材料燃烧性能的锥形量热计实验
CONE(锥形量热仪)法在塑料燃烧性能综合评估中的应用研究
CONE(锥形量热仪)法在塑料燃烧性能综合评估中的应用研究【摘要】本文介绍了塑料的燃烧性能及其常规测试方法,新型测定聚合物燃烧热性能仪器——锥形量热仪在评定聚合物燃烧性能中的应用,并提出了全面对燃烧性能进行综合评估的新型方法,从而为塑料的正确选型提供了一定的依据【关键词】塑料锥形量热仪层次分析法燃烧性能综合评估聚氯乙烯高抗冲聚苯乙烯1.前言目前,塑料的应用领域已经遍及工农业生产和人民生活的各个领域。
据统计,1999年全球五种主要热塑性塑料的总产量已近1.1亿吨[1],而三大合成材料(塑料,合成纤维,合成橡胶)中塑料占2/3以上的比例。
然而,作为一种高聚物,塑料燃烧迅速并释放出大量的热和有毒烟气,在火灾中暴露出较大的危害性,所以,对塑料的燃烧性能进行全面综合的评估以及正确选型就显得日益重要。
2.塑料的燃烧性能及其常用测定方法2.1塑料的燃烧性能塑料燃烧的主要过程可表示如下:热源(热量反馈)图1 塑料燃烧过程示意图通常塑料在火灾中的燃烧性能主要包括以下几个方面:⑴引燃性引燃性是指材料被引燃的难易程度,是燃烧的初始阶段。
材料在热作用下被引燃时,是热流和时间共同作用的结果。
⑵火焰传播性火焰传播性是指火焰沿材料表面蔓延发展的程度。
其决定因素关键是材料表面有可燃性气体产生,或在材料内部能形成可燃性气体但能逸至材料表面。
火焰传播速度越大,则越易使火灾波及附近的可燃物而使火灾扩大。
⑶释热性由表1[2]中给出的几种塑料的燃烧热值可以看出,塑料燃烧通常能释放出大量的热。
释热性影响着火灾环境温度和火灾传播速度,释热越大的物质,其危险性程度越高,反之越低。
名称 聚苯乙烯 聚乙烯聚氯乙稀 赛璐珞聚酰胺 酚醛树脂燃烧热40.18 45.88 18.05-28.0317.30 30.84 13.47 (KJ/g)表1 几种常见塑料的燃烧热值⑷生烟性烟气的生成不仅大大降低了火场的可见度,影响着人员疏散和救援工作的开展,而且烟气本身的窒息性直接威胁着人身安全。
建材锥形量热试验
建材锥形量热试验1. 背景介绍建材是指用于建筑工程中的各种材料,如混凝土、砖块、砂浆等。
建材的质量和性能直接影响着建筑物的安全性和耐久性。
锥形量热试验是一种常用于评估建材燃烧性能的方法。
通过对建材在高温下的燃烧特性进行研究,可以为建筑物的设计和材料的选择提供参考依据。
2. 锥形量热试验原理锥形量热试验是利用锥形量热仪对建材样品进行测试,以测定其燃烧性能。
试验中,将建材样品置于锥形量热仪的加热器中,通过控制加热速率,使样品受热并发生燃烧。
同时,通过测量样品的温度和热释放速率等参数,来评估建材的燃烧特性。
3. 锥形量热试验参数在进行锥形量热试验时,常用的参数包括:•最大热释放速率(Peak Heat Release Rate,PHRR):表示样品燃烧时释放的最大热量。
•平均热释放速率(Average Heat Release Rate,AHRR):表示样品燃烧时平均每单位时间释放的热量。
•烟气产生速率(Smoke Production Rate,SPR):表示样品燃烧时产生的烟气的速率。
•烟气毒性(Toxicity):表示样品燃烧时产生的烟气对人体的毒性。
•温度曲线(Temperature Curve):表示样品燃烧时温度的时间变化曲线。
4. 锥形量热试验过程下面是标准的锥形量热试验过程:步骤一:样品制备•准备建材样品,通常为规定尺寸和形状的试块。
•清洁样品表面,确保无油污和杂质。
步骤二:仪器设置•将样品放入锥形量热仪中,并确保样品合适的安装位置。
•设置测试参数,如加热速率、采样频率等。
步骤三:试验开始•启动锥形量热仪,开始测试。
•监测样品温度、热释放速率和烟气产生速率等参数的变化。
步骤四:数据分析•根据实验结果,计算最大热释放速率、平均热释放速率、烟气产生速率等参数。
