第二章 数字图像处理基础
第二章 数字图像处理基础
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”
数字图像处理第章资料讲解
第二章 数字图像处理基础
典型数字摄像机
第二章 数字图像处理基础
五. 胶片扫描
? 胶片扫描的概念 ? 常用胶片扫描设备 ? 胶片扫描仪的性能指标
第二章 数字图像处理基础
1. 胶片扫描的概念
? 胶片扫描在图像数字化过程中占有重要地位。 ? 胶片扫描是对来自胶片上的信息进行数字化的
过程,使这些信息能由计算机读取、处理和应 用。 ? 胶片是指投影仪、普通相机或胶片记录仪中使 用的包括胶片、幻灯片、底片等在内的各种感 光材料,它们能生成图像或影像。
分辨率 320x240
第二章 数字图像处理基础
分辨率 160x120
第二章 数字图像处理基础
分辨率 80x60
第二章 数字图像处理基础
第二章 数字图像处理基础
图象尺寸: 127*176 分辨率:(a)127*176 (b)63*88 (c)31*44 (d)15*22
第二章 数字图像处理基础
第二章 数字图像处理基础
? 图像采样 ?采样处理:将xy平面分配到一个网格上。
xy平面
(a,b)
第二章 数字图像处理基础
第二章 数字图像处理基础
与采样相关的概念(分辨率)
分辨率
传感器摄像的精确度。通常指要精确测量和再 现一定尺寸的图像所必需的像素个数。 单位:像素 *像素
第二章 数字图像处理基础
度正比于图像亮度的实际精确程度,图像数字 化设备的线性度是一个重要的性能指标,非线 性的数字化器会影响后续处理的有效性。
第二章 数字图像处理基础
图像数字化器的类型
主要包括 :
? 数码相机 ? 胶片扫描仪
第二章 数字图像处理基础
二. 图像数字化器的组成
第2章数字图像处理基础
DWORD
biSize;
LONG
biWidth;
LONG
biHeight;
WORD
biPlanes;
WORD
biBitCount;
DWORD
biCompression;
DWORD
biSizeImage;
LONG
biXPelsPerMeter;
LONG
biYPelsPerMeter;
DWORD
biClrUsed;
} BITMAPFILEHEADER;
这个结构的长度是固定的,为14个字节(WORD为无符号16位二 进制整数,DWORD为无符号32位二进制整数)。
第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:
typedef struct tagBITMAPINFOHEADER{
R、 G、 B 值。下面就2色、 16色、256 色和真彩色位图分别介绍。
对于2色位图,用1位就可以表示该像素的颜色(一般0表示 黑, 1表示白),所以一个字节可以表示8个像素。
对于16色位图,用4位可以表示一个像素的颜色,所以一个 字节可以表示2个像素。
对于256色位图,一个字节刚好可以表示1个像素。
下面两点请读者注意:
(1) 每一行的字节数必须是4的整数倍,如果不是,则需 要补齐。这在前面介绍biSizeImage时已经提到过。
(2) BMP文件的数据存放是从下到上,从左到右的。也 就是说, 从文件中最先读到的是图像最下面一行的左边第一个 像素, 然后是左边第二个像素, 接下来是倒数第二行左边第 一个像素, 左边第二个像素。依次类推, 最后得到的是最上 面一行的最右边的一个像素。
2.3.1 BMP图像文件格式
第2章 数字图像处理基础
共八十一页
• 2.1 图像 的质量 (tú xiànɡ)
• 3. 空间 分辨率 (kōngjiān)
共八十一页
• 2.1 图像 的质量 (tú xiànɡ)
• 3. 空间 分辨率 (kōngjiān)
共八十一页
图像 的质量 • 2.1
损失的方法,但很多图最终是供人观看的。事实上,具有相 同客观保真度的不同图像,在人的视觉中可能产生不同的在 视觉效果。这种情况下,用主观的方法来测量图像的质量更 为合适。一种常用的方法是对1组(不少(bù shǎo)于20人)观察 者显示图像,并将他们对该图像的评分取平均,用来评价一 幅图像的主观质量。
PSNR的在衡量(héng liáng)不同压缩器时的作 用
(PSNR值29.87时的效果(xiàoguǒ))
