流量计的数据处理
FLEXIM超声波流量计使用步骤详解
FLEXIM超声波流量计使用步骤详解步骤一:设置流量计1.首先,将流量计安装在需要测量的管道上。
确保流量计的传感器与管道平行,并且没有任何障碍物。
2.打开流量计的电源开关,并确保仪表显示屏亮起。
3.使用流量计上的操作界面或控制器,进入参数设置界面。
根据实际需求设置传感器的型号和管道的参数,例如直径、流体类型等。
4.根据实际情况,选择流速单位和流量单位,并进行设置。
通常情况下,流速单位为m/s,流量单位为m³/h。
5.进入传感器对准界面,使用仪表上的显示屏或控制器上的操作按钮,调整传感器位置和对准角度,确保传感器与管道的中心对齐,并且传感器的角度适当。
步骤二:进行校准1.进入校准界面,选择校准模式。
通常有两种模式可选:速度模式和流量模式。
速度模式下,将测量流速,并校准为实际单位;流量模式下,将测量流量,并校准为实际单位。
2.启动校准,将流量计的传感器浸入已知流速或流量的介质中,等待一段时间,直到测量稳定。
3.根据校准模式选择相应的校准参数,并进行校准。
校准完成后,保存校准参数,并退出校准界面。
步骤三:开始测量1.返回主界面,确认流量计的工作状态正常。
如果有任何异常情况,例如测量值不稳定、传感器异常等,应及时进行排查和处理。
2.将介质流动起来,确保流量计获取到稳定的流动信号。
3.监测仪表上的显示屏或控制器上的参数,包括流速、流量、温度等,并实时记录。
4.结束测量后,关闭流量计的电源开关。
步骤四:数据处理和分析1.将测量到的数据导出到计算机或其他数据处理设备中,进行数据处理和分析。
2.根据实际需求,使用相应的软件工具,对数据进行处理和计算,例如求平均值、峰值等。
3.根据处理后的数据,生成报告或图表,用于相关部门或人员的分析和决策。
总结:使用FLEXIM超声波流量计FLUXUSF601需要依次进行设置、校准、测量和数据处理四个步骤。
正确的使用流程和规范的操作方法,可以保证测量结果的准确性和可靠性。
优化超声流量计零点漂移校准的数据处理方法与实验结果分析
优化超声流量计零点漂移校准的数据处理方法与实验结果分析超声流量计是一种常用于流体测量的设备,但在使用过程中常常会出现零点漂移等问题,影响测量准确性。
为了解决这一问题,可以通过优化数据处理方法和实验结果分析来提高超声流量计的准确性和稳定性。
一、数据处理方法优化在实际测量过程中,超声流量计的数据处理方法对准确性起着至关重要的作用。
为了减小零点漂移对测量结果的影响,可以采取一些优化方法,如:1. 双向校准法:通过对零点进行双向校准,即在正向和负向流速下进行零点漂移的校准,可以减小零点漂移对测量结果的影响,提高测量的准确性。
2. 温度补偿:超声流量计在不同温度下的工作性能可能存在差异,因此可以通过对温度进行补偿来提高测量的准确性,减小测量误差。
3. 频率校准:超声流量计的工作频率也会影响其准确性,因此可以通过对频率进行校准,来提高测量的准确性和稳定性。
二、实验结果分析除了优化数据处理方法外,实验结果分析也是提高超声流量计准确性的重要环节。
在实验过程中,需要注意以下几点:1. 重复性测试:在进行数据处理前,需要进行多次重复性测试,以验证测量结果的稳定性和准确性,确保实验结果的可靠性。
2. 数据对比分析:在实验过程中,需要对测量结果进行对比分析,比较不同条件下的测量结果,找出存在的差异和问题,及时进行修正和优化。
3. 实时监测:在实验过程中,可以通过实时监测超声流量计的工作状态和数据输出,及时发现问题并进行处理,确保实验结果的准确性和可靠性。
通过优化数据处理方法和实验结果分析,可以有效提高超声流量计的准确性和稳定性,减小零点漂移对测量结果的影响,为流体测量提供更精确的数据支持。
【字数:442】优化超声流量计的零点漂移校准是一个复杂而重要的任务,需要充分的理论知识和实践经验来支持。
通过不断地优化方法和分析实验结果,可以提高流量计的准确性和稳定性,为工业生产和科研实验提供更加可靠的数据支持。
希望本文的内容对您有所帮助,谢谢阅读!【字数:154】。
流量计数据手册说明书
SERIESLFMALFMBLFMCLFMDLFMELFMFRanges 0.1 to 5 GPM water (0.5 to 18 LPM water)0.1 to 5 GPM water (0.5 to 18 LPM water)0.25 to 8 GPM water (1 to 30 LPM water)0.8 to 10 GPM water (3 to 40 LPM water)1.2 to 25 GPM water (5 to 100 LPM water)2.5 to 70 GPM water (10 to 250 LPM water)Accuracy±5% FS±5% FS±5% FS±5% FS±5% FS±5% FSBody MaterialsPolycarbonatePolycarbonatePolycarbonatePolycarbonatePolycarbonatePolycarbonateProcess Connection 1/2˝ male NPT in-line or 90° elbow connections 1/2˝ male NPT in-line or 90° elbow connections 1/2˝ or 3/4˝ male NPT in-line or 1/2˝ male NPT 90° elbow connections 3/4˝ male or female NPT in-line or 3/4˝ male NPT 90° elbow connections 1˝ male or female NPT in-line or 1˝ male NPT 90° elbow connections 2˝ male or female NPT in-line connections Scale Length2˝ (51 mm)3˝ (76 mm)3˝ (76 mm)3.5˝ (89 mm)4.5˝ (114 mm)5.5˝ (140 mm)SERIESRMARMBRMCVFAVFBVFC/VFCRRanges0.05 to 200 SCFH air (5 to 2500 cc/m air)1 to 50 GPH water (5 to 300 cc/m water)0.5 to 600 SCFH air (0.6 to 95 LPM air)1 to 100 GPH water (0.06 to 6.2 LPM water) 5 to 1800 SCFH air (2.5 to 850 LPM air)0.1 to 10 GPM water (0.05 to 5 LPM water)0.1 to 200 SCFH air (0.06 to 100 LPM air)0.6 to 40 GPH water (6 to 200 cc/m water)0.3 to 200 SCFH air (0.2 to 40 LPM air)0.5 GPH to 5 GPM water (0.002 to 20 LPM water) 2.5 to 100 SCFM air (60 to 2800 LPM air)0.5 to 20 GPM water (2 to 75 LPM water)Accuracy±4% FS±3% FS±2% FS±5% FS ±3% FS ±2% FS Body MaterialsPolycarbonate Polycarbonate Polycarbonate AcrylicAcrylicAcrylicTemperature Limits 130°F (54°C)130°F (54°C)130°F (54°C)With valve: 120°F (48°C); Without valve: 100°F (38.6°C)With valve: 120°F (48°C);Without valve: 100°F (38°C)120°F (48°C)Pressure Limits100 psi (6.7 bar)100 psi (6.7 bar)100 psi (6.7 bar)With valve: 100 psi (6.7 bar);Without valve: 150 psi (10 bar)With valve: 100 psi (6.7 bar);Without valve: 150 psi (10 bar)100 psi (6.7 bar)Process Connection 1/8˝ female NPT back connections 1/4˝ female NPT back connections1/2˝ female NPT back connections1/8˝ female NPT back or end connections1/8˝ female NPT back or end connections 1˝ female or male NPT or BSPT back or end connections (VFC only)Scale Length 2˝ (51 mm)5˝ (127 mm)10˝ (254 mm)2˝ (51 mm)4˝ (102 mm)5˝ (127 mm)Metering ValveOptional bottom or top mount brass or stainless steel valveOptional bottom brass or stainless steel valveOptional bottom brass or stainless steel valveOptional bottom or top mount brass or stainless steel valveOptional bottom brass or stainless steel valveVFCR standard with Delrin ® plastic full adjust and control valveGENERAL PURPOSE IN-LINEFlowmetersINDUSTRIALFlowmetersSERIESVATTVAVA1000VA1500VA20000VA25000DR10000DR20000Ranges1.19 to 79 GPH water (75 to 5000 ml/min water)6.34 to 79.2 GPH water (400 to 5000 ml/min water)0.104 to 89.2 SCFH air (49 to 42000 ml/m air)0.009 to 19.97 GPH water (0.55 to 1260 ml/m water)0.22 to 49 SCFH air(104 to 23100 ml/min air)0.028 to 27 GPH water (1.8 to 522 ml/min water)0.792 to 93.9 SCFH air (374 to 44300 ml/min air)0.087 to 21.7 GPH water (5.5 to 1370 ml/m water)0.104 to 18.39 SCFH air (49 to 8600 ml/m air)0.01 to 3.32 GPH water (0.61 to 209 ml/min water)0.24 to 100 SCFH air (0.13 to 50 LPM air)0.02 to 24 GPH water (1.5 to 1500 cc/m water)0.33 to 90 SCFH air (0.16 to 44 LPM air)0.05 to 21 GPH water (3.2 to 1300 cc/m water)Accuracy±5% FS ±5% FS ±2% FS ±2% FS±2% FS±2% FS±5% FS±5% FSBody MaterialsPFA PFA Glass flow tube Glass flow tube Glass flow tube Glass flow tube Glass flow tube Glass flow tube Temperature Limits 250°F (121°C)250°F (121°C)250°F (121°C)150°F (65°C)250°F (121°C)150°F (65°C)250°F (121°C)250°F (121°C)Pressure Limits100 psi (6.7 bar)100 psi (6.7 bar)200 psi (13.8 bar)100 psi (6.7 bar)200 psi (13.8 bar)100 psi (6.7 bar)250 psi (17 bar)250 psi (17 bar)Process Connection 1/4˝ or 3/8˝ female NPT back connections 1/4˝ or 3/8˝ female NPT back connections 1/8˝ female NPT back connections 1/8˝ female NPT back connections 1/8˝ female NPT back connections 1/8˝ female NPT back connections 1/8˝ female NPT back connections 1/8˝ female NPT back connections Scale Length 5˝ (127 mm)3˝ (75 mm) 2.5˝ (65 mm) 2.5˝ (65 mm)6˝ (150 mm)6˝ (150 mm)2.5˝ (65 mm)6˝ (150 mm)Metering ValveN/A Optional 6-turn needle valve 6-turn needle valve; Optional 16-turn highprecision valve6-turn needle valve6-turn needle valve; Optional 16-turn high precision valve6-turn needle valveOptional 6-turn needle valveOptional 6-turn needle valveSERIESIFHFTVFSSSMRanges1.2 to 250 SCFM air (35 to 7080 LPM air)0.25 to 116 GPM water (0.95 to 439 LPM water) 2 to 22 SCFM air 0.5 to 25 GPM oil0.05 to 116 GPM water 0.025 to 0.545, 4.00 to 120.0 GPM water 0.16 to 3.20, 20.0 to 1000 SCFM air0.2 to 5.4, 4 to 120 GPM water 2 to 50, 20 to 1000 SCFM airAccuracy±3% FS±4% FS±2% FS±2% FSBody MaterialsGlass flow tube Aluminum, brass, or 304 SS Body: T316 SS; O-ring: Buna-N; Sight tube: Polysulfone Body: T316 SS; O-ring: FKM Temperature Limits 200°F (93°C)240°F or 400°F (115° or 204°C)300°F (149°C)300°F (149°C)Pressure Limits 200 psi (13.8 bar); some models 125 psi (8.6 bar)600 psi to 6000 psi (41 to 413 bar)3/4˝ models: 300 psig (20.6 bar) @ 200°F (93°C);1-1/2˝ models: 180 psig (12.4 bar) @ 200°F (93°C)3/4˝ models: 1000 psig (68.9 bar) @ 250°F (121°C);1-1/2˝ models: 800 psig (55 bar) @ 250°F (121°C)Process Connection 1/2˝, 1˝ or 2˝ female NPT back connections 1/8˝ to 2˝ female NPT back connections 3/4˝ or 1-1/2˝ female NPT3/4˝ or 1-1/2˝ female NPTScale Length4-3/4˝ (120 mm)1-1/2˝ to 2-1/4˝ (38 to 57 mm)3/4˝NPT: 3.2˝ (8 cm); 1-1/2˝ NPT: 5.2˝ (13 cm)3/4˝ NPT: 3.2˝ (8 cm); 1-1/2˝ NPT: 5.2˝ (13 cm)PADDLE AND THERMAL STYLEFlow SwitchesPISTON STYLEFlow Switches®SERIESV4V6V7V10V8FS-2TDFSServiceGases or liquidsGases or liquidsLiquidsGases or LiquidsLiquidsLiquidsLiquidsSet Point Range 3 to 2400 GPM (12 to 9000 LPM)17 to 10000 SCFM (8 to 4700 LPM).03 to 10 GPM (.11 to 38 LPM) .15 to 43 SCFM (4 to 1200 LPM)7.5 to 58.0 GPM (28.4 to 218 LPM) 2.3 to 9.5 GPM (8.7 to 36 LPM)8.8 to 50 SCFM (250 to 1420 LPM)6.8 to 58 GPM (25.7 to 218 LPM)4 to 396 GPM (15 to 1500 LPM)0.5 to 10 ft/s (0.15 to 3 m/s)Wetted Materials Brass, 430 SS, 316 SS*Brass or 303 SS, 301 SS, 302 SS, Ceramic* 301 SSBrass or 303 SS, 316 SS, 301 SS, 302 SS, CeramicBrass or 316 SS, 301 SS, 302 SS, Ceramic Tin-Bronze, Brass, SS 316 SS, Polysufone, and FKM Temperature Limits -4 up to 400°F (-20 to 205°C)-4 up to 400°F (-20 to 205°C)250°F (121°C)200°F (93°C)-40 to 250°F (-40 to 121°C)230°F (110°C)185°F (85°C)Pressure Limits5000 psig (345 bar)2000 psig (138 bar)2000 psig (138 bar)2000 psig (138 bar)250 psig (17.2 bar)145 psig (10.0 bar)500 psig (34.5 bar)Adjustable Set Point Yes Yes Yes Yes Yes Yes YesPower Requirement NoneNoneNone None None None 9 to 24 VDC Enclosure Rating WP and EXP WP and EXP WP WP WP WP WPSwitch TypeSPDT or DPDTSPDT or DPDTSPDTSPSTSPDTSPDT1 NO NPN, 1 NC NPN Process Connection 1-1/2˝ male NPT* or 1-1/2˝ male BSPT 1/2˝ male NPT* or 1/2˝ male BSPT 1˝ male NPT 1/2˝ male NPT* or 1/2˝ male BSPT 1˝ male NPT 1˝ male NPT or BSPT 1˝ male NPT Agency ApprovalsATEX, CE, CSA, FM, IECEx, UL**ATEX, CE, CSA, IECEx, KTL, ULCE, ULCE, CSA, URCE, cURusCECE, RoHSSERIESP2P3P1P8GVSAFSServiceGases or liquidsLiquidsLiquidsLiquidsLiquidsGases or LiquidsSet Point Range .05 to 1 GPM (.2 to 3.79 LPM).42 to 5 CFM (11.9 to 141 LPM).25 to 2 GPM (.95 to 7.57 LPM).1 to 1.5 GPM (.38 to 5.7 LPM).25 to 2 GPM (.95 to 7.57 LPM)1 to 8 GPM (3.8 to 30.3 LPM)1 to 75 SCFM @ 5 psi (28 to 2123 LPM @ 5 psi).5 to 20 GPM (2 to 75.5 LPM)Wetted Materials PPE & PS, Epoxy, 316 SS Polypropylene, PPS Composite, 316 SS, Fluorocarbon