•分析温度曲线和燃烧过程中的特征。
步骤五:结果评估•根据试验结果评估建材的燃烧性能和烟气产生情况。
•与相应的标准进行对比,判断建材是否符合要求。
聚合物材料燃烧性和阻燃性锥形量热仪测试评价法
聚合物材料燃烧性和阻燃性锥形量热仪测试评价法有机聚合物材料是一种新兴而广泛使用的材料,但由于其内在易燃性,使使用场所的火灾危险性大大增加。
因此,如何正确评价其在实际火情条件下的燃烧与阻燃性能已成为一项迫在眉捷的首要问题。
锥形量热仪( CON E)是美国国家科学技术研究所( N IST)的Babra uskas于1982年提出的。
它是以氧消耗原理为基础的新一代聚合物材料燃烧测定仪,氧消耗原理是指每消耗1 g的氧,材料在燃烧中所释放出的热量是13. 1 kJ(误差为5% 或更好) ,且受燃料类型和是否发生完全燃烧影响很小。
只要能精确地测定出材料在燃烧时消耗的氧量就可以获得准确的热释放速率。
不热辐射强度下的热释放速率( HRR )是CON E给出的最重要的参数之一,同时还能给出其它许多参数。
它们可从不同角度评价聚合物材料的燃烧性和阻燃性。
不同于以往的传统实验室型评价方法(如: 极限氧指数LOI, NBS烟箱等) , CON E的实验结果与大型燃烧实验结果之间存在很好的相关性[2 ]。
以往为了正确评价建筑材料、装饰材料和电线电缆等必须进行大型燃烧实验,浪费了大量的物力和财力。
近年来,由于CON E的出现使评价工作大为改观。
有利的促进了研究和评价工作的进展,并制定了相应的实验标准,如: ASTM E1354- 90 和90A 和ISODIS 5660 /90。
CON E可望在评价聚合物材料燃烧性和阻燃性上代替或部分代替大型燃烧实验,并能进行阻燃机理及烟等方面的研究工作。
1、锥形量热仪可模拟多种火情强度,测定聚合物材料的热释放速率等燃烧参数的CON E由六部分组成: ( 1)截断锥形加热器和有关控制电路; ( 2)通风橱和有关设备; ( 3)天平及试样架; ( 4)氧气和气体分析仪表; ( 5)烟测量系统; ( 6)有关的辅助设备。
该仪器具有较宽的热辐射功率范围( 10 kW /m2~110 kW /m2)。
木材和高聚物燃烧性能的锥形量热仪研究
中图分类号:X913.4,TKl21
文献标志码:B
文章编号:1009~0029(2009)Q2一0080—03
随着经济发展和社会进步,火灾发生的频率及其 所造成的损失也在不断增加。为了预防和控制火灾的 发生,最大限度地减少火灾损失,需要研究影响火灾发 生和发展的各种因素,其中材料本身的燃烧性能对火 灾的行为起着决定性的作用。
从图1中的曲线可看出,与未经阻燃处理的榉木 比较,经聚磷酸铵真空加压阻燃处理榉木的热释放速 率变化平缓得多,不存在尖锐的峰值,且热释放速率的 平均值有很大程度的降低,因而降低了火灾危险性。
80
万方数据
250
200
E
主150
褂 瑙100 橙
壁50
穰
O
l
73
145
235
307
379
时问/s
图l’榉木热释放速率变化曲线图
相似文献(10条)
1.期刊论文 王蔚.张和平.万玉田.WANG Wei.ZHANG He-ping.WAN Yu-tian 基于锥形量热仪的PVC电缆燃烧性能试验
研究 -安全与环境学报2008,8(2)
采用锥形量热仪研究不同型号PVC电缆的燃烧性能.通过改变锥形量热仪的热辐射强度模拟不同规模的火灾.分析火灾中电缆样品的热释放速率、质量 损失速率、烟气产生速率等重要参数,研究热辐射强度、电缆护套层厚度对这些参数的影响,以及不同火灾性能参数间的关系.结果表明,热辐射强度越大 ,电缆的平均热释放速率、质量损失速率和烟气产生速率的峰值越高;电缆护套厚度越大,平均热释放速率、热释放速率的峰值越高,燃烧持续时间越长.由 于电缆结构的影响.电缆样品与护套标准片状样品的火灾特性存在差异.电缆样品的试验结果可以更好地反映电缆在真实火灾中的燃烧性能.