共八十一页
PSNR的局限性
PSNR数值都是27.123,但是单从数值上,我们并不能判断
(pànduàn)哪一幅更好。
共八十一页
图像 的质量 • 2.1
(tú xiànɡ)
尽管客观保真度准则提供了一种简单、方便的评估信息
共八十一页
图像 的质量 • 2.1
(tú xiànɡ)
• 3. 对比度:图像(tú xiànɡ)最高和最低灰度级间的灰度 差。
共八十一页
• 2.1 图像 的质量 (tú xiànɡ)
• 3. 空间分辨率Байду номын сангаас图像(tú xiànɡ)空间中可分辨的最小细 节
空间分辨率的度量(dùliàng)——DPI(dot per inch) DPI:每英寸内像素点数目。
共八十一页
2、CMY颜色(yánsè)模式
数字图像处理-2-数字图像处理基础
电磁波是能量的一种,任何有能量的物体,都会 释放电磁波。
2.2 光和电磁波谱
人从物体感受的颜色由物体反射光决定
若所有反射的可见光波长均衡,则物体显示白色 有颜色的物体是因为物体吸收了其他波长的大部分能
量,从而反射某段波长范围的光。
没有颜色的光叫 单色光 或 消色 , 灰度级 通常用来描述
眼球屈光系统将外界物体
成像在视网膜上
视网膜的感光细胞将光信
号转变成生物电信号
经视网膜神经元网络处理,
编码,在神经节细胞形成 动作电位
神经节细胞动作电位由其
轴突形成的视神经传至大 脑,形成视觉
视觉及视知觉
视觉的基本功能
空间辨别 时间辨别
颜色视觉
图形知觉 空间知觉
21:23
思考: 1、为什么图像经常用512×512、256×256、128×128 等形式表述; 答: 因为当图像的大小是2的次幂时,图像的许多计算 可以得到简化。 2、存储一幅512×512,有256个灰度级的图像需要多 少比特?
答: 存储一幅大小为M×N,有2k个不同灰度级的图像所用的Bit数 为: b=M×N×k (2.4-4)
单色光的强度,其范围从黑到灰,最后到白。
在原理上,如果可以开发出一种传感器,能够检测由
一种电磁波谱发射的能量,就可以在那一段波长上对 感兴趣的物体成像。
2.2 光和电磁波谱
灰度和色彩:
彩色模型: RGB 加色法 CMY,CMYK 减色法 HSB(色泽,饱和度,明亮度)
2.2 光和电磁波谱
彩色光源的三个基本属性:
( x, y)
( x , y )
( x, y)
2数字图像处理基础
在进行采样时,采样点间隔的选取是一个非常重要的问题, 它决定
了采样后图像的质量,即忠实于原图像的程度。采样间隔的大小选取要 依据原图像中包含的细微浓淡变化来决定。一般, 图像中细节越多,采
样间隔应越小。根据一维采样定理,若一维信号g(t)的最大频率为ω, 以
T≤1/2ω为间隔进行采样,则能够根据采样结果g(iT) (i=…, -1, 0, 1, …)完 全恢复g(t), 即
g (t )
式中
i
g (iT )s(t iT )
sin( 2t ) s (t ) 2t
图像数字化——采样
采样列 像素 采样行 行间隔
采样间隔
采样示意图
图像数字化——量化
模拟图像经过采样后,在时间和空间上离散化为像素。
但采样所得的像素值(即灰度值)仍是连续量。把采样后所得 的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量 化。图 2-3 ( a )说明了量化过程。若连续灰度值用 z来表示, 对于满足zi≤z≤zi+1的z值,都量化为整数qi。qi称为像素的灰度值, z与qi的差称为量化误差。一般,像素值量化后用一个字节8 bit 来表示。如图2-3(b)所示,把由黑—灰—白的连续变化的灰度 值, 量化为0~255共256级灰度值,灰度值的范围为0~255,
f (0,0) f (0,1) f (0, n 1) g (1,0) f (1,1) f (1, n 1) (2-1) g (i , j ) f (m 1,0) f (m 1,1) f ( m 1, n 1)
图2-4 (a)原始图像(256×256);(b)采样图像1(128×128);(c) 采样图像2(64×64); (d)采样图像3(32×32); (e)采样图像4(16×16);(f) 采样图像5(8×8)
数字图像处理与分析 第2章 图像处理基础知识
