Physics of Surfaces and Interfaces[Chapter-7-Vibrational Excitations at Surfaces]英文精品课件

合集下载

Surfaces and Interfaces in Liquid Crystal Devices

Surfaces and Interfaces in Liquid Crystal Devices

Surfaces and Interfaces in LiquidCrystal Devices液晶设备中的表面与界面液晶是一种特殊的物质,它既具有流动性又有晶体的特征。

因此,在液晶设备中,表面和界面的性质对其性能有着极其重要的影响。

本文将从表面和界面两个方面分析液晶设备的性能。

一、表面的影响表面是液晶分子与外界之间的直接接触点,同时也是液晶分子之间交换信息的重要媒介。

表面的化学性质、形貌和排列方式对液晶分子的取向、流动行为和长程序列有着重要的影响。

化学性质表面的化学性质主要指表面分子与液晶分子之间的亲疏性。

在液晶设备中,通常采用的是硅、金属或单晶硅等材料作为基板。

而这些材料表面本身是非常亲疏分明的,亲水性强的基板表面容易吸附水分和杂质,形成原子层,导致液晶分子的取向不稳定;反之,疏水基板则容易吸附空气、水分和其他杂质,对液晶分子的取向产生干扰。

形貌表面形貌对液晶分子取向和流动行为的影响不容忽视。

表面的粗糙度、纹理和凹凸不平都会影响液晶分子的分布和取向。

因此,为了保持液晶分子的有序排列,制造液晶设备的表面要求越平整越好。

排列方式表面的排列方式对液晶分子的取向、流动行为和长程序列也起着决定性作用。

不同的排列方式会对电流、温度、压力和震动等外部因素的响应方式产生影响。

液晶设备制造中广泛采用的有几种基本的排列方式,包括平行排列和垂直排列等。

二、界面的影响在液晶设备中,不同的物质之间的交界面称为界面。

液晶分子与基板、液晶分子之间或不同液晶之间的界面对设备性能都有着直接的影响。

基板与液晶之间的界面在液晶平板显示器中,液晶分子通常位于两片玻璃基板之间。

基板表面的处理方式和涂层的性质对液晶分子取向和流动行为具有决定性影响。

例如,在基板表面处理时使用非对称性的光敏材料,可以产生大约20°的预铺排列,有利于液晶分子的取向。

在液晶分子与基板之间形成的层状结构中,极性基团要尽可能地避免与液晶分子之间的共价键或金属键相互作用,以达到最佳的液晶状态。

The Physics of Interfaces and Material Interfaces

The Physics of Interfaces and Material Interfaces

The Physics of Interfaces and MaterialInterfaces材料界面的物理学材料科学一直是一个跨学科领域,它涉及材料与环境之间各种相互作用的研究。

材料科学家一直在探索材料的基本性质和组成,进一步理解其在各种不同条件下的行为。

其中一个重要领域是界面物理学,即材料之间的接触面。

界面物理学是研究各种材料之间相互作用的学科。

在材料的多种性质中,界面起着非常重要的作用,因为材料的各种性质取决于材料之间的相互作用。

因此,研究界面物理学可以让我们更好地理解材料在不同条件下的性质和行为。

接下来,我们将讨论材料界面的物理学特性并介绍界面物理学的一些应用。

材料界面的物理学特性材料之间的接触面可以是两个固体、固体和液体、固体和气体或液体和气体。

无论是哪个形式,界面处的许多物理特性都是相同的。

表面张力是指在界面附近的一个分子层中,某一层分子的作用力大小与方向与其他分子相同所产生的作用力大小与方向的平均值。

这是界面物理学中的一个重要性质,它对固体材料的接触角和表面自洁性质具有重要影响。

通常来说,表面张力越大,材料间的黏附力就越强,因此材料纹理或表面粗糙度可以影响界面张力的大小。

另一个重要的界面力是范德华力。

范德华力是两个分子之间的吸引力,它是由于电子云之间的弱作用力而产生的。

这种力可以对材料的物化特征,如蒸气渗透和流变特性产生影响。

总之,材料界面的物理学特征包括表面张力、范德华力、电荷分布和临界尺寸等方面。

这些特征使得我们可以更好地理解材料之间的相互作用,并设计出一些新型的材料。

界面物理学的应用界面物理学有很多应用,其中一些应用包括:晶界和纳米材料的物理性质、电子设备中太阳能电池的研究、材料耐久性、涂层技术和药物输送系统。

在材料领域中,晶界研究是非常有趣的话题。

晶界是一个非常薄的界面,它分离了晶体中的几个晶胞。

材料科学家一直在研究晶界如何影响分子运动和热传导。

同时,了解晶界结构如何影响晶体的力学性质也很重要。

surfaceandinterface讲解

surfaceandinterface讲解

固体表面实例
5. 固体表面力场
定义: 晶体中每个质点周围都存在着一个力场,在晶体 内部,质点力场是对称的。但在固体表面,质点 排列的周期重复性中断,使处于表面边界上的质 点力场对称性破坏,表现出剩余的键力, 称之 为固体表面力。 依性质不同,表面力可分为: 1)化学力 2)范德华力 (分子引力)
忽略了晶体内部周期性势场在晶体表面中断的影响,
忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外 界对表面的物理化学作用等。 这种理想表面作为半无限的晶体,体内的原子的位置 及其结构的周期性,与原来无限的晶体完全一样。
2. 清洁表面
清洁表面是指不存在任何吸附、催化反应、杂 质扩散等物理化学效应的表面。这种清洁表面 的化学组成与体内相同,但周期结构可以不同 于体内。根据表面原子的排列,清洁表面又可 分为台阶表面、弛豫表面、重构表面等。
3、吸附表面
吸附表面有时也称界面。它是在清洁表面 上有来自体内扩散到表面的杂质和来自表面周 围空间吸附在表面上的质点所构成的表面。
根据原子在基底上的吸附位置,一般可分
为四种吸附情况,即顶吸附、桥吸附、填充吸
附和中心吸附等。
4、表面偏析
不论表面进行多么严格的清洁处理,总有 一些杂质由体内偏析到表面上来,从而使固 体表面组成与体内不同,称为表面偏析。
(1)化学力:本质上是静电力
当固体吸附剂利用表面质点的不饱和价键将吸附
物吸附到表面之后,吸附剂可能把它的电子完全给予 吸附物,使吸附物变成负离子(如吸附于大多数金属 表面上的氧气);或吸附物把其电子完全给予吸附剂 ,而变成吸附在固体表面上的正离子(如吸附在钨上 的钠蒸气)。
(2)范德华(van der Walls)力(分子引力) 一般是指固体表面与被吸附质点(例如气体分子)之间相 互作用力。 主要来源于三方面: 1)定向作用力(静电力):发生于极性分子之间 2)诱导作用力:发生于极性与非极性分子之间 3)分散作用力:发生于非极性分子之间

