【2020最新】人教版最新高考文科数学复习试卷及参考答案

合集下载

【数学】2020高三总复习数学文科试卷答案

【数学】2020高三总复习数学文科试卷答案

#.4#得?"
#--4%
#%#所
以?#"
或?#
&"#又


-.
. ).
##所以?#"#从 而 -% #-! 0"& #"%#所 以 -! #&#所 以.
/3#-!?%?&3&!!&#&2%"3 &!&!令 /3 ).&#即 &2 %"3
!&).&#解得3)-#又因为3&0/ #所以3<(1#4! 参 考 答 案 4
所以 (7( 平面 "!"((!#
%& 分 &
又 "(!3 平 面 "!"((!#
所以 (7("(!!
%- 分 &
%"&设点 (! 到平面 "!(7 的距离为C#
由题可知#三棱柱 "(7D"!(!7! 的所有棱长均为"-#
所以在+"!(7 中#(7#"-#"!(#"!7#"槡"-#
"%!##&#(%##!&#因 为 点






"#
!$"%#$"!&%"#
!$"$#
'""#(#. .
执 行 第 二 次 循 环 ,/#+, %&"&" #!"#3#&#不 满 足 条 件 ) 执 行 第 三 次 循 环 ,/#!", %&"&& #%#3#%#不 满 足 条 件 )

2020最新人教版最新高考数学复习一本全附参考答案

2020最新人教版最新高考数学复习一本全附参考答案
数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。
可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。
3小题:已知等式经配方成(sinα+cosα)-2sinαcosα=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。
4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。
5为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。
10. 设s>1,t>1,m∈R,x=logt+logs,y=logt+logs+m(logt+logs),
1将y表示为x的函数y=f(x),并求出f(x)的定义域;
2若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围。
二、换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
一、配方法 ……………………………………… 3
二、换元法 ……………………………………… 7
三、待定系数法 ………………………………… 14
四、定义法 ……………………………………… 19
五、数学归纳法 ………………………………… 23
六、参数法 ……………………………………… 28
七、反证法 ……………………………………… 32

2020年数学全国统一高考 数学试卷(文科)(新课标Ⅲ)【word版;可编辑;含答案】1

2020年数学全国统一高考 数学试卷(文科)(新课标Ⅲ)【word版;可编辑;含答案】1

2020年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题1.已知集合A ={1,2,3,5,7,11},集合B ={x|3<x <15},则A ∩B 中元素的个数为() A.2B.3C.4D.52.若z ¯(1+i )=1−i ,则z =() A.1−iB.1+iC.−iD.i3.设一组样本数据x 1,x 2,⋯,x n 的方差为0.01,则数据10x 1,10x 2,⋯,10x n 的方差为() A.0.01B.0.1C.1D.104.Logistic 模型是常用数学模型之一,可应用与流行病学领域,由学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K1+e −0.23(t−53),其中K 为最大确诊病例数,当I (t∗)=0.95K ,标志着已初步遏制疫情,则t ∗约为()(ln 19≈3) A.60B.63C.66D.695.已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=()A.12B.√33C.23D.√226.在平面内,A ,B 是两个定点,C 是动点,若AC →⋅BC →=1,则C 的轨迹为()A.圆B.椭圆C.抛物线D.直线7.设O 为坐标原点,直线x =2与抛物线y 2=2px (p >0)交于D 、E 两点,若OD ⊥OE ,则C 的焦点坐标为() A.(14,0) B.(12,0) C.(1,0) D.(2,0)8.点(0,1)到直线y =k (x +1)距离的最大值为() A.1B.√2C.√3D.29.下图为某几何体的三视图,则该几何体的表面积是()A.6+4√2B.4+4√2C.6+2√3D.4+2√310.设a =log 32,b =log 53,c =23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b 11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()A.√5B.2√5C.4√5D.8√512.已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图像关于y 轴对称C.f (x )的图像关于直线x =π对称D.f (x )的图像关于直线x =π2对称二、填空题13.若x ,y 满足约束条件{x +y ≥0,2x −y ≥0,x ≤1,则z =3x +4y 的最大值为________. 14.设双曲线C :x 2a−y 2b =1(a >0,b >0)的一条渐近线为y =√2x ,则C 的离心率为________. 15.设函数f(x)=e x x+a,若f ′(1)=e4,则a =________.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 三、解答题17.设等比数列{a n }满足a 1+a 2=4,a 3−a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m+1=S m+3,求m .18.某兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天)(1)分别估计该市一天的空气质量等级为1,2,3,4的概率; (2)求一天中到该公园锻炼的平均人次的估计值(同一组数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的。

2020年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)若z=1+2i+i3,则|z|=()A.0B.1C .D.23.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A .B .C .D .4.(5分)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A .B .C .D .5.(5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx 6.(5分)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.(5分)设函数f(x)=cos(ωx +)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A .B .C .D .8.(5分)设a log34=2,则4﹣a=()A .B .C .D .9.(5分)执行如图的程序框图,则输出的n=()A.17B.19C.21D.2310.(5分)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.3211.(5分)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A .B.3C .D.212.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC =AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π二、填空题:本题共4小题,每小题5分,共20分。

2020年普通高等学校招生全国统一考试文科数学试题-含答案

2020年普通高等学校招生全国统一考试文科数学试题-含答案

绝密★启用前2020年普通高等学校招生全国统一考试文科数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}13|{},1|{2<=≤=xx B x x A ,则=)(B C A R YA .}0|{<x xB .}10|{≤≤x xC .}01|{<≤-x xD .}1|{-≥x x 2.若复数z 与其共轭复数z 满足i z z 312+=-,则=||z A .2B .3C .2D .53.已知双曲线()222210,0x y a b a b-=>>的离心率为53,则其渐近线方程为A .2x+y=0B .20x y ±=C .340x y ±=D .430x y ±= 4.在区间(0,4]内随机取两个数a b 、,则使得“命题‘x R ∃∈,不等式220x ax b ++<成立’为真命题”的概率为 A .14B .12C .13D .345.若向量)2,1(+=x a 与)1,1(-=b 平行,则|2+|=a b r rAB C .D 6.F 是抛物线22y x =的焦点,A B 、是抛物线上的两点,8AF BF +=,则线段AB 的中点到y 轴的距离为A .4B .92 C .72D .3 7.已知n m ,是两条不重合的直线,βα,是两个不重合的平面,则下列命题中,错误的是A .若α⊥⊥m n m ,,则α//nB .若αα⊄n m n m ,//,//,则α//nC .若βα⊥⊥⊥n m n m ,,,则βα⊥D .若βαα//,//m ,则β//m 或β⊂m8.已知函数y =f (x )的部分图像如图,则f (x )的解析式可能是 A .()tan f x x x =+B .()2sin f x x x =+C .()sin f x x x =-D .1()cos 2f x x x =-9.已知函数41()2x xf x -=,0.30.30.3(2),(0.2),(log 2)a f b f c f ===,则,,a b c 的大小关系为 A .c b a << B .b a c << C .b c a << D .c a b << 10.天文学中,为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus )在公元前二世纪首先提出了星等这个概念。

