七年级上数学期末考试复习题集锦
七年级数学上册期末复习题
一、选择题: 1.如果 a<0,-1<b<0,则 a , ab , ab 2 按由小到大的顺序排列为( A. a < ab < ab 2 B. a < ab 2 < ab C. ab < ab 2 < a ) D.-1 )
D. ab 2 < a < ab
2.若 (2a 3) 2 b 4 0 ,则 (2a b) 2013 的值是( A.-2013 B.2012 C.1 ) C.6 个
B.36°
C.45°
D.72°
2( x2( x 1) 20(10 x 10) 16 16 1.6 A. B. C. 3 3 3
D.
20( x 1) 1.6 3
9.若两个非零的有理数 a、b,满足: a a, b b, a b 0 ,则在数轴上表示数 a、b 的点, 正确的是( )
22.钟面上,9 时 24 分这一时刻的时针与分针的夹角是_________度。 23.如图所示,是一幅“苹果图” ,第一行有 1 个苹果,第二行有 2 个,第三行有 4 个,第 四行有 8 个…….你能发现苹果的排列规律?第十行有________个苹果。
24.如图,第(1)个多边形由正三角形“扩展”而来,边数记为 a3 ,第(2)个多边形由正 方形“扩展”而来,边数记为 a4 , …,依此类推,由正 n 边形“扩展”而来的多边形的边数 记为 an(n≥3) .则 a n 的值是 的结果是 197 时,n 的值
m,n 的式子表示) 13.多项式 x 2 3kxy 3 y 2 6 xy 8 不含 xy 项,则 k= 14.已知 a2-5a-1=0,则 5(1+2a) -2a2= 15.一个角的余角比它的补角的
2 还少 40°,则这个角为 3
初中七年级数学上册期末专项复习4套含答案
A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020
;
② 1 1 1
1
;
13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.
人教版初中数学七年级上期末复习专题卷(1-4及答案
第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。
精品 七年级数学上册 期末综合复习题
期末综合复习知识点:例1.已知:|a+2b-1|+(b+1)2=0,代数式2-2m a b +的值比m a b +-21的值大2.求m 的值。
例2.已知∠AOB=800, ∠BOC=200,求:(1)∠AOC 的度数;(2)若OM 平分∠AOB,ON 平分∠BOC ,求∠MON 的度数.例3.已知:如图,OB 、OC 分别为定角∠AOD 内的两条动射线。
⑴当OB 、OC 运动到如图的位置时,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,求∠AOD 的度数; ⑵在⑴的条件下,射线OM 、ON 分别为∠AOB 、∠COD 的平分线,当∠COB 绕着点O 旋转时,下列结论:①∠AOM-∠DON 的值不变;②∠MON 的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.例4.已知线段AB=m,CD=n,CD 在直线AB 上运动(A 在B 左侧,C 在D 左侧),若2)6(2n n m --=-. ⑴求线段AB 、CD 的长;⑵M 、N 分别为线段AC 、BD 的中点,若BC=4,求MN ;⑶当CD 运动到某一时刻时,D 点与B 点重合,P 是线段AB 延长线上任意一点,下列两个结论:①PCPBPA -是定值;②PCPB PA +是定值,请选择正确的一个并加以证明.课堂练习:1.任何一个有理数的平方( )A .一定是正数B .一定不是负数C .一定大于它本身D .一定不大于它的绝对值 2.(0)a b ab a b +≠的所有可能的值有( ) A.1个 B.2个 C.3个 D.4个 3.已知,123-m +2)123(++n =0,则2m-n= ( ) A.13 B.11 C.9 D.154.已知线段AB ,在AB 的延长线上取一点C ,使AC=2BC ,在AB 的反向延长线上取一点D ,使DA=2AB ,那么线段AC 是线段DB 的( )倍。
( )A.32B.23C.21 D.315.已知7322=+n m ,则代数式46-92+m n 的值等于( )A.17B.21C.-17D.256.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本为( )A.120元B.125元C.135元D.140元7.某跨桥全长36千米,按规定:桥上最低时速为60千米,最高时速为100千米,两辆汽车从桥的南北两端同时出发,正常行驶时到它们在途中交会所需时间可能是( ) A.36分钟 B.22分钟 C.15分钟 D.7分钟 A 、21 B 、28 C 、36 D 、45 8.如下图,可以用字母表示出来的不同射线和线段( ) A. 3条线段,3条射线 B. 6条线段,6条射线 C. 6条线段,4条射线 D. 3条线段,1条射线二、填空题:9.近似数1.460×105精确到____位,有效数字是_____ 10.213y x xy m n 与+是同类项,则m+n=11.如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体,这个正方体的2号面的对面是________号面.12.如图,已知OE 是∠BOC 的平分线,OD 是∠AOC 的平分线,且∠AOB=1500,则∠DOE 的度数是 13.如图,衣服三角板(直角顶点重合)摆放在桌面上,若∠AOD=1450,则∠BOC= 三、综合题:15.如果关于x 的两个方程5)3-5(3)13(x a x a =+和32)2(5+=+a x 的解相同,试求a 的值。
2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)
2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)一.选择题1.下列各组式子中,属于同类项的是()A.ab与a B.ab与ac C.xy与﹣2yx D.a与b2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.53.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是()A.30°B.60°C.120°D.150°4.下列说法中正确的是()A.射线AB和射线BA是同一条射线B.延长线段AB和延长线段BA的含义是相同的C.延长直线ABD.经过两点可以画一条直线,并且只能画一条直线5.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城6.如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误的是()A.CD=DE B.AB=DE C.CE=CD D.CE=2AB7.如图,O是直线AB上一点,∠AOC=46°,OD是∠COB的角平分线,则∠DOB等于()A.46°B.60°C.67°D.76°8.如图,点O在直线AB上,射线OC、OD在直线AB的同侧,∠AOD=40°,∠BOC=50°,OM、ON分别平分∠BOC和∠AOD,则∠MON的度数为()A.135°B.140°C.152°D.45°9.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是()A.3x﹣20=4x﹣25B.3x+20=4x+25C.3x﹣20=4x+25D.3x+20=4x﹣2510.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD =n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n二.填空题11.已知|a+2|=0,则a=.12.数轴上与原点的距离等于2个单位的点表示的数是.13.已知﹣5x m y3与4x3y n能合并,则m n=.14.若方程(m﹣1)x|m|+1+2mx﹣3=0是关于x的一元二次方程,则m=.15.已知∠A=100°,则∠A的补角等于°.16.已知∠A=30°45',∠B=30.45°,则∠A∠B.(填“>”、“<”或“=”)17.如图,射线OA的方向是北偏东27°35',那么∠α=.三.解答题18.计算:(1)6×(1﹣)﹣32÷(﹣9).(2)﹣22+|5﹣8|+24÷(﹣3)×.19.先化简再求值:2(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.20.补全解题过程:如图,已知线段AB=6,延长AB至C,使BC=2AB,点P、Q分别是线段AC和AB的中点,求PQ的长.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=+=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP==×18=9AQ==×6=3∴PQ=﹣=9﹣3=621.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求的值.22.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.如图,已知线段a和线段AB,(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.24.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.25.如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.26.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.27.已知m,x,y满足:(1)(x﹣5)2+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求代数式(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)的值.28.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠.(1)若用x(元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)若某人计划在该超市购买价格为2700元的一台电脑,请分析选择哪种优惠更省钱?29.(1)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点,求线段MN的长;(2)若C为线段上任一点,满足AC+CB=acm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.30.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=CQ.设运动的时间为t(t>0)秒.①数轴上点M、N表示的数分别是(用含t的式子表示);②t为何值时,M、N两点到原点的距离相等?参考答案一.选择题1.解:xy与﹣2yx属于同类项,故选:C.2.解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.3.