Brass, Polysulfone, 316 SS, Fluoroelastomer, Epoxy Brass, PPS Composite, Epoxy, 316 SS, Fluorocarbon Bronze, TFE, 316 SS, Fluoroelastomer, Ceramic 316 SS, Fluoroelastomer, Epoxy, Brass Temperature Limits 0 to 212°F (-18 to 100°C)0 to 212°F (-18 to 100°C)-20 to 225°F (-29 to 107°C)-20 to 275°F (-28 to 135°C)-20 to 200°F (-29 to 93°C)-20 to 300°F (-29 to 149°C)* Pressure Limits 150 psig (10.3 bar) @ 70°F (21°C), 50 psig (3.4 bar) @ 212°F (100°C)125 psig (8.6 bar) @ 70°F (21°C), 50 psig (3.4 bar) @ 212°F (100°C)1000 psig (69 bar)1500 psig (103 bar)400 psig (27 bar) @ 100°F (38°C)1000 psig (69 bar)Adjustable Set Point No No No No Yes Yes Power Requirement None None None None None None Enclosure Rating GPGPGP GPGP GP Switch TypeSPST, NO SPST, NOSPDTSPST, NO SPDTSPDTProcess Connection 1/4˝ male NPT 3/8˝ male NPT or 1/4˝ Quick Disconnect 1/4˝ female NPT 3/8˝ male NPT 1˝ female NPT 1/2˝ female NPT Agency ApprovalsCECECECECECE*Other options available, contact factory **No housing option (-NH) has no approvals*Other options available, contact factoryPADDLE WHEEL/TURBINE/MULTI-JETFlow TransmittersELECTROMAGNETIC/ULTRASONICFlow Transmitters®SERIESTFPPFTSFI-100TDFMTWMT2ServiceGases LiquidsLiquids Liquids Water Wetted Materials PPS Brass or 316 SS Brass PVDF Brass Accuracy±3% FS±1% FS±5% FS±1.5% FS ±2% FSTemperature Limits 158°F (70°C)212°F (100°C)-20 to 212°F (-29 to 93°C)194°F (90°C)104°F (40°C)Pressure Limits 40 psig (2.8 bar)400 psig (27.6 bar)125 psig (8.6 bar)145 psi (1.0 MPa)232 psi (16 bar)Pipe Size 1/8˝, 1/4˝, 3/8˝ or 1/2˝ (3.2 mm, 6.4 mm, 9.5 mm or 12.7 mm)1-1/2 to 40˝ (38.1 to 1016 mm)1/2˝ or 3/4˝ (12.7 mm or 19 mm)3/8˝, 1/2˝, 3/4˝, 1˝, 1-1/2˝ or 2˝ (9.5 mm, 12.7 mm, 19 mm, 25.4 mm, 38 mm or 50.8 mm)1/2˝ to 2˝ (12.7 mm to 50.8 mm)Flow Rate .042 to 420 SCFH (0.02 to 200 LPM) 1.2 to 25 ft/s (0.37 to 7.62 m/s) 2 to 35 GPM (7.6 to 132.5 LPM)0.44 to 176.11 GPM (0.1 to 40 m 3/h)20 to 160 GPM (3 to 30 m 3/h)Output0 to 5 V4 to 20 mA or pulsedPulsed4 to 20 mA or pulsedPulsedSERIESMFSFLMGIEFSEFS2UFBUFMPUBServiceLiquids LiquidsLiquidsLiquidsLiquids Liquids Liquids Wetted Materials 316 SS316 SS Brass or 316 SS Brass, 316 SS or PVC n/an/an/aAccuracy±2% of reading ±1% FS±1% FS±1% FS±2% of reading ±3% of reading ±2% FSTemperature Limits 194°F (90°C)158°F (70°C)200°F (93°C)200°F (93°C)275°F (136°C)185°F (85°C)275°F (135°C)Pressure Limits 232 psi (16 bar)150 psi (10.3 bar)200 psi (13.8 bar)200 psi (13.8 bar)N/AN/AN/APipe Size 1/2 or 1˝ (12.7 or 25 mm)9 to 18.18˝ (229 to 462mm)3 to 48˝ (76.2 to 1219.2mm) 1 to 12˝ (25.4 to 304.8 mm)0.05 to 79˝ (13 to 2000mm)0.98 to 4.62˝ (24.89 to 117.35 mm)0.5 to 78˝ (13 to 2000 mm)Flow Rate 0.25 to 52.8 GPM (1 to 200 LPM) 12 to 3500 GPM (.75 to 220.8 LPS)0.28 to 20 ft/s (0.08 to 6.09 m/s)0.28 to 20 ft/s (0.08 to 6.09 m/s)0.33 to 33 ft/s (0.1 to 10 m/s)0.33 to 32.8 ft/s (0.1 to 10 m/s)0.33 to 65.62 ft/s (0.1 to 20 m/s)Output4 to 20 mA or pulsedPulsedPulsedPulsed4 to 20 mA, 0 to 16 mA or 0 to 20 mA4 to 20 mA and pulsed4 to 20 mA, 0 to 16 mA or 0 to 20 mA and pulsed。
流体综合实验数据处理