可由黑白照片数字化得到,或从彩色图像进行去色处 理得到(256灰度级)
整理ppt
21
2.2.1 图像模式
2.二值图像
灰度图像经过二值化处理后的结果,两个灰度级,只 需用1bit表示。
整理ppt
22
2.2.1 图像模式
3.彩色图像
彩色图像的数据不仅包含亮度信息,还要包含颜色信息。 彩色的表示方法是多样化的。
三基色模型:RGB(Red / Green / Blue,红绿蓝) RGB三基色可以混合成任意颜色。
整理ppt
23
2.2.2 彩色空间
1)RGB彩色空间:面向硬件设备的彩色模型
三基色原理三基色指可以用来 调配出其它颜色的红、绿、蓝 三种颜色。
彩色图像可由红、绿、蓝 三基色图像叠加而成。
整理ppt
二者紧密相关,同时完成。 fx ,y 采 样空 间 离 散 的 像 素 矩 阵 fx ,y 量 化对 信 号 的 幅 度 进 行 离 散 分 层 的 过 程
整理ppt
14
2.1.2 数字化原理
M、N——图像尺寸
G——每个像素所具有的离散灰度级数(不同灰度值的个数)
M=2m
N 2n
G 2k
N N点采样,每点灰度级G级,G 2k,占k位。 存一幅图像所需的位数(bit)
1. 一维数组方式: M 行×N 列
N列 M行
2.多波段图像数据结合结构
1)按各个波段存储
红绿蓝
整理ppt
29
2.2.3 图像存储的数据结构
2.多波段图像数据结合结构
2)按扫描行存储
红 绿蓝 …
第1行
3)按各个像素存储
红绿蓝
…
数字图像处理基础2
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
数字图像处理基础
蓝(Blue) 品红(Magenta)
青(Cyan)
O
红(Red) 绿(Green) 黄(Yellow)
y
x
图2-8 RGB模型单位立方体
第二章 数字图像处理基础 (1)在RGB模型立方体中,原点所对应的颜色为黑色,它的三个 分量值都为零。 (2)距离原点最远的顶点对应的颜色为白色,它的三个分量值都 为1。 (3)从黑到白的灰度值分布在这两个点的连线上, 该线称为灰色 线。 (4)立方体内其余各点对应不同的颜色。 (5)彩色立方体中有三个角对应于三基色——红、绿、蓝。剩下的 三个角对应于三基色的三个补色——黄色、 青色(蓝绿色)、品红 (紫色)。
第二章 数字图像处理基础 (3) 光传感器: 通过采样检测图像的每一像素的亮度。 (4) 量化器:将传感器输出的连续量转化为整数值。典型的 量化器是A/D转换电路,它产生一个与输入电压或电流成比例的 数值。 (5) 输出存储装置:将量化器产生的灰度值按适当格式存储 起来,以用于计算机后续处理。
第二章 数字图像处理基础
采采采
像像
采采采 采行行
采采行行
图2-2 采样示意图
第二章 数字图像处理基础
2.1.2 量化 模拟图像经过采样后所得的像素值(即灰度值)仍是连续量。 把采样后所得的各像素的灰度值从模拟量到离散量的转换称为 图像灰度的量化。
第二章 数字图像处理基础
Zi+1 q i+1 Zi Zi-1 q i-1 … …
第二章 数字图像处理基础
绿 红 蓝
120° 0° 240°
图2-10 柱形彩色空间
I
第二章 数字图像处理基础 2.4.2 颜色模型 颜色模型 目前常用的颜色模型按用途可分为两类,一类面向诸如视 频监视器、彩色摄像机或打印机之类的硬件设备。另一类面向 以彩色处理为目的的应用,如动画中的彩色图形。 面向硬件设备的最常用彩色模型是RGB模型,而面向彩色 处理的最常用模型是HSI模型。另外,在印刷工业上和电视信号 传输中,经常使用CMYK和YUV色彩系统。
数字图像处理基础
第二章 数字图像处理基础
(1) 采样孔(Sampling aperture): 使数字化设备能够单独地观 测特定的图像元素而不受图像其他部分的影响。
第二章 数字图像处理基础
图2-4 (a)原始图像(256×256);(b)采样图像1(128×128);(c) 采样图像2(64×64);
(d)采样图像3(32×32); (e)采样图像4(16×16);(f) 采样图像5(8×8)
第二章 数字图像处理基础
图2-5 (a) 原始图像(256色); (b) 量化图像1(64色); (c) 量化图像2(32色);
