大学物理 马文蔚 课堂笔记2

合集下载

马文蔚《物理学》 高等教育出版社大学物理总复习知识点

马文蔚《物理学》 高等教育出版社大学物理总复习知识点

平动
角坐标 非定轴转动
运动
转动
角位移
定轴转动 角速度: d 方向
角加速度: ddt 方向
dt
角量和线量的关系(定轴转动)
v r, at r, an r 2
第四章 刚体定轴转动
力矩 M rF
转 动定律
M J
与质量、形状、 质量分布、轴的 位置方向有关
大小 rF sin
方向—右手螺旋
T C
m M
RT
ln
V2 V1
0
m M
RT
ln
V2 V1
绝热 PV C
TV 1 C
0
m M
Cv,m (T2
T1)
m M
Cv,m (T2
T1)
0
1
1
1 (P2V2 P1V1) 1 (P2V2 P1V1)
比热容比
CP,m 1 R 2 i
CV ,m
CV ,m i
循环过程 E = 0
0 f (v)dv 1
最概然速率 满足 df (v) 0 dv vp
平均速率
v 0 vf (v)dv
方均根速率 满足 v 2 v2 f (v)dv 0
2kT
RT
vp
1.41
m
M
v 8kT 1.60 RT
m
M
v 2 3kT 1.73 RT
m
M
第十三章 热力学基础
• 准静态过程、功、热量
t1
t0
动量定理 Fdt mv1
mv0
分量式
直角坐 标系 i jk
质点系的动量定理
t n
(
t0 i1
Fi外)dt

物理学教程第二版马文蔚下册课后问题详解完整版

物理学教程第二版马文蔚下册课后问题详解完整版

第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).9-2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).9-3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21 e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r r e r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L r q E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 rελL r LQ r εE l 0220π2 /41/π21lim =+=∞→ 此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R R R r x q x E 积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x eE θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ= R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为 r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变 000π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b)所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109V,被迁移的电荷约为30 C.(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J · kg)(2) 假设每一个家庭一年消耗的能量为3 000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量 kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C · m.这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能 eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题 9-27 图第十章静电场中的导体与电介质10-1将一个带正电的带电体A从远处移到一个不带电的导体B 附近,则导体B 的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A).10-2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端接地(如图所示),则()(A) N上的负电荷入地(B)N上的正电荷入地(C) N上的所有电荷入地(D)N上所有的感应电荷入地题 10-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关.因而正确答案为(A).10-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )Rεq V d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关。

大学物理 马文蔚 课堂笔记

大学物理 马文蔚 课堂笔记
上海师范大学
7 /14
2m
m
C
m
§3.9 质心 质心运动定律
解法一: 书上的解法-----用质心运动定律求解.
由于爆炸是属于内力, 因此根据质心运动定律 可知, 爆炸前后弹丸的质心运动轨迹是相同的.
m C m
2m 建立坐标系如图, 以第一个碎片的落地点为坐标原点. 第二个碎片的落地点为x2; 二碎片的质心坐标为xc . 由质心坐标的计算公式可得,

rc
mi ri
i 1
m'
因为质点的质量及总质量是不变的, 因此上式两边对时间求导数, 得 drc dri (5) m' mi dt dt i
上海师范大学
5 /14
§3.9 质心 质心运动定律
d rc d ri 由速度的定义式可知 是质心的运动速度; 是第i个质点的运动速度. dt dt 因此, (5)式可以写成, n n m'c mii pi pc (6)
化简得
m2 2 (m ) m 2mgR m'
2m' gR ; m m'
上海师范大学
m
m'
m m m m' m'
2m' gR m m'
13 /14
习 题 课
m
2m' gR ; m m'
m'
m m'
2m' gR m m'
2m' gR m m'
§3.9 质心 质心运动定律
密度均匀、形状对称分布的物体, 其质心都在它的几何中心处. 如质量均匀分布的圆环其质心在圆环中心; 质量均匀分布的球其质心在球心等. 下面通过两个例子掌握质量分立和连续分布体系的质心的求法.

马文蔚《物理学》第五版-上册总结

马文蔚《物理学》第五版-上册总结

3 动生电动势
i
OP
(v B ) dl
非静电力场来源 : 洛伦兹力
4 感生电动势
dΦ i Ek dl L dt
变化的磁场在其周围空间激发一种电场
5 自感电动势
L Φ I I ,
dΦ dI L L dt dt
6 互感电动势
r r r 1 r 1 , Q Q0 ,
r
r
4 电容:导体容纳电荷的能力
(1) 孤立导体
(2)电容器
R2 Q b 圆柱: 2 0l ln R , C 1 U c 球形: 4 R1R2 , 0 R2 R1 求法:设Q求E求U得C a并联: C C1 C2 (3) 电容器 CC b 串联: C 1 2 C1 C2
l
A A
规定:有限体积的带电体,无穷远电势为0 (5)电势差: U AB VA VB (6)应用: A 、点电荷
q V 4π 0r