实验三实验报告一、实验设备的主要内容:⒈测定实验管路内流体流动的直管阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re和相对粗糙度之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数ζ。
4.练习离心泵的操作。
测定某型号离心泵在一定转速下,H(扬程)、N(轴功率)、η(效率)与Q(流量)之间的特性曲线。
5.测定流量调节阀某一开度下管路特性曲线。
6.了解文丘里及涡轮流量计的构造及工作原理。
7. 测定节流式流量计(文丘里)的流量标定曲线。
8. 测定节流式流量计的雷诺数Re和流量系数C的关系。
二、设备的主要技术数据:(1)流体阻力:1. 被测直管段:光滑管管径d—0.0080(m) 管长L—1.70(m) 材料:不锈钢粗糙管管径d—0.010(m) 管长L—1.70(m) 材料:不锈钢2. 玻璃转子流量计:型号测量范围精度LZB—25 100~1000(L/h) 1.5LZB—10 10~100(L/h) 2.53. 压差传感器:型号:LXWY 测量范围:200 Kpa4. 数显表:型号:501 测量范围:0~200Kpa5. 离心泵:型号:WB70/055 流量:20—200(1/h)扬程:19—13.5(m)电机功率:550(W)电流:1.35(A) 电压:380(V)(2)流量计测量:涡轮流量计:(单位:M3/h)文丘里流量计文丘里喉径:0.020m 实验管路管径:0.045m,(3)离心泵(1)离心泵流量Q=4m3/h ,扬程H=8m ,轴功率N=168w(2)真空表测压位置管内径d1=0.025m(3)压强表测压位置管内径d2=0.045m(4)真空表与压强表测压口之间的垂直距离h0=0.355m(5)电机效率为60%1.流量测量:涡轮流量计2.功率测量:功率表:型号PS-139 精度1.0级3. 泵吸入口真空度的测量真空表:表盘真径-100mm 测量范围-0.1-0MPa 精度1.5级4.泵出口压力的测量压力表:表盘直径-100mm 测量范围0-0.25MPa 精度1.5级(4)变频器:型号:N2-401-H 规格:(0-50)Hz(5)数显温度计:501BX三、实验设备的基本情况:1. 实验设备流程图:见图一图一、流体综合实验装置流程示意图1-水箱;2-离心泵;3-真空表;4-压力表;5-真空传感器;6-压力传感器;7-真空表阀;8-压力表阀;9-智能阀;10-大涡轮流量计;11-小涡轮流量计;12,13-管路控制阀;14-流量调节阀;15-大流量计;16-小流量计;17-光滑管阀;18-光滑管测压进口阀;19-光滑管测压出口阀;20-粗糙管阀;21-粗糙管测压进口阀;22-粗糙管测压出口阀;23-测局部阻力阀;24-测局部阻力压力远端出口阀;25-测局部阻力压力近端出口阀;26-测局部阻力压力近端进口阀;27-测局部阻力压力远端进口阀;28,29-U型管下端放水阀;30-U型管测压进口阀;31- U型管测压出口阀;32,33-文丘里测压出,进口阀;34-文丘里;35-压力缓冲罐;36-压力传感器;37-倒U型管;38-U 型管上端放空阀;39-水箱放水阀;40,41,42,43-数显表;44-变频器;45-总电源;2流体阻力的测量:水泵2将储水槽1中的水抽出,送入实验系统,经玻璃转子流量计15,16测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽。
流量计编程实例
流量计编程实例(原创版)目录1.流量计编程概述2.流量计编程实例3.流量计编程的优点和应用场景正文【1.流量计编程概述】流量计是一种用于测量流体流量的仪器,通过测量流体的体积或质量来计算流量。
流量计编程则是将流量计与计算机程序相结合,通过编程实现对流量计的控制和数据处理。
编程可以使流量计的操作更加自动化和智能化,提高测量的准确性和效率。
【2.流量计编程实例】以下是一个简单的流量计编程实例,使用 Python 语言编写。
首先,需要导入相应的库,如 Pyserial。
然后,通过串口连接流量计和计算机。
接着,设置流量计的相关参数,如测量范围、单位等。
最后,通过循环不断读取流量计的数据,并进行处理和存储。
以下是一个简单的示例代码:```pythonimport serial# 连接串口ser = serial.Serial("COM3", 9600)# 设置流量计参数ser.write(b"01") # 设置测量范围ser.write(b"02") # 设置单位为立方米# 读取流量计数据while True:data = ser.readline().decode("utf-8").strip()if data == "01": # 数据表示流量为1立方米/小时print("流量为 1 立方米/小时")elif data == "02": # 数据表示流量为2立方米/小时print("流量为 2 立方米/小时")#...其他数据处理```【3.流量计编程的优点和应用场景】流量计编程具有以下优点:1.提高测量准确性:通过编程可以实现对流量计的精确控制和数据处理,提高测量的准确性。
2.提高测量效率:编程可以使流量计的操作自动化,大大提高测量的效率。
3.灵活性和可扩展性:编程可以根据需要设置不同的参数和算法,具有很好的灵活性和可扩展性。
流量计的标定实验报告
流量计的标定实验报告标定流量计实验报告流量计的校核实验报告文丘里流量计实验报告篇一:实验2 流量计标定实验实验2 流量计标定实验一、实验目的1.了解文氏管、转子流量计、孔板流量计和涡轮流量计的构造、工作原理和主要特点;2.掌握流量计的标定方法;3. 用直接容量法或对比法对文氏流量计、孔板流量计、转子进行标定,测定孔流系数与雷诺数间的关系;3.学习合理选用坐标系的方法。
二、实验原理流体流过文氏管由于喉部流速大压强小,文氏管前端与喉部产生压差,此差值可用倒U管型、单管压差计测出。
又压强差与流量大小有关,根据柏努力方程及压差计计算公式,可以推导出公式如下:Vs=Cv〃Sv2gR?0?? ?则在测定不同流量下的R、Vs等数值代入公式即可求得1Cv值。
当流体流过流量计时,因为阻力造成机械能损失。
把文氏管看成一个局部阻力部位,流体克服局部阻力所消耗的机械能(损失压头)可表示为动能(动压头)的倍数。
22u0u0?J/kg? 或Hf???m? 即hf??22g若流量计前部压强为p1 后部为p2列出实际流体的机械能衡算式为:2p1u1p2u2?z2g??2?hf z1g???2?2对在水平管上安装的文氏管,上式可整理成p?phf?12?J/kg? ?即只要在文氏管两端连接测压导管并用U型压差计测出p1-p2值,即可测出文氏管阻力,并进一步得出局部阻力系数。
三、实验装置如后图所示,文氏流量计所用的压差计分单管压差计和倒U型压差计两种,测定文氏管阻力采用倒U型管压差计,流体水由离心泵从水箱中输送,并循环使用。
四、实验方法1.装有单管压差计的装置(1)在出口阀(即流量调节阀或管道进口阀)关闭情况下开动离心泵。
(2)打开计量槽下阀门,再缓慢开启泵出口阀,排出管2道中气体。
(3)关闭泵出口阀,观察压差计液面是否指零,不指零说明测压导管中有气体,需要重新进行排气调节。
(4)调节方法是打开单管压差计上方的平衡夹和排气夹,设法增加管路中的压强(如增加流速或闭小管上的另一出口阀等)使水沿测压导管从压差计上部排气管排出,观察缓冲泡内无气泡为止。