表面和界面-Surfaces and Interfaces

表面和界面-Surfaces and Interfaces

8. Surfaces and Interfaces8.1 IntroductionThere exist differences in the important parameters describing interfaces and surfaces:Surfaces Interfacesroughness composition conformation chain ends width (roughness) profile conformation fluctuationssnapshot of a coarse-grained moleculardynamics simulation of a block co-polymer double bilayer in waterGoundla Srinivas, IBM Almaden Research Centerthermodynamic: To allow contact between two different phases, an interface with a free energy between them is needed. Across this interface the intensive properties of the systems are changing from one phase to the other.Free energy of the interface ΔG = ΔW = 2σAA change of the interface requires a free energy ΔG, meaning a work ΔW, proportional to the area A and interfacial tension σ, is needed.work of cohesion W c = 2σwork of adhesion W c= σ1+σ2-σ12The process is assumed to be fully reversible.8.2 Polymer Surfaceair / vacuumpolymer surfacepolymer volume (bulk)Simple microscopic view: attractive forces between the atoms (spring-bead model) with force equilibrium in the volume, but missing partners at the surface→ attraction oriented towards the bulk→ surface tension / surface energy→ change of the structure at surfacea) Chain conformation in the vicinity of the surfaceComputer simulation: Structural properties of a dense polymer melt confined between two hard walls are investigated over a wide range of temperatures by dynamic Monte Carlo simulation using the bondfluctuation lattice model.The effect is present in a region close to the polymer surface. Deviation of the chain conformation is found in a region with an extension of ≈2R g .Baschnagel, Binder, Macromolecules 28, 6808 (1995)As the wall is further approached, the ability of the chains to reorient is progressively hindered, leading to an increase of R g|| and to a decrease of R g ⊥. Therefore the main effect of the wall is to reduce the orientational entropy of the polymers and to align them preferentially parallel to it.Experiments (GISANS): The samples consist of blend films of protonated and deuterated polystyrene (PS) spin coated onto glass substrates. A variation of the thickness of the blend films in a range of about 41 down to 0.66 times the radius of gyration R g of the chains in the bulk enables the determination of film thickness and confinement effects with the advanced scattering technique grazing incidence small angle neutron scattering (GISANS).The effect of the breaking of the translation symmetry by the presence of a surface is found in a more extended region of ≈8R g .Kraus et al., Europhys. Lett. 49, 210 (2000)The polymer molecule is altered in its conformation from an isotropic Gaussian chain (sphere) into an ellipsoidal shapechain segments are oriented in parallel to surfaceb) Chain end distribution Theory:Density of chain ends at the surface (de Gennes, 1992):φφρee N 2=with N length of chainφe number of ends at surfaceφ number of monomers per volume→ chain ends from a region 2R g are enriched in a layer of thickness d (typically 1-2 nm):N dae 2=ρ with segmental length aenrichment of chain ends at the surface due to entropic effects Experiments (NR): Mono-terminated polystyrenes (PS) are synthesized anionically to include a short perdeuteriostyrene sequence adjacent to the end groups for the purpose of selective contrast labeling of the end groups for neutron reflectivity (NR).The location of deuterium serves as a marker to indicate the location of the adjacent end group. Damped oscillatory end group concentration depth profiles at both the air and substrate interfaces are found. The periods of these oscillations correspond approximately to the polymer chain dimensions.contrast density depth profileKoberstein et al; Macromolecules 27,5341 (1994)c) Segment distribution in the vicinity of surfaceComputer simulation: Strong orientation of segments due to the breaking of the translational symmetry of the system by the presence of a surface. The effect is present in region close to surface only, with extension of ≈2R g.Experiments (Force balance): Strong modulation in the density in the vicinity of the surface (effect much more pronounced in case of a solid wall).transition region with significantly decreased densityd) Influence on the kineticsComputer simulation:At the polymer surface a very mobileand quasi-liquid layer is existing wellbelow a melting temperature T m. In thislayer the chain mobility is increased.at surface mobility in movement in parallel to the surface is increased in a thinlayer of thickness d (typically 2 nm)This behavior is similar to many crystal samples. The origin is the reduced number of entanglements at the surface.Experiments (FCS): Comparison of polymer diffusion, polyethyleneglycol (PEG), when adsorbed to a solid surface and in free solution(a) Flexible polymer chains that adsorb are nearly flat at dilute surface coverage (i.e., de Gennes pancake). The sticking energy for each segment is small, so no single segment is bound tightly, but the molecular sticking energy is large. (b) Diffusion coefficients (D) in dilute solution (blue circles) and at dilute coverage on a solid surface (red squares) plotted against the degree of polymerization (N) at 22°C.on surface: changed power law due to excluded volume statisticsDepending on the interaction between polymer and wall the mobility can by unchanged to bulk (neutral wall) or slowed down (attractive wall).How do polymer surfaces look in experiments?Examples:polystyrene machined titanium dual-acid-etched (DAE)titaniumSEMAFMNakamura et al, JDR 84, 515 (2005)Typically polymer surfaces are significantly smoother as compared to metal and metal oxide surfaces (independent of the surface treatment).PMDEGA after swelling in water vapor after 6 days storage in airZhong, PMB et al, Colloid. Polym. Sci. 289, 569 (2011)Homopolymer surfaces are only smooth with low surface roughness and good homogeneity if the homopolymer film is stable. If it is unstable the surface can roughen.If the polymer crystallizes a completely different polymer surface is observed. Due to the crystals present at the polymer surface, the surface roughness is significantly increased.8.3 Interface between polymerscase I: identical polymers A/A or compatible polymers A/B• interdiffusion of segments • adhesion • model of segment movementexample: PS/PS, PMMA/PMMA, PMMA/PVCcase II: incompatible polymers A/B• width of the interface in equilibrium • polymer-polymer interaction parameter (Flory-Huggins parameter) χexample: PS/PBrS, PS/PMMA, PS/PpMS, PS/PnBMAMathematical description of the interface:Rough interface j with mean z-coordinate set to zero and fluctuations in height z j (x)The rough interface can be replaced by an ensemble of smooth interfaces weighted by a probability density P j (φ)with a mean value ∫=dz z zP j j )(μand root-mean-square (rms) roughness ()∫−=dz z P z j j j )(22μσDifferent probability density function are possible and result in different interfaces: Normalized error-function (solid line) and hyperbolic-tangent (dashed line) have very similar refractive index profiles n j (z).Error function profile⎟⎟⎠⎞⎜⎜⎝⎛−−−+=++j j j j j j j z z erf n n n n z n σ222)(11 results from Gaussian probability density (μi =0) ⎟⎟⎠⎞⎜⎜⎝⎛−=222exp 21)(j jj z z P σσπand hyperbolic-tangent profile ⎟⎟⎠⎞⎜⎜⎝⎛−−−+=++j j j j j j j z z n n n n z n σπ32tanh 22)(11results from probability density (μi =0) ⎟⎟⎠⎞⎜⎜⎝⎛=−j jj z z P σπσπ32cosh 34)(2Both examples are based on symmetric probability functions, however, for real samples this symmetry is not ensured and thus asymmetric profiles can occur (e.g. polymer brush with exponential decay).a) Interface width of polymer interfacesComputer simulation (Monte-Carlo simulation by Binder, 1994):A symmetric binary mixture (polymer1, polymer2) below its critical temperature T c of unmixing is considered in a thin-film geometry confined between two parallel walls, where it is assumed that one wall prefers polymer1 and the other wall prefers polymer2. Then an interface between the coexisting unmixed phases is stabilized.with interface width χ6a L = yields rms-roughness πσ2L rms =only valid for smooth interfaces (σrmssmall) with qR g >1 and N →∞with segment length a scattering vector ()dq πλπ2sin 4=Θ=Not taking into account: - concentration dependence of χDifferent approximations in the framework of Mean Field theories:• Binder: expansion of free energy for φ=0.5 and N 1=N 2=N (with qR g >1 and χN>>1)()NaL 26−=χ• Brosetta: Integration of the quadratic gradient term in the vicinity of φ=0.5⎟⎠⎞⎜⎝⎛⎥⎦⎤⎢⎣⎡+−=21112ln 26N N aL χ• Stamm: minimization of the free energy using a "trial"-function⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡+−=2121166N N aL πχ ⇒ It is possible to determine the polymer-polymer interaction parameter χ froma measurement of the interface width L, in case the degree of polymerization Nand the segment length a are known!• Frisch: modification of the profile on different length scales: deviation from the simple tanh-shapeb) entanglement density at the interface between two immiscible polymers The variation of entanglement density with interface width at an interface between two polymers is calculated using the relationships between chain packing and entanglement. The chain packing is obtained by the use of self-consistent mean-field techniques to calculate the average chain conformations within the interface region.calculated number of segmentsbetween entanglements as a functionof χassuming a bulk value of N e,typical for polystyrene, of 130Oslanec and Brown, Macromolecules 36, 5839 (2003)b) time dependent evolution of the interface widthHowever, all these models describe a time average and the final equilibrium interface. With experimental techniques it is possible to prepare interface between polymers far from equilibrium and to follow changes with time resolution.covering a large range of time and length scales the crossover between 4different regimes is observedt < τe: Rouse regimeτe < t < τf: Reptation regimeτf < t < τd: Blob movementτd < t: Fick diffusioncharacteristic power laws: tαRouse regime: α = 0.5Reptation regime: α = 0.25Fick Diffusion: α= 1.08.4 Rouse Model(P.E.Rouse 1953, extension B. Zimm 1956)The Rouse model describes the conformational dynamics of ideal chains. The main assumptions are: 1. no excluded volume interaction2. no hydrodynamic interactionTherefore one expects this model to work at Θ-condition or polymer melt condition.Polymers are interconnected objects with a large conformational entropy. As a consequence, the universal entropy-driven Rouse dynamics prevails at intermediate scales, where local potentials have ceased to be important and entanglements are not yet active. Key signature of the Rouse motion is the sublinear evolution of the segmental mean-square displacement2)(t2/1tr≈neutron spin echo (NSE) results on the single-chain dynamic structure factor: dynamics of poly(vinyl ethylene) on length scales covering Rouse dynamicsMean-square displacementof the protons, the solid linerepresents Rouse dynamicsRicher et al., Europhys. Lett., 66, 239(2004)Both molecular-dynamics (MD) simulations and MCT calculations on coarse-grained polymer models (bead and spring models)Bead-spring modelIn this model of a polymer molecule it consists of beads and springs forming a chain. The beads are hydrodynamics resistance sites that are dragged on by the suspending fluid. They also experience random Brownian forces caused by the thermal fluctuations in the fluid which are significant on the molecular scale. The spring is an entropic force pulling the adjacent beads together. In fact, the spring represents many monomer units that can coil and uncoil in response to the forces. This model is a reasonable representation of the polymer chain dynamics that actual polymer molecules undergo.8.5 Reptation Model(de Gennes, Doi, Edwards, 1971 + 1978)Reptation is the snake-like thermal motion of very long linear, entangled macromolecules in polymer melts or concentrated polymer solutions. It comprises:• entanglements with other chains hinder diffusion• each polymer chain is envisioned as occupying a tube of length L • movement of polymer chain is only possible within this fictive tube• special type of movement: diffusion only via movement of chain ends,keeping chain conformation unchangedtube diameter ddifferent types of movement:t < τe : no hindering in movement by tube (Rouse type movement)t = τe : density fluctuations within the chain are extended up to the length scale of the tube diameterτe < t < τf : polymer chain moves along the tubeτf < t < τd : chain starts to escape the tubet = τd : chain left the original tubet > τd : completely free movement of the chain with no remembering of the tubeExample:PE M w = 190k d = 49Å or PE M w = 17k d = 54ÅPS d ≈ 50ÅN R e , density ρ und temperature TInfluence on the interface profile:shown for different relative diffusion times t/t f 0.1 s mall →0.9 largeThe jump in the concentration profile is caused by the movement of the chain ends across the interface