解:∵∠A=60°,∠A与∠B互余,∴∠B=90°﹣∠A=90°﹣60°=30°,∵∠B与∠C互补,∴∠C=180°﹣∠B=180°﹣30°=150°.故选:D.4.解:A、射线用两个大写字母表示时,端点字母写在第一个位置,所以射线AB和射线BA不是同一条射线,此选项错误;B、延长线段AB是按照从A到B的方向延长的,而延长线段BA是按照从B到A的方向延长的,意义不相同,故此选项错误;C、直线本身就是无限长的,不需要延长,故此选项错误;D、根据直线的公理可知:两点确定一条直线,故此选项正确.故选:D.5.解:这是一个正方体的平面展开图,共有六个面,其中与“筑”字所在面相对的面上的汉字是疫.故选:B.6.解:∵点D恰好为CE的中点,∴CD=DE,∵CD=AB,∴AB=DE=CE,即CE=2AB=2CD,故A,B,D选项正确,C选项错误,故选:C.7.解:∵∠AOC=46°,∴∠BOC=180°﹣46°=134°,∵OD是∠COB的角平分线,∴∠DOB=∠COB=×134°=67°,故选:C.8.解:易知:∠COD=180°﹣∠AOD﹣∠BOC=90°,∵OM、ON分别平分∠BOC和∠AOD,∴∠NOD=∠AOD=20°,∠COM=∠BOC=25°,∴∠MON=20°+25°+90°=135°故选:A.9.解:设这个班有学生x人,由题意得,3x+20=4x﹣25.故选:D.10.解:由题意得,EC+FD=m﹣n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF﹣CD=m﹣n又∵AB=AE+FB+EF∴AB=m﹣n+m=2m﹣n故选:C.二.填空题11.解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为:±2.13.解:∵﹣5x m y3与4x3y n能合并,∴﹣5x m y3与4x3y n是同类项,∴m=3,n=3,∴m n=27.故答案为:27.14.解:由题意得:,解得:m=﹣1.15.解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.16.解:∵∠A=30°45'=30.75°,∠B=30.45°,30.75°>30.45°,∴∠A>∠B.故答案为:>.17.解:∵射线OA的方向是北偏东27°35',∴∠α=90°﹣27°35′=62°25′,故答案为:62°25°.三.解答题18.解:(1)6×(1﹣)﹣32÷(﹣9)=6×﹣9÷(﹣9)=4+1=5;(2)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3+(﹣8)×=﹣1﹣=﹣.19.解:原式=6x2y﹣2xy2﹣3x2y+6xy2=3x2y+4xy2,把x=﹣1,y=﹣2代入,原式=3×(﹣1)2×(﹣2)+4×(﹣1)×(﹣2)2=﹣6﹣16=﹣22.20.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=AB+BC=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP=AC=×18=9AQ=AB=×6=3∴PQ=AP﹣AQ=9﹣3=6,故答案为:AB;BC;AC;AB;AP;AQ.21.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2;故答案为:0,1,±2;(2)当m=2时,原式=2+1=3;当m=﹣2时,原式=﹣2+1+0=﹣1,则原式=3或﹣1.22.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.23.解:(1)如图:(2)∵AB=5,BC=3,∴AC=8,∵点O是线段AC的中点,∴AO=CO=4,∴BO=AB﹣AO=5﹣4=1,∴OB长为1.24.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.25.解:(1)∵OE平分∠BOC,∴∠COE=∠BOE,∵∠COD+∠COE=∠DOE=90°,∴∠COD+∠BOE=90°,与∠COD互余的角有∠BOE、∠COE;故答案为:∠BOE、∠COE;(2)∵OE平分∠BOC,∴∠COE=∠BOE=30°,∴∠AOE=180°﹣30°=150°;(3)证明:∵OE是∠BOC的平分线,∴∠COE=∠BOE,∵∠DOE=90°,∴∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∴∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.26.解:(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24顺风飞行时:S=v1t1逆风飞行时:S=v2t2即S=(x+24)×=(x﹣24)×3解得x=840,答:无风时飞机的飞行速度为840千米每小时.(2)两城之间的距离S=(x﹣24)×3=2448千米答:两城之间的距离为2448千米.27.解:∵(x﹣5)2+|m|=0,∴(x﹣5)2≥0|m|≥0,∴x=5,m=0,∵﹣2ab y+1与4ab3是同类项,∴y+1=3,∴y=2,∴(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)=2x2﹣3xy+6y2=2×52﹣3×5×2+6×22=50﹣30+24=44.28.解:(1)由题意可得:优惠一:付费为:0.9x,优惠二:付费为:200+0.8x;(2)当两种优惠后所花钱数相同,则0.9x=200+0.8x,解得:x=2000,答:当商品价格是2000元时,两种优惠后所花钱数相同;(3)∵某人计划在该超市购买价格为2700元的一台电脑,∴优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360,答:优惠二更省钱.29.解:(1)∵AC=8cm,点M是AC的中点,∴CM=0.5AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm,(2)MN=a,由M,N分别是AC,BC的中点,得MC=AC,NC=BC.MN=MC+NC=AC+BC=(AC+BC)=a,∴当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:,则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.30.解析(1)点A、C表示的数分别是﹣9、15.(2)①点M、N表示的数分别是t﹣9、15﹣4t,故答案为:t﹣9、15﹣4t.②当点M,点N分别在原点两侧时,由题意可知9﹣t=15﹣4t.解这个方程,得t=2.此时点M在原点左侧,点N在原点右侧.当点M、N在原点同侧时,由题意可知t﹣9=15﹣4t.解这个方程,得t=.此时点M、N同时在原点左侧.所以当t=2或 时,M、N两点到原点的距离相等.。
新人教版七年级上册数学总复习知识点和练习题
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。
2、向东走5m记作+5m,则向西走8记作,原地不动用表示。
正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。
4、与表示-1的点距离为3个单位的点所表示的数是。
5、数轴上到原点的距离为2的点所表示的数是。
6、3的相反数的倒数是。
7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。
8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。
9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。
ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。
例3(1)若a<,a2=4,b3=-8,求a+b的值。
(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。
3、某天气温上升了-2℃的意义是。
5、12的相反数与-7的绝对值的和是。
6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。
新人教版七年级上册数学总复习知识点和练习题
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。
2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。
3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。
4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。
10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。
(错误)②如果a是负数,那么-a就是正数。
(正确)③正数与负数互为相反数。
(正确)④一个数的相反数是非正数,那么这个数一定是非负数。
七年级数学上学期期末复习精选测试题(能力提高卷)
七年级数学上学期期末复习精选测试题(能力提高卷)一.选择题(共10小题)1.下列说法中:①|﹣a|一定是正数;②m+|m|的结果必为非负数;③如果a大于b,那么a 的倒数小于b的倒数;④n个数相乘,积的符号由负因数的个数决定;⑤如果两个数的绝对值相等,那么这两个数互为相反数;正确的个数有()A.1个B.2个C.3个D.4个2.四个有理数﹣2,﹣1,0,1,其中最小的是()A.﹣2B.﹣1C.0D.13.如表是2020年部分国家的GDP比上一年的增长率,其中增长率最低的国家是()中国美国埃及日本2.3%﹣3.49% 3.57%﹣5.81%A.中国B.美国C.埃及D.日本4.单项式﹣22xy2的次数是()A.2B.3C.4D.55.已知(x﹣1)6=a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0,将x=0代入这个等式中可以求出a0=1.用这种方法可以求得a6+a5+a4+a3+a2+a1的值为()A.﹣16B.16C.﹣1D.16.下列各组中的两个单项式是同类项的是()A.xy与xyz B.3a2b与3ab2C.35与﹣12D.﹣m与n7.如表是德国足球甲级联赛某赛季的部分球队积分榜:球队比赛场次胜场负场平场积分沃尔夫斯堡34217669斯图加特34207767柏林赫塔34864规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是()A.18场B.19场C.20场D.21场8.某次篮球积分赛,每队均比赛14场,胜一场记2分,平一场记1分,负一场记0分.某中学篮球队的胜场数是负场数的3倍,这个蓝球队在这次积分赛中积分可能为( ) A .12B .17C .20D .229.下列说法:①画射线AB =6cm ;②设a 表示一个数,则﹣a 一定不是正数;③射线AB 与射线BA 是同一条射线;④用两个钉子就可以把一根木条固定在墙上,依据的数学原理是两点确定一条直线.其中正确的个数有( ) A .1个B .2个C .3个D .4个10.