流量计性能测定实验报告
流量计性能测定实验报告离心泵性能实验报告北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100 学号:姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差?P、电机输入功率Ne以及流量Q(?V/?t)这些参数的关系,根据公式He?H真空表?H压力表?H0、N轴?N电??电??转、Ne?Q?He??以及??Ne可以得出102N轴du2p与雷诺数Re?离心泵的特性曲线;再根据孔板流量计的孔流系数C?u/00的变化规律作出C0?Re图,并找出在Re大到一定程度时C0不随Re变化时的C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差?P,根据已知公式可以求出不同阀门开度下的He?Q关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He:He?H真空表?H压力表?H0式中:H真空表——泵出口的压力,mH2O,H压力表——泵入口的压力,mH2OH0——两测压口间的垂直距离,H0?0.85m 。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入1泵的功率又比理论值高,所以泵的总效率为:??式中Ne——泵的有效效率,kW;Q——流量,m3/s;He——扬程,m;NeQ?He??,Ne? N轴102——流体密度,kg/ m3由泵输入离心泵的功率N轴为:N轴?N电??电??转式中:N 电——电机的输入功率,kW电——电机效率,取0.9;?转——传动装置的效率,一般取1.0; 2.孔板流量计空留系数的测定在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器两端连接。
热式气体质量流量计原理和标定过程
热式气体质量流量计原理和标定过程热式气体质量流量计是一种常用的流体测量仪器,广泛应用于工业和实验室等领域。
它通过测量气体在流动过程中的热传导和冷却效应来确定气体的流速和质量流量。
本文将详细介绍热式气体质量流量计的原理和标定过程。
一、热式气体质量流量计的原理热式气体质量流量计的原理基于绝热条件下气体的热传导效应。
当气体流经热敏元件时,由于传热系数不同,导致热敏元件的温度产生变化。
根据流动气体的传热方程,可以得到流过热敏元件的气体流量和质量流量。
热式气体质量流量计的核心部件是热敏元件,通常采用铂丝或薄膜材料制成。
当气体流经热敏元件时,热敏元件受热后温度升高,然后通过传感器测量温度的变化,再根据气体的传热原理计算出流量和质量流量。
二、热式气体质量流量计的标定过程1.准备工作:首先需要准备标定装置,包括标定管道、标定阀门、标定仪表等设备。
接着对流量计进行吹扫清洗,确保测量精度。
2.标定装置安装:将标定装置连接到被测气体管道,确保连接紧密,避免漏气。
3.参数设置:将标定仪表的参数设置为被测气体的类型和流量范围,同时确定标定温度和压力。
4.标定过程:打开标定阀门,调节流量,使其逐渐增大,同时读取标定仪表的数据,记录下流量计的输出信号和被测气体的实际流量。
5.数据处理:根据标定数据,进行曲线拟合和数据处理,得到流量计的输出标定曲线和误差范围。
6.标定结果验证:通过再次调节流量并比对实际测量值和标定曲线的输出值,确认标定结果的准确性。
热式气体质量流量计的标定是保证其准确测量的重要环节。
只有经过严格的标定过程,才能确保流量计的测量结果准确可靠。
三、热式气体质量流量计的应用热式气体质量流量计主要应用于工业生产中的气体流量测量和控制,广泛用于化工、冶金、石油、天然气等领域。
它具有测量精度高、稳定性好、响应速度快等优点,是流体测量领域中的重要仪器之一。
在实验室领域,热式气体质量流量计也被广泛应用于科研领域的气体流量测量和控制。
孔板流量计试验数据处理
一、实验操作
1.熟悉实验装置,了解各阀门的位置及作用。
2.对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。
3.对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8-9个点,大流量时测量5-6个点。为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。
ΔR/m
时间t/s
水箱高度h/cm
体积V/m3
流量Qv/m3·s-1
流速V/m·s-1
空流系数C0
雷诺数Re
min
Qv=t
V=
V=C0.
Re=dvρ/μ
max
1
40
2
41
3
41
4
40
5
41
6
41
7
41
8ห้องสมุดไป่ตู้
41
9
41
1
40
2
41
3
40
4
41
5
41
6
41
7
41
8
41
9
40
文丘里流量计实验数据处理
左/cm
右/cm
ΔR/m
时间t/s
水箱高度h/cm
体积V/m3
流量Qv/m3·s-1
流速V/m·s-1
空流系数C0
雷诺数Re
min
Qv=t
V=
V=C0.
Re=dvρ/μ
max
1
40
2
41
3
40
4
40
5
36
6
40
7
41
8
40
科氏质量流量计信号处理方法探究
DCWTechnology Study技术研究17数字通信世界2024.02科氏质量流量计是一种利用科里奥利效应原理直接测量管道流体质量流量的仪器,由传感器与变送器两部分组成。
其中,传感器通过法兰连接到管道,用于检测流体介质信号;变送器主要用于驱动传感器振动,对传感器输出的信号进行转换和处理,并将检测出的质量流量信号传到上位机控制系统中。
目前,科氏质量流量计被广泛应用于石油化工生产装置中,可以满足对流体质量流量的测量要求。
随着社会发展和人们对流量测量精度需求的提高,对科氏质量流量计数字信号处理方法也提出了更高的要求。
对于科氏质量流量计,相位差与质量流量存在比例关系。
通过测量相位差的大小,可以计算出流体的质量流量。
当前科氏质量流量计的信号处理方法主要针对相位差的估计方法,常用频谱分析法[1]、相关法[2]和时域法[3]对相位差进行分析。
采用合适的方法可以减小对质量流量的测量误差。
本文将对DFT 估计法、相关法和希尔伯特变换法的原理及发展过程进行介绍。
1 DFT相位差估计法DFT 相位差估计法是一种传统且高效的数字信号处理方法,能满足对相位差计算的基本要求。
该方法首先对两路信号进行离散傅里叶变换,得到在频域上的幅度和相位信息,然后利用频谱特性计算相位差。
DFT 算法能较好地消除谐波、噪音等对系统性能的干扰,能在较低的信噪比情况下对系统进行频率、相位的检测。
DFT 相位差估计法在对非整周期信号进行计算时会产生频谱泄漏现象,导致相位差估计结果的准确性受到影响。
另外,如果信号存在噪声或者频率偏移较大,会在频域上出现额外的能量分布,使信号频率和相位计算结果包含较大误差。
鉴于DFT 在计算非整周期信号时会产生频谱泄露现象,并在相位计算中引起严重误差的问题,美国和国内的一些研究人员建议使用频率扫描[4]的方法来实现DFT 的整周期截断。