锥形热量仪的原理及应用
锥形热量仪的原理及应用1. 引言锥形热量仪(Cone Calorimeter)是一种广泛应用于材料燃烧性能测试的实验设备。
本文将介绍锥形热量仪的原理及其在材料燃烧性能测试中的应用。
2. 原理锥形热量仪是一种利用辐射热传导原理测量材料燃烧性能的设备。
其工作原理如下:•在实验中将待测材料置于锥形加热源上方,在一定的热辐射条件下进行加热。
•待测材料受热后开始燃烧,产生烟气和火焰。
•烟气和火焰中的能量通过辐射、对流和导热等方式传递给锥形加热源。
•锥形加热源通过测量传递到其上的能量来计算材料的燃烧特性和热释放率。
3. 应用锥形热量仪在材料燃烧性能测试中具有广泛的应用,主要包括以下几个方面:3.1 材料燃烧特性评估锥形热量仪可以用于评估材料的燃烧特性,包括:•燃烧时间:锥形热量仪可以测量材料的燃烧时间,即材料从开始燃烧到完全燃尽所需的时间。
•热释放率:通过测量锥形加热源上的能量,锥形热量仪可以计算出材料的热释放率,用于评估材料的火灾危险性。
•烟气产生速率:锥形热量仪还可以测量材料燃烧过程中产生的烟气的产生速率,用于评估材料的烟雾毒性。
3.2 材料燃烧性能改进锥形热量仪可以用于评估不同材料的燃烧性能,从而指导材料的设计和改进。
通过对比不同材料燃烧过程中的热释放率、烟气产生速率等参数,可以选择具有较低火灾危险性和烟雾毒性的材料进行应用。
3.3 材料阻燃剂评估锥形热量仪可以用于评估材料阻燃剂的效果。
通过在待测材料中添加不同类型和含量的阻燃剂,可以比较其对燃烧特性的影响,从而选择最佳的阻燃剂组合。
3.4 构建火灾模型锥形热量仪产生的数据可以用于构建火灾模型,模拟材料在火灾中的燃烧过程。
通过模型的建立,可以预测火灾发展过程、烟气扩散路径等,为火灾防控提供科学依据。
4. 结论锥形热量仪是一种用于评估材料燃烧性能的重要实验设备。
通过测量材料燃烧过程中的热释放率、烟气产生速率等参数,可以评估材料的燃烧特性和火灾危险性,指导材料的设计和改进。
锥形量热仪中材料点燃的数值模拟研究
关 键 词 : 燃模 型 ;材 料 ;传 热 方 程 ;数 值 模 拟 点
中图分类号 : 1. 。 X9 3 4 TK1 1 2
文献标志码 : A
真 实 的 材 料 点 燃 过 程 非 常 复 杂 , 包 括 多 维 热 传 导 它
文章 编 号 :0 9 0 9 2 1 ) 7 5 9 3 1 0 —0 2 ( O 0 O 一O 6 一o
消防理 研 霎 论 究
锥 形 量 热 仪 中材 料 点 燃 的数 值 模 拟 研 究
徐 亮 。丁严 艳
( . 华 市 消 防 支 队 , 江 金 华 3 1 0 ;2 杭 州 电子 科 技 大 学 , 江 杭 州 3 0 1 ) 1金 浙 20 0 . 浙 1 0 8
摘 要 : 据 锥 形 量 热 仪 中 热 辐 射 均 匀 分 布 的 特 性 , 一 根 从
方程 出发 , 用数值模拟的方法对材料的点燃进行研究 。 采 1 点 燃 数值 模 拟
传热方程 , 过数值 模拟 的方 法计 算得 到无 量纲 点燃 时 间, 通 利 用 幂 指数 线 性 拟 合 的方 法得 到 了热 薄 型 、 中型 和 热 厚 型 材 料 热
的 点 燃 时 间 公 式 , 过 无 量 纲 热 辐 射 通 量 给 出 了 各 预 测 公 式 的 通
火 灾 的发 生 、 延 具 有 重 要 的 意 义 。锥 形 量 热 仪 是 火 灾 蔓
领 域 杰 出 的 发 明 , 研 究 材 料 点 燃 性 能 的 常 用 设 备 。前 是 人 在 此 方 面 已 经 开 展 过 一 些 研 究 。S e r on 利 用 积 分 p ap it
眦 的热 损 失 边 界 条 件 采 用 Qun ir it e和 Mik l e k oa推 导出 论 理
锥形量热仪法测低水合硼酸锌对木材的阻燃作用
锥形量热法研究低水合硼酸锌对木材的阻燃作用一、实验目的1.了解锥形量热仪的工作原理及其使用;2.学会分析锥形量热实验数据和图谱。
二、实验原理锥形量热仪(CONE)是以氧消耗原理为基础的材料燃烧性能测定仪,可获得可燃材料在火灾中的燃烧参数有热释放速率(HRR)、总释放热(THR)、有效燃烧热(EHC)、烟及毒性参数和质量变化参数(MLR)等,与CONE测试相关的工业标准有ISO 5660,ATSM E 1354等。
CONE是火灾科学研究的重要手段,具有其他小型燃烧试验和实体实验不能比拟的优点, 它可为阻燃材料进行等级划分,预测材料着火危险性,评价材料的烟释放能力,研究阻燃材料的阻燃特性及阻燃机理等。
锥形量热仪(CONE)是根据氧消耗原理来测定材料燃烧热的仪器。
耗氧燃烧热是指燃料与氧完全反应时消耗单位质量氧所产生的热量,用E来表示。
1917年,Thorntond对大量有机物的燃烧热进行了研究发现,各种化合物的燃烧热各不相同,但是,它们的耗氧燃烧热却十分接近。
1980年,Huggett进一步对有机高分子及天然有机材料进行了系统的研究,试验表明典型有机化合物耗氧燃烧热值都接近于12.72MJ/Kg,典型有机高分子材料耗氧燃烧热值接近13.02MJ/Kg,天然有机高分子材料耗氧燃烧热值接近13.21MJ/Kg。
大量的试验结果表明,绝大多数的材料耗氧燃烧热值接近13.1MJ/Kg这一平均值,偏差在5%左右。
这个平均值通常被用作火灾中有机材料耗氧燃烧热值,那么根据耗氧原理,实际测量时只需测定材料燃烧前后气体中氧含量的变化,就可以根据公式算出材料燃烧所产生的热量。
Q=E(m O2σ- m O2) (1)还可以进一步给出试样在单位时间内、单位面积上释放出的热量。
配备上天平、光度测定仪和气体分析仪等辅助装置还有计算机系统,锥形量热仪就能同时给出试样的质量、烟和尾气等成分随时间变化的动态情况。
通过辐射锥,锥形量热仪能够模拟多种火灾强度,能够同时提供几十组相关参数或曲线。
新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用【毕业论文】