北京市2020〖人教版〗高三数学复习试卷文科参考答案与试题解析

北京市2020〖人教版〗高三数学复习试卷文科参考答案与试题解析

北京市2020年〖人教版〗高三数学复习试卷文科参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(•浙江)已知集合P={x|x2﹣2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4)B.(2,3]C.(﹣1,2)D.(﹣1,3]考点:交集及其运算.专题:集合.分析:求出集合P,然后求解交集即可.解答:解:集合P={x|x2﹣2x≥3}={x|x≤﹣1或x≥3},Q={x|2<x<4},则P∩Q={x|3≤x<4}=[3,4).故选:A.点评:本题考查二次不等式的解法,集合的交集的求法,考查计算能力.2.(5分)(•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(•浙江)设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分利用特例集合充要条件的判断方法,判断正确选项即可.析:解答:解:a,b是实数,如果a=﹣1,b=2则“a+b>0”,则“ab>0”不成立.如果a=﹣1,b=﹣2,ab>0,但是a+b>0不成立,所以设a,b是实数,则“a+b>0”是“ab>0”的既不充分也不必要条件.故选:D.点评:本题考查充要条件的判断与应用,基本知识的考查.4.(5分)(•浙江)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m 考点:空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:A根据线面垂直的判定定理得出A正确;B根据面面垂直的性质判断B错误;C根据面面平行的判断定理得出C错误;D根据面面平行的性质判断D错误.解答:解:对于A,∵l⊥β,且l⊂α,根据线面垂直的判定定理,得α⊥β,∴A正确;对于B,当α⊥β,l⊂α,m⊂β时,l与m可能平行,也可能垂直,∴B错误;对于C,当l∥β,且l⊂α时,α与β可能平行,也可能相交,∴C错误;对于D,当α∥β,且l⊂α,m⊂β时,l与m可能平行,也可能异面,∴D错误.故选:A.点评:本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础题目.5.(5分)(•浙江)函数f(x)=(x ﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由条件可得函数f(x)为奇函数,故它的图象关于原点对称;再根据在(0,1)上,f(x)<0,结合所给的选项,得出结论.解答:解:对于函数f(x)=(x ﹣)cosx(﹣π≤x≤π且x≠0),由于它的定义域关于原点对称,且满足f(﹣x)=(﹣x)cosx=﹣f(x),故函数f(x)为奇函数,故它的图象关于原点对称.故排除A、B.再根据在(0,1)上,>x,cosx>0,f(x)=(x ﹣)cosx<0,故排除C,故选:D.点本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于评:中档题.6.(5分)(•浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y <z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是()A.a x+by+cz B.a z+by+cx C.a y+bz+cx D.a y+bx+cz考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:作差法逐个选项比较大小可得.解答:解:∵x<y<z且a<b<c,∴ax+by+cz﹣(az+by+cx)=a(x﹣z)+c(z﹣x)=(x﹣z)(a﹣c)>0,∴ax+by+cz>az+by+cx;同理ay+bz+cx﹣(ay+bx+cz)=b(z﹣x)+c(x﹣z)=(z﹣x)(b﹣c)<0,∴ay+bz+cx<ay+bx+cz;同理az+by+cx﹣(ay+bz+cx)=a(z﹣y)+b(y﹣z)=(z﹣y)(a﹣b)<0,∴az+by+cx<ay+bz+cx,∴最低费用为az+by+cx故选:B点评:本题考查函数的最值,涉及作差法比较不等式的大小,属中档题.7.(5分)(•浙江)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支考点:圆锥曲线的轨迹问题.专题:圆锥曲线的定义、性质与方程.分析:根据题意,∠PAB=30°为定值,可得点P的轨迹为一以AB为轴线的圆锥侧面与平面α的交线,则答案可求.解答:解:用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P满足∠PAB=30°,可理解为P在以AB为轴的圆锥的侧面上,再由斜线段AB与平面α所成的角为60°,可知P的轨迹符合圆锥曲线中椭圆定义.故可知动点P的轨迹是椭圆.故选:C.点评:本题考查椭圆的定义,考查学生分析解决问题的能力,比较基础.8.(5分)(•浙江)设实数a,b,t满足|a+1|=|sinb|=t.()A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定C.若t确定,则sin唯一确定D.若t确定,则a2+a唯一确定考点:四种命题.专题:开放型;简易逻辑.分析:根据代数式得出a2+2a=t2﹣1,sin2b=t2,运用条件,结合三角函数可判断答案.解答:解:∵实数a,b,t满足|a+1|=t,∴(a+1)2=t2,a2+2a=t2﹣1,t确定,则t2﹣1为定值.sin2b=t2,A,C不正确,∴若t确定,则a2+2a唯一确定,故选:B点评:本题考查了命题的判断真假,属于容易题,关键是得出a2+2a=t2﹣1,即可判断.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.(6分)(•浙江)计算:log2=,2=.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数运算法则化简求值即可.解答:解:log2=log2=﹣;2===3.故答案为:;.点评:本题考查导数的运算法则的应用,基本知识的考查.10.(6分)(•浙江)已知{a n}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a1=,d=﹣1.考点:等比数列的性质.专题:等差数列与等比数列.分析:运用等比数列的性质,结合等差数列的通项公式,计算可得d=﹣a1,再由条件2a1+a2=1,运用等差数列的通项公式计算即可得到首项和公差.解答:解:由a2,a3,a7成等比数列,则a32=a2a7,即有(a1+2d)2=(a1+d)(a1+6d),即2d2+3a1d=0,由公差d不为零,则d=﹣a1,又2a1+a2=1,即有2a1+a1+d=1,即3a1﹣a1=1,解得a1=,d=﹣1.故答案为:,﹣1.点评:本题考查等差数列首项和公差的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.11.(6分)(•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,最小值是.考点:二倍角的余弦;三角函数的最值.专题:三角函数的图像与性质.分析:由三角函数恒等变换化简解析式可得f(x)=sin(2x﹣)+,由正弦函数的图象和性质即可求得最小正周期,最小值.解答:解:∵f(x)=sin2x+sinxcosx+1=+sin2x+1=sin(2x﹣)+.∴最小正周期T=,最小值为:.故答案为:π,.点评:本题主要考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查.12.(6分)(•浙江)已知函数f(x)=,则f(f(﹣2))=,f(x)的最小值是2﹣6.考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:由分段函数的特点易得f(f(﹣2))=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得.解答:解:由题意可得f(﹣2)=(﹣2)2=4,∴f(f(﹣2))=f(4)=4+﹣6=﹣;∵当x≤1时,f(x)=x2,由二次函数可知当x=0时,函数取最小值0;当x>1时,f(x)=x+﹣6,由基本不等式可得f(x)=x+﹣6≥2﹣6=2﹣6,当且仅当x=即x=时取到等号,即此时函数取最小值2﹣6;∵2﹣6<0,∴f(x)的最小值为2﹣6故答案为:﹣;2﹣6点评:本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题.13.(4分)(•浙江)已知1,2是平面向量,且1•2=,若平衡向量满足•1=•=1,则||=.考点:平面向量数量积的性质及其运算律.专题:平面向量及应用.分析:根据数量积得出1,2夹角为60°,<,1>=<,2>=30°,运用数量积的定义判断求解即可.解答:解:∵1,2是平面单位向量,且1•2=,∴1,2夹角为60°,∵平衡向量满足•1=•=1∴与1,2夹角相等,且为锐角,∴应该在1,2夹角的平分线上,即<,1>=<,2>=30°,||×1×cos30°=1,∴||=故答案为:点评:本题简单的考查了平面向量的运算,数量积的定义,几何图形的运用,属于容易题,关键是判断夹角即可.14.(4分)(•浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是15.考点:简单线性规划.专题:开放型;不等式的解法及应用.分由题意可得2x+y﹣4<0,6﹣x﹣3y>0,去绝对值后得到目标函数z=﹣3x﹣4y+10,析:然后结合圆心到直线的距离求得|2x+y﹣4|+|6﹣x﹣3y|的最大值.解答:解:如图,由x2+y2≤1,可得2x+y﹣4<0,6﹣x﹣3y>0,则|2x+y﹣4|+|6﹣x﹣3y|=﹣2x﹣y+4+6﹣x﹣3y=﹣3x﹣4y+10,令z=﹣3x﹣4y+10,得,如图,要使z=﹣3x﹣4y+10最大,则直线在y轴上的截距最小,由z=﹣3x﹣4y+10,得3x+4y+z﹣10=0.则,即z=15或z=5.由题意可得z的最大值为15.故答案为:15.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.15.(4分)(•浙江)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.解答:解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,解得e2(4e4﹣4e2+1)+4e2=1,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.点评:本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.三、解答题:本大题共5小题,共74分。

2020年普通高等学校招生全国统一考试文科数学(全国II卷)(含答案)

2020年普通高等学校招生全国统一考试文科数学(全国II卷)(含答案)

2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}x x x Z1,>∈,则A B=<∈,B={}3,x x x ZA。

∅B. {}--3,2,2,3C. {}-2,0,2D。

{}-2,22。

4()-1i=A.—4B.4C。

—4iD.4i3.如图,将钢琴上的12个键依次记为a,2a,…,12a。

1设112j i-=,则称i a,j a,k a为-=且4k j≤<<≤.若3i j k原位大三和弦;若4k jj i-=,则称i a,j a,k a为-=且3原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A 。

5B 。

8C 。

10 D.154。

在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0。

05。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A. 10名B. 18名C. 24名D. 32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A. 2a b +B. 2a b +C. 2a b -D. 2a b -6。

记n S 为等比数列{n a }的前n 项和。

若5a —3a =12, 6a —4a =24,则nnS a =A .2n-1B . 2-2t n-C. 2-n-12D .t-n2-17。

执行右面的程序框图,若输入的k=0,a=0,则输出的k 为: A. 2 B 。

3 C 。

4 D. 58。

若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为。

【2020】人教版最新高考文科数学复习试卷(2)及参考答案

【2020】人教版最新高考文科数学复习试卷(2)及参考答案

-2n (I)求数列{}与{}的通项公式;(A )(B )(C )(D )(10)设函数f (x )=x ²-4x+3,g (x )=3x-2,集合M={x ∈R|f (g (x ))>0},N={x ∈R g (x )g (x )<2},则M ∩N 为(A )(1,﹢∞)(B )(0,1)(C )(-1,1)(D )(-∞,1)(11)首项为1,公比为2的等比数列的前4项和S4=__________________(12)若f (x )=(x+a )(x-4)为偶函数,则实数a=___________________(13)设△ABC 的内角A,B,C 的对边分别为a ,b ,c ,且a=1,b=2,,则sinB=________(14)设P 为直线与双曲线(a >0,b >0)左支的交点,F1是左焦点,PF1垂直于x 轴,则双曲线的离心率e=___________(15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)(16)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.。

