》A/B 模拟练习题参考答案一、判断题(每题4分,共60分)1、如果循环群G=(a)中生成元a 的阶是无限的,则G 与整数加群同构。

( √ )2、如果群G 的子群H 是循环群,那么G 也是循环群。

( × )3、两个子群的交一定还是子群。

( × )4、若环R 满足左消定律,那么R 必定没有右零因子。

( √ )5、任意置换均可表示为若干个对换的乘积。

( √ )6、F (x)中满足条件p(a)=0的多项式叫做元a 在域F 上的极小多项式。

( × )7、已知H 是群G 的子群,则H 是群G 的正规子群当且仅当g G ∀∈,都有1gHg H -= ( √ )8、唯一分解环必是主理想环。

( × )9、已知R 是交换环,I 是R 的理想,则I 是R 的素理想当且仅当是/R I 整环。

( √ )10、欧氏环必是主理想环。

( √ )11、整环中,不可约元一定是素元。

( √ )12、子群的并集必是子群。

( × )13、任何群都同构于某个变化群。

( √ )14、交换环中可逆元与幂零元的和是可逆元。

( √ )15、集合,A Z B N ==,::2f A B n n →+ 是从A 到B 的映射。

( ×)二、证明题(每题20分,共300分)1Q 上的最小多项式。

解:令=u 32==u u .于是3223323315(32-⋅-=+-+=u u u u u u .移项后得32152(3+-=-u u u 两边平方,得到3222(152)(35)5+-=-⋅u u u .这是u 上满足的Q 上6次方程,故[():]6≤Q u Q .又3(2=u ()Q u .由[]2=Q Q 及[]|[():]Q Q Q u Q ,知2|[():]Q u Q .=u (()=Q u Q u .又[]3=Q Q 及[]|[():]Q Q Q u Q ,得3|[():]Q u Q .于是6|[():]Q u Q ,因而[():]6=Q u Q . 由于3222(152)(35)50+---⋅=u u u ,故6次多项式3222(152)5(35)+---x x x 是u 在Q 上的最小多项式.2、求出阶是32的循环群(a )的所有子群,这些子群是否都是不变子群。

近世代数期末考试试题库

近世代数期末考试试题库
C.(1),(123)D.S3中的所有元素
4.设Z15是以15为模的剩余类加群,那么,Z15的子群共有(d)个。
A.2B.4
C.6D.8
5.下列集合关于所给的运算不作成环的是(b)
A.整系数多项式全体Z[x]关于多项式的加法与乘法
B.有理数域Q上的n级矩阵全体Mn(Q)关于矩阵的加法与乘法
C.整数集Z关于数的加法和新给定的乘法“ ”: m,n∈Z,m n=0
8、无零因子环R中所有非零元的共同的加法阶数称为R的---特征--------。
9、设群 中元素 的阶为 ,如果 ,那么 与 存在整除关系为---mIn----。
三、解答题(本大题共3小题,每小题10分,共30分)
1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?
2、S1,S2是A的子环,则S1∩S2也是子环。S1+S2也是子环吗?
显然是R的一个商域 证毕。
近世代数模拟试题二
一、单项选择题
二、1、设G 有6个元素的循环群,a是生成元,则G的子集(c )是子群。
A、 B、 C、 D、
2、下面的代数系统(G,*)中,(d )不是群
A、G为整数集合,*为加法 B、G为偶数集合,*为加法
C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法
1、若<G,*>是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=b。
2、设m是一个正整数,利用m定义整数集Z上的二元关系:a〜b当且仅当m︱a–b。
近世代数模拟试题三
一、单项选择题
1、6阶有限群的任何子群一定不是( c )。
A、2阶 B、3 阶 C、4 阶 D、 6 阶
2、设G是群,G有( c)个元素,则不能肯定G是交换群。

近世代数考试题和答案

近世代数考试题和答案

近世代数考试题和答案一、单项选择题(每题2分,共10分)1. 在群论中,以下哪个概念描述了元素的循环性质?A. 恒等元素B. 逆元素C. 循环子群D. 正规子群答案:C2. 有限域的阶数一定是一个素数的幂,这个性质称为:A. 素数性质B. 素数幂性质C. 有限域性质D. 素域性质答案:B3. 以下哪个不是群的同态性质?A. 同态保持群的运算B. 同态将恒等元素映射到恒等元素C. 同态将每个元素的逆映射到其逆的映射D. 同态将所有元素映射到同一个元素答案:D4. 在环论中,以下哪个性质描述了环中元素的分配律?A. 结合律B. 分配律C. 交换律D. 恒等律答案:B5. 以下哪个是有限生成阿贝尔群的基本定理?A. 每个有限生成阿贝尔群可以分解为循环群的直和B. 每个有限生成阿贝尔群可以分解为素数幂次循环群的直和C. 每个有限生成阿贝尔群可以分解为素数次循环群的直和D. 每个有限生成阿贝尔群可以分解为素数幂次循环群的直积答案:B二、填空题(每题3分,共15分)1. 如果一个群G的每个元素的阶都是有限,则称G为________群。

答案:有限2. 环R中的元素a被称为________,如果对于环R中的每个元素b,都有ab=ba。

答案:中心元素3. 一个环R被称为________,如果它满足a^2=a对于所有a属于R。

答案:布尔环4. 向量空间V上的线性变换T被称为________,如果存在另一个线性变换S,使得S∘T=T∘S=I,其中I是V上的恒等变换。

答案:可逆5. 如果一个群G的每个元素都与其逆元素交换,那么G被称为________群。

答案:阿贝尔三、简答题(每题10分,共30分)1. 请解释什么是群的正规子群,并给出一个例子。

答案:群G的一个子群N被称为正规子群,如果对于G中的每个元素g和N中的每个元素n,都有gng^-1属于N。

这意味着N在G的任何元素的共轭下都是不变的。

一个例子是,考虑对称群S_n(n个元素的所有排列的群),其正规子群是交错群A_n,它由所有偶排列组成。

近世代数期末考试题库

近世代数期末考试题库

近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( ) A 、满射而非单射B 、单射而非满射 C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。