已知线段AB ,延长AB 至C ,使AB =mBC ,反向延长AB 至D ,使AD =13BD ,若AB :CD =6:13,则m 的值为( ) A .65B .43C .32D .53二.填空题(共10小题)11.如图,在数轴上点A 表示a ,点C 表示c ,且|a +20|+(c ﹣30)2=0.动点B 从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A ,C 在数轴上运动,点A ,C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.若点A 向左运动,点C 向右运动,2AB ﹣mBC 的值不随时间t 的变化而改变,则m 的值是 .12.|﹣2|= ;﹣2的相反数是 ;﹣2的倒数是 .13.(2021秋•青山区期末)武汉冬季一天的温差是12℃,这天最低气温是﹣3℃,最高气温是 ℃.14.若2a ﹣b =﹣1,则6+8a ﹣4b = . 15.已知x =6,则x 2﹣x +6的值是 .16.单项式﹣xy 2z 的系数、次数分别为 、 .17.如图,是编号为1、2、3、4的400m 跑道,每条跑道由两条直的跑道和两端是半圆形的跑道组成,每条跑道宽1m ,内侧的1号跑道长度为400m ,则2号跑道比1号跑道长 m ;若在一次200m 比赛中(每个跑道都由一个半圆形跑道和部分直跑道组成),要使得每个运动员到达同一终点线,则4号跑道起跑点比2号跑道起跑点应前移 m (π取3.14).18.若方程2x+b=x﹣1的解是x=﹣4,那么b的值是.19.如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE.若∠BOF=30°,则∠DOE=°.20.在如图所示的小正方形组成的网格中,点A,B,C,D,O均在格点(网格线交点)上,那么∠AOC∠BOD(填“>”,“<”或“=”).三.解答题(共10小题)21.某粮库原有大米132吨,一周内该粮库大米的进出情况如表:(运进大米记作“+”,运出大米记作“﹣”).某粮库大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)若经过这一周,该粮库存有大米88吨,求m的值,并说明星期五该粮库是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨25元,求这一周该粮库需要支付的装卸总费用.22.计算:(1)3﹣(+63)﹣(﹣41);(2)(﹣1)2022×|112|﹣(0.5)÷(−13).23.数轴上有A ,B ,C 三点,A ,B 表示的数分别为m ,n (m <n ),点C 在B 的右侧,AC ﹣AB =2.(1)如图1,若多项式(n ﹣1)x 3﹣2x 7+m +3x ﹣1是关于x 的二次三项式,请直接写出m ,n 的值;(2)如图2,在(1)的条件下,长度为1的线段EF (E 在F 的左侧)在A ,B 之间沿数轴水平滑动(不与A ,B 重合),点M 是EC 的中点,N 是BF 的中点,在EF 滑动过程中,线段MN 的长度是否发生变化,请判断并说明理由; (3)若点D 是AC 的中点.①直接写出点D 表示的数 (用含m ,n 的式子表示); ②若AD +2BD =4,试求线段AB 的长.24.(1)化简:﹣4(a 3﹣3b 2)+(﹣2b 2+5a 3);(2)先化简,再求值:2ab +6(12a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a =﹣1,b =1.25.先化简,再求值:若A =2x 2+x ﹣3,B =x 2﹣3x +1,其中x =﹣2,求: (1)A +2B 的值; (2)A ﹣B 的值.26.解方程:(1)6x ﹣2(1﹣x )=6; (2)x+13−x−36=3.27.某商场从厂家购进甲、乙两种文具,甲种文具的每件进价比乙种文具的每件进价少20元.若购进甲种文具7件,乙种文具2件,则需要760元. (1)求甲、乙两种文具的每件进价分别是多少元?(2)该商场从厂家购进甲、乙两种文具共50件,所用资金恰好为4400元.在销售时,每件甲种文具的售价为100元,要使得这50件文具销售利润率为30%,每件乙种文具的售价为多少元?28.如图,数轴上点A 表示的数为a ,点B 表示的数为b ,AB 表示点A 和B 之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)若点P 从A 点出发向右运动,点M 为AP 的中点,在点P 到达点B 之前,求证2BM ﹣BP 为定值;(3)点P 从A 点以每秒2个单位的速度向右运动,点Q 同时从B 点出发以每秒1个单位的速度向左运动,若AP +BQ =3PQ ,求运动时间t .29.如图,已知线段AB ,延长线段BA 至C ,使CB =43AB . (1)请根据题意将图形补充完整.直接写出ACAB= :(2)设AB =9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm /s ,1cm /s 的速度沿直线AB 向左运动.①当点D 运动到线段AB 上,求AD CE的值;②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长.30.(1)如图1,已知点C ,D 在线段AB 上,P 是BD 的中点,线段AB ,CP 的长度m ,n 满足|m ﹣27|+(n ﹣15)2=0,AD :BC =5:7,求线段CD 的长度;(2)已知∠AOB =140°,将射线OB 绕着点O 逆时针旋转一定的角度α(0°<α<140°)得到射线OD ,作∠BOD 的平分线OP ,将射线OP 绕着点O 逆时针旋转60°得到射线OC .∠AOD :∠BOC =1:t .①如图2,若t <1,请直接用含有t 的式子表示出∠AOD 的度数; ②若∠COD =12∠AOC ,求t 的值.。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
人教版七年级上册数学期末综合复习解答题专题训练(含答案)
人教版七年级上册数学期末综合复习解答题专题训练一、有理数的计算:1.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9).(2).(3).(4)﹣24+3×(﹣1)6﹣(﹣2)3.2.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)3.计算(1);(2);(3);(4).4.为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?5.已知13=1=×12×22,13+23=9=×22×32,13+23+33=36=×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==×2×2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.6.定义新运算“@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.二、解一元一次方程:7.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).8.解方程:(1)5x﹣4=2(2x﹣3);(2)﹣=1;(3)﹣=1+;(4)﹣=0.75.9.解方程(1)3x﹣5=8;(2)﹣2x+3=4x﹣9;(3)3(x+2)﹣2(x+2)=2x+4;(4).10.解下列方程.(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2;(3)﹣=1+(4)=0.75三、整式的加减11.若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.12.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.(2),其中13.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.14.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.15.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.16.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣)],其中x=﹣1,y=2.17.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.18.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,﹣a+c0(2)化简:|c﹣b|+|a|.19.化简已知a,b,c在数轴上的位置如图所示:(1)化简:|a+b|﹣|c﹣b|+|b﹣a|(2)若a的绝对值的相反数是﹣2,﹣b的倒数是它本身,c2=4,求﹣a+2b+c﹣(a+b﹣c)的值.20.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.四、几何图形初步:21.如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若AC=6cm,BC=4cm,求线段MN的长;(2)若线段CM与线段CN的长度之比为2:1,且线段CN=2cm,求线段AB的长.22.如图,C、D是线段AB上的点,AD=7cm,CB=7cm.(1)线段AC与BD相等吗?请说明理由.(2)如果M是CD的中点,MD=2cm,求线段AB的长.23.如图,延长线段AB到点F,延长线段BA到点E,若点M、N分别是线段AE、BF的中点,若AE:AB:BF=1:2:3,且EF=24cm,求线段MN的长.24.如图,点C在线段AB上,点M、N分别是线段AC,BC的中点.线段AB=14cm.(1)求线段MN的长;(2)若点C在线段AB的延长线上,求线段MN的长;(3)若点C在直线AB上,求线段MN的长.25.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则线段BC的长度.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.27.如图,直线AB,CD相交于点O,EO⊥CD于点O,FO⊥AB于点O.若∠AOE=50°,求∠BOC和∠COF.28.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠AOD的度数;(2)若∠BOC=2∠AOC,求∠DOE的度数.参考答案1.解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=﹣5﹣4﹣101+9=﹣101.(2)=﹣18﹣1÷(﹣16)=﹣18﹣(﹣)=﹣17.(3)=(5﹣5×)×(﹣4)=(5﹣)×(﹣4)=×(﹣4)=﹣15.(4)﹣24+3×(﹣1)6﹣(﹣2)3=﹣16+3×1﹣(﹣8)=﹣16+3+8=﹣5.2.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.3.