in the framework of the Reptation model.Attention: the profile needs to be convoluted with the tube diameter d8.6 Fick diffusionTranslation of the complete polymer chain is described as diffusion of the centerof masswith diffusion coefficient D Attention: different diffusion coefficients are existing D S self-diffusion coefficient (A moves in a matrix of A) D I inter-diffusions coefficient (A und B move with respect to each other) D T tracer-diffusion coefficient (marker T moves in matrix A)a) self-diffusion:Movement of chains in the identical environment → very difficult to detect experimentally, because no contrast between chain and environmentPossibility of marking individual chains (by deuteration or with fluorescent end-groups), but strictly this is a tracer experiment already Example: PS volume D S ≈4*10-14 cm 2/s thin film (300Å) D S ≈1.5*10-15 cm 2/s surface D S ≈9.3*10-16 cm 2/s⇒ slowing down of the diffusion due to the spatial confinementb) inter-diffusion:An interface between two polymers, which was prepared out of equilibrium (e.g. with the floating technique) is annealed above the glass transition temperature of both polymers→ broadening of the interface following the above arguments → late stages are caused by diffusion (t > τd )Experiment: X-ray- or neutron reflectivity measurementshydrogenated and deuterated polystyrene has been measured at 115 °C in-situ and in real time using NRdiffusion coefficientD = (1.7±0.2) × 10-17 cm 2/sBucknall et al., Macromolecules 32, 5453 (1999)• "fast-mode" theory B T B A A T A B I D N D N D ,,φφ+= • "slow-mode" theoryB T B A A T A B I D N D N D ,,111φφ+=Examples:Low molecular weight liquids D ≈10-6 cm 2/s polymers D ≈10-12-10-17 cm 2/s depending on temperaturec) tracer-diffusionusing small markers, e.g gold atoms in a well defined layered approachAnnealing the sample above the glass transition temperature of the polymer and probing the distances which the gold atoms had moved after defined times tReiter et al. Macromolecules 24, 1179 (1991)Dependence on molecular weight:Stamm et al., Macromolecules, 26, 2134 (1993)tracer-diffusions constant2−∝W T M D8.7 additional contributions to the interface widthIn addition to the width of the interface between two polymers which results from interdiffusion, contribution from other sources have to be taken into account. They arise from preparation: thickness variation of the filmwrinkles, dust particles, holes, impuritiesintrinsic: capillary wavesA capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics are dominated by the effects of surface tension. These waves are of thermal origin .Assuming a semi-infinite liquid with surface tension γLV a complex movement of the atoms makes a surface wavehaving a dispersion relation()g q q q LV rr r +=ργω32with ρ liquid density g Earth's accelerationSo thermal fluctuations cause a deviation from the ideal flat surface with an excess free energy density()()()()()Ζ⎥⎦⎤⎢⎣⎡ΖΔ+⎟⎠⎞⎜⎝⎛−Ζ∇+=Ζ∫∫22111d l P h A h fA L LV L exr r r γ ()()()()()Ζ⎥⎦⎤⎢⎣⎡Ζ+Ζ∇≈Ζ∫∫221d h P h A h f A L L LV L ex r r r γ yielding the height-height-autocorrelation function and power spectral density()Ζ=Ζr r c LV B q K Tk C 02)(πγ and 22214)(c LV LV B q q T k q L γγπ+=rwith K 0 modified Bessel function of zero ordercapillary waves can only be excited in an interval between λmin and λc for T>>0KA gravitation cut-off of the larges possible wavelength being excited isc c q πλ2=with LVc g q γρ=2 with the capillary length gLVργξ=being the lateral correlation length characteristic for the liquid (on the order of mm)and a short-range cut-off on the scale of the molecule diameter a is needed to avoid divergence of C(Ζ)a q 22maxmin ==πλ with a q π=maxExample: ethanol-vapor interface, σ=6.9 Åx-ray reflectivity and longitudinal diffuse scattering x-ray transverse diffuse scatteringSanyal et al.; Phys. Rev. Lett. 66, 628 (1991)Attention: in case of interfaces instead of surfaces the surface tension γLV is replaced by the interface tension γLL which is orders of magnitude smaller than the surface tension→ contribution of capillary waves to rms-roughness of interface increasedExample: Direct visual observation of thermal capillary waves at the free liquid-gas interface in a phase-separated colloid-polymer mixture imaged with laser scanning confocal microscopy (LSCM) at four different state points approaching the critical point(2004) each image is 17.5 μm by 85 μmAarts et al. Science 304,847Simple liquid → polymer:For highly viscous liquids and polymer melts the capillary waves are overdamped, their amplitude reduced.While, in general, both damped and propagating modes exist, for highly viscous polymers all modes are overdamped, which can be characterized solely by relaxation times τ.physical meaning of the over-damped relaxation timeconstantSinha, University of CaliforniaRoughness measurements are time averaged and cannot reveal the dynamic behavior of the waves.→ Need to probe the dynamics!Experiments: XPCSExample: capillary wave dynamics on glycerol surfaces investigated with XPCS performed at grazing anglesnormalized time correlation function22)()()()(ttt I t I t I g ττ+=described by exponential behavior1exp )(002+⎟⎟⎠⎞⎜⎜⎝⎛−=τττg g→ relaxation times τSeydel et al., Phys. Rev. B 63, 073409 (2001)The capillary wave is identified by its wave vector q and complex frequencyΓ+=i f p ωwhere the real part reflects the propagation frequency and the imaginary part the damping.At the transition from propagating to overdamped behavior f becomes purely imaginary; i.e., ωp =0.The transition from propagating (inelastic) to overdamped (quasielastic) behavior takes place at critical wave vector254ηργLV c q =with surface tension γLV , the dynamic viscosity η, and the density ρ of the polymerExample: Mixture of water and glycerol with 65% weight concentration of glycerolMadsen et al., Phys. Rev. Lett. 92, 096104 (2004)propagation frequency ωp (circles) and the dampingconstant Γ (squares) for the water -glycerol mixture at (a)30 °C and (b) 12 °C.8.8 Thin Film Preparation Techniques a) Solution-castingpreparation of thick polymer films (thickness from 100 nm to several μm)• polymer solution deposited on top of a horizontally oriented substrate• cover full substrate to have chance for uniform film if liquid is not spreading • solvent evaporates under controlled condition (T, p, atmosphere) → a solid film remains on the substrate→ allows for slow drying: films close to equilibrium can be preparedOn the scale of the capillary length the film at the substrate edges differs from the average film.Problems occur in case of pinning effects. If the contact line gets pinned during drying, no homogenous film is formed.Example: ternary blend PS, P αMS and PI cast from toluenePanagiotou, PhD Thesis TU Munich (2004)For complex fluids (highly viscous polymer solutions), the morphology is not determined by the evaporation process, the "coffee stain" effect but essentially by the capillary instabilities.Using the appropriate couple of polymer/solvent, a outward, inward or a lack of Marangoni flow in the droplets, leading to the formation of a rim, a drop or a uniform film, respectively, occurs.b) Spin-coatingpreparation of thin polymer films with thicknesses from 1 to 1000 nm• prepare polymer solution with desired concentration c • cover substrate entirely with polymer solution• select acceleration profile and spinning parameters (time, rotational speed) • start spin-coater after defined wait time → a solid film remains on the substrate→ due to non-equilibrium the film can have enrichment or lateral structuresDepending on rotational speed ω, concentration c, molecular weight Mw and apersonal parameter (wait time, person, machine)Attention: change in slope at entanglement concentration of solutionRuderer, PMB, Chem.Phys.Chem. 10, 664 (2009)Spin-coating is a complicated non-equilibrium processTheoretical description in the framework of a 3-step model (Lawrence, 1988) 1. step – start phasedeposition of solution with C 0 → strong height variationsacceleration of the substrate → most of the solution is flung-off the substrate → film thickness ≈100 μmEnd: Homogeneous film with thickness h 0 with concentration C 0 2. step – mass reduction by conventionevaporation can be neglected in comparison with the flow of solution towards to substrate edges → change of film thickness by convection2/102020341)(−⎟⎟⎠⎞⎜⎜⎝⎛+=t h h t h ηρω 3. step – evaporation of solvent through film surfaceevaporation rate of solvent larger than change in thickness by convection at a film thickness h w → mass reduction only by solvent evaporation, no polymer can leave the substrate anymore → dry, solid film remains()0,1s w f h h φ−=With the initial amount of solvent φs,0Polymer surface depends on the used solvent and on the spin-coating parameters:I: problems with solvents which have very high evaporation rate: → formation of skin on solution surface→ elastic film surface has a changed flow field of the confined polymer solution → hydrodynamic instabilities→ resulting lateral structures which have a star-shape with the center in the center of rotationII: problems with solvents which are hygroscopic and attract water from the surrounding, but are non miscible with water:→ demixing of both components (solvent and water) gives rise to lateral structuresMüller-Buschbaum et al.; Macromolecules 31, 3686 (1998)c) Floating-techniquepreparation of single and multiple polymer films (on non-wetable substrates)Schindler, Diploma Thesis TU Munich (2010)• scratch film with scalpel at 2 mm from substrate edge • put substrate into float box (tilt angle optimal at 10-15°) • add 2-3 drops of deionized water per second • remove substrate after film had decoupled• put second substrate with larger tilt angle into the water • fix polymer film on upper edge of this second substrate • remove water with 2-3 drops/sec • dry films (e.g. 4 h at 50°C)→ typically the needed time is 3-6 hours depending on the M w and film thickness→ not possible for all film thickness (thinner films are more difficult, integer number of R g can work), not possible for heat treated filmsProblems occur in case of wrinkle formation, incorporation of dust particles or trapping of water.Example: freely floating polymer film, tens of nanometers in thickness, wrinkles under the capillary force exerted by a drop of water placed on its surfaceThe wrinkling pattern is characterized by the number and length of the wrinkles.The PS film thickness h was varied from 31 to 233 nm. As the film is made thicker, the number of wrinkles N decreases (there are 111, 68, 49, and 31 wrinkles in these images).Huang et al.; Science 317, 650 (2007)d) Adsorption from solutiondeposition of single molecules, thin layers or thick films from solution with a controlled concentrationSketch:Adsorption is usually described through isotherms, that is, the amount of adsorbate on the adsorbent as a function of its pressure (if gas) or concentration (if liquid) at constant temperature.Isotherms are described bydifferent models:Langmuir isotherm (red) andBET isotherm (green)Computer simulation:Adsorption and self-assembly of linear polymers on smooth surfaces are studied using coarse-grained, bead-spring molecular models and Langevin dynamics computer simulations. The aim is to gain insight on atomic-force microscopy images of polymer films on mica surfaces, adsorbed from dilute solution following a good-solvent to bad-solvent quenching procedure.Chremos et al., Soft Matter5, 637 (2009)Molecular Weight Competition: Upon initial mixing of a formulation, all chains attempt to adsorb on a surface. For adsorbing homopolymers, thermodynamics dictates a preference for adsorption of long chains, and so short chains, originally adsorbed, are displaced form the surface at longer times.Santore+ Fu, Macromolecules 30, 8516 (1997)Fu + Santore, Macromolecules 31, 7014 (1998) Large scale industrial applications involving substantial quantities of complex fluids such as paints, inks, and coatings employ water soluble polymers with a broad distribution of molecular weights: The likelihood that some fraction of the added chains impart the desired interfacial properties means that changes in molecular weight distribution from batch to batch can dramatically impact the properties of a formulation.Experiments: Adsorption of polymers is very common in case of polyeletrolytes and used to build up multi-layers.Layer-by-Layer (LBL) assembly: fabrication of multilayers by consecutive adsorption of polyanions and polycationsDecher et al.; Science 277, 1232 (1997)Fine-tuning the film thickness by ionic strength (addition of salt yields thicker layers; polyanion from salt, polycation from pure water)Decher + Schmitt, Progr. Colloid Polym. Sci. 89, 160 (1992) A small list of polyions already used for multilayer fabrication:e) Spray coatingdeposition of thick films from solution with a controlled concentration, depending on deposition conditions (wet droplets = spraying, dry polymer = airbrush)control parameters: number of depositions, deposition time, solvent, polymer concentration, distance nozzle-surface。