) 已知{an}为等差数列,且a1+a3=8,a2+a4=12.(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.。

) 已知函数f (x )=ax3+bx +c 在点x=2处取得极值c-16.。

(Ⅰ)求a ,b 的值;(Ⅱ)若f (x )有极大值28,求f (x )在[﹣3,3]上的最小值.。

(18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.。

)甲、乙两人轮流投篮,每人每次投一球.。

约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束.。

设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.。

(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率.。

2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案) (3)

2020年普通高等学校招生全国统一考试文科数学(全国III卷)(含答案) (3)

2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B 中元素的个数为A. 2B. 3C. 4D. 52. 若(1)1z i i +=-,则z = A. 1i - B. 1i + C.i - D.i3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为 A .0.01 B .0.1 C .1 D .104. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t KI t e--=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(In19≈3) A.60 B.63 C.66 D.695.已知sin sin()13πθθ++=,则sin()6πθ+= A.12C.23D.26.在平面内,,A B 是两个定点,C 是动点,若1AC BC ⋅=,则点C 的轨迹为 A. 圆 B. 椭圆 C. 抛物线 D. 直线7.设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于,D E 两点,若OD OE ⊥,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)8.点(0,1)-到直线(1)y k x =+距离的最大值为 A .1 B .2 C .3 D .29.右图为某几何体的三视图,则该几何体的表面积是A. 6+42B. 4+42C. 6+23D. 4+2310.设3log 2a =,5log 3b =,23c =,则 A .a c b << B.a b c << C. b c a << D. c a b <<11. 在ABC ∆中,2cos 3C =,4,3AC BC ==,则tan B =12. 已知函数1()sin sin f x x x=+,则 A. ()f x 的最小值为2B. ()f x 的图像关于y 轴对称C. ()f x 的图像关于直线x π=对称D. ()f x 的图像关于直线2x π=对称二、填空题:本题共4小题,每小题5分,共20分。

2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)

2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)

2020年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)32-(B)-12 (C)12(D) 32 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 52 (B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a =====g(5)43(1)(1)x x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(1)1464133x x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PFPF +-()()2222121212121212222221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:120220121260113cot 1cot 3sin 6022222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为(A )23 (B )33 (C )23(D )63【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D 所成角,111136cos 1/2O O O OD OD ∠===(10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,21x +,2sin 1xα=+||||cos 2PA PB PA PB α•=⋅u u u v u u u v u u u v u u u v=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=u u u v u u u v ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得32y ≤--322y ≥-+故min ()322PA PB •=-+u u u v u u u v.此时21x =-【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v PABO2222221sin12sincos22212sin2sin sin22θθθθθθ⎛⎫⎛⎫--⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭换元:2sin,012x xθ=<≤,()()112123223x xPA PB xx x--•==+-≥-u u u v u u u v(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C) 23 (D)83312.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有ABCD11222323V h h=⨯⨯⨯⨯=四面体,当直径通过AB与CD的中点时,22max22123h=-=,故max433V=.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

【数学】2020高三总复习数学文科试卷答案

【数学】2020高三总复习数学文科试卷答案







"#
!$"%#$"!&%"#
!$"$#
'""#(#. .
执 行 第 二 次 循 环 ,/#+, %&"&" #!"#3#&#不 满 足 条 件 ) 执 行 第 三 次 循 环 ,/#!", %&"&& #%#3#%#不 满 足 条 件 )
!$"&"$$%&#$&/"# !&"#&!###!#""#所 以 "'(. 执行第四次循环,/#%,%&"&%#"##3#-#不满足条件)

. 得..
所 以 有..!.= 的 把 握 认 为 对 '进 博 会 (的 关 注 度 与 性 别
有关!
%- 分 &
%"&关注度极高的被调查者中男性与女性的比例为->"#
":4"+":49"#"槡-#即 %,":49"#"槡-%/ &!;<.
为线段449的中点#= 为线段 :4 的 性 质 得":49"#""<="#%#代
试题解析由#%!#"&## %&"#!&#得 +# %&!#. &&#所以由%+&(#得 &$+&%###即 $#&%#所 以.

高考文科数学(2卷):答案详细解析(最新)

高考文科数学(2卷):答案详细解析(最新)

2020年普通高等学校招生全国统一考试文科数学(II 卷)答案详解一、选择题1.(集合)已知集合A ={}3,x x x Z <∈,B ={}1,x x x Z >∈,则A B =A.∅B.{}3,2,2,3-- C.{}2,0,2- D.{}2,2-【解析】∵{}2,1,0,1,2A x =--,∴{2,2}A B =- .【答案】D2.(复数)41i -=()A.-4 B.4C.-4iD.4i【解析】[]224221(1)244i i i i ⎡⎤=-=-=-⎣⎦-=().【答案】A3.(概率统计)如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.15【解析】原位大三和弦:1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===;共5个.原位小三和弦:1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===;共5个.总计10个.【答案】C4.(概率统计)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B5.(平面向量)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2a b+ B.2a b+ C.2a b- D.2a b -【解析】解法一(待定系数法):设()ma nb b +⊥,则有21()02ma nb b ma b nb m n +⋅=⋅+=+=,即2m n =-,故选D.解法二:2o(2)2211cos6010a b b a b b -⋅=⋅-=⨯⨯⨯-= ,故选D.特殊法:如图A5所示,画单位圆,作出四个选项的向量,只有2a b -与b 垂直.图A5【答案】D6.(数列)记n S 为等比数列{n a }的前n 项和.若5a -3a =12,6a -4a =24,则nnS a =A .21n -B .122n-- C.122n --D .121n --【解析】设{}n a 的公比为q ,∵6453()1224a a a a q q -=-==,∴2q =,∵22253311(1)(1)1212a a a q a q q a -=-=-==,∴11a =,∴111111(1)2111=22222n n n n n n n n a q S q a a q -------==-=-.【答案】B7.(算法框图)执行右面的程序框图,若输入的k =0,a =0,则输出的k 为A.2B.3C.4D.5【解析】①输入00k a ==,,得211a a =+=,11k k =+=,10a >否,继续;②输入11k a ==,,得213a a =+=,12k k =+=,10a >否,继续;③输入23k a ==,,得217a a =+=,13k k =+=,10a >否,继续;④输入37k a ==,,得2115a a =+=,14k k =+=,10a >是,程序退出循环,此时4k =.【答案】C8.(解析几何)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A.5B.5C.5D.5【解析】如图A8所示,设圆的方程为222()()x a y b r -+-=,∵圆过点(2,1)且与两坐标轴都相切,∴222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===,即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=5或=5.图A8【答案】B9.(解析几何)设O 为坐标原点,直线x a =与双曲线C :22221x y a b-=(a >0,b >0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32【解析】如图A9所示,双曲线C :22221x y a b-=(a >0,b >0)的渐近线为b y x a =±,由题意可知,(,)D a b ,(,)E a b -,∴1282ODE S a b ab ∆=⋅==,∴焦距2248c ==≥⨯=,当且仅当a =等号成立.故C 的焦距的最小值为8.图A9【答案】B10.(函数)设函数331()f x x x =-,则()f x A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解析】∵333311()()()()f x x x f x x x-=--=-+=--,∴()f x 是奇函数,243()3f x x x'=+,当x >0,()0f x '>,∴()f x 在(0,+∞)单调递减.【答案】A11.(立体几何)已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D .32【解析】由题意可知244ABC S AB ∆==,∴3AB =,如图A11所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心,故1232O A =⨯=,∴O 到平面ABC 的距离11OO ==.图A11【答案】C12.(函数)若2233x y x y ---<-,则A.ln(1)0y x -+> B.ln(1)0y x -+<C.ln ||0x y -> D.ln ||0x y -<【解析】2233xyxy---<-可化为2323xxyy---<-,设1()2323xxxxf x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A二、填空题:本题共4小题,每小题5分,共20分。

2020年高考文科数学(1卷):答案详细解析(最新)

2020年高考文科数学(1卷):答案详细解析(最新)

打开导航窗口(书签),可以直接找到各个题目.
第 8 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
(一)必考题:共 60 分
17.(12 分)(概率统计)
某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A,B,C,
D 四个等级,加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取
第 6 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 2x y 2 0
13(. 线性规划)若 x,y 满足约束条件 x y 1 0 ,则 z=x+7y 的最大值为_____. y 1 0
【解析】由约束条件,作出可行域如图 A13 所示.
【答案】 y 2x
16. (数列)数列an 满足 an2 1n an 3n 1 ,前 16 项和为 540,则 a1 =____.
打开导航窗口(书签),可以直接找到各个题目.
第 7 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
【解析】当 n 为偶数时,有 an2 an 3n 1,故
A. 1 16
B. 1 9
C. 1 8
D. 1 6
【解析】∵ a log3
4 log3 4a
2 ,∴ 4a
32
9 ,∴ 4a
1 4a
1. 9
【答案】B
9.(算法框图)执行右面的程序框图,则输出的 n
A. 17
B. 19
C. 21
D. 23
打开导航窗口(书签),可以直接找到各个题目.
第 4 页 共 27 页