AB
E dl
B、 叠加原理:
dq qi VA 4 π 0 r i 4 π 0r i
C 、 求 E方法3 :
S
积分得 电场能量
method-1:按电容的能量公式
method-2:按能量密度计算
第七章 稳恒磁场
1 电流、电流密度
dq (1) 电流: I dt
(2) 电流密度: (3) 恒定电流
I s j dS j dS 0
s
I envd S
2 电阻率
l l R S S
1 2 1 2 W M d Jw2 Jw1 2 2

物理学教程(第二版)马文蔚下册公式原理整理

物理学教程(第二版)马文蔚下册公式原理整理

物理期末知识点整理1、 计算题知识点1) 电荷在电场中运动,电场力做功与外力做功的总的显影使得带电粒子动能增加。

2) 球面电荷均匀分布,在球内各点激发的电势,特别是在球心激发的电势(根据高斯定理,球面内的电场强度为零,球内的电势与球面的电势相等04q Rεπε=,电势满足叠加原理)3) 两个导体球相连接电势相等。

4) 载流直导线在距离r 处的磁感应强度02IB rμπ=,导线在磁场中运动产生的感应电动势。

(电场强度02E rλπε=)t φξ=-5) 载流直导线附近的线框运动产生的电动势。

6) 已知磁场变化,求感应电动势的大小和方向。

7) 双缝干涉,求两侧明纹间距,用玻璃片覆盖其中的一缝,零级明纹的移动情况。

(两明纹间距为'd d dλ∆=,要求两侧明纹的间距,就是要看他们之间有多少个d ∆,在一缝加玻璃片,使得一端的光程增加,要使得两侧光程相等,光应该向加玻璃片的一方移动)8) 牛顿环暗环公式,理解第几暗环的半径与k 的关系。

(r =k=0、1、2…..))9) 光栅方程,光栅常数,第几级主极大与相应的衍射角,相应的波长,每厘米刻线条数,第一级谱线的衍射角(光栅明纹方程(')sin b b k θλ+=±(k=0、1、2….)暗纹方程(')sin (21)/2b b k θλ+=±+(k=0、1、2….)光栅常数为'b b +)10) 布鲁斯特定律,入射角与折射角的关系21tan b n n θ=2、 电场强度的矢量合成3、 电荷正负与电场线方向的关系(电场线从正电荷发出,终止于负电荷)4、 安培环路定理0Bdl I μ=⎰。

5、 导线在磁场中运动(产生感应电动势),电流在磁场中运动受到安培力的作用。

6、 干涉条件(频率相同,相位相等或相位差恒定,振动方向相同)b θ7、 薄膜干涉(主要是垂直入射的情况,光程差为122dn λ+(有无半波损失主要看题目的具体条件而定))8、 增透膜(2(21)/2dn k λ=±+(k=0、1、2….))9、 单缝衍射的第一暗纹sin b k θλ=±(k=1、2….)k=1时求衍射角θ 10、自然光透过偏振片,光强为原来的一半11、马吕斯定律,注意平方(20I I COS θ=,θ为两偏振片狭缝的夹角) 12、无限大均匀带电平面激发的电势02E σε=13、劈尖14、迈克尔孙干涉仪,动臂反射镜移动,干涉条纹的移动(/2d n λ∆=∆,n ∆为移动的条纹的个数)15、单缝衍射,两侧第几级暗纹之间的距离(暗纹sin b k θλ=±(k=1、2….),明纹sin (21)/2b k θλ=±+(k=1、2….),中间明晚呢的宽度为2/f b λ)16、电子加速后的德布罗意波长为λ= 17、电场力沿闭合路径做功为零。