表面界面物理(绪论)

表面界面物理(绪论)

3.表面原子排列的特征
•表面吸附 即使在10-9 torr(1torr=133.3Pa)的环境中仍 然有残余气体存在,所以在表面仍然有气体的吸 附(H2O、O2、H2….等)。ZnO表面的吸附研究
H2O、O2、H2
M M M
Binding energy (eV)
Wide scan XPS spectrum for a low vacuum SSCVD ZnO thin film after 210 seconds of ion beam sputtering.
主要的目的是能尽量弄清表面附近电子的行为并与实验得到的结果比较最理想的情况是通过总能量的计算和求能量最小值来确定表面原子的位置但在计算过程中主要遇到的困难是表面附近电荷分布与原子的位置与体内不同因此势场也和体内情况不同
2010研究生讲义
表面与界面物理
SURFACE & INTERFACE PHYSICS
Binding energy (eV)
High resolution XPS spectra for a low vacuum SSCVD ZnO film after 510 seconds ion beam sputtering. The spectra were used for quantitative analyses.
•表面重构 许多半导体(包括化合物半导体)和金属的表面原子排 列与体内相差较大,其平移对称性与体内有明显的不同, 这种现象称为重构。 两种常见的类型: •表面晶格与体内完全不相同,如Au的,[001]方向 的表面是与[111]表面相近的密堆积。 •表面晶格尺寸较体内大——晶格常数增大。
例:Si(111)2×1的重构
三、表面科学目前主要的研究领域

北大考研-工学院研究生导师简介-王建祥

北大考研-工学院研究生导师简介-王建祥

爱考机构-北大考研-工学院研究生导师简介-王建祥王建祥目前任职:力学与空天技术系教授(长江学者特聘教授)教育经历:1979年-1983年:南京航空航天大学本科生。

获学士学位1983年-1986年:华南理工大学硕士研究生。

获硕士学位1991年-1995年:澳大利亚悉尼大学博士研究生。

获博士学位1996年和1997年在英国帝国理工学院和丹麦阿尔堡大学做博士后研究1998年起在北京大学力学与工程科学系工作。

研究领域:固体力学、复合材料力学、细观力学背景资料:现任北京大学工学院力学与空天技术系教授、英国卡迪夫大学荣誉访问教授(2005-2016)、中国力学学会常务理事、中国力学学会国际交流与合作工作委员会副主任、中国复合材料学会常务理事、ActaMechanicaSinica、ScienceChina(G)、InternationalJournalofAppliedMechanics、《应用力学学报》编委;ActaMechanicaSolidaSinica(AssociateEditor),AdvancedModelingandSimulationinEngineeringSci ences(AssociateEditor).王建祥长期从事复合材料力学、非均质材料的力学和物理性能研究,在复合材料层合板的断裂和强度分析、优化设计、短纤维增强复合材料的本构关系、非均质材料细观力学和广义传导性能、纳米力学等方面取得了一系列研究成果。

王建祥是全国优秀博士论文指导教师(2007)。

曾获得北京大学优秀共产党员标兵(2008)、北京高校优秀共产党员(2008)、北京市优秀教师(2009)、北京市“群众心目中的好党员”(2010)等荣誉,以及国家教育部跨世纪人才基金(2000)、中国力学学会青年科技奖(2002)、国家杰出青年科学基金(2005),2008年被聘为教育部长江学者特聘教授。

主要论文列表:1.Sun,T.,Wang,J.&Kang,W.2013.VanderWaalsinteraction-tunedheattransferinnanostructures.Nanos cale5,128–133.2.Zhang,K.,Zhao,X.W.,Duan,H.L.,Karihaloo,B.L.&Wang,J.2011.Patterntransformations inperiodiccellularsolidsunderexternalstimuli.JournalofAppliedPhysics109,Art.084907.3.Wang,J.,Huang,Z.P.,Duan,H.L.,Yu,S.W.,Feng,X.Q.,Wang,G.F.,Zhang,W.X.&Wang,T.J.2011.Surfacestresseffectinmechanicsofnanostructuredmaterials. ActaMechanicaSolidaSinica24,52—82.4.Zhang,K.,Han,T.,Duan,H.L.&Wang,J.2010Atheoreticalstudyofpossibleshapeandphasechangesof carbonnanotubecrystalsduringcontractionandexpansion.Carbon48,2948—2952.5.Zhang,K.,Duan,H.L.,Karihaloo,B.L.&Wang,J.2010Hierarchical,multilayeredcellwallsreinforced byrecycledsilkcocoonsenhancethestructuralintegrityofhoneybeecombs.ProceedingsoftheNationalA cademyofSciencesoftheUnitedStatesofAmerica,107(21),9502—9506.6.Zhang,K.,Si,F.W.,Duan,H.L.&Wang,J.2010Microstructuresandmechanicalpropertiesofsilksofsilk wormandhoneybee.ActaBiomaterialia6,2165—2171.7.Shao,L.H.,Luo,R.Y.,Bai,S.L.&Wang,J.2009Predictionofeffectivemoduliofcarbonnanotube-reinfo positeStructures87,274—281.8.Duan,H.L.,Wang,J.&Karihaloo,B.L.2009Theoryofelasticityatthenano-scale.AdvancesinApplied Mechanics42,1-68.9.Duan,H.L.,Yi,X.,Huang,Z.P.&Wang,J.2007bAunifiedschemeforpredictionofeffectivemoduliofm ultiphasecompositeswithinterfaceeffects:PartII–applicationandscalinglaws.MechanicsofMaterials39,94—103.10.Duan,H.L.,Yi,X.,Huang,Z.P.&Wang,J.2007aAunifiedschemeforpredictionofeffectivemoduliof multiphasecompositeswithinterfaceeffects:PartI–theoreticalframework.MechanicsofMaterials39,81—93.11.Duan,H.L.,Wang,J.,Karihaloo,B.L.&Huang,Z.P.2006Nanoporousmaterialscanbemadestiffertha nnon-porouscounterpartsbysurfacemodification.ActaMaterialia54,2983—2990.12.Wang,J.,Duan,H.L.&Yi,X.2006Boundsoneffectiveconductivitiesofheterogeneousmediawithgra dedconstituents.PhysicalReviewB73,Art.104208.13.Duan,H.L.,Karihaloo,B.L.,Wang,J.&Yi,X.2006Effectiveconductivitiesofheterogeneousmediaco ntainingmultipleinclusionswithvariousspatialdistributions.PhysicalReviewB73,Art.174203.14.Duan,H.L.,Jiao,Y.,Yi,X.,Huang,Z.P.&Wang,J.2006Solutionsofinhomogeneityproblemswithgrad edshellsandapplicationtocore-shellnanoparticlesandcomposites.JournaloftheMechanicsandPhysics ofSolids54,1401—1425.15.Wang,J.,Duan,H.L.,Huang,Z.P.&Karihaloo,B.L.2006Ascalinglawforpropertiesofnano-structure dmaterials.ProceedingsoftheRoyalSocietyA462,1355—1363.16.Huang,Z.P.&Wang,J.2006Nonlinearmechanicsofsolidscontainingisolatedvoids.AppliedMechani csReviews59,210—229.17.Chu,H.J.&Wang,J.2005Straindistributioninarbitrarilyshapedquantumdotswithnonuniformcomp osition.JournalofAppliedPhysics98,Art.034315.18.Duan,H.L.,Wang,J.,Huang,Z.P.&Karihaloo,B.L.2005Eshelbyformalismfornano-inhomogeneitie s.ProceedingsoftheRoyalSocietyA461,3335--3353.19.Duan,H.L.,Wang,J.,Huang,Z.P.&Karihaloo,B.L.2005Size-dependenteffectiveelasticconstantsof solidscontainingnano-inhomogeneitieswithinterfacestress.JournaloftheMechanicsandPhysicsofSoli ds53,1574--1596.20.Duan,H.L.,Wang,J.,Huang,Z.P.&Zhong,Y.2005Stressfieldsofaspheroidalinhomogeneitywithani nterphaseinaninfinitemediumunderremoteloadings.ProceedingsoftheRoyalSocietyA461,1055--108 0.21.Zhong,Y.,Wang,J.,Wu,Y.M.&Huang,Z.P.2004Effectivemoduliofparticle-filledcompositewithinh omogeneousinterphasePartII:positesScienceandTechnology64, 1353--1362.22.Wu,Y.M.,Huang,Z.P.,Zhong,Y.&Wang,J.2004Effectivemoduliofparticle-filledcompositewithinh omogeneousinterphasePartI:positesScienceandTechnology64,1345--1351.23.Wang,J.,&Pyrz,R.2004bPredictionoftheoverallmodulioflayeredsilicate-reinforcednanocomposit esPartII:positesScienceandTechnology64,935--944.24.Wang,J.,&Pyrz,R.2004aPredictionoftheoverallmodulioflayeredsilicate-reinforcednanocomposit esPartI:positesScienceandTechnology64,925--934.25.Wang,J.2002Overallmoduliandconstitutiverelationsofbodiescontainingmultiplebridgedmicrocra cks.InternationalJournalofSolids&Structures39,2203--2214.26.Wang,J.,Fang,J.&Karihaloo,B.L.2000Asymptoticboundsonoverallmoduliofcrackedbodies.Inter nationalJournalofSolids&Structures37,6221--6237.27.Wang,J.,Fang,J.&Karihaloo,B.L.2000Asymptoticsofmultiplecrackinteractionsandpredictionofo verallmodulus.InternationalJournalofSolids&Structures37,4261-4273.28.Davies,G.A.O.,Hitchings,D.&Wang,J.2000Predictionofthresholdimpactenergyforonsetofdelami nationinquasi-isotropiccarbon/positesScie nceandTechnology60,1--7.29.Wang,J.,Andreasen,J.H.&Karihaloo,B.L.2000Thesolutionofaninhomogeneityinafiniteplaneregi positesScienceandTechnology60,75--82.30.Karihaloo,B.L.,Wang,J.&Grzybowski,M.1996Doublyperiodicarraysofbridgedcracksandshort-fi brereinforcedcementitiousmaterials.JournaloftheMechanicsandPhysicsofSolids44,1565--1586. 31.Wang,J.&Karihaloo,B.L.19994bModeIIandmodeIIIstresssingularitiesandintensitiesatacracktipt erminatingonatransverselyisotropic-orthotropicbimaterialinterface.ProceedingsoftheRoyalSociety A444,447--460.32.Wang,J.&Karihaloo,B.L.1994aCrackedcompositelaminatesleastpronetodelamination.Proceedin gsoftheRoyalSocietyA444,17--35.联系方式:电话:+861062757948电子邮件:个人主页:/jxwang.htm。