2020年全国统一高考数学试卷(文科)(新课标I)【含详答】

2020年全国统一高考数学试卷(文科)(新课标I)【含详答】

2020年全国统一高考数学试卷(文科)(新课标I)【含详答】2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2?3x?4<0},B={?4,1,3,5},则A?B=A. {?4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5?14B. √5?12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:?°C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,yi)(i=1,2,…,20)得到下面的散点图:由此散点图,在10?°C至40?°C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2?6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2D. 47.设函数f(x)=cos(ωx+π6)在[?π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4?a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2?y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为?ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y?2≤0x?y?1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a?=(1,?1),b? =(m+1,2m?4),若a?⊥b? ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(?1)n a n=3n?1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共82.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.?ABC的内角A,B,C的对边分别为a,b,c,已知B=150°.(1)若a=√3c,b=2√7,求?ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,?ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P?ABC的体积.20.已知函数f(x)=e x?a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E 的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.[选修4?4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ?16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│?2│x?1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)已知合集A={x|x2?3x?4<0},B={?4,1,3,5},则A?B=A. {?4,1}B. {1,5}C. {3,5}D. {1,3}【答案】D【解析】【分析】本题主要考查集合的交集运算和解一元二次不等式,属于基础题.【解答】解:由不等式x2?3x?4<0,解得?1<x<4,< p="">所以A∩B={1,3},故选D.24.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 2【答案】C【解析】【分析】本题主要考查复数的运算,求复数的模,属于基础题.【解答】解:z=1+2i?i=1+i,则|z|=√12+12=√2,故选C.25.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5?14B. √5?12C. √5+14D. √5+12【答案】C【解析】【分析】根据题意列出a,?′,?的关系式,化简即可得到答案.本题考查了立体几何中的比例关系,属于基础题.【解析】如图,设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为?′,则由题意可得{2=12a?′2=(?′)2?(a2)2,故(?′)2?(a2)2=12a?′,化简可得4(?′a)2?2(?′a)?1=0,解得?′a =√5+14.故答案选C.26.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 45【答案】A【解析】【分析】本题主要考查概率的知识,属于基础题.【解答】解:如图,从5点中随机选取3个点,共有10种情况,其中三点共线的有两种情况:AOC和BOD,则p=210=15.故选A.27.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:?°C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10?°C至40?°C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx 【答案】D【解析】【分析】本题考查函数模型的应用,属于基础题.连接各点,判断图象的大致走向,可判断函数为对数模型.【解析】用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.故答案选D.28.已知圆x2+y2?6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查圆的方程、直线方程以及求弦长,属于较易题.【解答】解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3?1)2+(0?2)2=√8弦长,故选B.29.设函数f(x)=cos(ωx+π6)在[?π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π2【答案】C【解析】【分析】本题考查了余弦函数的图象与性质,属于中档题.先利用f(?4π9)=0得到w =?3+9k 4(k ∈Z),由T <2π<2T ,可得,由w =3+9k 4(k ∈Z)可得k 的值,w 的值可得,即可求解.【解析】解:由图可知f(?4π9)=cos(?4π9w +π6)=0,所以?4π9w +π6=π2+kπ(k ∈Z),化简可得w =?3+9k 4(k ∈Z),又因为T <2π<2T ,即2π|w |<2π<4π|w |,所以,当且仅当k =?1时,所以w =32,最小正周期T =2π|w |=4π3.故答案选C .30. 设alog 34=2,则4?a =( )A. 116B. 19C. 18D. 16【答案】B【解析】【分析】本题主要考查指对数的运算,属于基础题.【解答】解:由alog 34=log 34a =2,可得4a =32=9,∴4?a =(4a )?1=9?1=19,故选B .31. 执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】本题以程序框图为载体,考查了等差数列求和,属于中档题.【解答】解:输入n=1,S=0,则S=S+n=1,S?100,n=n+2=3,S=S+n=1+3=4,S?100,n=n+2=5,S=S+n=1+3+5=9,S?100,n=n+2=7,S=S+n=1+3+5+7=16,S?100,n=n+2=9,根据等差数列求和可得,S=1+3+5+?+19=100?100,n=19+2=21,输出n=21.故选C.32.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 32【答案】D【解析】【分析】本题主要考查等比数列的通项公式,属基础题.根据a1+a2+a3=1,a2+a3+a4=2,结合等比数列的通项公式可求得等比数列的公比q,因为a6+a7+a8=q5(a1+a2+a3),从而得到答案.【解答】解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,故选D33.设F1,F2是双曲线C:x2?y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 2【答案】B【解析】【分析】本题主要考查双曲线的定义、双曲线的简单几何性质、圆的性质,属一般题.根据双曲线的标准方程得到其焦点坐标,结合|OP|=2,可确定点P在以F1F2为直径的圆上,得到|PF1|2+|PF2|2=16,结合双曲线的定义可得|PF1|?|PF2|的值,从而得到答案.【解答】解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(?2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|?|PF2||=2a=2,所以||PF1|?|PF2||2=|PF1|2+|PF2|2?2|PF1|?|PF2|= 4,所以|PF1|?|PF2|=6,所以三角形PF1F2面积为3,故选B.34.已知A,B,C为球O的球面上的三个点,⊙O1为?ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60°=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.二、填空题(本大题共4小题,共20.0分)35.若x,y满足约束条件{2x+y?2≤0x?y?1≥0y+1≥0,则z=x+7y的最大值为_____.【答案】1【解析】【分析】本题考查利用线性规划求最值问题,属基础题.【解答】解:根据约束条件画出可行域为:由z=x+7y得y=?17x+17z,平移直线y=?17x,要使z最大,则y=?17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,故答案为1.36.设向量a?=(1,?1),b? =(m+1,2m?4),若a?⊥b? ,则m=______.【答案】5【解析】【分析】本题主要考查平面向量垂直的充要条件,平面向量数量积的坐标运算,属基础题.由a?⊥b? 可得a??b? =0,再把两向量坐标代入运算可得答案.【解答】解:∵a?⊥b? ,所以a??b? =0,因为a?=(1,?1),b? =(m+1,2m?4),所以m+1?(2m?4)=0,故m=5.故答案为:537.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.【答案】2x?y=0【解析】【分析】本题主要考查导数的几何意义,属基础题.根据导数的几何意义确定切点坐标,再根据直线的点斜式得到切线方程.【解答】+1解:∵y=lnx+x+1,∴y′=1x+1=2,故x0=1,设切点坐标为(x0,y0),因为切线斜率为2,所以1x此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y?2=2(x?1)所以切线方程为2x?y=0.故答案为:2x?y=0.38.数列{a n}满足a n+2+(?1)n a n=3n?1,前16项和为540,则a1=____.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题.对n取偶数,再结合条件可求得前16项中所有奇数项的和,对n 取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(?1)n a n=3n?1,当n=2,6,10,14时,a2+a4=5,a6+a8= 17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540?(5+17+29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2?a n=3n?1,所以a3?a1=2,a5?a3=8,a7?a5=14?a n+2?a n=3n?1,累加得an+2?a1=2+8+14+?3n?1=(2+3n?1)?n+122,∴a n+2=(3n+1)?(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13= 102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.故答案为7.三、解答题(本大题共7小题,共82.0分)39.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?【答案】解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90?25)+0.2×(50?25)+0.2×(20?25)+0.2×(?50?25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90?20)+0.17×(50?20)+0.34×(20?20)+0.21×(?50?20)= 10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.【解析】本题主要考查频率的算法,平均数的概念及其意义,属基础题.(1)根据图表信息可得甲乙分厂的频数,从而得到答案.(2)根据图表信息可得甲乙分厂的四个等级的频率,再根据平均数的定义求得答案,比较两厂的平均数得到最终答案即可.40.?ABC的内角A,B,C的对边分别为a,b,c,已知B=150°.(1)若a=√3c,b=2√7,求?ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得b2=a2+c2?2accosB,即28=3c2+c2?2√3c2cos150°,解得c=4,所以a=4√3,所以S△ABC=12acsinB=12×4√3×4×12=4√3.(2)因为A=180°?B?C=30°?C,所以sinA+√3sinC=sin(30°?C)+√3sinC=12cosC+√32sinC=sin(30°+C)=√22,因为A>0°,C>0°,所以0°<c<30°,所以30°<30°+c<60°,< p="">所以30°+C=45°,所以C=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.41.如图,D为圆锥的顶点,O是圆锥底面的圆心,?ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P?ABC的体积.【答案】解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB?平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32?1=√22,所以三棱锥P?ABC的体积V=13SΔABC?PO=13×12×√3×√3×√32×√228.【解析】【解析】本题考查线面位置关系的判定,圆锥的侧面积公式,棱锥的体积公式的应用,考查空间想象能力与运算能力,属于中档题.(1)由题意证得PB⊥PA,PB⊥PC,从而得到PB⊥平面PAC,根据面面垂直的判定定理即可证明;(2)由圆锥的性质可求得底面半径与母线长,从而可求得△ABC的边长,从而可求得三棱锥P?ABC的高,从而可求得体积.42.已知函数f(x)=e x?a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【答案】解:(1)当a=1时,f(x)=e x?(x+2),则f′(x)=e x?1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(?∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x?a(x+2)=0,显然x≠?2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<?2或?2<x<?1时,g′(x)?1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(?1)=1e当x <?2时,g(x)?2时,g(x)>0,所以当a >1e 时,y =a 与g(x)的图象有两个交点,所以a 的取值范围为(1e ,+∞).【解析】【解析】本题考查利用导数判断函数的单调性,利用导数研究函数的零点,有一定难度. (1)先求导,可直接得出函数的单调性;(2)先分离参数得a =e x x+2,再构造函数,利用导数研究函数的性质,即可得出a 的取值范围.43. 已知A ,B 分别为椭圆E:+=1(a >1)的左、右顶点,G 为E 的上顶点,=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D , (1)求E 的方程;(2)证明:直线CD 过定点.【答案】解:由题意A (?a,0),B (a,0),G (0,1),AG =(a,1),GB =(a,?1), AGGB =a 2?1=8?a 2=9?a =3,∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (?3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y=m9(x+3)x29+y2=1(9+m2)x2+6m2x+9m2?81=0, 由韦达定理?3x C=9m2?819+m2?x C=?3m2+279+m2,代入直线PA的方程y=m9(x+3)得,y C=6m9+m2,即C(?3m2+279+m2,6m9+m2),直线PB的方程为y=m3(x?3),联立{y=m3(x?3)x29+y2=1(1+m2)x2?6m2x+9m2?9=0, 由韦达定理3x D=9m2?91+m2?x D=3m2?31+m2,代入直线PA的方程y=m 3(x?3)得,y D=2m 1+m2,即D(3m2?3 1+m2,?2m1+m2),∴直线CD的斜率k CD= 6m9+m22m1+m23m2+279+m23m2?31+m2=4m3(3?m2),∴直线CD的方程为y??2m 1+m2=4m3(3?m2)(x?3m2?31+m2),整理得y=4m3(3?m2)(x?32),∴直线CD过定点(32,0).【解析】本题考查直线于椭圆的位置关系,定点问题,属于较难题;(1)求出各点坐标,表示出向量;(2)求出C,D两点坐标,进而求出直线CD,即可证明.44.[选修4?4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ?16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.</c<30°,所以30°<30°+c<60°,<></x<4,<>。