• 1994年3月1日,柯达公司发布第一台公认的专业数码相机——DCS420。 它基于尼康F90S机身设计,使用了240万像素的CCD,售价达到8000美元 的天价!随后,以索尼公司为代表的各厂商纷纷推出各自的数码产品, 使相机产业实现了数字化的跨越式发展。
• 2019年8月,中国推出了第一款数码相机——海鸥DC33,有效像素30万, 具有640×480的分辨率和24位色的色彩还原能力。
第二章 数字图像处理基础
• 在十七、十八世纪的欧洲,许 多画家用暗箱柜来帮助他们绘 制风光、建筑甚至肖像。一个 典型的暗箱非常像现代的单镜 头反光照相机。光线由镜头进 入,在箱内经过一块镜子的反 射,在上面的磨砂玻璃上呈现 左右颠倒的实像。画家就是把 一张很薄的纸铺在磨砂屏上, 描下图形,以求达到最真实的 透视效果。
第二章 数字图像处理基础
BMP图像文件格式
文件说明
属性 bfType bfSize bf1 bf2 bfOffBits biSize biWidth 所占字节数 2 4 2 2 4 4 4 起始字节 1 3 7 9 11 15 19 说明 文件类型(“BM”) 文件大小 保留 保留 第一个位图数数的偏移量 文件信息头的长度 位图的宽度(单位是象素)
位图的有关术语
像素(Pixel)
(可大可小)
采样点 (Sample)
位图的有关术语
图像分辨率: 每英寸图像含有的点或像素个数(dpi)
分辨率越高,图像细节越清晰,但文件尺寸大, 处理的时间长,对设备的要求高。
位图的有关术语
打印机分辨率: 打印图像时每英寸的点数(dpi)
激光打印机的分辨率可达600~1200dpi。
0, , 80 200 B 0, , 0 110 255, , 255 255
2.1 图像数字化
2.1.3 采样与量化参数的选择
采样间隔:影响着图像细节的再现程度,反映数字化 后的图像呈现何种的细微程度。采样间隔越大,图像的像素 数越少,空间分辨率低,质量差。严重出现像素块状的棋盘
2. 图像数字化器的性能
(1)分辨率:单位尺寸能够采样的像素数,由采样 孔的大小和像素间距的大小决定;
(2)灰度级:量化为多少等级;
(3)图像大小:允许输入图像的大小;
(4)扫描速度:采样数据的传输速度;
(5)噪声:数字化器的噪声水平。
(6)线性度:线性度是指对光强进行数字化时,灰 度正比于图像亮度的实际精确程度。
数字图像根据灰度级数的差异,可分为:
二值图像、灰度图像和彩色图像 二值图像:
数字图像处理第二章课件ppt课件
f(0,1) f(0,N1)
f(x,y)
f(1,0)
f(1,1)
f(1,N1)
f(M1,0) f(M1,0)
f(M1,N1)
F(x,y)在[0,L-1]有L个灰阶, 通常取L为2的k次幂
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
街区'City-Block'距离L1:
等距为4角星
D 4(p,q)xsyt
棋盘'chessboard'距离L : D 8(p,q)ma x x s,y (t)
等距为矩形
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
对像素p(x,y), q(s,t)和z(v,w), 距离函数D应满足: ① D(p,q)>=0 (D(p,q)=0, iff p=q) ② D(p,q)=D(q,p), and ③ D(p,z)<=D(p,q)+D(q,z)
例如用LM范数表示的通用Minkowski距离:
2.5 Some Basic Relationships Between Pixels 2.5.1 Neighbors of a Pixel
4邻接:
p
8邻接: p
m邻接(混合邻接):邻点q与当前像素(点)p存在4邻接前景邻点;
或
q是p的对角邻点并且p和q没有公共的前景4邻点。
m邻接是8邻接的修订,它消除了应用8邻接可能引起的模糊性 ,如图2.26b(4或8邻接共存)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5.2 邻接性、连通性、区域和边界
4邻接与8邻接的关系
4邻接必8邻接,反之不一定成立。 两种邻接及其关系见下图所示,相似性准则为 V={1},其中p与q 4邻接,也8邻接;q与r 8邻接 但非4邻接。