材料科学基础:第7章 晶体缺陷3 面缺陷

材料科学基础:第7章 晶体缺陷3 面缺陷

Coherent twin boundaries
=3 (1 1 1) twin in copper along a <1 1 0>HOWE. Interface in Materials, 1997
30 黄孝瑛 2000
孪晶的形成与堆垛层错密切相关 根据孪晶形成原因,有形变孪晶、生长孪晶和退火孪晶 堆垛层错能低的金属易于产生孪晶
γ = dW/ds 表面能与表面原子排列致密度相关,原子密排的表面具有 最小的表面能; 表面能与表面曲率相关,曲率大则表面能大; 表面能对晶体生长、新相形成有重要作用。
What surfaces are preferred by nature?
/
例如
FCC晶格中(111)面的堆垛顺序为A B C A B C A B C…
△△△△△△…
当某一层开始出现颠倒时,变成 A B C A C B A C B A…
△△△
△△△ △△△
对称关系
堆垛层错
7.4.4 相界 phase boundary
具有不同结构的两相之间的分界面称为“相界”
完美共格
弹性畸变
/mode_corrosion/stress_corrosion_cracking.htm
27 Intergranular SCC in a copper alloy
7.4.3 孪晶界 twin grain boundary
孪晶 Twins 两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位相关 系,这两个晶体称为孪晶; 这一公共晶面称为孪晶面(孪晶界) Twin plane (boundary)。
晶界位置的确定
对二维点阵
两个晶粒位相差θ ; 晶界对某点阵面的夹角φ;

凝聚态物理课程大纲CondensedMatterPhysicsCourseOutline

凝聚态物理课程大纲CondensedMatterPhysicsCourseOutline

《凝聚态物理》课程大纲“Condensed Matter Physics” Course Outline一、课程简介 (course description)教学目标 (goal):Basic understandings of solids, energy bands, semiconductors, superconductivity and magnetism, and their main uses.主要内容 (course contents):Condensed matter physics covers an extremely broad range of topics. Unfortunately therefore it is one of the most difficult course to teach and a one of the most boring course to learn. On the other hand, research in this area of physics has (arguably) resulted in the most useful outcomes. The topics to be covered in this course are crystal lattice structure, Bragg reflection and reciprocal lattice, phonons, free electron Fermi gas, energy band and band structure, semiconductors and semiconductor devices, Fermi surface and metals, superconductivities/magnetism, plasmon/plariton/polaron, optical properties and excitons, surfaces, interfaces, and nanostructures. We will try to make it fun by injecting more applied topics of relevance to our everyday lives such as semiconductor devices and applications.二、教学内容 (teaching contents)第一章 Chapter 1***主要内容 Main subject:Crystal lattice structure重点与难点important and difficult points:Read Chapter 1 of the book. The materials are mostly definitions to be familiar with. Must remember 1 Å (angstrom) = 10-10 m (meter) =0.1 nm (nanometer). The cases of simple, body-centered, and face-centered cubic latticestructures should be remembered. T (expressed in a’s) defines a lattice.第二章 Chapter 2***主要内容 Main subject:Crystal diffraction and reciprocal lattice重点与难点 important and difficult points:Review Fourier transform, light diffraction.Reciprocal lattice is essential in understanding X-ray Bragg reflections and therefore experimental determination of crystal structures. Structure factor and atomic form factor are introduced. G (expressed in b’s which are in turn defined by a’s) defines a reciprocal lattice.第三章 Chapter 3***主要内容 Main subject:Crystal binding重点与难点 important and difficult points:difference and different binding strengths of various forces, van der Waals force treated in more mathematical terms with a physical model. Concepts of cohesive, lattice, and Madelung energies are introduced. Energy scales involved per atom are in the eV range.第四章 Chapter 4***主要内容 Main subject:Phonons: lattice vibration重点与难点 important and difficult points:models of one-dimensional spring-connected harmonic oscillators give physical insight and realistic dispersion shapes, phonons are “quasi-particles” of lattice vibration, independent K values are within the first Brillouin zone第五章 Chapter 5***主要内容 Main subject:Phonons: thermal properties重点与难点important and difficult points:Density of state, Debye temperature, Debye and Einstein models, anharmonic effects, phonon-phonon scattering, thermal expansion, thermal conductivity/resistivity, Umklapp process第六章 Chapter 6***主要内容 Main subject:Free electron Fermi gas重点与难点 important and difficult points:Electron motion is treated as though they are freely moving, Fermi-Dirac distribution, Fermi energy vs. chemical potential, Ohm’s law, Drude formula, Hall effect, specific heat, thermal conductivity第七章 Chapter 7***主要内容 Main subject:Energy band and band structure重点与难点 important and difficult points:How does the periodic potential give rise to energy band?第八章 Chapter 8***主要内容 Main subject:Semiconductors and semiconductor devices重点与难点important and difficult points:Applications of band theory, band gap, and band structure, effective mass, hole.第九章 Chapter 9***主要内容 Main subject:Fermi surface and metal重点与难点important and difficult points:Everything happens at the Fermi surface, almost第十章 Chapter 10***主要内容 Main subject:Superconductivities and magnetism重点与难点 important and difficult points: Basic concepts of superconductivity and magnetism, their physical mechanism.第十一章 Chapter 11***主要内容 Main subject:Plasmon/polariton/polaron, optical properties and excitons重点与难点 important and difficult points:Various quasi-particles involving coupling among electrons, phonons, and photons.第十二章 Chapter 12***主要内容 Main subject:Surfaces, interfaces, and nanostructures重点与难点 important and difficult points:Surfaces, interfaces and associated nanostructures form much of current research topics and promising applications.****Lectures on Superconductivities and Magnetism will be given by Prof. Hang Zheng.Some lectures on Energy Bands and/or Semiconductors will likely be given by Prof. Harald Schneider of Helmholtz Zentrum Dresden-Rossendorf, Germany, who is also a visiting chair professor with the SJTU.三、教学进度安排 (detailed calendar)Class locations & times: Tuesday & Thursday 10:00-11:40东中院1-104教学内容 Content 教学形式Teaching format作业 Homework第一周 Week 1 (Feb. 14 & 16) Introduction: solids,semiconductors, andtheir usefulnessCrystal, lattice,diffraction,reciprocal latticeClassroomlecturesAssignment 1:Read Ch. 1What gadget would youlike to have/invent andwhy?Due Feb. 21第二周 (Feb.21 & 23) Wave diffraction,reciprocal latticeClassroomlecturesAssignment 2:Reproduce Fig. 1 of Ch.2,List formulas that youused.Problem #1, 4 & 6 ofCh. 2.Due March 1第三周 (Feb.28 & March 1) Crystal binding Classroomlectures第四周 (March 6 & 8) Phonons I: CrystalvibrationsClassroomlecturesAssignment 3:1. At the zoneboundaries K=+/-p/a,how do the two modeslook like?That is, what are relativevalues of u and v?Draw a picture (similarto Fig. 9) for these twomodes for transversemodes.2. Problem #1 of Ch. 4.Due March 15.第五周(March Phonons II: Thermal Classroom Assignment 3:13 & 15) properties lectures Derive an expressionfor 2 dimension (let Abe the area of thesample)Problem 5 in the bookDue March 22.第六周 (March 20 & 22) Free electron FermigasClassroomlectures.Assignment 4:Reproduce Fig. 3.Derive DOS for 1 & 2D.Due: March 29第七周 (March 27 & 29) Free electron Fermigas,Plasmons,polaritons, and polaronsClassroomlectures第八周 (April 3 & 5) Plasmons,polaritons, and polaronsClassroomlecture第九周 (April 10 & 12) Energy bands Classroomlectures, given byProf. Schneider,& mid-termexam on April 10at 2pm-3:40pm,中院105(7-8节)第十周 (April 17 & 19) Energy bands, and SemiconductorsClassroomlectures.第十一周(April 24 & 26)Semiconductors Classroomlectures第十二周 (May 3) SemiconductordevicesClassroomlecture, May 1 isa holiday第十三周 (May 8 & 10) Superconductivitiesand magnetismClassroomlectures – Prof.Zheng第十四周 (May 15 & 17) Superconductivitiesand magnetismClassroomlectures – Prof.Zheng第十五周 (May 22 & 24) Superconductivitiesand magnetismClassroomlectures – Prof.Zheng第十六周 (May 29 & 31) Fermi surfaces andmetals, Optical processes andClassroomlecturesexcitons, andNanostructures(16 weeks total lecture time, weeks 17 & 18 – reading/final exam week)Office hours: Every Tuesday after class 2:00pm-5:45pm. On those no-class days, there will be no office hour. The office hour will be at my office (Physics Building, Room 902).During the period of Prof. Zheng’s lectures, the office hour will be held in Room 1011.四、课程考核及说明 (Exams and grades)40%为平时成绩(大作业等)Homework assignments60%为考试成绩Exams (mid-term 20% & final 40%)五、教材与参考书 (books and references)∙Lecture notes, to provide softcopy∙Charles Kittle, "Introduction to Solid State Physics" (John Wiley & Sons, Inc, New York), 8th edition. Students are encouraged to get both the translation version and the Englishversion.。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