2020年全国统一高考数学试卷(文科)(全国卷一)(含详细解析)

2020年全国统一高考数学试卷(文科)(全国卷一)(含详细解析)

c 保密★启用前2020年全国统一高考数学试卷(文科)(全国卷一)您题号—总分得分注意事项:1.答题前垃写好自己的姓名、班级、考号等信息2.请将答案正确填写在答超卡上o:n o评卷人得分1.己知集合/!={x\xA.{—4,1}一、单选题3—4<0},8={-4,1,3,5},则』口=()B.(1,5}C.{3,5}D.{1,3}2.若z= l+2i+i3,则回=()A.0B.1C.41D.23.埃及胡夫金字塔是古代世界建筑志迹之一,它的形状可视为-个正四棱锥,以该四校锥的高为边长的正方形面积等于该四梭推一个侧面三角形的面积,鲫其侧面三角形底边上的高与底面正方形的边长的比值为()oO A旦R岂 C.旦 D.旦4242的概率为()5.某校一个课外学习小组为研充某作物种了•的发芽率.p 和温度工(单位:°C )的关系. 在20个不同的温度条件下进行种子发芽实验,由实验数据(.t r.Z )(/ = 1.2.-.2O )得到下 面的散点图;由此散点图•在10。

至40也之间・卜.面四个回归方程类型中最适宜作为发芽率*和温度X 的问归方程类型的是()A. ,= 〃 +版B. y = a + hx 2C. y-a + be l D・ y = a + b\nx6.已知圆xf 尸-6“0,过点(1, 2)的直线被该圆所截得的弦的忙度的最小值为A. 1C. 3B. 2D. 47 .设函数f (x ) = COS (5 +兰)在[-兀,71]的图像大致如卜图,则用)的最小止周期为()610n A. B.Inc. 8. A. 9.4丸设g4=2,则4"= <)1 B.1. 169执行下面的程序框图,则输出的〃=()D.C.A.3兀D.417 B.19 C.21 D.2310.设{虬}是等比数列,旦0+七+%=】•%+江/久=2.则%+"%=(A.12B.24C.30D.32y11.设%足是双仙线C:x2-^-=l的两个焦点.。