解:(1)=++﹣=﹣+=﹣=﹣;(2)=(﹣)×÷(﹣6)2﹣1=(﹣)×÷36﹣1=(﹣)××﹣1=﹣1=﹣;(3)=﹣1×(﹣9×﹣2)×(﹣)=﹣1×(﹣4﹣2)×(﹣)=﹣1×(﹣6)×(﹣)=﹣9;(4)=×(﹣25)﹣49×(﹣+)=(﹣1)﹣49×+49×﹣49×=(﹣1)﹣42+﹣1=﹣33.4.解:(1)4﹣3﹣6+13﹣10﹣4+5=﹣1(公里),∴王师傅在甲地的西1公里位置;(2)10×(4+3+6+13+10+4+5)=450(公里),450÷100×6=27(L),27×5﹣2×5=125(元).∴王师傅当日在该加油站加油共花费125元.5.解:(1)13+23+33+43+53=225=×52×62(2)猜想:13+23+33+…+n3=×n2×(n+1)2(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+...+393+403﹣(13+23+33+ (103)=×402×412﹣×102×112=672400﹣3025=6693756.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.7.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.8.解:(1)5x﹣4=2(2x﹣3),5x﹣4=4x﹣6,x=﹣2.(2)﹣=1,5(x﹣3)﹣2(4x+1)=10,5x﹣15﹣8x﹣2=10,﹣3x=10+15+2,x=﹣9;(3)﹣=1+,6x﹣2(5x+11)=12+4(2x﹣4),6x﹣10x﹣22=12+8x﹣16,6x﹣10x﹣8x=12﹣16+22,﹣12x=18,x=﹣;(4)﹣=0.75,﹣=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=﹣.9.解:(1)3x﹣5=8移项,3x=8+5.合并同类项,3x=13.x的系数化为1,x=.∴这个方程的解为x=.(2)﹣2x+3=4x﹣9移项,﹣2x﹣4x=﹣9﹣3.合并同类项,﹣6x=﹣12.x的系数化为1,x=2.∴这个方程的解为x=2.(3)3(x+2)﹣2(x+2)=2x+4去括号,3x+6﹣2x﹣4=2x+4.移项,3x﹣2x﹣2x=4+4﹣6.合并同类项,﹣x=2.x的系数化为1,x=﹣2.∴这个方程的解为x=﹣2.(4)去分母,3(3y﹣1)﹣12=2(5y﹣7).去括号,9y﹣3﹣12=10y﹣14.移项,9y﹣10y=﹣14+12+3.合并同类项,﹣y=1.y的系数化为1,y=﹣1.∴这个方程的解为y=﹣1.10.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;(2)去分母得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项合并得:5x=﹣5,解得:x=﹣1;(3)去分母得:3x﹣5x﹣11=6+4x﹣8,移项合并得:﹣6x=9,解得:x=﹣1.5;(4)方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.11.解:原式=2mx2﹣x2+5x+8﹣7x2+3y﹣5x=(2m﹣8)x2+3y+8,因为此多项式的值与x无关,所以2m﹣8=0,解得:m=4.m2﹣[2m2﹣(5m﹣4)+m]=m2﹣(2m2﹣5m+4+m)=﹣m2+4m﹣4,当=4时,原式=﹣42+4×4﹣4=﹣4.12.解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.13.解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]=3x2﹣6xy﹣(3x2+2xy)=3x2﹣6xy﹣3x2﹣2xy=﹣8xy当时原式=﹣8×(﹣)×(﹣3)=﹣12.14.解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.15.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.16.解:原式=4xy﹣(x2+5xy﹣y2﹣2x2﹣6xy+y2)=4xy﹣(﹣x2﹣xy)=5xy+x2,因为x=﹣1,y=2,所以原式=5×(﹣1)×2+(﹣1)2=﹣9.17.解:(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|+|a﹣b|+|a+c|+|b﹣c|=0+a﹣b﹣a﹣c+b﹣c=﹣2c.18.解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)c﹣b>0,a+b<0,﹣a+c>0;(2)原式=c﹣b﹣a.故答案为:>,<,>.19.解:(1)∵a+b>0,c﹣b<0,b﹣a<0,∴原式=a+b+c﹣b﹣b+a=2a﹣b+c;(2)由题意,得a=2,b=﹣1,c=﹣2,∴﹣a+2b+c﹣(a+b﹣c)=﹣a+2b+c﹣a﹣b+c=﹣2a+b+2c=﹣4﹣1﹣4=﹣9.20.解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.21.解:(1)因为M,N分别是AC,BC的中点,所以,,所以MN=CM+CN=3+2=5(cm).(2)因为线段CM与线段CN的长度之比为2:1,CN=2cm,所以线段CM=4cm.因为M,N分别是AC,BC的中点,所以AC=2CM=8cm,BC=2CN=4cm,所以AB=AC+BC=8+4=12(cm).22.解:(1)相等,因为AD=7cm,CB=7cm.所以AD=CB,因为AC=AD﹣CD,BD=CB﹣CD,所以AC=BD;(2)因为M是CD的中点,所以CM=MD,由(1)得,AC=BD,所以AC+CM=BD+MD,所以AM=MB,因为AD=7cm,MD=2 cm,所以AM=7﹣2=5(cm),所以AB=2AM=10(cm).23.解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=24cm,∴6x=24,解得:x=4,∴MN=4x=16cm.24.解:(1)∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC+CN=AC+BC=AB=7cm.(2)当点C在线段AB的延长线上时,如下图:∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC﹣NC==AC﹣BC=AB=7cm.(3)由(1)、(2)小题知,当点C在线段AB上或点C在线段AB的延长线上时,MN=AB=7cm.当点C在线段AB的反向延长线上时,如下图:点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=NC﹣MC=BC﹣AC=AB=7cm.综上:当点C在直线AB上时MN=7cm.25.解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.26.解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB==x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°﹣∠BOD=180°﹣70°=110°,∵FO⊥CD,∴∠BOF=90°﹣∠BOD=90°﹣70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.所以∠AOD和∠EOF的度数分别为:110°、55°.27.解:∵EO⊥CD于点O,∴∠DOE=90°,∴∠AOD=∠DOE﹣∠AOE=90°﹣50°=40°,∵∠BOC和∠AOD为对顶角,∴∠BOC=∠AOD=40°,∵FO⊥AB于点O,∴∠BOF=90°,∴∠COF=∠BOF+∠BOC=90°+40°=130°.28.解:(1)∵EO⊥AB,∴∠BOE=90°,∵∠EOC=35°,∴∠BOC=∠BOE+∠EOC=125°.∴∠AOD=∠BOC=125°,答:∠AOD的度数为125°;(2)∵∠AOC+∠BOC=180°,∠BOC=2∠AOC,∴∠AOC+2∠AOC=180°∴∠AOC=60°,∴∠BOD=∠AOC=60°,∴∠EOD=∠BOE+∠BOD=90°+60°=150°,答:∠DOE的度数为150°.。
精品 七年级数学上册 重点难点 期末复习题
3 5 7 , , , 4 9 16
-19x , 20x , …根据你发现的规律, 第 2015 个单项式是_______
8.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为 12,则 x+y=
第 1 页 共 10 页
七年级数学上册 期末复习题
9.如图所示的运算程序中,若开始输入的 x 值为 48,我们发现第一次输出的结果为 24,第二次输出的 结果为 12,…,则第 2015 次输出的结果为
第 2 页 共 10 页
七年级数学上册 期末复习题
13.为节约能源,某单位按以下规定收取每月电费, 用电不超过 140 度,按每度 0.43 元收费, 如果超过 140 度,超过部分按每度 0.57 元收费.若某用户四月份的电费平均每度 0.5 元,问该用户四月份应交电费多 少元?
14.小刘和小周站在正方形的对角 A、 C 两点处,小刘以 2 米/秒的速度走向点 D 处, 途中位置记为 P,小周 以 3 米/秒的速度走向点 B 处,途中位置记为 Q,假设两人同时出发, 已知正方形的边长为 8 米,E 在 AB 上, AE=6 米,记三角形 AEP 的面积为 S1,三角形 BEQ 的面积为 S2,如图: (1)他们出发后几秒钟时 S1=S2。 (2)当 S1+S2=14 平方米时,小周距离点 B 处还有多远?
0
27.解方程: (1) 4 x 2 5 x 7 1 5 10
9.若 2a 1 2 b 3 0, 则a b =( A.
1 6
B.
1 2
)
D.
1 8
10.某种商品每件的进价为 190 元, 按标价的九折销售时,利润率为 15. 2%。 设这种商品的标价为每件 x 元,依题意列方程正确的是( A. 190 0.9 x 190 0.152 C. 0.9 x 190 190 0.152
七年级数学上册期末复习综合测试题(含答案)