2.5.2 邻接性、连通性、区域和边界
m邻接可以消除8邻接所带来的二义性
V={1}
p
q1
[x,y]
最近领域 f[x,y]=f[round(x),round(y)]
[m+1,n]
[m+1,n+1]双线性插值(并非线性算法)
f[x, y]=ax+by+cxy+d a, b, c和d需要计算 双三次插值 f[x,y]=
图像内插值
[0,0] [0,1]
[x,y]
[1,0]
I [0, Lmax ]
(1)空间采样
(2)灰度级(强度)量化
坐标的数字化称为采样,幅度值的数字化称为量化。
1.均匀采样和量化
2.非均匀采样和量化
2.4 图像取样和量化
黑 白 图 像
灰 度 图 像
彩 色 图 像
2.4 图像取样和量化
黑白图像的数字化
2.4 图像取样和量化
灰度图像的数字化
2.4 图像取样和量化
(2)灰度值相近,即称为灰度值相近(似)准则。 称为灰度值相近(似)准则。
2、邻接性
令V是用于定义邻接性的灰度值集合(相似性
准则),存在三种类型的邻接性: (1)4邻接:若像素p和q的灰度值均属于V中的元素, 且q在N4(p)中,则p和q是4邻接的. (2)8邻接:若像素p和q的灰度值均属于V中的元素, 且q在N8(p)集中,则p和q是8邻接的. (3)m邻接(混合邻接):若像素p和q的灰度值均属 于V中的元素,{(i)q在N4(p)中,或者(ii)q在 ND(p)中}且集合N4(p)∩N4(q)没有V值的像素, 则具有V值的像素p和q是m邻接的.
p
q1
q2
q2
(a) 像素安排 (b)中心像素的8邻接像素 (c) m邻接
2.5.2 邻接性、连通性、区域和边界 3、通路
像素p (m,n)到像素q (s,t)的通路(path): 特定的像素序列(m0,n0),(m1,n1),…,(mn,nn),其 中(m0,n0)=(m,n), (mn,nn)=(s,t),且像素(mi,ni) 和(mi-1,ni-1)(对于1≤i≤n)是邻接的. n是通路的长度.若(m0,n0)=(mn,nn),则通路是闭合 通路.
Project
50
100
150
200
250
300
350
400
450
100
200
300
400
500
600
Project
100
200
300
400
500
600
100
200
300
400
500
600
700
800
Project
100
200
300
400
500
600
100
200
300
400
500
600
700
800
图像的收缩与放大
(2)图像的放大
最近邻域内插方法
在原图像上寻找最靠近的像 素并把它的灰度值赋给栅格上 的新像素。
双线性内插方法
v( x ', y ') ax ' by ' cx ' y ' d
(2)图像放大的效果比较
用最近领域内插法(上一行)和双线性内插法(下一行)得到的放大图像 分别将128×128,64×64, 32×32放大到1024×1024
2.3图像的感知和获取
单个传感器
产品缺陷检测
带状传感器
航空成像 医学成像
阵列传感器
常用
2.3图像的感知和获取
简单的图像成像模型
我们感兴趣的各类图像都是由“照射”源和形成 图像系统的线性模型 图像的“场景”元素对光能或吸收相结合而产生的。
图像形成模型
在特定坐标(x,y)处,通过传感器转换获得的f 值为一正的标量。 函数f(x,y)由(1)入射到观察 场景的光源总量 (2)场景中物体反射光的总量组 成。
DPI: Dots Per Inch
该度量必须针对空间单位来规定才有意义
空间分辨率变化对图像视觉效果的影响
灰度级L不变
(a)原始图像(256×256);(b)采样图像1(128×128);(c) 采样图像 2(64×64);(d)采样图像3(32×32); (e)采样图像4(16×16);(f) 采样图 像5(8×8)
M,N必须为正数,L为灰度级,灰度的取值范围为[0,L-1] 一般,M、N和L取值为2的整数次幂。
L=2k,称为k位图像
图像的坐标系的表示
(1)直角坐标系
(2)矩阵坐标系(MATLAB)
(3)像素坐标系(显示)
1、坐标原点位于左上角
2、数据先沿m轴增加
3、然后再沿n轴增加
4、坐标轴为整数