2020年高考真题——数学(文)(全国卷Ⅰ)+Word版含解析【KS5U+高考】

2020年高考真题——数学(文)(全国卷Ⅰ)+Word版含解析【KS5U+高考】

绝密★启用前2020 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12 小题,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x | x2- 3x - 4 < 0}, B = {-4,1, 3, 5},则A B =()A. {-4,1}B. {1, 5}C. {3, 5}D. {1, 3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A B ,得到结果.【详解】由x2- 3x - 4 < 0 解得-1 <x < 4 ,所以A ={x | -1 <x < 4},又因为B ={-4,1, 3, 5},所以A B ={1, 3},故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若z =1 + 2i + i3,则|z | = ()A. 0B. 1212 +12 2 b 2- a2 4b 2 b CD. 2【答案】C【解析】【分析】先根据i 2 = -1将 z 化简,再根据向量的模的计算公式即可求出.【详解】因为 z = 1+2i + i 3 = 1+2i - i = 1+ i ,所以 z = = .故选:C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.1. 胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.5 -1 4B.5 -1 2C.5 +1 4D.5 +1 2【答案】D【解析】【分析】设CD = a , PE = b ,利用 PO 2 = 1CD ⋅ PE 得到关于a , b 的方程,解方程即可得到答案.2CD = a , PE = b【详解】如图,设,则 PO=由题意 PO 2= 1 ab ,即b 2- a 2 =1 4( ) -2 ⋅ -1 = 0 ,化简得,ab 24 2aaPE 2 - OE 2解得b=1 + 5 (负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.为正方形ABCD 的中心,在O,A,B,C,D 中任取3 点,则取到的3 点共线的概率为()1 2A. B.5 514C. D.25【答案】A【解析】【分析】列出从5 个点选3 个点的所有情况,再列出3 点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O,A,B,C,D 5 个点中任取3 个有{O, A, B},{O, A, C},{O, A, D},{O, B, C}{O, B, D},{O,C, D},{A, B,C},{A, B, D}{A,C, D},{B,C, D} 共10 种不同取法,3 点共线只有{A,O, C} 与{B,O, D} 共2 种情况,由古典概型的概率计算公式知,取到 3 点共线的概率为2= 1 .故选:A10 5【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.3. 一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位:°C )的关系,在 20个不同的温度条件下进行种子发芽实验,由实验数据(x i , y i )(i = 1, 2,, 20) 得到下面的散点图:由此散点图,在 10°C 至 40°C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x的回归方程类型的是()A. y = a + bxB. y = a + bx 2C. y = a + b e xD. y = a + b ln x【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是y =a +b ln x .故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.4.圆x2+y2- 6x = 0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据直线和圆心与点(1, 2) 连线垂直时,所求的弦长最短,即可得出结论.【详解】圆x2+y2- 6x = 0 化为(x - 3)2+y2= 9 ,所以圆心C 坐标为C(3, 0) ,半径为3 ,设P(1, 2) ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为= 2 = 2 .故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.5.数f (x) = cos(ωx +π) 在[-π,π]的图像大致如下图,则f(x)的最小正周期为()610π7πA. B.96 4π3πC. D.32【答案】C9- | CP |29 -8+= -【解析】【分析】由图可得:函数图象过点⎛ - 4π ,0⎫ ,即可得到cos ⎛ - 4π ⋅ω + π ⎫ = 0 ,结合⎛ - 4π ,0⎫是 9 ⎪ 9 6 ⎪ 9 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭函数 f (x ) 图象与 x 轴负半轴的第一个交点即可得到- 4π⋅ω + π = - π ,即可求得ω = 3, 9 6 2 2再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点⎛ - 4π ,0⎫,9 ⎪ ⎝ ⎭将它代入函数 f (x ) 可得: cos ⎛ - 4π⋅ω + π ⎫ = 0 9 6 ⎪ ⎝ ⎭又⎛ - 4π ,0⎫是函数 f (x ) 图象与 x 轴负半轴的第一个交点, 9 ⎪ ⎝ ⎭所以-4π ⋅ω ππ,解得:ω = 39622T =2π = 2π = 4π所以函数 f (x ) 的最小正周期为故选:Cω 3 32【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.6. l og 3 4 = 2 ,则4- a= ()1 1 1 1 A.B.C.D.16986【答案】B【解析】【分析】首先根据题中所给的式子,结合对数的运算法则,得到log 3 4a= 2 ,即 4a = 9 ,进而求得4-a = 1,得到结果.9【详解】由a log 3 4 = 2 可得log 3 4a= 2 ,所以4a = 9 ,所以有4-a = 1,9故选:B.【点睛】该题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目. 7. 下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】根据程序框图的算法功能可知,要计算满足1+ 3 + 5 + + n > 100 的最小正奇数n ,根据等差数列求和公式即可求出.【详解】依据程序框图的算法功能可知,输出的n 是满足1+ 3 + 5 ++ n > 100 的最小正奇数,因为1+ 3 + 5 += 1 (n +1)2 4> 100 ,解得n > 19 ,所以输出的n =21.故选:C【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n 项和公式的应用,属于基础题.8.n } 是等比数列,且a 1 + a 2 + a 3 = 1 ,a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ( )A. 12B. 24C. 30D. 32(1+ n )⨯⎛ n -1 +1⎫⎪ + n =⎝ 2 2 ⎭1 2 1 2 1 2 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1 【答案】D【解析】【分析】根据已知条件求得q 的值,再由a + a + a = q 5(a + a + a ) 可求得结果.678123【详解】设等比数列{a } 的公比为q ,则a + a + a = a (1+ q + q 2)= 1 , a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2) = q = 2 , 因此, a + a + a = a q 5 + a q 6 + a q 7 = a q 5 (1+ q + q 2 )= q 5 = 32 .故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.F , F2y 2 | OP |= 29. 2 是双曲线C : x-= 1 的两个焦点,O 为坐标原点,点 P 在C 上且 ,3则△PF 1F 2 的面积为()A.725 B. 3C.2D. 2【答案】B【解析】【分析】由是以 P 为直角直角三角形得到| PF |2 + | PF|2= 16 ,再利用双曲线的定义得到| PF | - | PF | = 2 ,联立即可得到| PF || PF| ,代入 S △= 1 | PF || PF |中计算即可.1212F 1F 2 P 21 2【详解】由已知,不妨设 F 1(-2, 0), F 2 (2, 0) , 则 a = 1, c = 2 ,因为| OP |= 1 = 1| F F | ,21 2所以点 P 在以 F 1F 2 为直径的圆上,即 F 1F 2 P 是以 P 为直角顶点的直角三角形,故| PF |2 + | PF |2 =| F F |2 ,121 2即| PF |2+ | PF |2 = 16 ,又 | PF | - | PF | = 2a = 2 ,F 1F 2 P3 3 1 2 1 2 所以4 = | PF 1 | - | PF 2 | 2= | PF |2 + | PF |2-2 | PF|| PF |= 16 - 2 | PF 1 || PF 2 | ,解得| PF || PF |= 6 ,所以 S △= 1 | PF || PF|= 3 12故选:BF 1F 2 P 21 2【点晴】本题考查双曲线中焦点三角面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.10. , B , C 为球O 的球面上的三个点,⊙ O 1 为 ABC 的外接圆,若⊙ O 1 的面积为4π ,AB = BC = AC = OO 1 ,则球O 的表面积为() A. 64π B. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边 ABC 的外接圆半径,进而求出其边长,得出OO 1 的值,根据球截面性质,求出球的半径,即可得出结论.【详解】设圆O 1 半径为 r ,球的半径为 R ,依题意,得π r 2 = 4π ,∴r = 2 ,由正弦定理可得 AB = 2r sin 60︒ = 2 ,∴OO 1 = AB = 2 ,根据圆截面性质OO 1 ⊥ 平面 ABC ,∴OO ⊥ O A , R = OA === 4 ,1 1∴球O 的表面积 S = 4π R 2 = 64π .故选:AOO 2 + O A 2 1 1 OO 2 + r 2 1⎨⎩⎩ 【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.⎧2x + y - 2 ≤ 0,11. y 满足约束条件⎪x - y -1 ≥ 0, 则z =x +7y 的最大值为 .⎪ y +1 ≥ 0,【答案】1【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.【详解】绘制不等式组表示的平面区域如图所示,目标函数 z = x + 7 y 即: y = - 1 x + 1z ,77其中 z 取得最大值时,其几何意义表示直线系在 y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点 A 处取得最大值, 联立直线方程:⎧2x + y - 2 = 0 ,可得点 A 的坐标为: A (1, 0),⎨x - y -1 = 0据此可知目标函数的最大值为: z max = 1+ 7 ⨯ 0 = 1 . 故答案 :1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0 时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0 时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.x 12. a = (1, -1), b = (m +1, 2m - 4) ,若a ⊥ b ,则m =.【答案】5【解析】【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.【详解】由a ⊥ b 可得a ⋅ b = 0 ,又因为a = (1, -1), b = (m +1, 2m - 4),所以a ⋅ b = 1⋅(m +1) + (-1) ⋅ (2m - 4) = 0 ,即 m = 5 , 故答案为:5.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.13. = ln x + x +1的一条切线的斜率为 2,则该切线的方程为 .