图书分类号:密级:毕业设计(论文)题目:新一代评估方法——锥形量热仪 (CONE)法在材料阻燃研究中的应用学生姓名班级学院名称专业名称指导教师学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。
本人完全意识到本声明的法律结果由本人承担。
论文作者签名:日期:年月日学位论文版权协议书本人完全了解关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归所拥有。
有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。
可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
论文作者签名:导师签名:日期:年月日日期:年月日新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用【摘要】利用新一代评估方法----锥形量热仪法对材料阻燃机理、材料危险性等级划分、烟毒释放的评价、材料燃烧性及阻燃性评价等方面的应用进行了分析讨论,结果表明锥形量热仪法对阻燃剂、阻燃制品的研究开发及阻燃剂在火灾中的行为研究有重要意义。
【关键词】锥形量热仪评估机理阻燃燃烧The New Evaluating Methods—CONE on the Application of MaterialFire Retarded ResearchNew evaluating methods―CONE is used on the application of material fire retarded research. The analysis results, including researching fire retarded mechanism, carving up material hazard grade, evaluating the release of smoke and poison, evaluating the properties of combustion and fire retardation, etc., are discussed. The results demonstrate that CONE method is of signification on the development and research of fire retardants and fire retarded products, and on the behavior research of fire retardants in fire disaster.Key words:CONE evaluating methods mechanism fire1 引言阻燃科学与技术的发展对阻燃材料燃烧行为的评估、测试手段提出了越来越高的要求。
材料燃烧性能的锥形量热计实验
中国矿业大学安全工程学院实验报告课程名称:消防专业实验实验名称:材料燃烧性能的锥形量热计实验姓名:学号:实验日期: 2011.3.6实验1 材料燃烧性能的锥形量热计实验本实验的理论依据为:“对于许多有机液体和气体,当其完全燃烧时,消耗单位质量的氧气所释放出的热量是一个常数,为13.1MJ/kgO2 ”。
从而利用此原理,求出不同试件,不同情况下的各个参数,通过对数据结果进行分析,并以表格的形式展现出来,分析对比,得出结论。
本实验测定了不同的木材,分别在3okw/m2,50kw/m2的辐射强度下燃烧的各项参数数据,以及pvc在3okw/m2,50kw/m2的辐射强度下的实验。
一.下面是对木材HRR数据进行整理得出的图表:图表1-1通过图表可以看出,在该热辐射强度的条件下,我们可以发现:1)在相同的条件下,无烤漆柞木的燃烧需要的热量高于其他木材,从表格中可以看出,大概在50s左右的时间,柞木开始放热。
2)每一种木材在燃烧的过程中,并非呈平缓上升或下降的状态,过程中都出现了多个峰值,其中在初期阶段,带烤漆松木热释放速率的峰值最高,HRR曲线较为最为陡峭,无烤漆柞木最低。
3)经过分析可得多次出现峰值的原因:起初因材料的热分解产生气体阻碍了木炭与氧气的接触,因此,开始为分解气体的燃烧,反应逐渐加快,热释放速率不断增加,直至出现第一峰值后热释放速率开始下降,后来因分解产生的气体逐渐减少,开始转变为木炭的的有焰燃烧,固又会出现第二峰值,直至最后木炭燃烧殆尽......图表1-2在辐射强度为30kw/m2的条件下,我们可以看出:1)各木材在初期阶段,热释放速率的上升曲线较为陡峭,在下降阶段较为平缓,且带烤漆松木燃烧所需要的热量较少,其次为无烤漆桦木,带烤漆符合与无烤漆柞木。
2)在该条件的HRR曲线中,带烤漆松木最先达到最高值,且热释放速率皆大于其他木材。
下面是同种材料(以及pvc材料)在不同热辐射强度条件下HRR曲线的对比:图表 2.2.1图表 3.2.2图表 4.2.3图表 5.2.4通过上面几组结果相似的图表,我们可以看出:同种材料,在相同的其他条件下,热辐射强度小的燃烧所需要的时间,热量更多,其热释放速率,峰值都小于辐射强度高的同种材料,燃烧时间大于高辐射强度条件下的材料。
新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用【毕业论文】
图书分类号:密级:毕业设计(论文)题目:新一代评估方法——锥形量热仪 (CONE)法在材料阻燃研究中的应用学生姓名班级学院名称专业名称指导教师学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。
本人完全意识到本声明的法律结果由本人承担。
论文作者签名:日期:年月日学位论文版权协议书本人完全了解关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归所拥有。
有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。
可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