2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个------。

4、偶数环是---------的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。

6、每一个有限群都有与一个置换群--------。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。

近世代数模拟试题

近世代数模拟试题

近世代数模拟试题一、选择题(每题4分,共40分)1. 以下哪个选项是群的一个例子?A. 整数集合B. 偶数集合C. 正实数集合D. 所有实数的集合2. 群的运算满足以下哪个性质?A. 封闭性B. 结合律C. 存在单位元D. 所有选项都满足3. 在群中,单位元具有什么性质?A. 唯一性B. 可逆性C. 交换性D. 以上都不是4. 以下哪个选项是环的一个例子?A. 整数集合B. 有理数集合C. 复数集合D. 所有选项都是5. 环中的加法运算满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足6. 以下哪个选项是域的一个例子?A. 整数集合B. 有理数集合C. 实数集合D. 所有选项都是7. 域中的乘法运算满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足8. 向量空间中的向量加法满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足9. 线性变换的定义域和值域必须是?A. 向量空间B. 群C. 环D. 域10. 以下哪个选项是线性无关的例子?A. 一组线性方程的解B. 一组线性方程的系数C. 一组线性方程的增广矩阵D. 一组线性方程的系数矩阵二、填空题(每题4分,共20分)11. 如果一个群的元素个数是有限的,则称该群为________群。

12. 群的运算满足封闭性,即对于任意两个元素a和b,它们的运算结果________。

13. 环中的元素a和b,如果满足ab=ba,则称这两个元素________。

14. 域中的元素a和b,如果满足ab=1,则称b为a的________。

15. 向量空间中的一组向量,如果它们之间不存在非平凡的线性组合等于零向量,则称这组向量________。

三、解答题(每题20分,共40分)16. 给定一个群G,证明群G中的单位元是唯一的。

17. 证明如果一个环R的乘法运算满足交换律,则称R为交换环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数模拟试题
一. 单项选择题(每题5分,共25分)
1、在整数加群(Z,+)中,下列那个是单位元().
A. 0
B. 1
C. -1
D. 1/n,n是整数
2、下列说法不正确的是().
A . G只包含一个元g,乘法是gg=g。

G对这个乘法来说作成一个群;
B . G是全体整数的集合,G对普通加法来说作成一个群;
C . G是全体有理数的集合,G对普通加法来说作成一个群;
D. G是全体自然数的集合,G对普通加法来说作成一个群.
3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).
A . 反身性 B. 对称性 C. 传递性 D. 封闭性
4. 对整数加群Z来说,下列不正确的是().
A. Z没有生成元.
B. 1是其生成元.
C. -1是其生成元.
D. Z是无限循环群.
5. 下列叙述正确的是()。

A. 群G是指一个集合.
B. 环R是指一个集合.
C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,
逆元存在.
D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,
逆元存在.
二. 计算题(每题10分,共30分)
1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成
的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫
== ⎪ ⎪-⎝⎭⎝⎭,
的阶.
2. 试求出三次对称群
{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.
3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.
三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).
1. 证明: 在群中只有单位元满足方程
2.
x x
=
2.设G是正有理数乘群,G是整数加群. 证明:
:2n b
n a
ϕg a
是群G到G的一个满同态,其中,a b是整数,而(,2)1
ab=.
3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.
近世代数模拟试题答案
2008年11月
一、单项选择题(每题5分,共25分)
1. A
2. D
3. D 4 . A 5 . C
二. 计算题(每题10分,共30分) 1. 解:
易知 c 的阶无限, (3分)
d 的阶为2. (3分)
但是 11,01cd ⎛⎫
=
⎪-⎝⎭
(2分)
的阶有限,是2. (2分) 2. 解:3S 的以下六个子集
{}{}{}123(1),(1),(12),(1),(13),
H H H ===
{}{}4563(1),(23),(1),(123),(132),H H H S === (7分)
对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解: e 是R 的单位元。

事实上,任取,,a b R ∈ 则因e 是R 的左单位元,故
()(),ae a e b a eb ab eb ab ab b b -+=-+=-+=
即 ae a e -+也是R 的左单位元。

故有题设得 ,.ae a e e ae a -+=∴= 即 e 是R 的单位元. 三、证明题(每小题15分共45分)
1. 证明:
设e 是G 的单位元,则e 显然满足所说的方程 (3分) 另外, 设a G ∈且2
a a =,则有
121,a a a a --= 即,a e = (5分)
即只有e 满足方程 2
.x x
= (2分)
2. 证明: ϕ显然是G 到G 的一个满射 (3分)
又由于 当(,2)1,(,2)1ab cd ==时有
(,2)1abcd = (4分)

(22)(2)(2)(2).
n m n m n m b d bd
n m a c ac
b d
a c
ϕϕϕϕ+⋅⋅⋅=⋅
=+=⋅⋅ (6分)
故 ϕ是群G 到G 的一个同态满射。

(2分)
3 证明:
分别用e 和e '表示R 与S 的单位元,且e e '≠,
于是e '不是R 的单位元。

(3分) 因此,存在0a R ≠∈,使
ae a '≠或e a a '≠ (5分)
如果ae a '≠,则0ae a '-≠,且
()0,ae a e ae ae ''''-=-= (4分) 即e '是R 的(右)零因子。

(3分) 同理,如果,e a a '≠则e '是R 的(左)零因子. (5分)。

相关文档
最新文档