【答案】 y = 2x【解析】【分析】设切线的切点坐标为(x 0 , y 0 ) ,对函数求导,利用 y ' |x = 2 ,求出 x 0 ,代入曲线方程求出 y 0 ,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为( x , y ), y = ln x + x + 1, y ' = 1+ 1 ,y ' |=1 + 1 = 2, x = 1, y 0 0x= 2,所以切点坐标为(1, 2) ,x = x 00 0所求的切线方程为 y - 2 = 2(x -1) ,即 y = 2x . 故答案为: y = 2x .【点睛】本题考查导数的几何意义,属于基础题.14. a } 满足a+ (-1)n a = 3n -1,前 16 项和为 540,则a =.nn +2n1【答案】7n +2 n 【解析】【分析】对 n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用a 1 表示,由偶数项递推公式得出偶数项的和,建立a 1 方程,求解即可得出结论.【详解】a + (-1)n a = 3n -1,当 n 为奇数时, a n +2 = a n + 3n - 1 ;当n 为偶数时, a n +2 + a n = 3n - 1 . 设数列{a n } 的前n 项和为 S n ,S 16 = a 1 + a 2 + a 3 + a 4 += a 1 + a 3 + a 5= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为 必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分.15. 受了一项加工业务,加工出来 产品(单位:件)按标准分为 A ,B ,C ,D 四个等级.加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元,20 元;对于D 级品,厂家每件要赔偿原料损失费 50 元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25 元/件,乙分厂加工成本费为20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表 + a 16+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )等级ABCD乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100 件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A 级品的概率为0.4 ,乙分厂加工出来的A 级品的概率为0.28 ;(2)选甲分厂,理由见解析.【解析】【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100 件产品的总利润,即可求出平均利润,由此作出选择.40【详解】(1)由表可知,甲厂加工出来的一件产品为A 级品的概率为= 0.4 ,乙厂加工出10028= 0.28 ;来的一件产品为A 级品的概率为100(2)甲分厂加工100 件产品的总利润为40⨯(90 - 25)+ 20⨯(50 - 25)+ 20⨯(20 - 25)- 20⨯(50 + 25)= 1500 元,所以甲分厂加工100 件产品的平均利润为15 元每件;乙分厂加工100 件产品的总利润为28⨯(90 - 20)+17 ⨯(50 - 20)+ 34⨯(20 - 20)- 21⨯(50 + 20)= 1000 元,所以乙分厂加工100 件产品的平均利润为10 元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出3 A + C = 决策,属于基础题.16. 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 B =150°.(1)若 a = c ,b =2 ,求 ABC 的面积;(2)若 sin A +【答案】(1) sin C =2 ,求 C .2;(2)15︒ .【解析】【分析】(1) 已知角 B 和b 边,结合 a , c 关系,由余弦定理建立c 的方程,求解得出 a , c ,利用面积公式,即可得出结论;(2) 将 A = 30︒ - C 代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得b 2 = 28 = a 2 + c 2 - 2ac ⋅ cos150︒ = 7c 2 ,∴c = 2, a = 2 3,∴△ABC 的面积S = 1ac sin B = ; 2(2) 30︒ ,∴sin A + 3 sin C = sin(30︒ - C ) + 3 sin C= 1 cos C + 3 sin C = sin(C + 30︒) =2, 2 2 20︒ < C < 30︒,∴30︒ < C + 30︒ < 60︒ , ∴C + 30︒ = 45︒,∴C = 15︒ .【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.17. D 为圆锥的顶点,O 是圆锥底面的圆心, ABC 是底面的内接正三角形,P 为 DO上一点,∠APC =90°.3 7 3 33 3= 3(1) 证明:平面 PAB ⊥平面 PAC ;(2) 设 DO =,圆锥的侧面积为 3π ,求三棱锥 P −ABC 的体积.【答案】(1)证明见解析;(2)6 .8【解析】【分析】(1) 根据已知可得 PA = PB = PC ,进而有△PAC ≅ △PBC ,可得∠APC = ∠BPC = 90,即PB ⊥ PC ,从而证得 PC ⊥ 平面 PAB ,即可证得结论; (2) 将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形 ABC 边长,在等腰直角三角形 APC 中求出 AP ,在 Rt APO 中,求出 PO ,即可求出结论.【详解】(1) Q D 为圆锥顶点, O 为底面圆心,∴OD ⊥ 平面 ABC ,P 在 DO 上, OA = OB = OC ,∴ PA = PB = PC ,ABC 是圆内接正三角形,∴ AC = BC , △PAC ≅ △PBC ,∴∠APC = ∠BPC = 90︒ ,即PB ⊥ PC , PA ⊥ PC , PA PB = P ,∴ PC ⊥ 平面 PAB , PC ⊂ 平面 PAC ,∴平面 PAB ⊥ 平面 PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为π rl =3π , rl = ,OD 2 = l 2 - r 2 = 2 ,解得r = 1, l = , AC = 2r sin 60 ,在等腰直角三角形 APC 中, AP =2 AC =6 ,22在 Rt PAO 中, PO ==2 ,22 AP 2 - OA 26 - 1 4∴三棱锥 P - ABC 的体积为V= 1PO ⋅ S= 1 ⨯ 2 ⨯ 3 ⨯ 3 = 6 . P - ABC 3 △ABC3 24 8【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.18. 数 f (x ) = e x - a (x + 2) .(1) 当a = 1 时,讨论 f (x ) 的单调性; (2) 若 f (x ) 有两个零点,求a 的取值范围.【答案】(1)减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)(1, +∞) . e 【解析】【分析】(1) 将a = 1 代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2) 若 f (x ) 有两个零点,即e x- a (x + 2) = 0 有两个解,将其转化为a = ex x + 2有两个解,令h (x ) = e xx + 2(x ≠ -2) ,求导研究函数图象的走向,从而求得结果.【详解】(1)当a = 1 时, f (x ) = e x - (x + 2) , f ' (x ) = ex -1,令f ' (x ) < 0 ,解得 x < 0 ,令 f ' (x ) > 0 ,解得 x > 0 ,所以 f (x ) 的减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)若 f (x ) 有两个零点,即e x - a (x + 2) = 0 有两个解,1+2从方程可知, x = 2 不成立,即a = e x x + 2有两个解,ex'e x (x + 2) - e x e x (x +1) 令 h (x ) =(x ≠ -2) ,则有h (x ) =x + 2(x + 2)2=(x + 2)2,令 h ' (x ) > 0,解得 x > -1 ,令h ' (x ) < 0 ,解得 x < -2 或-2 < x < -1 ,所以函数h (x ) 在(-∞, -2) 和(-2, -1) 上单调递减,在(-1, +∞) 上单调递增,且当 x < -2 时, h (x ) < 0 ,而 x → -2+ 时, h (x ) → +∞ ,当 x → +∞时, h (x ) → +∞ ,所以当a =e x x + 2有两个解时,有a > h (-1) = 1 ,e所以满足条件的a 的取值范围是: ( , +∞) .e【点睛】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线 y = e x 和直线 y = a ( x + 2) 有两个交点,利用过点(-2, 0) 的曲线 y = e x 的切线 斜率,结合图形求得结果.19. 、B 分别为椭圆 E :x 2a 2y= 1(a >1)的左、右顶点,G 为 E 的上顶点,AG ⋅ GB = 8 ,P 为直线 x =6 上的动点,PA 与 E 的另一交点为 C ,PB 与 E 的另一交点为 D .(1) 求 E 的方程;(2) 证明:直线 CD 过定点.x 2 2【答案】(1)+ y 9= 1;(2)证明详见解析.【解析】 【分析】(1)由已知可得: A (-a ,0) , B (a ,0) , G (0,1) ,即可求得 AG ⋅ G B = a 2 -1 ,结合已知 即可求得: a 2 = 9 ,问题得解.AG ⋅ G B = a 2 x 0 ⎝ ⎭y (2)设 P (6, y 0 ) ,可得直线 AP 的方程为: y = y(x + 3) ,联立直线 AP 的方程与椭圆方 9⎛ -3y 2 + 27 6 y ⎫ 程即可求得点C 的坐标为 0 , 0 ⎪ ,同理可得点D 的坐标为 y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2 - 3 -2 y ⎫ 0 , 0 ⎪ ,即可表示出直线CD 的方程,整理直线CD 的方程可得: y 2 +1 y 2 +1⎝ 0 0 y =4 y 0⎭⎛ x - 3 ⎫,命题得证. 3(3 - y 2 )2 ⎪【详解】(1)依据题意作出如下图象:2由椭圆方程 E : + a2 y 2 = 1(a > 1) 可得: A (-a ,0) , B (a ,0) , G (0,1)∴ AG = (a ,1) , GB = (a , -1)∴ -1 = 8 ,∴ a 2 = 9∴ x 2 2椭圆方程为: + y = 19(2)证明:设 P (6, y 0 ) ,则直线 AP 的方程为: y =y 0 - 0 6 - (-3) ( x + 3) ,即: y = y 0 ( x + 3) 9 ⎧ x 2+ 2 = ⎪ 9联立直线 AP 的方程与椭圆方程可得: ⎨ y ,整理得: ⎪ y = 0 ( x + 3)⎪⎩9 1-3y 2 + 27 0 0 0 0⎝ 0 0 0 0 6 (3 - y )0 ⎩ 0 ⎭ ⎝ 2 0 ⎭ ( y 2 + 9) x 2 + 6 y 2 x + 9 y 2 - 81 = 0 ,解得: x = -3 或 x = 0-3y 2 + 27 y6 y 0y 2 + 9将x =代入直线y = 0 ( x + 3) 可得: y = 2y 2+ 99⎛ -3y 2 + 27 6 y ⎫ y 0 + 9所以点C 的坐标为 0 , 0 ⎪ .y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2- 3 -2 y ⎫ 同理可得:点 D 的坐标为 0 , 0 ⎪ y 2 +1 y 2 +1 ⎝ 0 0 ⎭6 y 0 - ⎛ -2 y 0 ⎫ ⎛ -2 y ⎫y 2 + 9 y 2 +1 ⎪ ⎛ 3y 2 - 3 ⎫ ∴直线CD 的方程为: y - 0 ⎪ = 0 ⎝ 0 ⎭ x - 0 ⎪ , ⎝ y 2 +1 ⎭ -3y 2 + 27 3y 2- 3 - y 2 +1 ⎭ y 2 + 9 y 2 +12 y 8 y (y 2+ 3)⎛ 03y 2 - 3 ⎫ 8 y⎛ 3y 2 - 3 ⎫ 整理可得: y + 0= y 2 +1 0 0 6 (9 - y 4)x - ⎝ y 2 +1 ⎪ = 0 x - 0 y 2 +1 ⎪ 整理得: y =4 y 0 x + 2 y 0= 4 y 0 ⎛ x - 3 ⎫ 3(3 - y 2) y 2 - 3 3(3 - y 2 )2 ⎪ 00 故直线CD 过定点⎛ 3 ,0 ⎫ 0 ⎝ ⎭ 2 ⎪ ⎝ ⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.(二)选考题:共 10 分。