论文作者签名:导师签名:日期:年月日日期:年月日新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用【摘要】利用新一代评估方法----锥形量热仪法对材料阻燃机理、材料危险性等级划分、烟毒释放的评价、材料燃烧性及阻燃性评价等方面的应用进行了分析讨论,结果表明锥形量热仪法对阻燃剂、阻燃制品的研究开发及阻燃剂在火灾中的行为研究有重要意义。
【关键词】锥形量热仪评估机理阻燃燃烧The New Evaluating Methods—CONE on the Application of MaterialFire Retarded ResearchNew evaluating methods―CONE is used on the application of material fire retarded research. The analysis results, including researching fire retarded mechanism, carving up material hazard grade, evaluating the release of smoke and poison, evaluating the properties of combustion and fire retardation, etc., are discussed. The results demonstrate that CONE method is of signification on the development and research of fire retardants and fire retarded products, and on the behavior research of fire retardants in fire disaster.Key words:CONE evaluating methods mechanism fire1 引言阻燃科学与技术的发展对阻燃材料燃烧行为的评估、测试手段提出了越来越高的要求。
聚合物的燃烧与锥形量热分析
聚合物的燃烧和阻燃1 聚合物的燃烧由于聚合物主要成分是碳、氢等元素,其暴露于外部热源后,容易分解产生可燃性挥发物,这些可燃性挥发物和空气混合形成可燃性气体混合物,当温度达到着火点后,就会被点燃,引发火灾。
聚合物火灾对生命、财产和环境的危害主要由材料燃烧的热效应和烟效应两方面决定。
热效应:是指聚合物材料燃烧时放出的热能以辐射、对流和传导三种方式向周围环境传播而引起对生命、财产和建筑结构的热损害;烟效应是指材料燃烧时放出烟雾和有毒气体对生命和环境造成的损害。
燃烧发生的三要素:可燃物、温度和氧气浓度。
聚合物燃烧的特点:燃烧之前的受热分解过程和燃烧过程中的释热、生烟性能。
释热性:热释放速率生烟性:烟密度或光密度有毒气体:CO、卤化氢、硫化氢、氰化氢等发烟速率和CO等毒性气体的生成速率,是评价聚合物材料火灾安全性的重要指标。
1.1 聚合物的燃烧过程聚合物的燃烧过程按时间划分分为5个阶段:受热熔融、热分解、点燃、燃烧和火焰传播1)受热熔融聚合物材料从外部热源获得热量,表面温度逐渐升高,然后从表面至内部形成温度梯度,并随时间而变化。
聚合物材料的温度逐渐升高,升温速率取决于材料的比热容、热导率和材料在加热过程中发生相变或结构变化时吸收或放出的热量大小。
2)热分解聚合物在外部热源的作用下,达到一定温度(起始分解温度)时,聚合物分子链中的弱键首先发生断裂,进而引发其他键的断裂,使得聚合物大分子链迅速分解。
聚合物的热分解可以分为解聚反应、消除反应、环化反应、交联反应等。
聚合物的热分解有两种方式:非氧化热分解(无氧参与)、氧化热分解(氧和热共同作用)表层多为---氧化热分解反应内部多为---非氧化热分解反应在起始阶段,空气中的氧气浮着于聚合物材料表面,聚合物分子链在热和氧的作用下,热氧分解反应就会发生。
随着聚合物分解反应的进行,会有大量分解产物生成。
其中气相挥发物汇聚在固体表面,与空气中的氧混合形成可燃性气体混合物,即后来引发聚合物燃烧的“燃料”。
材料燃烧特性和烟气分析实验指导书
实验二材料燃烧特性和烟气分析实验指导书1 实验目的(1) 利用锥形量热仪测量材料燃烧时的热释放速率,掌握锥形量热计的基本使用方法,了解炭化材料和非炭化材料燃烧过程中的热释放速率规律,了解热释放速率与外界施加的热流之间的关系。
(2) 利用烟气分析仪对材料燃烧产物中气体产物的组成和浓度、烟和烟密度、气体产物的毒性等进行分析,掌握烟气分析仪的基本使用方法。
(3) 通过综合实验结果分析所选材料的燃烧特性。
2 实验原理2.1 锥形量热仪及其实验原理1993年,国际标准化组织(ISO)正式出版了一个利用锥形量热仪测试材料的标准—ISO 5660。
至今,锥形量热仪已成为火灾科学研究领域最为重要的小比例测试仪器,可用来研究材料的热释放速率(Heatrelease rate)、点燃时间(Time to ignition)、烟密度(Smoke ratio)、质量损失速率(Mass loss rate)、一氧化碳(Carbonmonoxide yield)产率等燃烧特性。
如下图所示,锥形量热仪由以下几部分组成:注:凡图中标有*记号的尺寸均为关键性尺寸,并且公差应为±1mm。
其他尺寸均为推荐尺寸,应尽量采用。
1—电机;2—风机;3—孔板(孔径57mm);4—导压管;5—热电偶;6—环形取样器;7—排气管道(内径114mm);8—孔板(孔径57mm);9—集烟罩;10—试样;11—辐射锥图1 锥形量热仪实验装置示意图(1) 锥形加热器:一个截取掉顶端的圆锥形加热器,额定电压为240 V,额定功率5000 W,且能在水平和垂直方向上产生100 KW/m2的热流。
(2) 样品夹持器:能沿水品和垂直方向,承载长、宽、高为100 mm×100 mm×50 mm的试件。
(3) 荷载池:用于测量样品的质量,其精确度为0.1 g,量程为3.5 kg。
载荷池应当封闭,以免因温度变化对它产生影响。
(4) 点火器:带有安全熔断装置的10 KV电子点火器。
锥形量热仪燃烧测试实验方法.