但由于该算法对硬件资源的要求科氏质量流量计信号处理方法探究徐 媛,代显智(西华师范大学电子信息工程学院,四川 南充 637009)摘要:科氏质量流量计因能实现高精度的直接质量流量测量,成为目前国内外发展最为迅速的流量计之一。
实验三 流量计的标定及流动阻力测定
p1 p 2 g
[ m]
根据伯努利方程可知,流体通过直管的沿程阻力损失,可直接由所测得的液柱压差计 读数Δ R 算出: △p=Δ R(ρ 指-ρ 水)g 其中:ρ 指——压差计中指示液密度,kg/m3。本实验中用水银作指示液,被测流体为 水。 Δ R——U 型管中水银位差,m。 g——重力加速度,g=9.81m/s2。
u 2 2 u 2g 2 1
1
2
g
H
(式 3-1)
由于缩脉处位置随流速而变,截面积 A2 又难于知 道,而孔板孔径的面积 Ao 为已知,因此,用孔板孔径 处流速 u0 来代替上式中的 u2。又考虑这种代替带来的 误差以及实际流体局部阻力造成的能量损失, 故需用系 数 C 加以校正。 对于不可压缩流体,将 u 得:
转/L 孔板压降 (右)读数/cm
孔板直径 do= 阻力损失 左(右)读数/cm
mm
m2 孔板系数 压头损失/m Co=
Ao Vs
序 号 1 2 3 4 5 6 7
流量/m3·S-1
2 gR (
R
)
六、实验报告
按正规要求书写实验报告,书写实验报告时,还应注意以下事项: 1、根据实验结果在直角坐标纸描绘 Vs 所得的 Co 比较。
三、实验装置与流程
1、本设备主要参数:管道直径 0.027m 2、流程图: 孔板直径 0.018m
图 3-2
孔板流量计标定流程图
(1)离心泵 (2)测定流体经过孔板所带来的阻力损失的 U 形压差计 (3)测定孔板前后压降的 U 形压差计 (4)孔板流量计 (5)涡轮流量计 (6)调节阀 (7)引水阀 (8)水箱 (9)排水阀 3、装置: (1)元件 镀锌水管 Dg=1" 内径=27mm 孔板孔径=18mm (2)测量仪表 U 形压差计,指示液(水银) 涡轮流量计 LW-25 精度 0.5 级 量程 1.6~10m3/h 仪表编号: 常数: MMD 智能流量仪
电子测量仪器的流量控制技术考核试卷
B.使用的是粘度敏感型流量计
C.流体温度变化较大
D.所有情况
10.电子流量计的数据处理包括以下哪些步骤?()
A.信号滤波
B.信号放大
C.模数转换
D.数据输出
11.以下哪些是流量控制系统中常见的控制策略?()
A.开环控制
B.闭环控制
C.比例控制
D.微分控制
12.以下哪些因素会影响流体在管道中的流动状态?()
D.科里奥利质量流量计
7.电子流量计中,对于信号的处理,以下哪项是正确的?()
A.信号无需处理,直接输出
B.只需进行模数转换
C.需要滤波、放大和线性化处理
D.只需进行数字信号处理
8.在流量控制系统中,哪种控制方式能实现快速响应和精确控制?()
A.开环控制
B.闭环控制
C.手动控制
D.半闭环控制
9.以下哪项不是超声波流量计的组成部分?()
电子测量仪器的流量控制技术考核试卷
考生姓名:__________答题日期:__________得分:__________判卷人:__________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以下哪项不是电子测量仪器在流量控制中的主要功能?()
9.在流量控制系统中,使用PID控制器可以同时调节比例、积分和微分作用。()
答案:_________
10.流量计的测量范围可以根据实际需要随意调整。()
答案:_________
五、主观题(本题共4小题,每题10分,共40分)
1.请简述电磁流量计的工作原理,并说明其在流量控制中的应用优势。(10分)
答案:_________
流量计性能测定实验报告
流量计性能测定实验报告篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验实验3 流量计性能测定实验一、实验目的⒈了解几种常用流量计的构造、工作原理和主要特点。
⒉掌握流量计的标定方法(例如标准流量计法)。
⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。
⒋学习合理选择坐标系的方法。
二、实验内容⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。
⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。
⒊测定节流式流量计的雷诺数Re和流量系数C的关系。
三、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:式中:被测流体(水)的体积流量,m3/s;流量系数,无因次;流量计节流孔截面积,m2;流量计上、下游两取压口之间的压强差,Pa ;被测流体(水)的密度,kg/m3 。
用涡轮流量计和转子流量计作为标准流量计来测量流量VS。
每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。
同时用上式整理数据可进一步得到C—Re关系曲线。
四、实验装置该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。
⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。
⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。
⒊压差测量:用第一路差压变送器直接读取。
图1 流动过程综合实验流程图⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L —粗糙管五、实验方法:⒈按下电源的绿色按钮,使数字显示仪表通电预热,调节第1路差压变送器的零点,关闭流量调节阀⑵⑶。
流量计功能介绍与运用
网络化、远程化
网络化
随着物联网技术的发展,流量计正逐渐向网 络化方向发展。通过网络将流量计与计算机 、智能手机等设备连接起来,可以实现远程 监控、数据传输和共享等功能,提高了流量 计的使用效率和便捷性。
远程化
远程化是网络化流量计的一个重要应用方向 。通过远程监控和数据传输,用户可以随时 随地了解流量计的运行状态和测量数据,及 时发现和解决故障,减少了现场维护的工作 量和成本。
流量控制
控制功能
流量计能够实时监测流体 的流量,并通过控制系统 对流量进行调节和控制。
控制方式
流量计的控制方式包括手 动控制和自动控制,自动 控制能够实现远程控制和 自动化生产。
控制精度
流量计的控制精度需要与 生产工艺要求相匹配,以 确保生产过程的稳定性和 产品质量。
流量指示和记录
01
指示功能
流量计能够实时显示流体的流量 ,并通过数字或模拟方式进行指 示。
详细描述
流量计是一种用于测量流体流速并计算流量的仪表。它可以对各种流体进行测 量,如气体、液体等,是工业生产和日常生活中不可或缺的测量工具。
流量计的分类
总结词
流量计有多种分类方式,如按测量原理、流体类型、安装方 式等进行分类。
详细描述
根据测量原理,流量计可分为力学原理、热学原理、声学原 理、电学原理等类型;按流体类型,可分为气体流量计和液 体流量计;按安装方式,可分为插入式、管道式、便携式等 类型。