2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(含答案解析)

2020年全国统一高考数学试卷(文科)(新课标Ⅱ)(含答案解析)
A.5B.8C.10D.15
4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()
附:相关系数r= , ≈1.414.
19.已知椭圆C1: (a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|= |AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
平移直线 ,当直线经过点 时,直线 在纵轴上的截距最大,
此时点 的坐标是方程组 的解,解得: ,
因此 的最大值为: .
故答案为: .
【点睛】
本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.
16.①③④
【分析】
利用两交线直线确定一个平面可判断命题 的真假;利用三点共线可判断命题 的真假;利用异面直线可判断命题 的真假,利用线面垂直的定义可判断命题 的真假.再利用复合命题的真假可得出结论.
20.如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN= ,求四棱锥B–EB1C1F的体积.

2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
整理得 ,因为 ,所以 ,
【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则A∩B中元素的个数为()
A.2B.3C.4D.5
【答案】B
【解析】
【分析】
采用列举法列举出 中元素的即可.
【详解】由题意, ,故 中元素的个数为3.
故选:B
【点晴】本题主要考查集合 交集运算,考查学生对交集定义的理解,是一道容易题.
【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中 ,且点M为BC边上的中点,
设内切圆的圆心为 ,
由于 ,故 ,
设内切圆半径为 ,则:
,
解得: ,其体积: .
故答案为: .
【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
【答案】D
【解析】
【分析】
先利用除法运算求得 ,再利用共轭复数的概念得到 即可.
【详解】因为 ,所以 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学资料范本【2020最新】人教版最新高考文科数学复习试卷及参考答案编辑:__________________时间:__________________(附参考答案)一、选择题:1. 函数f(x)=|sinx+cosx|的最小正周期是( ) A. B. C. πD. 2π4π2π2. 正方体ABCD —A1B1C1D1中,P 、Q 、R 分别是AB 、AD 、B1C1的中点. 那么,正方体的过P 、Q 、R 的截面图形是( )A. 三角形B. 四边形C. 五边形D. 六边形 3. 函数的反函数是( ))0(12≤-=x x y A. )1(1-≥+=x x y B. )1(1-≥+-=x x y C. )0(1≥+=x x y D. )0(1≥+-=x x y4. 已知函数内是减函数,则( ))2,2(tan ππω-=在x yA. 0<≤1B. -1≤<0ωωC. ≥1D. ≤-1ωω5. 抛物线上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )y x 42=A. 2B. 3C. 4D.56. 双曲线的渐近线方程是( )19422=-y xA. B.x y 32±=xy 94±= C.D.x y 23±=xy 49±= 7. 如果数列是等差数列,则( )}{n aA.B. 5481a a a a +<+5481a a a a +=+C.D. 5481a a a a +>+5481a a a a =8. 的展开式中项的系数是( )10)2(y x -46y x A. 840 B. -840C. 210D. -2109. 已知点A (,1),B (0,0)C (,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有等于( )33λλ其中,→=→CE BCA. 2B.C. -3D. -213110.已知集合( )为则N M x x x N x x M ⋂>--=≤≤-=},06|{|},74|{2A. }7324|{≤<-<≤-x x x 或B. }7324|{<≤-≤<-x x x 或C.D.11. 点P 在平面上作匀速直线运动,速度向量(即点P 的运动方向与v 相同,且每秒移动的距离为|v|个单位)。

设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为( ))3,4(-=vA. (-2,4)B. (-30,25)C. (10,-5)D. (5,-10)12. △ABC 的顶点B 在平面内,A 、C 在的同一侧,AB 、BC 与所成的角分别是ααα30°和45°.若AB=3,BC=4,AC=5,则AC 与所成的角为( )2αA. 60°B. 45°C. 30°D. 15° 第II 卷注意事项:1. 用钢笔或圆珠笔直接答在试题卷中。

2. 答卷前将密封线内的项目填写清楚。

3. 本卷共10小题,共90分。

二、填空题:(本大题共4小题,每小题4分,共16分。

把答案填在题中横线上。

)13. 在之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 。

22738和14. 圆心为(1,2)且与直线 。

相切的圆的方程为07125=--y x15. 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个。

16. 下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥。

②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥。

③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥。

④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是 (写出所有真命题的编号)。

三、解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

17. (本小题满分12分)已知为第二象限的角,为第一象限的角,的值.αβα,53sin =)2tan(,135cos βαβ-=求18. (本小题满分12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束,设各局比赛相互间没有影响,求(Ⅰ)前三局比赛甲队领先的概率;(Ⅱ)本场比赛乙队以3:2取胜的概率。

(精确到0.001) 19. (本小题满分12分)乙知{an}是各项为不同的正数的等差数列,lga1、lga2、lga4 成等差数列,又,n=1,2,3…。

na b n 21=(Ⅰ)证明{bn}为等比数列;(Ⅱ)如果数列{bn}前3项的和等于,求数列{an}的首项a1和公差d 。

24720. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,AD=PD ,E 、F 分别为CD 、PB 的中点。

(Ⅰ)求证:EF ⊥平面PAB ;(Ⅱ)设AB=BC ,求AC 与平面AEF 所成的角的大小。

2 21. (本小题满分12分)设a 为实数,函数。

a x x x x f +--=23)( (Ⅰ)求的极值;)(x f(Ⅱ)当a 在什么范围内取值时,曲线轴仅有一个交点。

x x f y 与)(=22. (本小题满分14分)P 、Q 、M 、N 四点都在椭圆上,F 为椭圆在y 轴正半轴上的焦点。

已知共线,共线,。

求四边形PMQN 的面积的最小值和最大值。

1222=+y x →→PQ PF 与→→FN MF 与0=→⋅→MF PF参考答案一. 选择题: 1. C 2. D 3. B 4. B 5. D 6. C 7. B 8. A 9. C10. A11. C 12. C二. 填空题:13. 216 14.4)2()1(22=-+-y x 15. 192 16. ①,④ 三. 解答题:17. 本小题主要考查有关角的和、差、倍的三角函数的基本知识,以及分析能力和计算能力。

满分12分。

解法一:βαβαβαtan 2tan 1tan 2tan )2tan(+-=- α为第二象限的角,,所以53sin =α所以724tan 1tan 22tan 2-=-=ααα β为第一象限的角,,所以135cos =β所以 253204512)724(1512724)2tan(=⨯-+--=-βα解法二:为第二象限角,,所以α53sin =αβ为第一象限角,,所以135cos =β故2524cos sin 22sin -==ααα 所以253204)2cos()2sin()2tan(=--=-βαβαβα 18. 本小题主要考查相互独立事件概率的计算,运用概率知识解决实际问题的能力,满分12分。

解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4(I )记“甲队胜三局”为事件A ,“甲队胜二局”为事件B ,则所以,前三局比赛甲队领先的概率为648.0)()(=+B P A P(II )若本场比赛乙队3:2取胜,则前四局双方应以2:2战平,且第五局乙队胜,所以,所求事件的概率为138.04.06.04.02224=⨯⨯⨯C 19. 本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。

满分12分。

(1)证明: 421lg lg lg a a a 、、 成等差数列412lg lg lg 2a a a +=∴,即 4122a a a ⋅= 又设等差数列的公差为d ,则}{n a这样d a d 12=从而 0)(1=-a d d这时是首项,公比为的等比数列}{n b d b 211=21(II )解:247)41211(21321=++=++d b b b所以 31==d a20. 本小题主要考查直线与平面垂直、直线与平面所成角的有关知识,及思维能力和空间想象能力,考查应用向量知识解决数学问题的能力。

满分12分。

方法一:(I )证明:连结EPABCD ,PD 底面⊥ DE 在平面ABCD 内 DE PD ⊥∴,又CE =ED ,PD =AD =BC F 为PB 中点由三垂线定理得AB PA ⊥∴在中,又PAB Rt ∆AF PF =EA BE PE == PB 、FA 为平面PAB 内的相交直线 ⊥∴EF 平面PAB(II )解:不妨设BC =1,则AD =PD =1PAB ∆∴为等腰直角三角形,且PB =2,F 为其斜边中点,BF =1,且PB AF ⊥PB 与平面AEF 内两条相交直线EF 、AF 都垂直 ⊥∴PB 平面AEF连结BE 交AC 于G ,作GH//BP 交EF 于H ,则平面AEF ⊥GH GAH ∠为AC 与平面AEF 所成的角由可知BGAEGC ∆∆~33232,31,21====AC AG EB EG GB EG 由可知EBFEGH ∆∆~3131==BF GH AC ∴与平面AEF 所成的角为63arcsin方法二:以D 为坐标原点,DA 的长为单位,建立如图所示的直角坐标系 (1)证明:设E (a ,0,0),其中,则C (2a ,0,0),A (0,1,0),B(2a ,1,0),P (0,0,1),F (a ,,)0>a 2121又平面PAB ,平面PAB ,⊂PB ⊂AB B AB PB =⊥∴EF 平面PAB(II )解:由,得BCAB 2=22=a可知)1,1,2(),0,1,2(-=→-=→PB AC异面直线AC 、PB 所成的角为63arccos又,EF 、AF 为平面AEF 内两条相交直线EF PB ⊥ ⊥∴PB 平面AEFAC ∴与平面AEF 所成的角为)63arcsin (63arccos2=-π即AC 与平面AEF 所成的角为 21. 本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力,满分12分。

63arcsin解:(I )f x x x '()=--3212若,则f x '()=0x =-131,当x 变化时,变化情况如下表:)(),('x f x fx()-∞-,13 -13 ()-131, 1()1,+∞f x '()+ 0 - 0 +f x () ↑极大值 ↓极小值 ↑所以f(x)的极大值是,极小值是f a()-=+13527f a ()11=-(II )函数f x x x x a x x a ()()()=--+=-++-322111 由此可知x 取足够大的正数时,有,x 取足够小的负数时有,所以曲线与x 轴至少有一个交点。

f x ()>0f x ()<0y f x =()结合f(x)的单调性可知:当f(x)的极大值,即时,它的极小值也小于0,因此曲线与x 轴仅有一个交点,它在上;5270+<a a ∈-∞-(),527y f x =()()1,+∞当f(x)的极小值,即时,它的极大值也大于0,因此曲线与x 轴仅有一个交点,它在上a ->10a ∈+∞()1,y f x =()()-∞-,13 所以当时,曲线与x 轴仅有一个交点。

相关文档
最新文档