七年级数学上册期末复习综合测试题(含答案)一.精心选择(本大题有12小题,每小题2分,共24分)1.12021-的倒数是( ) A .2021- B .12021- C .2021 D .120212.关于直线,下列说法正确的是( )A .可以量长度B .有两个端点C .可以用两个小写字母来表示D .没有端点 3.下列说法不正确的是( )A .2a 是2个数a 的和B .2a 是2和a 的积C .2a 是偶数D .2a 是单项式4.下列各组中的两项,是同类项的为( ) A .25x y 与xyB .25x y -与2yxC .25ax 与2yx D .38与3x5.在下列方程中:①0x =;②21x y -=;③20n n +=;④532yy =+;⑤221x x -=+.其中一元一次方程的个数是( ). A .1 B .2 C .3 D .46.钟表上的时间指示为两点半,这时时针和分针之间的夹角为( ) A .120° B .105° C .100° D .90° 7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .12-B .12C .56-D .568.图(1)是一个长为2a ,宽为2b (a b >)的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的正方形的面积是( )A .abB .2()a b +C .22a b - D .2()a b -9.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,31px qx ++的值为( ) A .2019- B .2021- C .2020 D .202110.如图,将一副三角板的直角顶点重合放置于点A 处(两块三角板看成在同一平面内),将其中一块三角板绕点A 旋转的过程中,下列结论一定成立的是( )A .BAD DAC ∠=∠B .BAD EAC ∠≠∠C .90BAE DAC ∠-∠=︒D .180BAE DAC ∠+∠=︒11.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .0.7160%6()3x x +=- B .0.7160%6()3x x +=+ C .0.7160%6(3)x x +=-D .0.7160%6(3)x x +=+12.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是( )A .150B .200C .355D .505二.准确填空(本大题有6个小题,每小题3分,共18分)13.如果零上2℃记为2+℃,那么3-℃表示_______________. 14.3015︒'=__________°.15.一个长方形的宽为cm x ,长比宽的2倍多1 cm ,这个长方形的周长为__________cm .16.若27x a b 与3ya b -的和为单项式,则xy =_______.17.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为32cm ,若12AP PB =,则这条绳子的原长为__________cm .18.做一个数字游戏:第一步:取一个自然数18n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ;…,以此类推,则2021a =__________.三.细心解答(本大题有8个小题,共58分)19.(本小题满分6分)计算:()32142⎛⎫-⨯- ⎪⎝⎭20.(本小题满分6分)已知232A a ab b =-+-,22B a ab =-,化简2A B -.21.(本小题满分6分) 以下是小明解方程1323x x +--=1的解答过程. 解:去分母,得31231()()x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.小明的解答过程是否有错误?如果有错误,写出正确的解答过程. 22.(本小题满分6分)已知:如图,点D 、C 、E 是线段AB 上依次排列的三点,当点C 、D 分别是AB 和AE 的中点,且15AB =, 4.5CE =时,求线段CD 的长.23.(本小题满分8分)将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五个数,所框五个数的和能等于2020吗?若能,写出这五个数;如不能,请说明理由. 24.(本小题满分8分)为了预防新冠肺炎的发生,学校免费为师生提供防疫物品.某校购进洗手液与84消毒液共400瓶.已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶,总共消费了7200元.该校购进洗手液和84消毒液各多少瓶?25.(本小题满分9分)已知:点O 是直线AB 上的一点,90COD ∠=︒.OE 是BOD ∠的平分线. (1)当点C 、D 、E 在直线AB 的同侧(如图)时,①若35COE ∠=︒,求AOD ∠的度数. ②若COE α∠=,则AOD ∠=________.(用含α的式子表示) (2)当点C 与点D 、E 在直线AB 的两侧(如图)时,(1)中②的结论是否仍然成立?请给你的结论并说明理由.26.(本小题满分9分)如图,甲、乙两人(看成点)分别在数轴3-和5的位置上,沿数轴做移动游戏.每次的移动游戏规则如下:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若第一次移动游戏,甲、乙两人都猜对了,则甲、乙两人之间的距离是_______个单位; (2)若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终停留的位置对应的数为m .请你用含n 的代数式表示m ; (3)经过_______次移动游戏,甲、乙两人相遇。
【期末复习专题卷】人教版数学七年级上册专题01 数与代数测试试卷(含答案)
【期末复习专题卷】人教版数学七年级上册专题01 数与代数一、选择题(共30小题)1.(2022秋•蕲春县期中)( )和114互为倒数.A .﹣114B .54C .45D .―452.(2022秋•龙华区校级期中)数轴上的点A 到原点的距离是6,则点A 表示的数为( )A .6B .﹣6C .6或﹣6D .3或﹣33.(2022秋•扬州期中)在﹣3.5,227,0.121121112…,0,π3中,有理数有( )个.A .1B .2C .3D .44.(2022秋•青龙县期中)在﹣7,0,1,﹣4四个数中,最小的数为( )A .0B .﹣7C .﹣4D .15.(2022秋•蕲春县期中)16的相反数是( )A .16B .﹣6C .6D .―166.(2022秋•公主岭市期中)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000的煤所产生的能量,数据130000000用科学记数法表示为( )A .13×107B .0.13×108C .1.3×107D .1.3×1087.(2022秋•鄂州期中)既不是正数也不是负数的数是( )A .﹣2B .﹣1C .0D .18.(2022秋•青龙县期中)|﹣2020|的值是( )A .12020B .―12020C .2020D .﹣20209.(2022秋•桂平市期中)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是( )A .﹣5﹣4+7﹣2B .﹣5+4﹣7﹣2C .5+4﹣7﹣2D .﹣5+4+7﹣210.(2022秋•朝阳区校级期中)有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .b <−2B .bc >0C .a +d >0D .|a |>|c |11.(2022秋•陕州区期中)下列说法正确的是( )A .一个有理数不是整数就是分数B .正整数和负整数统称整数C .正整数、负整数、正分数、负分数统称有理数.D .0是最小的整数12.(2022秋•黄浦区期中)1435,625,11722,236这四个数中,能化成有限小数的共有( )个.A .1B .2C .3D .413.(2022秋•保定期中)我国西部地区面积为640万平方千米,用科学记数法表示为( )A .640×104km 2B .64×105km 2C .6.4×106km 2D .6.4×107km 214.(2022秋•黄浦区期中)甲数=2×2×3×5,乙数=2×3×3×7,它们的最小公倍数是( )A .6B .36C .210D .126015.(2022秋•丹江口市期中)下列计算正确的是( )A .﹣3mn ﹣2mn =﹣5mnB .m 2n ﹣mn 2=0C .3m 2﹣2m 2=1D .2m 2+3m 3=5m 516.(2022秋•陇县期中)下列说法中,错误的是( )A .数字1也是单项式B .单项式﹣5x 3y 的系数是﹣5C .多项式﹣x 3+2x ﹣1的常数项是1D .3x 2y 2―12xy +2y 3是四次三项式17.(2022秋•保定期中)能用代数式a +0.3a 表示含义的是( )A .妈妈在超市购买物品共需a 元,结账时买塑料袋又花了0.3元,妈妈共花了多少元B .一个长方形的长是a 米,宽是0.3a 米,这个长方形的周长是多少米C .小明骑自行车以a 千米/小时的速度行驶0.3a 小时后,所行驶的路程是多少千米D .一套商品房原价为a 万元,现提价30%,那么现在的售价是多少万元18.(2022秋•巴南区校级期中)某商品进价m 元,商店将价格提高50%作零售价销售,在销售旺季过后,商店以8折的价格开展促销活动,这时一件商品的售价为( )A .1.2m 元B .1.5m 元C .0.8m 元D .m 元19.(2022秋•公主岭市期中)已知下列代数式:﹣a ,―23abc ,x ﹣y ,3x ,8x 2﹣7x 2+2.其中是整式的有( )A .2个B .3个C .4个D .5个20.(2022秋•同安区期中)下列表述不正确的是( )A .某水果的单价是5元/kg ,5a 表示akg 水果的金额B .长方形的长为a ,宽为5,5a 表示这个长方形的面积C .某校七年级有5个班,平均每个班有a 名男生,5a 表示全校七年级男生总数D .一个两位数的十位和个位数字分别为5和a ,则这个两位数可以表示为5a21.(2022秋•富阳区期中)列出“m 的2倍与n 的差的平方”的代数式,正确的是( )A .2m ﹣n 2B .(2m ﹣n )2C .2(m ﹣n 2)D .m ﹣2n 222.(2022秋•泗洪县期中)下列单项式与﹣2x 2y 是同类项的是( )A .﹣2B .﹣2xyC .3xy 2D .﹣x 2y23.(2022秋•靖西市期中)当x =1时,代数式ax 3+bx +7的值为4,则当x =﹣1时,代数式ax 3+bx +7的值为( )A .4B .﹣4C .10D .1124.(2022秋•黔东南州期中)下列计算正确的是( )A .x 2+x 2=x 4B .x 2+x 3=x 5C .3x ﹣2x =1D .x 2y ﹣2x 2y =﹣x 2y25.(2022秋•房县期中)下列结论:①﹣24的底数是﹣2;②若有理数a ,b 互为相反数,那么a +b =0;③把1.804精确到0.01约等于1.80;④﹣2xy 2+2xy 2=0;⑤式子|a +2|+6的最大值是6,其中正确的个数有( )A .3个B .2个C .5个D .4个26.(2022秋•保定期中)已知有理数x ,y 满足|x ﹣3|+(y +4)2=0,则代数式(x +y )3的值为( )A.﹣1B.1C.3D.﹣327.(2022秋•鄂州期中)若多项式a(a﹣1)x2+(a﹣1)x+2是关于x的一次多项式,则a的值为( )A.0B.1C.0或1D.不能确定28.(2022秋•保定期中)下列说法正确的是( )A.单项式x的系数是1,次数是0B.多项式4x2y﹣3x﹣2是三次三项式C.x+2=5是代数式D.0不是单项式y b x2能合并,那么2a﹣b的值是( )29.(2022秋•桂平市期中)如果单项式﹣x a+1y3与12A.﹣1B.﹣2C.4D.530.(2022秋•鲤城区校级期中)关于x、y的多项式1﹣3xy2+nxy2+xy中不含三次项,则n的值是( )A.0B.﹣3C.﹣1D.3二、填空题(共16小题)31.(2022秋•信宜市校级期中)既不是最大的负整数,又不是最小的正整数,且它的相反数等于它本身,则它的值是 .32.(2022秋•青云谱区期中)a、b在数轴上的位置如图所示,则数a、﹣a、b、﹣b用<连接为 .33.(2022秋•鄂州期中)在数轴上,点A表示的数为﹣3,点B到点A的距离为4,则点B表示的数是 .34.