2023
流量计功能介绍与运 用
REPORTING
2023
目录
• 流量计概述 • 流量计的主要功能 • 流量计的应用领域 • 流量计的选型与安装 • 流量计的发展趋势与未来展望
2023
流量计解决方案
2.保障流量计系统的长期稳定运行,降低维护成本和停机风险。
3.确保整体解决方案的合法合规性,遵循国家相关行业标准和法律法规。
4.提升企业生产流程的自动化和智能化水平,增强竞争力。
三、方案设计
1.流量计选型
-根据介质类型、测量范围、精度要求、环境条件等因素,选择适当的流量计类型,如电磁流量计、超声波流量计、转子流量计等。
2.设备安装:遵循我国相关安全规范,确保设备安装合规。
3.数据保护:严格按照我国《网络安全法》等法律法规要求,对数据进行保护,确保信息安全。
4.环保要求:设备运行过程中,确保满足我国环保要求,防止环境污染。
五、总结
本流量计解决方案从设备选型、安装、系统集成、调试与优化、培训与售后服务等方面,全方位保障了企业流量计应用的高效、稳定和合法合规性。希望通过本方案的实量计与控制系统(如PLC、DCS等)进行集成,实现数据实时采集和远程监控。
(2)配置合适的通讯接口,如以太网、串行通讯等。
(3)根据企业需求,开发相应的数据管理软件,实现数据存储、分析、报表等功能。
4.系统调试与优化
(1)对流量计系统进行现场调试,确保设备运行稳定、测量准确。
(2)对系统进行优化,包括但不限于滤波算法、校准参数调整等,以提高测量性能。
-根据实际运行情况,对系统参数进行优化调整,提高测量精度和系统适应性。
-定期进行系统性能评估,及时发现问题并采取措施解决。
5.培训与支持
-提供详尽的操作和维护培训,确保企业操作人员能够熟练掌握流量计的使用和管理。
-建立完善的客户服务和技术支持体系,提供及时有效的售后服务。
四、合法合规性保障
1.设备采购与安装严格遵守国家相关法律法规,如《计量法》、《产品质量法》等。
流量计校核实验数据处理 转子流量计
流量计校核实验
一、 报告内容
1.计算各流量下的流量系数C 与雷诺数Re 的数值。
2、在适当的坐标系上标绘流量计流量Vs 压差计读数R 的关系曲线, 即流量标定曲线;流量系数C 与雷诺数Re 的关系曲线。
3、对流量计流量系数C 进行误差估算, 指出误差的主要来源和改善措施。
原始数据记录
流量计流量Vs 压差计读数R
流量计流量Vs
压差计读数R 的关系曲线
各流量下的流量系数C 与雷诺数Re 的数值
/ 附各个参数之间的关系如下:
Vs 被测流体(水)的体积流量, m3/s ;
C 流量系数(或称孔流系数), 无因次;
A0 流量计最小开孔截面积, m2, A0=(π/4)d02; 流量计上、下游两取压口之间的压差, Pa ; 水的密度, Kg/m3;
ρ
ρρ)0(2-=A gR A V C s ()ρρρ-=A s gR CA V 20
()
ρ下上-P P CA V s 20=
U 形管压差计内指示液(汞)的密度, Kg/m3; R U 形管压差计读数, m ;
式中: d —实验管直径, m ;
u —水在管中的流速, m/s 。
二、误差分析
转子在不种密度的流体中的显示重量是不一样。
转子测流量读数还跟流体的粘度有一定的关系。
再有检查一下转子流量计的安装是否正直, 因为微小的倾斜也会引起误差。
μρdu =Re。
流量计的校核
ρρp p p v v ∆=-=-2121222ρpv v ∆=-2)(2122ρp C v v ∆=-2)(21200101v S Sv =2100)(12S S p Cv -∆=ρ流量计的校核2010级化学2班,海金玲,41007088一、实验目的1.熟悉孔板流量计和文丘里流量计的构造、性能、安装方法及工作原理2.掌握容量标定流量计的方法,绘制孔板流量计和文丘里流量计的工作曲线3.了解空流系数与雷诺数的关系,测定孔板流量计、文丘里流量计的空流系数二、基本原理 孔板流量计、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测定流量。
1.孔板流量计的校核本实验装置就是采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺数的关系。
孔板流量计是根据流体的动能和势能相互转化的原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压差,可以通过引压管在压差计和差压变送器上显示。
若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据伯努利方程,对截面1、2处作衡算有如下的方程式(2-23)或(2-24)由于缩脉楚截面位置随流速而变化,截面面积S2是已知的,因此,用孔板径处流速V0来替代上式中的V2,有考虑到这种代替会带来误差以及实际流体局部阻力造成的能量损失,故需用系数C 加以校正,于是(2-24)可改写为(2-25) 对于不可压缩性流体,根据连续性方程 可知,将其带入式(2-25)整理可得(2-26)gpR ρ∆=2100)(1S S C C -=ρpC v ∆=200ρpS C S v q v ∆==20000gRS C S v Q v20==Rg p h f 1.01.0=∆=ρ令 (2-27)则(2-26)可简化为 (2-28)根据V 0和S 0即可计算出不可压缩流体的体积流量(2-29)(2-30)式中q v ——体积流量,m 3/sR (m 水柱)——倒U 形压头差读数, ρ——水的密度,kg/m 3Co ——空流系数孔板流量计的优点是构造简单,造价低廉,计量准确,安装方便;主要缺点是机械能损失大,压头损失h 1占到压头差读数的90%左右。
流量计检定基础
体积管材质的膨胀系数 1/℃ t为体积管处的温度
压力修正公式
D V Vs (1 P) E
D为体积管测量段的内径
为体积管壁厚
E为体积管材料的弹性模量
体积管流经液体质量的计算公式
D Ms Vs Vs (1 P) [1 (t 20)] E
MF计算公式
经过流量计的流量
置换器
标定段容积
标定段长度
检定过程中需要采集的数据
• • • • • 1、流量计的瞬时流量 2、流量计的平均温度、平均压力; 3、体积管进出口的平均温度、平均压力; 4、在两次触发开关之间油品的平均密度; 5、在两次触发开关之间流量计发出的脉冲 数。
检定数据的处理
• 1、流量计系数MF(meter factor) ms V 平均
标准值 MF 测量值
体积管数值
流量计数值
pulse mm k - factor
检定数据的处理
• 1、基本误差
测量值 真值 流量计数值 体积管数值 E 100 % 真值 体积管数值
又因为
标准值 MF 测量值 1 测量值 标准值
所以
流量计数值 1 E 1 1 体积管数值 MF
量值传递
• 一等标准金属容器 二等标准ห้องสมุดไป่ตู้属容器
体积管(加密度计)
流量计(质量流量计)
体积管
Skid Package Single U-bend
Double Folded
球型标准体积管
Pressure Gage and Vent Connections
体积管检测开关
二等标准金属量器
二等标准金属容器检定证书