斯坦福EE课程

斯坦福EE课程

斯坦福EE课程EE Course WebpagesPlease note:This page is not automatically generated.Toaddyourclasstothislist,****************************************.edu.Also, these web pages are maintained by the instructors of the classes and may be out of date. See instructions on how to put up webpages.See also the Directory of Stanford class home pages and list of EE classes on the eeclass system.Course # Course Name Cross-listedE 40 Introductory ElectronicsEE 017Q From Chips to Genes SeminarEE 041 Physics of Electrical EngineeringEE 044 Engineering StorytimeEE 045 Science and Technology in WWII and What Happened AfterwardEE 060Q Science of the Earth's Environment GEOPHYS 60QEE 100 The Electrical Engineering ProfessionEE 101A Circuits IEE 101B Circuits IIEE 102A Signal Processing and Linear Systems IEE 102B Signal Processing and Linear Systems IIEE 105 Feedback Control Design ENGR 105EE 106 Planetary ExplorationEE 108A Digital Systems IEE 108B Digital Systems IIEE 109 Digital Systems Design LabEE 116 Semiconductor Device PhysicsEE 122 Analog Circuits LaboratoryEE 133 Analog Communications Design LaboratoryEE 134 Introduction to PhotonicsEE 136 Introduction to Nanophotonics and NanostructuresEE 137 Laboratory Electronics APPPHYS 207EE 138 Laboratory Electronics APPPHYS 208EE 140 The Earth from Space GEOPHYS 140EE 141 Engineering ElectromagneticsEE 141M Engineering Electromagnetics with MathematicaEE 144 Wireless Electromagnetic Design LaboratoryEE 167 Introductory Computer Graphics CS 148EE 168 Introduction to Digital Image ProcessingEE 178 Probabilistic Systems AnalysisEE 179 Introduction to CommunicationsEE 184 Programming Paradigms CS 107EE 189A Object-Oriented System Design CS 108EE 189B Software Project CS 194EE 201B EE SeminarEE 202 Medical ElectronicsEE 203 The Entrepreneurial EngineerEE 204 Business Management for Electrical Engineers and Computer Scientists EE 205 Introduction to Control Design Techinques ENGR 205EE 206 Control System Design and Simulation ENGR 206EE 207D Optimal Control and Hybrid Systems AA 278EE 209A Analysis and Control of Nonlinear Systems ENGR 209AEE 209B Advanced Nonlinear Control ENGR 209BEE 212 Integrated Circuit Fabrication ProcessesEE 213 Heat Transfer in Microdevices ME 358EE 214 Analog Integrated Circuit DesignEE 215 Bipolar Analog Integrated Circuit DesighEE 216 Principles and Models of Semiconductor DevicesEE 218 Introduction to Nanotechnology and NanoelectronicsEE 222 Applied Quantum Mechanics I APPPHYS 150/222EE 223 Applied Quantum Mechanics II APPPHYS 262/223EE 227 Application of Quantum Information APPPHYS 227EE 228 Basic Physics for Solid State ElectronicsEE 229B Thin Film and Interface Microanalysis MATSCI 323EE 229D Introductin to Magnetism and Magnetic Nanostructures MATSCI 347 EE 231 Introduction to LasersEE 232 Laser DynamicsEE 234 Photonics LaboratoryEE 235 Guided Wave Optical DevicesEE 236 Solid State Physics I APPPHYS 272EE 237 Solid State Physics II APPPHYS 273EE 238 Electronic and Optical Properties of Solids MATSCI 199/209EE 241 Waves IEE 243 Semiconductor Optoelectronic DevicesEE 244 Communication Engineering Transmission SystemsEE 245 Wireless Electromagnetic Design LaboratoryEE 246 Microwave EngineeringEE 247 Introduction to Optical Fiber CommunicationsEE 249 Introduction to the Space EnvironmentEE 251 Progress in Worldwide Telecommunications MS&E 237EE 252 Antennas for Telecommunications and Remote SensingEE 254 Principles of Radar SystemsEE 256 Numerical ElectromagneticsEE 261 The Fourier Transform and its ApplicationsEE 262 Two-Dimensional ImagingEE 263 Introduction to Linear Dynamical SystemsEE 264 Digital FilteringEE 265 Signal Processing LaboratoryEE 268 Introduction to Modern OpticsEE 271 Introduction to VLSI SystemsEE 273 Digital Systems EngineeringEE 274 Introduction to Cryptography CS 255EE 275 Logic DesignEE 276 Introduction to Wireless Personal CommunicationsEE 277 Stochastic Decision ModelsEE 278 Introduction to Statistical Signal ProcessingEE 279 Introduction to Communication SystemsEE 281 Embedded System Design LaboratoryEE 282 Computer Architecture and OrganizationEE 283 Compilers CS 143EE 284 Introduction to Computer NetworksEE 285 Programming Languages CS 242EE 286A Operating Systems and System Programming CS 140EE 286B Advanced Topics in Operating Systems CS 240EE 287 Introduction to Computer Graphics CS 248EE 288 Mathematical Methods for Robotics, Vision and Graphics CS 205 EE 289 Introduction to Computer Vision CS 223BEE 290ABC Curricular Practical TrainingEE 292A Global Positioning Systems AA 272CEE 292B Electronic Documents: Paper to DigitalEE 292E Analysis and Control of Markov ChainsEE 292F Digital Processing of Speech SignalsEE 293A Fundamentals of Energy ProcessesEE 293B Fundamentals of Energy ProcessesEE 294A Artificial Intelligence: Principles & Techniques CS 221EE 294B Probabilistic Models in Artificial Intelligence CS 228EE 294C Machine Learning CS 229EE 309 Semiconductor Memory Devices and TechnologyEE 310 Integrated Circuits Technology and Design SeminarEE 311 Advanced Integrated Circuit Fabrication ProcessesEE 312 Micromachined Sensors and ActuatorsEE 313 Digital MOS Integrated CircuitsEE 314 RF Integrated Circuit DesignEE 315 VLSI Data Conversion CircuitsEE 316 Advanced VLSI DevicesEE 317 Micropatterning for Integrated CircuitsEE 318 Logic Synthesis of VLSI CircuitsEE 319 Computer-Aided System Design LaboratoryEE 320 Automatic Formal Verification Techniques CS 356EE 321 MEMS DesignEE 322 Molecular Electronics and PhotonicsEE 325 Nanoscale Science, Engineering and Technology MATSCI 316EE 326 Organic Semiconductors for Electronics and Photonics MATSCI 343 EE 327 Properties of Semiconductor MaterialsEE 329 Electronic structure of surfaces and interfacesEE 335 Introduction to Information Storage SystemsEE 336 NanophotonicsEE 338A Quantum Optics and Measurements APPPHYS 387EE 338B Mesoscopic Physics and Nanostructures APPPHYS 388EE 340 Advanced Topicsin Optics and Quantum OpticsEE 343 Advanced Optoelectronic DevicesEE 344 High Frequency LaboratoryEE 345 Optical Fiber Communication LaboratoryEE 346 Introduction to Nonlinear OpticsEE 347 Optical Methods in Engineering ScienceEE 348 Advanced Optical Fiber CommunicationsEE 349 Nano-Optics and Grating PhotonicsEE 350 RadioscienceSeminarEE 354 Introduction to Radio Wave ScatteringEE 356 Elementary Plasma PhysicsEE 358A Lasers Laboratory APPPHYS 304EE 358B Nonlinear Optics Laboratory APPPHYS 305EE 359 Wireless CommunicationsEE 360 Wireless NetworksEE 361A Modern Control Design I ENGR 207AEE 361B Modern Control Design II ENGR 207BEE 362 Applied Vision and Image Systems PSYCH 221EE 363 Linear Dynamical SystemsEE 364 Convex Optimization with Engineering ApplicationsEE 366 Introduction to Fourier OpticsEE 367A Signal Processing Methods in Musical Acoustics MUSIC 420EE 367B Applications of the Fast Fourier Transform MUSIC 421EE 367C Perceptual Audio Coding MUSIC 422EE 368 Digital Image ProcessingEE 369A Medical Imaging Systems IEE 369B Medical Imaging Systems IIEE 369C Medical Image ReconstructionEE 371 Advanced VLSI Circuit DesignEE 372 Quantization and CompressionEE 373A Adaptive Signal ProcessingEE 373B Adaptive Neural NetworksEE 376A Information TheoryEE 376B Information TheoryEE 377A Dynamic Programming and Stochastic Control MS&E 351EE 377B Approximate Dynamic Programming MS&E 339EE 378 Statistical Signal ProcessingEE 379A Digital Communication IEE 379B Digital Communication IIEE 379C Advanced Digital CommunicationEE 380 Computer Systems Laboratory ColloquiumEE 381A Database System Implementation CS 346EE 381B Transaction Processing and Distributed Databases CS 347EE 382A Advanced Processor ArchitectureEE 382B Parallel Computer Architecture and Programming CS 315AEE 382D Advanced Computer ArithmeticEE 383 Advanced Compiling Techniques CS 243EE 384A Internet Routing Protocols and StandardsEE 384B Multimedia Communication over the InternetEE 384C Wireless Local Area NetworksEE 384D Projects in Computer Networks CS 344EE 384M Network AlgorithmsEE 384S Network Architecture and Performance Engineering MS&E 334 EE 384X Packet Switch Architectures IEE 384Y Packet Switch Architectures IIEE 385A Digital Systems Reliability SeminarEE 386A Parallel Computer Architecture and Programming CS 315AEE 387 Error-Correcting CodesEE 392A Database System Principles CS 245EE 392B Introduction to Image Sensors and Digital CamerasEE 392F Logic Synthesis of VLSI CircuitsEE 392G Terahertz Technologies and ApplicationsEE 392O Optimization ProjectsEE 392Q Mobile and Wireless Networks and ApplicationsEE 392R Charged Particle OpticsEE 392T Seminar in Chip Test and DebugEE 392W Wireless Sensor Networks Concepts and ImplementationEE 392Y Wireless Sensor Network LabEE 392Z Random Matrices in CommunicationsEE 398 Image and Video SystemsEE 398A Image Communication IEE 398B Image Communication IIEE 399 Topics in Computer Vision CS 328EE 402A Topics in International Technology ManagementEE 402S Topics in International Advanced Technology ResearchEE 402T Entrepreneurship in Asian High Tech IndustriesEE 410 Integrated Circuit Fabrication LaboratoryEE 414 Design of Discrete RF Circuit for Communication SystemsEE 418 Topics in NeuroengineeringEE 419 High-Frequency Modeling of Semiconductor DevicesEE 469A In Vivo Magnetic Resonance Spectroscopy and Imaging RAD 226EE 469B RF Pulse Design for Magnetic Resonance ImagingEE 478 Topics in Multiple User Information TheoryEE 479 Multiuser Digital Transmission SystemsEE 481A Computer Graphics CS 348AEE 481B Computer Graphics CS 348BEE 483 Computer Architecture and Compilers from Embedded Applications CS 343 EE 484 Topics in Computer Graphics CS 448EE 485 Broad Area Colloquium for AI, Geometry, Graphics, Roboticsand Vision CS 528 EE 492M Space-Time Wireless Communications。