(2022秋•鄂州期中)大于﹣8且小于﹣1的所有整数的积为 .35.(2022秋•陕州区期中)若|a﹣2|+|b+3|=0,则(a+b)2022= .36.(2022秋•青龙县期中)若|a+2|+(b﹣3)2=0,则(a+b)2022= .37.(2022秋•蕲春县期中)节约是一种传统美德,节约也是一种智慧,据不完全统计,全国每年浪费粮食总量折合粮食可养活约350000000人,用科学记数法表示为 .38.(2022秋•公主岭市期中)将数据6.9401用四舍五入法精确到百分位是 .39.(2022秋•丹江口市期中)已知a ,b 互为相反数,c ,d 互为倒数,e 的绝对值等于1,则(3a +3b )2022﹣(﹣cd )2022+e 2023= .40.(2022秋•柯桥区期中)如果规定☆为一种运算符号,且a ☆b =a b ﹣b a ,那么4☆(3☆2)的值为 .41.(2022秋•公主岭市期中)若多项式mx 2﹣(1﹣x +6x 2)化简后不含x 的二次项,则m 的值为 .42.(2022秋•朝阳区校级期中)多项式2x ﹣x 3+4x 2+1按x 降幂排列为 .43.(2022秋•君山区期中)单项式(﹣2)2abc 的系数为 ,次数是 .44.(2022秋•保定期中)规定新运算:a ※b =a ﹣4b ,例如:1※3=1﹣4×3=﹣11.根据以上规定计算:(﹣3)※4= ;2※(1※13)= ;若m +2n =2,则(m ﹣2n )※(m +n )= .45.(2022秋•蕲春县期中)如图所示是计算机程序图,若开始输入x =1,则最后输出的结果为 .46.(2022秋•黔东南州期中)对于式子:x 2y 2,a 2b ,12,3x 2+5x ﹣2,abc ,0,x y 2x ,m ,有如下说法:①有5个单项式,1个多项式;②有3个单项式,2个多项式;③有7个整式;④有4个单项式,2个多项式.其中正确的说法是 .(只填序号)三、解答题(共14小题)47.(2022秋•桂平市期中)在数轴上表示下列各数:―32,2,0,4.5,并按从小到大的顺序用“<”号把这些数连接起来.48.(2022秋•泗洪县期中)计算:(1)(12+23―56)×12;(2)(﹣32)÷4×(﹣3﹣5).49.(2022秋•璧山区校级期中)计算题:(1)(―12)×(―4)―10×(―32);(2)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)].50.(2022秋•青龙县期中)将下列各数填在相应的集合里.―12,3,7.8,﹣0.01,223,﹣15,0,﹣213,﹣(﹣9),﹣|﹣13|.整数集合:{ …};负数集合:{ …}.51.(2022秋•思明区校级期中)小王在银行上班,今天领了10000元储备金,从早上八点到十点,办理了6笔业务(若规定存入为“+”,取出为“﹣”),分别为:+2000元,﹣1000元,﹣1500元,+3000元,﹣5000元,+2000元,后来小王有事外出,要把手中余额交给另一个人.(1)那么他要交多少元;(2)若办理每笔业务银行都另外奖励业务量的0.1%,则他从早上八点到十点,平均每小时得到多少奖励.52.(2022秋•泗洪县期中)完成下列解题过程:已知a 、b 互为相反数且a ≠0,c 、d 互为倒数,m 的绝对值是最小的正整数,求m 2―a b +2020(a b)2023―cd 的值.(注:cd =c ×d )解:因为a 、b 互为相反数且a ≠0,所以a +b = ,a b = ;又因为c 、d 互为倒数,所以cd = ;又因为m 的绝对值是最小的正整数,所以m = ,所以m 2= ;所以原式= .53.(2022秋•襄汾县期中)探究规律,完成相关题目.老师说:“我定义了一种新的运算,叫※(加乘)运算.”然后老师写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+(|5|+|2|)=+7;(﹣3)※(﹣5)=+(|3|+|5|)=+8;(﹣3)※(+4)=﹣(|3|+|4|)=﹣7;(+5)※(﹣6)=﹣(|5|+|6|)=﹣11;0※(+8)=8;(﹣6)※0=6.小明看了这些算式后说:“我知道老师定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳※(加乘)运算的运算法则.两数进行※(加乘)运算时,运算法则是: ;特别地,0和任何数进行※(加乘)运算,或任何数和0进行※(加乘)运算运算法则是: .(2)计算:①(﹣5)※[0※(﹣3)];(括号的作用与它在有理数运算中的作用一致)②[(﹣4)×3]×[(﹣10)×(﹣5)].54.(2022秋•沈北新区期中)化简下列各式(1)2a ﹣(5b ﹣a )+b ;(2)―3(2x ―y)―2(4x +12y)+2009;(3)(4x 2y ﹣5xy 2)﹣2(3x 2y ﹣4xy 2);(4)2x 2+(3x ﹣1)﹣4(x ﹣x 2+1).55.(2022秋•陕州区期中)计算:(1)(+16)﹣(+5)﹣(﹣4);(2)(―313)÷(―123)×(―25).(3)4a ﹣2b +3(3b ﹣2a );(4)―22―25÷(312―1)×(1―25).56.(2022秋•龙华区校级期中)如图,小明家有一块长8米,宽6米的长方形花园,为便于管理,计划修建两条同样宽的道路(图中阴影部分,两条路均与长方形的边垂直),余下部分种花.(1)若道路的宽为x 米,用代数式表示种花部分的面积;(2)当x =1时,种花部分的面积是多少?57.(2022秋•兴化市期中)小明在实验中发现,在允许的范围内,某根弹簧的长度(cm )与所悬挂物体质量(kg )之间的关系如下:所挂物体的质量/kg…2345…弹簧的长度/cm…15182124…(1)求弹簧未悬挂物体时的长度;(2)设所挂物体的质量为x (kg ),试用含x 的代数式表示弹簧的长度,并求出当x =8时,弹簧的长度.58.(2022秋•青云谱区期中)如图,光明社区要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:米).(1)求阴影部分的面积(用含x 的代数式表示);(2)当x =10,π取3时,求阴影部分的面积.59.(2022秋•天津期中)已知A =2x 2+3xy ﹣2x ﹣1,B =﹣x 2+xy +x .(1)化简A +3B ;(2)当x =﹣2,y =1时,求代数式A +3B 的值.60.(2022秋•黔东南州期中)阅读材料:“如果代数式5a +3b 的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=﹣4两边同乘以2.得10a+6b=﹣8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2022的值;(2)已知a﹣b=﹣3.求3(a﹣b)﹣a+b+5的值;(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+5ab﹣b2的值.参考答案一、选择题(共30小题)1.C;2.C;3.C;4.B;5.D;6.D;7.C;8.C;9.C;10.D;11.A;12.C;13.C;14.D;15.A;16.C;17.D;18.A;19.C;20.D;21.B;22.D;23.C;24.D;25.B;26.A;27.A;28.B;29.A;30.D;二、填空题(共16小题)31.032.﹣a<b<﹣b<a33.1或﹣734.504035.136.137.3.5×10838.6.9439.0或﹣240.341.642.﹣x3+4x2+2x+143.4;344.﹣19;10;﹣6345.﹣5146.④;三、解答题(共14小题)47.解:如图所示,故―32<0<2<4.5.48.解:(1)原式=12×12+23×12―56×12=6+8﹣10=4;(2)原式=﹣8×(﹣8)=64.49.解:(1)原式=48+15=63;(2)原式=﹣16×(﹣2)+(﹣8+4)=32﹣8+4=28.50.解:―12,3,7.8,﹣0.01,223,﹣15,0,﹣213,﹣(﹣9),﹣|﹣13|.整数集合:{3,﹣15,0,﹣(﹣9),﹣|﹣13|;,…};负数集合:{―12,﹣0.01,﹣15,﹣213,﹣|﹣13|,…}.故答案为:3,﹣15,0,﹣(﹣9),﹣|﹣13|;―12,﹣0.01,﹣15,﹣213,﹣|﹣13|.51.解:(1)+2000﹣1000﹣1500+3000﹣5000+2000+10000=9500(元),小王要交9500元;(2)(2000+1000+1500+3000+5000+2000)×0.1%÷2,=14500×0.1%÷2,=7.25(元),小王从早上八点到十点,平均每小时得到7.25元奖励.52.解:因为a 、b 互为相反数且a ≠0,所以a +b =0,a b =―1;又因为c 、d 互为倒数,所以cd =1;又因为m 的绝对值是最小的正整数,所以m =±1,所以m 2=1;所以原式=1﹣(﹣1)+0﹣1=1,故答案为:0,﹣1,1,±1,1,1.53.解:(1)两数进行※(加乘)运算时,运算法则是:两数进行※(加乘)运算时,同号得正,异号得负,并把它们的绝对值相加;特别地,0和任何数进行※(加乘)运算,或任何数和0进行※(加乘)运算运算法则是:0和任何数进行※(加乘)运算,或任何数和0进行※(加乘)都等于这个数的绝对值;(2)①根据题中的新定义得:原式=(﹣5)※3=﹣(5+3)=﹣8;②根据题中的新定义得:原式=﹣7※15=﹣(7+15)=﹣22.54.解:(1)原式=2a﹣5b+a+b=3a﹣4b;(2)原式=﹣6x+3y﹣8x﹣y+2009=﹣14x+2y+2009;(3)原式=4x2y﹣5xy2﹣6x2y+8xy2=﹣2x2y+3xy2;(4)原式=2x2+3x﹣1﹣4x+4x2﹣4=6x2﹣x﹣5.55.解:(1)原式=16﹣5+4=15;(2)原式=―103×35×25=―45;(3)原式=4a﹣2b+9b﹣6a =﹣2a+7b;(4)原式=﹣4﹣25÷52×35=﹣4﹣25×25×35=﹣4﹣6=﹣10.56.解:(1)中间的道路的面积为:6x+8x﹣x2=(14x﹣x2)平方米,∴种花部分的面积为:6×8﹣(14x﹣x2)=(48﹣14x+x2)平方米;(2)当x=1时,种花部分的面积=48﹣14×1+12=48﹣14+1=35(平方米),∴种花部分的面积是35平方米.57.解:(1)15﹣3﹣3=9(cm),∴求弹簧未悬挂物体时的长度为9cm;(2)弹簧的长度为9+3x,当x=8时,9+3×8=33(cm),∴当x=8时,弹簧的长度为33cm.58.解:(1)整个图形可以看到三块,左边是边长为2的小正方形,中间是包括半圆在内的大长方形,长宽分别为(x﹣2﹣2)和6,半圆的直径是4+2=6,易知半径为3.∴阴影面积为:2×2+[(x﹣4)×6–π×32×12]=4+[6x–24―92π]=6x﹣20―92π;(2)当x=10,π取3时,原式=6×10﹣20―92×3=60–20﹣13.5=40﹣13.5=26.5(平方米),所以,阴影部分面积为26.5平方米.59.解:(1)A+3B=2x2+3xy﹣2x﹣1+3(﹣x2+xy+x)=2x2+3xy﹣2x﹣1﹣3x2+3xy+3x=﹣x2+6xy+x﹣1;(2)当x=﹣2,y=1时,A+3B=﹣(﹣2)2+6×(﹣2)×1+(﹣2)﹣1=﹣4﹣12﹣2﹣1=﹣19.60.解:(1)因为a2+a=0,所以a2+a+2018=0+2018=2018.(2)因为a﹣b=﹣3,所以3(a﹣b)﹣a+b+5=3×(﹣3)﹣(﹣3)+5=﹣1.(3)因为a2+2ab=﹣2,ab﹣b2=﹣4,所以2a2+5ab﹣b2=2a2+4ab+ab﹣b2=2×(﹣2)+(﹣4)=﹣8.。