锥形量热仪燃烧测试实验方法一、实验简介应用锥形量热仪测试聚合物的阻燃性能是一种先进的测试技术。
锥形量热仪对于燃烧中的聚合物材料具有多项测试功能 , 如 : 热释放速率 ( Heat ReleaseRate, HRR、质量损失速率 (M ass Loss Rates, M LR 、有效燃烧热,总生烟量 ( To ta l Smoke Production,TPS、烟释放速率 ( Rate of Smoke Release, RSR 等、参数在火灾安全工程与设计、材料阻燃性能研究、评价等方面应用广泛。
因此 , 实验测试技术和测试数据分析也非常重要 , 如对 ABS 用几种不同成分的填料 , 组合而成的几种聚合物材料燃烧测试数据的采集与分析 , 就是在充分了解、熟悉锥形量热仪的结构性能、工作原理的基础上 , 在掌握了熟练的测试技术和操作步骤的基础上 , 对测试数据的成功与否 , 有明确的认定。
这样才能对材料的阻燃性能进行分析评定 , 得出准确的结论 , 尤其是在测试前对仪器的标定 , 过滤材料的更换与过程检查 , 除湿材料过程变化与更换等 , 都是很重要的测试技术。
二、结构概述锥形量热仪是典型的机电一体化组合设备 , 其外形结构简单、紧凑 , 但是功能原理、控制原理和操作要求却极其严格 , 是多种行业知识的综合应用 , 如图 1所示。
由图可知 , 锥形量热仪的结构及原理涉及到机械、化工、通风、制冷、仪表、电气控制、流体力学、热力学、激光原理、计算机原理、计量检测等方面的知识 , 涵盖面较广 , 是非常典型的高新技术综合应用的精密测试仪器。
三、测试要点3. 1 工作原理锥形量热仪的主要工作原理是耗氧原理 , 当样品件在锥形电加热器的热辐射下燃烧时 , 火焰就会消耗掉空气中一定浓度的的氧气 , 并释放出一定的燃烧热值。
通过大量的实验测试和计算研究认为 , 绝大多数所测材料的耗氧燃烧热值接近 13. 1 M J/kg这一平均值 , 偏差约为 5%。
基于锥形量热仪的几种防火布燃烧性能研究
基于锥形量热仪的几种防火布燃烧性能研究周巍;姚斌【摘要】生产企业常在电缆或者贵重高危机器处设置防火布来保护生产设备设施的消防安全,选取五种常用的防火布:石棉纤维防火布、陶瓷纤维防火布、硅胶防火布、涂胶防火布、碳素纤维防火布,通过锥形量热仪实验研究不同辐射强度对防火布燃烧性能的影响.结果表明:点燃时间的均方根倒数与辐射强度之间呈现线性关系;在 35 kW/m2辐射强度工况下,碳素纤维防火布的热释放速率最大,达到 272.59 kW/m2,有效燃烧热的峰值也最大,达到529.52 kJ/g;综合比较各样品的燃烧性能,防火能力强弱顺序为:硅胶防火布>石棉纤维防火布>陶瓷纤维防火布>碳素纤维防火布>涂胶防火布.%In this work,the influence of radiation power on the combustion performance of several kinds of fireproof fabric was studied by using cone calorimetry.Five kinds of fireproof fabric samples (asbestos fiber fireproof fabric,ceramic fiber fireproof fabric,silicone fireproof fabric,glue fire fabric and carbon fiber fireproof fabric)were used for tests.The results show that there is a linear relationship between the reciprocal of the root mean square of the ignition time with the radiation intensity. With the radiation power of 35 kW/m2,the heat release rate and peak value of the effective combustion heat of the carbon fiber fire fabric were the highest among the samples.The fire resistance ability is ordered as silicone fireproof fabric> asbestos fiber fireproof fabric > ceramic fiber fireproof fabric >carbon fiber fireproof fabric> glue fire fabric.【期刊名称】《火灾科学》【年(卷),期】2018(027)001【总页数】7页(P23-29)【关键词】防火布;锥形量热仪;热释放速率;点燃时间;防火能力【作者】周巍;姚斌【作者单位】中国科学技术大学火灾科学国家重点实验室,合肥,230026;中国科学技术大学火灾科学国家重点实验室,合肥,230026【正文语种】中文【中图分类】X9320 引言生产车间的消防设备设施,除了设置消防灭火系统和消防水炮等主动灭火装置外,很多企业会在电缆或者贵重高危机器处设置防火布作为被动防火系统,来保护电缆或者消防安全要求较高的部位。
建材锥形量热试验
建材锥形量热试验