Physics of Surfaces and Interfaces[Chapter-4-Equilibrium Thermodynamics]英文精品课件

Physics of Surfaces and Interfaces[Chapter-4-Equilibrium Thermodynamics]英文精品课件
4. Eq1 The Hierarchy of Equilibria
Equilibrium thermodynamics was developed in the second half of the 19th century. Its early extension to the description of interfaces by J. W. Gibbs [4.1] was developed at a time when scientists had little understanding of surfaces and interfaces and no knowledge of their atomic structure. The thermodynamics of interfaces was therefore formulated with a minimum set of assumptions, without taking into account any specifics of a particular surface or interface system. Instead, interface thermodynamics introduced some very general concepts, as e. g. the surface particle excesses, which - while being defined within the closed framework of thermodynamics - could not, or at least not easily, be identified with anything measurable outside the framework of thermodynamics. Furthermore, since, the early formulation of interface thermodynamics took place long before the concept of equilibrium in the electronic system of metals and semiconductors could be formulated with the help of Fermi-Statistics one could not conceptually connect the electronic properties of solid materials with electrolytes. Last, not least some of the basic assumptions or conventions in early interface thermodynamics such as the assumption of a global equilibrium and the definition of a dividing plane turned out to be imprudent in the light of our present understanding of interfaces on the atomic scale. It is probably therefore that current textbooks on surface science appear to treat interface thermodynamics more out of a sense of duty than with care, and, once done with it, seldom refer to that treatment in the remainder of the text. In recent years however, surface thermodynamics received considerably more attention, and rejuvenation at the same time. The revolution introduced by the discovery of the scanning tunneling microscope has, among other things, brought about the possibility to observe single atoms on surface and to track their motion. The same instrument permits the observation of epitaxial growth phenomena during or after deposition on the length scale of microns and beyond. We are therefore faced with the task to connect single atom properties and dynamics with macroscopic morphological features, thereby bridging 4-8 orders of magnitude on the length scale and even more orders of magnitude on the time scale. Just as it is impossible to observe the development of the morphology during an epitaxial growth process on the mm/cm-length scale by keeping track of all atom motions, it is also impossible to describe the spatiotemporal development of

surface and interface

surface and interface

– Later we’ll provide a fully microscopic (molecular) derivation as well.
Illustrative Examples
• Several examples are shown in the book.
• Figure II-4a illustrates a curved interface of zero mean curvature. (The principal curvatures are the inverses of the corresponding principal radii.)
• If we displace the surface along the normal, the change in surface area is
dA = (x1 + dx1)(x2 + dx2) - x1 x2 = x1dx2 + x2dx1
Thus, the change in surface free energy is dF = g(x1dx2 + x2dx1)
Capillarity
• Capillarity deals with interfaces that are sufficiently mobile to assume an equilibrium shape, e.g. thin films, liquids in air, liquids in liquids.
• Consider that figure. • We will use a different (but equivalent) notation.
• We denote the normal to the surface by n and the principal directions perpendicular to the normal by e1 and e2.

材料表面与界面 第五章 表界面热力学与动力学

材料表面与界面 第五章 表界面热力学与动力学

Wc=2γa 或 Wc=2γb
3 ( a b ) 4
1 Wab ( a b ) 2
由上式可以看出,Wc>Wab,即相同物质间的摩擦要大于 不同物质间的摩擦。
固体的表面自由能和表面张力 与液体相比: (1) 固体的表面自由能中包含了弹性能。表面张力在数值上不 等于表面自由能; (2) 固体的表面张力是各向异性的。 (3) 实际固体的表面绝大多数处于非平衡状态,决定固体表面 形态的主要是形成固体表面时的条件以及它所经历的历史。 (4) 固体的表面自由能和表面张力的测定非常困难。
如果在活动边框上挂一重物,使 重物质量W2与边框质量W1所产 生的重力F与总的表面张力大小 相等方向相反,则金属丝不再滑 动。
F 2 l
l 是滑动边的长度,因膜有两个面, 所以边界总长度为2l, 就是作用 于单位边界上的表面张力。
在两相(特别是气-液)界面上,处处存在着一种张 力,这种力垂直于表面的边界,指向液体方向并 与表面相切。 把作用于单位边界线上的这种力称为表面张力,用 或 表示。 表面张力的单位是:
表面自由能定义
G ( )T , P ,nB As
其物理意义是在等温等压以及恒组成条件下,每增加 单位表面时系统吉布斯自由能的增加
ቤተ መጻሕፍቲ ባይዱ
又可称为表面Gibbs自由能
2
表面自由能的单位: J m
表面张力 (surface tension)
表面自由能 (surface free energy)
界面能
实验证明,界面能 γab约为 1/4~1/2(γa+γb)。如果a、 b两物质 能相互溶解或能形成金属间化合物,其界面能较小,约为
1 ( a b ) 4
若a、b 两物质不能相互溶解,其界面能较大,约为 a、b为同一物质 a、b相互溶解 a、b不能相互溶解

chemical physics letters分区 -回复

chemical physics letters分区 -回复

chemical physics letters分区-回复Chemical Physics Letters是一个重要的科学期刊,其研究领域涵盖了化学和物理学的交叉领域。