人教版七年级上册数学期末总复习题
第一章 有理数第一课 有理数 数轴 相反数 绝对值 倒数知识构造图⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫数轴倒数绝对值大小比较相反数有理数的分类热身练习:1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,那么“〞内应填的实数是〔 〕 A .32B .23C .23-D .32-3.-213的相反数是___ ____,—2的倒数是,|—311|=。
4.假设||2,3,x y x y ==+=则。
典例分析:1.把以下各数填入表示它所在的数集中:16,0.618, 3.14,260,2008,,0.21,5%37-----。
整数有 分数有 负数有 有理数有2.如果a ,b 是互为相反数,c ,d 是互为倒数,x 的绝对值等于2,那么b a cdx x 24--+ 的值是;3.假设23(2)0m n -++=,那么2m n +的值为〔 〕 A .4- B .1-C .0D .4点评:一个数的绝对值是指数轴上表示这个数的点到的距离,所以某数的绝对值是非负数。
几个非负数的和等于零,那么这几个非负数同时为零。
4.实数a 、b 在数轴上的位置如图1所示,那么a 与b 的大小关系是〔 〕A .a > bB . a = bC . a < bD . 不能判断点评:有理数大小比拟:正数零负数,两个负数,大的反而小;数轴上表示的两个数边的数总比边的数大。
o图1ba5.某工厂在上一星期的星期日生产了100台彩电,下表是本星期的生产情况:比前一天的产量多的记为正数,比前一天产量少的记为负数。
请算出本星期最后一天星期日的产量是台,本星期的总产量是台,星期的产量最多,星期的产量最少。
反应练习:1.如果水位升高3m 时水位变化记作+3m ,那么水位下降5米时水位变化记作:2.大于–3且不大于2的所有整数写出来是3.将有理数0,722-,2.7,-4,0.14按从小到大的顺序排列,用“<〞号连接起来应为_____________ ______.4.有理数a 、b 在数轴上的位置如下图,以下结论正确的选项是〔〕 A 、b <a B 、ab <0 C 、b —a >0 D 、a +b >0 5.与a-b 互为相反数的是( )A .a+bB .a-bC .-a-bD .b-a6.假设0>a ,0<b ,且b a <,试用“<〞号连接a ,b ,-a ,-b 。
最新部编人教版七年级数学(上册)期末复习题及答案
最新部编人教版七年级数学(上册)期末复习题及答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.超市出售的某种品牌的面粉袋上, 标有质量为(25±0.2)kg的字样, 从中任意拿出两袋, 它们的质量最多相差-()A. 0.2 kgB. 0.3 kgC. 0.4 kgD. 50.4 kg2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作, 根据规划“一带一路”地区覆盖总人口为4400000000人, 这个数用科学记数法表示为A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×10103. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)4.如图, BD 是△ABC 的角平分线, AE⊥ BD , 垂足为 F , 若∠ABC=35°, ∠ C=50°, 则∠CDE 的度数为()A. 35°B. 40°C. 45°D. 50°5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, 在△ABC中, ∠ABC, ∠ACB的平分线BE, CD相交于点F, ∠ABC=42°, ∠A=60°, 则∠BFC的度数为()A. 118°B. 119°C. 120°D. 121°7.如图, 已知, , 则的度数为( )A. B. C. D.8. 已知多项式2x2+bx+c分解因式为2(x-3)(x+1), 则b, c的值为().A. b=3, c=-1B. b=-6, c=2C.b=-6, c=-4 D.b=-4, c=-69. 下列各组数值是二元一次方程x﹣3y=4的解的是()A. B. C. D.10.如图, 已知直线a∥b, 则∠1、∠2、∠3的关系是()A. ∠1+∠2+∠3=360°B. ∠1+∠2﹣∠3=180°C. ∠1﹣∠2+∠3=180°D. ∠1+∠2+∠3=180°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是________.2.如图折叠一张矩形纸片, 已知∠1=70°, 则∠2的度数是________.3. 有4根细木棒, 长度分别为2cm、3cm、4cm、5cm, 从中任选3根, 恰好能搭成一个三角形的概率是__________.4. 多项式﹣3x+7是关于x的四次三项式, 则m的值是________.5. 如图, 直线a, b与直线c相交, 给出下列条件: ①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8, 其中能判断a∥b的是________(填序号)6. 若关于x, y的二元一次方程组的解也是二元一次方程的解, 则k的值为____________.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 解不等式组, 并把解集在数轴上表示出来.3. 已知, 点A.B.C在同一条直线上, 点M为线段AC的中点、点N为线段BC的中点.(1)如图, 当点C在线段AB上时:①若线段, 求的长度.②若AB=a, 求MN的长度.(2)若, 求MN的长度(用含的代数式表示).4. 某学校要对如图所示的一块地进行绿化, 已知, , , , , 求这块地的面积.5. 某小学为了了解学生每天完成家庭作业所用时间的情况, 从每班抽取相同数量的学生进行调查, 并将所得数据进行整理, 制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生, 请估计其中有多少名学生能在1.5小时内完成家庭作业?6. 某网店销售甲、乙两种羽毛球, 已知甲种羽毛球每筒的售价比乙种羽毛球多15元, 王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球, 共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求, 该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒, 且甲种羽毛球的数量大于乙种羽毛球数量的, 已知甲种羽毛球每筒的进价为50元, 乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒, 则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出, 请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式, 并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、D4、C5、C6、C7、B8、D9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.-3.2.55°3、3 44、55.①③④⑤.6、3 4三、解答题(本大题共6小题, 共72分)1、1.52 xy=-⎧⎨=-⎩2.﹣1≤x<2.3.(1)①7;②a;(2)略.4、224cm.5.(1)补图见解析;(2)27°;(3)1800名6、(1)该网店甲种羽毛球每筒的售价为60元, 乙种羽毛球每筒的售价为45元;(2)①进货方案有3种, 具体见解析;②当m=78时, 所获利润最大, 最大利润为1390元.。
七年级数学上册期末复习题
七年级数学上学期期末复习题、规定一种变换f(a)=—(a+1);当a=0时,f(a)=1,当a<0时,f(a)=-a+1.例如:当a=-9时,a<0,则f(-9)=―(―9)+1=9+1=10.请先求出f(-2),f(-1),f(0),f(1),f(3)表示的数,然后把这些数在数轴上表示出来,并用“>”把它们从大到小连接起来。
、数轴上有点M,把点M向右移动7个单位到点P,把点M向左移动3个单位到点Q。
若点P和点Q所表示的数互为相反数,求点M、P、Q所表示的数,并在数轴上把它们表示出来。
、在数轴上,表示x的点到表示3的点的距离等于1,可表示为∣x-3∣=1,借助数轴可知x的值是2或4。
类似地,∣y-5∣=2的意义是,y的值是。
、在计算多项式M减去x2+14x-6时,小强错把减法当成了加法计算,得到的结果是2x2-x+3,那么多项式M应该是 .(举一反三)小明同学在做一道数学题:“已知多项式A和B试求A+B”时,错误地将“A+B”“A-B”,结果求出的答案是-7x2+10x+12.如果B=4x2-5x-6,那么请你帮助他计算A+B”。
5、已知A=x2y-8xy2+2,B=―3x2y+4xy2―3.①求整式2A+B。
②请你取一个k值,使整式A+kB中不含有xy2项.③若x=-2,当m为何值时,无论y=1或y=-1,整式mA+B的值相等。
6、如右图,长方形纸片的长为,宽为,从长方形纸片中剪去两个形状大小、完全相同的小长方形卡片,则余下的两块阴影部分的周长和是。
7、如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y =()A.2 B.3C.6 D.x+38、已知三个角的和是180°,其中有两个角相等,有一个角是另一个角的2倍,则这三个角中最小的角为()(A)30°或45 °(B)30°或25 °(C)36°或45 °(D)25°或45°9、如右图,把长方形制片EFGH的一角E沿BC折叠,使点E落在点A处,平分,BD平分∠ABF。
七年级数学上册期末考试题(必考题)