建材锥形量热试验是一种常用的建材性能测试方法,它可以用来评估建材的燃烧性能和热稳定性。
在建筑工程中,建材的燃烧性能和热稳定性是非常重要的,因为它们直接关系到建筑物的安全性和耐久性。
建材锥形量热试验的原理是将建材样品放置在一个锥形容器中,然后在一定的条件下进行加热,观察建材的燃烧性能和热稳定性。
在试验过程中,可以测量建材的燃烧时间、燃烧温度、热释放速率等参数,从而评估建材的燃烧性能和热稳定性。
建材锥形量热试验的条件包括加热速率、氧气浓度、试验温度等。
这些条件的选择需要根据具体的建材类型和使用环境来确定。
例如,对于建筑保温材料,需要考虑其在高温下的燃烧性能和热稳定性,因此试验温度和加热速率需要相应提高。
建材锥形量热试验的结果可以用来评估建材的燃烧等级和热稳定等级。
根据国际标准,建材的燃烧等级分为A1、A2、B、C、D五个等级,其中A1为最高等级,D为最低等级。
建材的热稳定等级分为T1、T2、T3三个等级,其中T1为最高等级,T3为最低等级。
通过建材锥形量热试验,可以确定建材的燃烧等级和热稳定等级,从而为建筑工程的设计和施工提供重要的参考依据。
建材锥形量热试验是一种重要的建材性能测试方法,它可以用来评
估建材的燃烧性能和热稳定性,为建筑工程的设计和施工提供重要的参考依据。
在建筑工程中,我们应该注重建材的燃烧性能和热稳定性,选择符合要求的建材,确保建筑物的安全性和耐久性。
锥形量热仪的实验意义
锥形量热仪的实验意义通过上述参数,可研究小型阻燃试验结果与大型阻燃试验结果的关系,并能分析阻燃剂的性能和估计阻燃材料在真试火灾中的危险程度,锥形量热仪试验越来越广泛的被应用到阻燃材料的测试和研究中。
目前,对于材料阻燃性能的研究大多集中在材料学和化学角度,对火灾学方面的研究较少。
而材料的阻燃性能主要涉及到材料学和火灾科学两个方面的内容,应该从两个方面进行研究。
认识和掌握燃烧模式的特点以及不同材料的对火反应特征的不同,才能有效地发展高阻燃性能的材料。
本文从火灾学角度出发,选取成炭聚合物(HIPS/OMMT复合材料)和不成炭聚合物(HIPS)分别代表不同结构的材料,在锥形量热仪燃烧模式下对不同结构材料的对火反应特点进行了研究,在此基础上详细分析了锥形量热仪试验燃烧模式的特点。
锥形量热仪的主要工作原理是耗氧原理:当样品件在锥形电加热器的热辐射下燃烧时,火焰就会消耗掉空气中一定浓度的的氧气,并释放出一定的燃烧热值。
通过大量的实验测试和计算研究认为,绝大多数所测材料的耗氧燃烧热值接近13.1MJ/kg这一平均值,偏差约为5%。
锥形量热法就是基于此点,根据材料在燃烧时消耗氧的量计算、测量在燃烧过程中的热释放速率、质量损失速率等参数,用以分析判断材料的燃烧性能。
锥形量热仪实验分析:锥形量热仪试验下的点燃是靠锥形加热器的辐射热使材料产生裂解气,当裂解气达到一定的浓度后,电子脉冲打火器的火花来点燃裂解气,然后蔓延到材料表面,因此点燃时间相对火焰直接点燃来说较长。
材料燃烧过程中火焰覆盖材料单面燃烧,不存在火焰的传播,样品四周被铝箔包裹,加上燃烧盒的固定作用避免了熔融物质的流失,不受材料熔融的影响。
并且燃烧时材料一直受到辐射器和表面燃烧火焰两部分的热流,使得材料长时间处于较高的,温度场温度较高,持续时间较长,环境接近于正常火灾,使得材料充分裂解。
与不成炭聚合物不同,成炭聚合物在锥形量热仪试验下由于表面炭层生成,有效的阻隔了来自材料正上方的辐射热流作用,这种表面炭层结构的材料在这种特殊燃烧模式下会表现出很好的阻燃性能。
基于锥形量热仪的聚合物材料燃烧性能研究
基于锥形量热仪的聚合物材料燃烧性能研究∗方璐;鲁宁;吴亚楠;王德贵【摘要】应用锥形量热仪测试聚氟乙烯塑料板( PVC)、聚氨酯泡沫塑料板( PU)和超高分子量聚乙烯塑料板( UPE)三种聚合物材料,分别得到在50 kW/m2及75 kW/m2的辐射强度下的热释放速率( HRR)、点燃时间( TTI)、总释热量( THR)、总生烟量( TSR)等参数,通过对比实验现象和实验数据,分析得出了聚合物的燃烧性能和烟气特性,研究结果对于进一步研究高分子聚合物的火灾特性具有重要意义。
%An experimental study of the burning behavior of three kinds of polymer materials which were polyvinyl fluoride plastic ( PVC) , polyurethane foam ( PU) and high molecular weight polyethylene plastic ( UPE) was discussed by using cone. For the purpose, some parameters were tested at 75 kW/m2 and 50 kW/m2 heat radiant intensities, such as heat release rate, ignition time, total heat release, total biomass, etc. By comparing and analyzing the experimental data, the combustion and smoke characteristics of the polymer were concluded. The results of the study had great significance for the further study of the fire characteristics of polymer.