本文将介绍Chemical Physics Letters的分区,并详细解释每个分区的主题及其意义,以帮助读者更好地了解该期刊的研究内容。

Chemical Physics Letters is a well-known scientific journal that publishes research articles in the field of chemical physics. As a reputable journal, it classifies its articles into different subject areas to facilitate the readers' understanding and search for specific topics. These subject areas are commonly referred to as "sections." Here, we will explore each section in Chemical Physics Letters and provide a comprehensive explanation of their themes.1. Atomic and molecular physics section: This section covers studies that focus on the properties and behavior of individual atoms and molecules. It includes topics such as molecular spectroscopy, atomic structure, and dynamics. Research in this section aims to understand the fundamental characteristics of atoms and molecules, which is crucial for advancing our knowledge in various fields, including chemistry, physics, and materials science.2. Surface science and catalysis section: This section investigates the properties and behavior of materials' surfaces and interfaces, including catalytic reactions. It encompasses studies on surface structure, adsorption, desorption, and surface reactions. Surface science plays a vital role in understanding the reactivity of materials and developing efficient catalytic processes, which have significant applications in energy conversion, environmental remediation, and chemical synthesis.3. Nanoscience and nanotechnology section: This section focuses on the study of nanoscale materials and their properties. It includes research on nanomaterial synthesis, characterization, and applications. Nanoscience has revolutionized many technological fields, such as electronics, medicine, and energy, due to the unique properties exhibited by materials at the nanoscale. This section aims to explore the fundamental science behind nanomaterials and their potential for various applications.4. Physical chemistry and chemical physics section: This section encompasses a broad range of studies that bridge the gap between chemistry and physics. It covers topics such as chemical kinetics,quantum chemistry, thermodynamics, and molecular dynamics simulations. Research in this section aims to understand the fundamental principles governing chemical processes and their physical underpinnings. The knowledge gained from this section contributes to the development of new materials, drug design, and environmental science.5. Spectroscopy and dynamics section: This section focuses on the study of the interaction of light with matter and the dynamics of molecular and chemical systems. It includes research on various spectroscopic techniques and theoretical modeling of molecular dynamics. Spectroscopy provides valuable insights into the electronic and vibrational properties of molecules, which play a crucial role in understanding their behavior and reactivity. This section explores the latest developments in spectroscopy and dynamics to uncover new insights into molecular behavior.6. Biophysical chemistry section: This section investigates the application of physical and chemical principles to understand biological systems. It includes studies on protein structure, dynamics, and interactions, as well as the development of new biophysical techniques. Biophysical chemistry plays a vital role inelucidating the mechanisms of biological processes, drug discovery, and the design of biomaterials.In conclusion, Chemical Physics Letters encompasses various subject areas that cover a wide range of research topics in the field of chemical physics. From atomic and molecular physics to biophysical chemistry, each section focuses on specific themes and contributes to the advancement of scientific knowledge. By categorizing articles into different sections, the journal aims to provide a comprehensive overview of the diverse research conducted in the field of chemical physics.。

应用物理学SCI期刊排名

应用物理学SCI期刊排名

49
Plasma Processes and Polymers
50
IEEE Journal of Photovoltaics
51
Nano Futures
52
Nano Convergence
53 IEEE TRANSACTIONS ON ELECTRON DEVICES
54
VACUUM
55
IEEE Photonics Journal
0.158460 0.100240 0.484600 0.005670 0.168910 0.011250 0.214130 0.115660 0.005780 0.111140 0.278940 0.016260 0.002060 0.004520 0.002750 0.038880 0.008840 0.008420 0.007720 0.001310 0.104500 0.034330 0.207430 0.048100 0.017430 0.005480 0.132300 0.002640 0.009040 0.015030 0.004690 0.033740 0.012980 0.032660 0.001450 0.001190 0.184670 0.021210 0.329400 0.045520 0.018210 0.012640 0.049990 0.045890 0.016850 0.013010 0.031700 0.014070
30
QUANTUM ELECTRONICS
31
APL Photonics
32
Physical Review Applied
33
APL Materials
34
SURFACE & COATINGS TECHNOLOGY

CR)Band Bending in Semiconductors_ Chemical and Physical Consequences at Surfaces and Interfaces

CR)Band Bending in Semiconductors_ Chemical and Physical Consequences at Surfaces and Interfaces
Review /CR
Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces
Zhen Zhang and John T. Yates, Jr.*
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
3.4. Surface Structure-Induced Band Bending and Photochemistry 3.4.1. Surface Reconstruction 3.4.2. Crystallographic Surface Orientation 3.5. Gas-Adsorption-Induced Band Bending and Photochemistry 3.5.1. Dual Roles of O2 in CO Oxidation 3.6. Metal/Semiconductor Band Bending and Photochemistry 3.6.1. Enhancement of Electron−Hole Separation in Semiconductors 3.6.2. Enhancement of Electron−Hole Separation in Metals 3.7. Semiconductor/Semiconductor Band Bending and Photochemistry 3.8. Band Bending in a Real Photocatalytic System 4. Summary Author Information Corresponding Author Notes Biographies Acknowledgments References U U U V W W W Z AA AB AB AB AB AB AC AC AC

scopus的asjc 学科代码表

scopus的asjc 学科代码表

ASJC学科代码(All Science Journal Classification)是由Elsevier公司制定的一种分类体系,用于对不同学科领域的期刊进行分类。

ASJC学科代码表是研究者在搜索和评估学术文献时经常使用的工具,利用该表可以快速找到自己感兴趣的学科领域的相关期刊和文章。

ASJC学科代码表共分为27个大类,每个大类下包含若干个学科领域,通过对期刊所属学科领域进行分类,可以帮助研究者更加方便地查找相关的学术文献,了解各个学科领域的最新研究进展。

以下是ASJC学科代码表的具体分类:1. Mathematics- Mathematics(all)- Applied Mathematics- Computational Mathematics- Mathematics Education- Discrete Mathematics and Combinatorics- Geometry and Topology- Logic- Mathematics (miscellaneous)- Numerical Analysis- Statistics and Probability2. Physics and Astronomy- Physics and Astronomy(all)- Astronomy and Astrophysics- Atomic and Molecular Physics, and Optics - Condensed Matter Physics- Nuclear and High Energy Physics- Statistical and Nonlinear Physics- Surfaces and Interfaces3. Chemistry- Chemistry(all)- Analytical Chemistry- Electrochemistry- Inorganic Chemistry- Organic Chemistry- Physical and Theoretical Chemistry- Spectroscopy4. Earth and Planetary Sciences- Earth and Planetary Sciences(all)- Atmospheric Science- Earth and Planetary Sciences (miscellaneous) - Earth-Surface Processes- Geochemistry and Petrology- Geology- Geophysics- Oceanography- Palaeontology5. Environmental Science- Environmental Science(all)- Ecology- Environmental Chemistry- Environmental Science (miscellaneous) - Global and Planetary Change- Management, Monitoring, Policy and Law - Nature and Landscape Conservation- Pollution- Waste Management and Disposal- Water Science and Technology6. Social Sciences- Social Sciences (all)- Anthropology- Archaeology- Development- Economics, Econometrics and Finance- Geography, Planning and Development- Health(social science)- Law- Library and Information Sciences- Linguistics and Language- Political Science and International Relations - Psychology- Public Administration7. Arts and Humanities- Arts and Humanities(all)- Language and Linguistics- Arts and Humanities(miscellaneous)- History- Visual Arts and Performing Arts- Literature and Literary Theory- Philosophy8. Health Professions- Health Professions(all)- Health(social science)- Health Professions (miscellaneous)- Nutrition and Dietetics9. Business, Management and Accounting- Business, Management and Accounting(all)- Accounting- Information Systems and Management- Management Information Systems- Marketing- Strategy and Management10. Decision Sciences- Decision Sciences(all)- Information Systems- Management Science and Operations Research- Strategy and Management以上是ASJC学科代码表的部分分类,研究者可以根据具体的研究领域和需求进行查找和使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
of motion for a particular atom n in the Cartesian direction D is
M (n)u&&D (n) ¦) (n,D; m, E )uE (m) 0 ,
(7.2)
m,E
_3_1_0___7__V__ib_r_a_ti_o_n_a_l _E_x_c_it_a_ti_o_n_s_a_t_S_u_r_f_a_ce_s_______________________________________
7. Vibrational Excitations at Surfaces
Many aspects of the chemistry of adsorbates were revealed through the vibration spectra of the adsorbed species on surfaces, as the vibration frequency spectrum is characteristic for the strength and the type of the bonds. The development of experimental techniques for studying surface vibrations was therefore a major step forward in the understanding of surface chemistry. Of fundamental interest are the vibrational excitations of clean, two-dimensional periodic surfaces, the surface phonons. The general basis for the consideration of vibrational excitations is the Born-Oppenheimer approximation [7.1]. According to this approximation, the electronic eigenstates follow the moving atoms adiabatically, which means than the electron energy levels change with the atom positions, but the electrons remain in the same eigenstates. The total energy of the solid as a function of the atom position therefore plays the role of a potential for the atom motion. We begin this section by looking into the consequences of the Born-Oppenheimer approximation for periodic surfaces.
in which M(n) is the mass of the atom n. The system of equations (7.2) technically couples all atom motions to each other. In reality, the coupling vanishes rapidly for larger distances. For an approximate picture of the vibration spectrum the consideration of nearest and possibly next-nearest neighbors often suffices. For a three-dimensional periodic structure, the system of equations (7.2) is separated into a subsets of 3s equations, with s the number of atoms in the unit cell, by the ansatz
) (^r(n)`) )0 (^r0 (n)`) ¦ĭ(n,D; m, E )uD (n)uE (m)...Fra bibliotek(7.1)
n,m,D ,E
Here, uD(n) is the deviation of the atom n from the equilibrium position in the Cartesian direction D. The first derivatives vanish, as the expansion is around the global minimum of the potential. If higher order terms are neglected, the equation
7.1 Surface Phonons of Solids
7.1.1 General Aspects
The potential ) for the atom motion depends on the coordinates {r(n)} of all atoms in the solid. The potential can be expanded into a Taylor series around the equilibrium positions denoted as r0(n).
uD (n) u0,D ei Ȧ(q)t qr0 (n)
(7.3)
The quantized plane wave solutions of the type (7.3) are the phonons of the 3Dsolid. A flat surface/interface breaks the 3D-translational symmetry of the solid, which gives rise to solutions of (7.2) that are localized at the surface/interface in the sense that the vibrational amplitude decays in an essentially exponential manner away from the surface/interface. These modes are called surface (interface) modes, or surface (interface) phonons. A schematic overview over the spectrum of eigenmodes at a surface is shown in Fig. 7.1. The frequencies are displayed as function of the component of the wave vector parallel to the surface q||. In this projection, bulk modes form a continuum because their wave vector perpendicular to the surface remains arbitrary. The continuum of bulk phonons is shown as a shaded area in Fig. 7.1. The frequency of a surface phonon is uniquely determined by q||. Surface phonons have therefore a defined dispersion branch in this graph. They are plotted as solid lines. Genuine surface modes can exist only if no bulk phonons of the same symmetry are present in the same Zq|| range. In addition to the surface phonons, so-called surface resonances exist.
相关文档
最新文档