七年级数学上册期末考试题(必考题)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.8的相反数的立方根是()A.2 B.12C.﹣2 D.124.若x是3的相反数,|y|=4,则x-y的值是()A.-7 B.1 C.-1或7 D.1或-75.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.下列图形中,不能通过其中一个四边形平移得到的是()A .B .C .D .7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.2020的相反数是( )A .2020B .2020-C .12020D .12020- 二、填空题(本大题共6小题,每小题3分,共18分)1.一个n 边形的内角和为1080°,则n=________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.若312m x y +-与432n x y +是同类项,则2017()m n +=________. 4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.已知关于x ,y 的二元一次方程组3426x y m x y +=+⎧⎨-=⎩的解满足3x y +<,求满足条件的m 的所有非负整数值.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.6.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、D7、A8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、ab3、-1.4、40°5、±46、7三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、满足条件的m的所有非负整数值为:0,1,23、(1)略;(2) 略.4、证明略.5、(1)100;(2)见解析;(3)72︒;(4)160人.6、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学期末考试复习题第一章:丰富的图形世界1、下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是……………………………( )2、 如图,有一个无盖的正方体纸盒,下底面标有字母“M ”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )3、如图所示的几何体,共有_____个面围成.4、一个几何体的主视图,左视图,俯视图都是同一个图形,那么这个几何体形状可能是————(填写一个即可)。
无盖MMMM(A)(B)(C)(D)5、如图所示图形需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A. B. C. D.6、如图是由几个小立方块所堆成几何体俯视图,小正方形里的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图。
第二章:有理数8、–8的相反数是_____,绝对值是_____.9、计算:_______)121(2=-10、13-的倒数是_____________,相反数是___________________.11、若3-a与2)(ba+互为相反数,则代数式ba22-的值为______ 。
12、温升高1°记做+1°,气温下降6°记做_________。
13、在0,2,-7,-5,3,中,最小数的相反数是___,绝对值最小的数是__。
14、下列各对数中,数值相等的是()A、–2+3与32+- B、–(–3)与3-- C、32与23 D、312÷与32⨯1 32 115、下列计算结果正确的是( )A 、(-4)×0、25=1B 、(-65)×(-59)=23C 、1÷(-9)=-9D 、(-2)÷21=1 16、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……,则231的结果的个位数应为( )。
A 、2B 、4C 、8D 、6 17、5的相反数是( )A 、-5B 、15C 、5D 、15-18、今年2月份某市一天的最高气温是11℃,最低气温是-6℃,那么这一天的最高气温比最低气温高( )A 、-17℃B 、17℃C 、5℃D 、11℃ 19、已知(2)2-x +1+y =0,则x+y 的值是( ) A 、3 B 、-1 C 、-3 D 、120、如果2(x+3)的值与3(1-x)的值互为相反数,那么x 等于( ) A 、9 B 、8 C 、-9 D 、-821、在-32,-▏-2▏,(-1)3,-(-2),-4这五个数中,负数的个数是( ) (A )1 个 (B)2个 (C)3个 (D)4个22、冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把他们从高到低排列正确的是( )(A )-10℃, -7℃ , 1℃ (B )-7℃ ,-10℃, 1℃ (C ) 1℃ , -7℃ ,-10℃ (D ) 1℃ ,-10℃ , -7℃ 23、绝对值为5的数是 ( )(A )5 (B )-5 (C )5或-5 (D )0或5 34、当1=a 时,3-a 的值为( )A.4B.-4C.2D.-225、计算(1))241()1218161(-÷+- (2)-22-(-2)2+(-3)2×(-32)-42÷|-4|(3) 11+(-22)-3×(-11) (4) 18-6÷(-2)×(-31)(5)[]4)20(112----- (6)81)4(21533--÷-(7)(7)(5)90(15)-⨯--÷- (8)42112(3)6⎡⎤--⨯--⎣⎦(9)-12-│0.5-32│÷31×[-2-(-3)2]26、将2,5,7,9这四个数玩“24点”游戏,写出算式。
27、画一条数轴,并在数轴上表示下列各数:–3,2,5,0,–2的倒数.第三章:字母表示数 28、写出一个与y x 221-是同类项的代数式:_____. 29、右图是一个数值转换机的示意图,若输入x 的值为3,y 的值为-2时,则输出的结果为: ______ .若输入x 的值为-3,y 的值为2时, 则输出的结果为:______ .30、已知a 为有理数且a0,则+=________31、如果∣a ∣= 5,∣b ∣= 3,则a +b= 。
32、m n y x y x 343-与是同类项,则=-n m 2_______; 33、23m x y --与325x y 是同类项,则m 的值是( )A.-2B.-5C.3D.-3 34、下列合并同类项的结果正确的是 ( )A 、a +3a=3a 2B 、 3a -a=2C 、3a +b=3abD 、 a 2-3a 2=-2a 2 35、多项式221312x xy y --+是( ) A.三次四项式 B.三次三项式 C.四次四项式 D.二次四项式 36、下列合并同类项的结果正确的是( )A 、a+3a=3a 2B 、3a -a=2C 、3a +b=3abD 、a 2-3a 2=-2a 2(3)x xy x xy 12587-+- 37.已知3-=-b a ,2=+d c ,则()()a d b c --+的值为( A )A.-5B.1C.5D.-138. 下列各式从左到右正确是 )(A )-(3X+2)=-3X+2 (B )-(-2X-7)=-2X+7 (C )-(3X-2)=-3X+2 (D )-(-2X-7)=2X-739、 3ab-4bc+1=3ab-( ),括号中所填入的代数式应是( )。
(A )-4bc+1 (B )4bc+1 (C )4bc-1 (D )-4bc-140、已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 ( )A. 1B. 4C. 7D. 不能确定41、化简:(1)2(2a 2+9b )+3(-5a 2-4b) (2))143(3)92(222+--++a a a a42、先化简,再求值:(1)y xy x y x xy y x 22)(2)(22222----+的值,其中2,2=-=y x(2))32(36922x x x x --+,其中 21-=x(3)()222(35)43x x y x x x y ⎡⎤---+---⎣⎦,其中31,21-==y x .(4)]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m(5)9x+6x 2-3(x-232x),其中x=-2。
43、已知22(3)0a b -+-=,求a b b a -的值.44、(1)如图甲,在一个四边形内的某一点出发,分别连接四边形的各个顶点,可以把这个四边形分割成四个三角形;(2)如图乙,在一个五边形内的某一点出发,分别连接五边形的各个顶点,可以把这个五边形分割成五个三角形;(3)图丙是一个六边形,在这个六边形内的某一点出发,分别连接六边形的各个顶点,可以把这个六边形分割成____个三角形;(请你画出图形并写出结果)根据以上规律,在一个n 边形内的某一点出发,分别连接n 边形的各个顶点,可以把这个n 边形分割成_____个三角形. 第四章:平面图形及其位置关系45、如右上图,C 是线段AB 上任意一点,M ,N 分别是AC ,BC 的中点,如果 AB =12cm ,那么 MN 的长为_____cm .46.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,其依据是 。
47.22.5°= 度 分;12°24′= 度。
48、8点20分,钟表上时针与分针所成的角是______________度。
49、48396731''︒+︒= .50、可近似看作直线的是 ( ) 。
A 绷紧的琴弦B 探照灯射出的光线C 孙悟空的金骨棒D 太阳光线 51、上午9时30分,时钟的时针和分针所成的锐角为……………………………( ) A 、ο90 B 、ο100 C 、ο105 D 、ο120 52、把一个正方形的一个角切去,得到的图形可能是①一个三角形 ②一个四边形③一个五边形 ④一个六边形其中正确的是( )A 、①②B 、③④C 、②③D 、①②③53、如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于( )A.3cmB.6cmC.11cmD.14cm54、如果A 、B 、C 在同一条直线上,线段AB=6 cm ,BC=2 cm ,则A 、C 两点间的距离是( )A 、8 cmB 、4 cmC 、8cm 或4cmD 、无法确定A BC M N 第3题图D C B A55、如图3,OA ⊥OB ,∠BOC =40°,OD 平分∠AOC ,则∠BOD 的度数是( )度。
A 、40B 、60C 、20D 、3056、如图,OA 是表示北偏东30°方向的一条射线,其中正确的( )57、如图,OE 为∠AOD 的角平线,∠COD=41∠EOC ,∠COD=15。
求(1)∠EOC 的大小;(2)∠AOD 的大小。
58、已知∠AOB=,自O 点引射线OC,若∠AOC:∠求OC 与∠AOB 的平分线所成的角的度数。
DC O B A 图3 CDEAO AOB北AAO B 东东北BAO 30° 东北 C AO30° 东北DA O30°59、如图,已知AO⊥OC,OB⊥OD,∠COD=38°,求∠AOB的度数。
(5分)DCABO60、O是直线上一点,OC是任一条射线,OD、OE分别是∠AOC和∠BOC的平分线。
(7分)(1)请你直接写出图中∠BOD的补角,∠BOF的余角。
(2)当∠BOF=25°时,试求∠DOF和∠AOD的度数分别是多少。
61、已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式。
(本题3分)……内角和180°180°×2 180°×3 180°×4 n边形根据上图所示,一个四边形可以分成____个三角形;于是四边形的内角和为_____度:一个五边形可以分成______个三角形,于是五边形的内角和为______度,……,按此规律,n边形可以分成_______个三角形,于是n边形的内角和为_________度。
第五章:一元一次方程62、设某数为x,由“比某数大2的数是1”可以列出方程:_________63、日历中,一个竖列上相邻两个数的和是27,这两个数中较大的数是_____64、已知x=3是方程ax-6=a+10的解,则a=_________________。