思考: 1、为什么图像经常用512X512、256X256、128X128 等形式表述; 2、存储一幅512X512,有256个灰度级的图像需要 多少比特? 答: (1)因为当图像的大小是2的次幂时,图像 的许多计算可以得到简化。 答: (2)存储一幅大小为NXN,有2m个不同灰度 级的图像所用的比特数b为: b=N×N×m 因此,存储一幅512m52,有256个灰度级(m=8) 的图像需要2097152比特或262144字节(8比特)
灰度分辨率 灰度级别中可辨别的最小变化,通常也把灰度级L称为 灰度分辨率
灰度级分辨率对图像视觉效果的影响
256 128 16
8
64
32
灰度级分别为 256,128,64,32的 数字图像 4 2
灰度级从256到2的数字图像
小结:
•图像的分辨率表示的是能看到图像细节的多少,显 然依赖于MXN和L
彩色图像的数字化
2.4 图像取样和量化 图像的非均匀采样:
在灰度级变化尖锐的区域,用细腻的采样,在灰度级比 较平滑的区域,用粗糙的采样。
图像的非均匀量化:
非均匀量化是依据一幅图像具体的灰度值分布的概率密 度函数,按总的量化误差最小的原则来进行量化.具体做法 是对图像中像素灰度值频繁出现的灰度值范围,量化间隔 取小一些,而对那些像素灰度值极少出现的范围,则量化间 隔取大一些. 由于图像灰度值的概率分布函数因图像不同 而异,所以不可能找到可用于所有图像的最佳非等间隔量 化方法.
2.5.2 邻接性、连通性、区域和边界
4、连通性
若S是图像中的一个子集,p,q∈S,且存在一条由S 中像素组成的从p到q的通路,则称p在图像集S中与q 连通,连通也分为4连通和8连通。
2.5.2 邻接性、连通性、区域和边界
5、区域(region) 令R是图像中的像素子集。如果R是连通集,则称R为 一个区域。
2.4.3 空间和灰度分辨率
2.4.1 空间分辨率(spatial resolution)
图像中可分辨的最小细节,主要由采样间隔值决定
a)20 km/pimel;
b)10 km/pimel
空间分辨率低
空间分辨率高
2.4.3 空间和灰度分辨率
空间分辨率有很多方法表示
每单位距离线对数 (line pairs per unit distance) 没单位距离点数 (dots/pixels per unit distance)
2.1 视觉感知要素
2.1.1 人眼的构造(自学) 2.1.2 眼睛中图像的形成(自学) 2.1.3亮度适应和鉴别 (1)视觉适应性
亮 暗 适应慢 暗 亮 适应快
2.1.3亮度适应和鉴别
(2)同时对比效应(Simultaneous Contrast) 即感觉的亮度区域不是简单地取决于强度。
[1,1]
双线性插值 f[x, y]=ax+by+cxy+d d=f[0,0] a=f[1,0]-d b=f[0,1]-d c=f[1,1]-a-b-d x1=x-floor(x) y1=y-floor(y) f[x, y]=ax1+by1+cxy1+d
图像的收缩与放大
(1)、图像的收缩
图像的收缩
•保持MXN不变而减少L则会导致假轮廓 •保持L不变而减少MXN则会导致棋盘状效果 •图像质量一般随着MXN和L的增加而增加,但存储 量增大。 •实验表明图像的细节越多,用保持MXN恒定而增加 L的方法来提高图像的显示效果就越不明显,因此, 对于有大量细节的图像只需要少数的灰度级。
图像内插值
[m,n] [m,n+1]
6、边界(boundary) 一个区域的边缘或轮廓线叫做边界。
c 光速 h 普朗克常量
2.2 光和电磁波谱
电磁波是能量的一种,任何有能量的物体,都会释放电磁波。
2.2 光和电磁波谱 人从物体感受的颜色由物体反射光决定 若所有反射的可见光波长均衡,则物体显示白 色 有颜色的物体是因为吸收了其他波长的大部分 能量,从而反射某段波长范围的光。 没有颜色的光叫单色光,灰度级通常用来描述 单色光的强度,其范围从黑到灰,最后到白。 在原理上,如果可以开发出一种传感器,能 够检测由一种电磁波谱发射的能量,就可以在那 一段波长上对感兴趣的物体成像。
2.1.3亮度适应和鉴别 (3)马赫带效应 感觉亮度不是简 单的强度函数的
2.1.3亮度适应和鉴别
(4)视觉错觉 (Optical Illusions)
在错觉中,眼睛填 上了不存在的信息 或错误地感知物体 的几何特点。