《机械优化设计》试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械优化设计》复习题及答案
一、填空题
1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,
第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因
子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间
点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数 C X B HX X T T ++21的梯度为 HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,
则d 0、d 1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条
件是 梯度为零 ,充分条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯
度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间
]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、
13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成
C X B HX X T T ++2
1的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。
16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有 由小到大趋于无穷 特点。
17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求 。
二、选择题
1、下面 方法需要求海赛矩阵。
A 、最速下降法
B 、共轭梯度法
C 、牛顿型法
D 、DFP 法
2、对于约束问题
()()()()2212221122132min 44
g 10
g 30
g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥
根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22
T
X =为 。
A .内点;内点
B. 外点;外点
C. 内点;外点
D. 外点;内点
3、内点惩罚函数法可用于求解__________优化问题。
A 无约束优化问题
B 只含有不等式约束的优化问题
C 只含有等式的优化问题
D 含有不等式和等式约束的优化问题
4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。
A [a 1,b 1]
B [ b 1,b]
C [a 1,b]
D [a ,b 1]
5、_________不是优化设计问题数学模型的基本要素。
A设计变量
B约束条件
C目标函数
D 最佳步长
6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。
A. H k之间有简单的迭代形式
B.拟牛顿条件
C.与海塞矩阵正交
D.对称正定
7、函数)
f在某点的梯度方向为函数在该点的。
(X
A、最速上升方向
B、上升方向
C、最速下降方向
D、下降方向
8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法
B 牛顿法
C 变尺度法
D 坐标轮换法
9、设)(X f 为定义在凸集R 上且具有连续二阶导数的函数,则)(X f 在R 上为凸函数的充分必要条件是海塞矩阵G(X)在R 上处处 。
A 正定
B 半正定
C 负定
D 半负定
10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的
是 ,假设要求在区间[a ,b]插入两点α1、α2,且α1<α2。
A 、其缩短率为0.618
B 、α1=b-λ(b-a )
C 、α1=a+λ(b-a )
D 、在该方法中缩短搜索区间采用的是外推法。
11、与梯度成锐角的方向为函数值 上升 方向,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。
A 、上升
B 、下降
C 、不变
D 、为零
12、二维目标函数的无约束极小点就是 。
A 、等值线族的一个共同中心
B 、梯度为0的点
C、全局最优解
D、海塞矩阵正定的点
13、最速下降法相邻两搜索方向d k和d k+1必为向量。
A 相切
B 正交
C 成锐角
D 共轭
14、下列关于内点惩罚函数法的叙述,错误的是。
A 可用来求解含不等式约束和等式约束的最优化问题。
B 惩罚因子是不断递减的正值
C初始点应选择一个离约束边界较远的点。
D 初始点必须在可行域内
15、通常情况下,下面四种算法中收敛速度最慢的是
A 牛顿法
B 梯度法
C 共轭梯度法
D 变尺度法
16、一维搜索试探方法——黄金分割法比二次插值法的收敛速度
A、慢
B、快
C、一样
D、不确定
17、下列关于共轭梯度法的叙述,错误的是。
A 需要求海赛矩阵
B 除第一步以外的其余各步的搜索方向是将负梯度偏转一个角度
C 共轭梯度法具有二次收敛性
D 第一步迭代的搜索方向为初始点的负梯度
三、问答题
1、试述两种一维搜索方法的原理,它们之间有何区
答:搜索的原理是:区间消去法原理
区别:(1)、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法
(2)、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值。
这种方法称为插值法,又叫函数逼近法。
2、惩罚函数法求解约束优化问题的基本原理是什么?
答,基本原理是将优化问题的不等式和等式约束函数经过加权转化后,和原目标函数结合形成新的目标函数——惩罚函数求解该新目标函数的无约束极值,以期得到原问题的约束最优解
3、试述数值解法求最佳步长因子的基本思路。
答主要用数值解法,利用计算机通过反复迭代计算求得最佳步长因子的近似值
4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点。
答:最速下降法此法优点是直接、简单,头几步下降速度快。
缺点是收敛速度慢,越到后面收敛越慢。
牛顿法优点是收敛比较快,对二次函数具有二次收敛性。
缺点是每次迭代需要求海塞矩阵及其逆矩阵,维数高时及数量比较大。
5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义。
四、解答题
1、试用梯度法求目标函数f(X)=1.5x12+0.5x22- x1x2-2x1的最优解,设初始点x(0)=[-2,4]T,选代精度ε=0.02(迭代一步)。
2、试用牛顿法求f( X )=(x1-2)2+(x1-2x2)2的最优解,设初始点x(0)=[2,1]T。
3、设有函数f(X)=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值。
4、求目标函数f( X )=x12+x1x2+2x22 +4x1+6x2+10的极值和极值点。
5、试证明函数f( X )=2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点[1,1,-2]T处具有极小值。
6、给定约束优化问题
min f(X)=(x1-3)2+(x2-2)2
s.t. g1(X)=-x12-x22+5≥0
g2(X)=-x1-2x2+4≥0
g3(X)= x1≥0
g4(X)=x2≥0
验证在点T
Kuhn-Tucker条件成立。
X]
2[,1
7、设非线性规划问题
1)(0
)(0
)(..)2()(min
2221322112221≥+-=≥=≥=+-=x x X g x X g x X g t s x x X f 用K-T 条件验证[]T X 0,1*=为其约束最优点。
10、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法(x 取何值)才能获得最大容器的箱子。
试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序。
11、某厂生产一个容积为8000cm 3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序。
12、一根长l 的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序。
13、求表面积为300m2的体积最大的圆柱体体积。
试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。
14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大。
写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解(写出M文件和求解命令)。
判断题
1,二元函数等值线密集的区域函数值变化慢x
2海塞矩阵正定的充要条件是它的各阶主子式大于零x 3;当迭代点接近极小点时,步长变得很小, 越走越慢v 4二元函数等值线疏密程度变化
5 变尺度法不需海塞矩阵v
6梯度法两次的梯度相互垂直v。