【期刊名称】《广州化工》【年(卷),期】2016(044)018【总页数】3页(P80-82)【关键词】聚合物;锥形量热仪;燃烧特性;热释放速率【作者】方璐;鲁宁;吴亚楠;王德贵【作者单位】重庆科技学院安全工程学院,重庆 401331;重庆科技学院安全工程学院,重庆 401331;重庆科技学院安全工程学院,重庆 401331;重庆科技学院安全工程学院,重庆 401331【正文语种】中文【中图分类】O63目前,高分子聚合物材料被广泛应用于各类建筑中,发生火灾时,由于聚合物具有内在易燃性,会助长火势蔓延,并且在燃烧过程中,会释放出大量的有毒有害气体及烟雾,阻碍人员逃生,大大增加了使用场所的火灾危险性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国矿业大学安全工程学院
实验报告
课程名称:消防专业实验
实验名称:材料燃烧性能的锥形量热计实验姓名:
学号:
实验日期: 2011.3.6
实验1 材料燃烧性能的锥形量热计实验
本实验的理论依据为:“对于许多有机液体和气体,当其完全燃烧时,消耗单位质量的氧气所释放出的热量是一个常数,为13.1MJ/kgO2 ”。
从而利用此原理,求出不同试件,不同情况下的各个参数,通过对数据结果进行分析,并以表格的形式展现出来,分析对比,得出结论。
本实验测定了不同的木材,分别在3okw/m2,50kw/m2的辐射强度下燃烧的各项参数数据,以及pvc在3okw/m2,50kw/m2的辐射强度下的实验。
一.下面是对木材HRR数据进行整理得出的图表:
图表1-1
通过图表可以看出,在该热辐射强度的条件下,我们可以发现:
1)在相同的条件下,无烤漆柞木的燃烧需要的热量高于其他木材,从表格中可以看出,大概在50s左右的时间,柞木开始放热。
2)每一种木材在燃烧的过程中,并非呈平缓上升或下降的状态,过程中都出现了多个峰值,其中在初期阶段,带烤漆松木热释放速率的峰值最高,HRR曲线较为最为陡峭,无烤漆柞木最低。
3)经过分析可得多次出现峰值的原因:起初因材料的热分解产生气体阻碍了木炭与氧气的接触,因此,开始为分解气体的燃烧,反应逐渐加快,热释放速率不断增加,直至出现第一峰值后热释放速率开始下降,后来
因分解产生的气体逐渐减少,开始转变为木炭的的有焰燃烧,固又会出现第二峰值,直至最后木炭燃烧殆尽......
图表1-2
在辐射强度为30kw/m2的条件下,我们可以看出:
1)各木材在初期阶段,热释放速率的上升曲线较为陡峭,在下降阶段较为平缓,且带烤漆松木燃烧所需要的热量较少,其次为无烤漆桦木,带烤漆符合与无烤漆柞木。
2)在该条件的HRR曲线中,带烤漆松木最先达到最高值,且热释放速率皆大于其他木材。
下面是同种材料(以及pvc材料)在不同热辐射强度条件下HRR曲线的对比:
图表 2.2.1
图表 3.2.2
图表 4.2.3
图表 5.2.4
通过上面几组结果相似的图表,我们可以看出:
同种材料,在相同的其他条件下,热辐射强度小的燃烧所需要的时间,热量更多,其热释放速率,峰值都小于辐射强度高的同种材料,燃烧时间大于高辐射强度条件下的材料。
二.pvc材料的相关实验
图表3-1质量损失速率MLR/(g/s*m2)
由图表我们可以看出:
1)从反应一开始,在高热辐射强度下的pvc材料就进行了强烈的热分解反应,其反应速率明显的远远高于低辐射热强度下的同种材料。
2)当到达峰值后的一段时间内,分解反应进行的相对平缓,持续一段时间后,分解速率开始缓慢的下降直至分解反应结束。
3)不同的热辐射强度下,高热辐射强度的分解速率,峰值远远高于其他,并很快的结束分解反应。
图表6-2HRR曲线
从表3-1中,我们可以得到启示:
1)Pvc材料的HRR曲线明显不同于木材的是,在燃烧的初期,pvc材料的热释放速率为负值,即此时为吸热分解状态,随着反应的进行,短暂时间内,吸热速率迅速降低,材料热分解速度急剧上升,开始放热反应,并很快的达到热释放速率的一个峰值,接着反应进入了较为相对平缓的阶段,反应到了一定时间后,分解反应速率下降,燃烧速度变慢,热释放速率开始下降,直至最后燃烧过程结束。
2)在不同的热辐射强度下,50kw/m2时的HRR明显高于30kw/m2的,燃烧的也更加迅速,同时持续时间也更短。
图表3-3
从该表格中,可以观察到该材料在火灾情况下的比消光面积的参数情况:
1)在不同的热辐射强度下,该材料的比消光面积大致近似,但是其燃烧过程却差异较大。
2)pvc材料在开始,会进行分解反应,释放大量的烟气,因此,比消光面积会迅速增大,随着反应进行,热量的积累,无焰燃烧开始转变为有焰燃烧,比
消光面积开始下降。
3)从上面的分析可以得出,在高热辐射强度的条件下,pvc材料的分解反应得到的热量较多,分解反应放出的气体更多,从而会燃烧产生更多的烟气,因此会出现其比消光面积大于其他。
当热量不断积累,得到的热量也越来越多,高辐射热强强度下的pvc首先达到自燃点,进而出现强烈的燃烧现象,比消光面积开始下降,而此时,低热辐射强度的材料仍然在进行分解反应,烟气不断积累,直至自燃后比消光面积开始下降,因高热辐射强度下的材料燃烧的时间较短,固先熄灭,比消光面积比低热辐射强度时先达到最小值。