物理学教程(二)下册马文蔚_答案(第二版)9—13

物理学教程(二)下册马文蔚_答案(第二版)9—13

第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ). 11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). 11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速.分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数. 解 通过分析结果可得环中的电子数 10104⨯==ecIl N 11-7 已知铜的摩尔质量M =63.75 g·mol -1 ,密度ρ =8.9 g · cm -3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍? 分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kT π8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kT v v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据 恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rlI j π2= 解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlI j 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()R IR R IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而b e 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0. 解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800=B 0 的方向垂直纸面向外. (b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-=B 0 的方向垂直纸面向里. (c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度RI μB π40=,磁感强度的方向依照右手定则确定. 点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加.解 根据磁场的叠加在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中, k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中, k j i B RI μR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l x I d π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200ln π2d π2d dd d Il x l x I μμ 11-14 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B 在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR Ir μB =在导线外r >R ,I I =∑,因而rI μB 2π0=磁感强度分布曲线如图所示. 11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 1 22101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2 I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3 ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3 ()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B 依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02=r >R 2 02π3=⋅r B03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNI μB 2π0≈ 11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πRIr μr B = 在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd 解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr R Ir μΦR==⎰ 11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示.(2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两 侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度.解 依照分析m/s 63.0===dBU B E H H v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m/s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k 11-21 从太阳射来的速度为0.80×108m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v 地磁北极附近的回转半径 m 2322==eB m R v 11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm , b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dl I I μF π22103= ()b d l I I μF +=π22104 故合力的大小为 ()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dI μB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220== dεU C λE F E 022π2== 由0=+E B F F 可得dεU C d I μ02220π2π2= 解得A 105.4300⨯==μεCU I (2) 输出功率 W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v 可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i == 在圆心处,即质子所在处的磁感强度为02a i μB = 解 由分析可得,电子绕核运动的速率π2ma h =v 其等效圆电流 2020π4/π2ma he v a e i == 该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma he μa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理 ⎰∑=⋅f I d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流. 解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=f π2I r H对r <R 1221f ππr R I I =∑ 得 2112πR Ir H = 忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR Ir μB =对R 2 >r >R 1 I I=∑f得 rI H 2π2=填充的磁介质相对磁导率为μr ,有 ()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2 ()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 3 0=-=∑I I If得 04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅=()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.第十二章 电磁感应 电磁场和电磁波 12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )(A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向(C ) 线圈中感应电流为逆时针方向(D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式 tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NS R R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法. 12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?。

马文蔚《大学物理学》第一章2

马文蔚《大学物理学》第一章2

vA
B
vB
B 过程视为匀变速率圆周运动,不计重力加速 度的影响,求:(1) 飞机在点 B 的加速度; (2)飞机由点 A 到点 B 所经历的路程.
解(1)
v A 1940km h
vB 2192km h
3
1
1
A
vA
B
t 3 s,r 3.5 10 m
r a n
三、圆周运动的角量描述
5、圆周运动的线速度:
速率
Δs Δθ v lim r lim Δt 0 Δt Δt 0 Δt
ds d r dt dt
y
B
r
o

etA
v( t ) r ( t )
v r

x
圆周运动中的极坐标:横向和径向
圆周运动中自然坐标:切向和法向 切向单位矢量 法向单位矢量
2
x
五、匀速率圆周运动和匀变速率圆周运动
1、匀速率圆周运动:
at 0 0 t
a anen rω2en
2、匀变速率圆周运动
dω α 常量 dt
dω dt

ω
ω0
dω αdt
0
t
如 t 0 时, 0 , 0
0 t 1 2 θ θ 0 0 t t
3、横向单位矢量
二、 自然坐标——切向、法向坐标
——曲线运动的描述
沿质点轨迹建立一随轨道弯曲的一维曲线坐标轴。 自然坐标s, s可正可负。质点运动学方程为
s s( t )
(1)平面自然坐标中的描述——切向、法向单位矢量 由曲线上各点的切线和法线所组成的一系列坐标系 称自然坐标系。 en e t 切向单位矢量 A S et 指向s增加的方向 e n 法向单位矢量 O/ r 指向轨道的凸侧 0

大学物理学第五版马文蔚§1-2圆周运动1-3相对运动

大学物理学第五版马文蔚§1-2圆周运动1-3相对运动

圆周运动中物体间相对位置变化分析
物体在圆周运动中的位置 变化
描述物体在圆周运动中相对于圆心或参考点 的位置变化,包括角度、弧长等参量的变化 。
物体间相对位置的变化
分析两个或多个物体在圆周运动中相对于彼此的位 置变化,涉及相对距离、相对角度等概念。
参考系的选择与转换
探讨在不同参考系下观察圆周运动时,物体 间相对位置的变化情况,以及如何进行参考 系的转换。
02
4. 使用测量工具测量物体的线速度、角速度和周期,并记录 数据。
03
5. 改变转盘的角速度,重复步骤3和4,获得多组数据。
实验步骤和数据记录表格设计
01
数据记录表格设计
02 | 序号 | 角速度(rad/s) | 线速度(m/s) | 周期 (s) |
03
| --- | --- | --- | --- |
圆周运动中物体间能量传递和转化规律
01
动能与势能的转化
探讨在圆周运动中,物体动能与 势能之间的转化规律,如单摆运 动中的能量转化过程。
02
功能原理与能量守 恒
应用功能原理分析圆周运动中的 能量传递和转化过程,阐述能量 守恒定律在圆周运动中的应用。
03
摩擦与能量损失
研究在圆周运动中因摩擦而产生 的能量损失问题,分析摩擦对物 体运动状态及能量转化的影响。
05 实验设计与数据分析
实验目的和原理介绍
实验目的
通过观察和测量圆周运动物体的运动学量, 如线速度、角速度、周期等,探究圆周运动 的规律,并理解相对运动的概念。
实验原理
圆周运动是物体沿着圆周路径进行的运动, 其运动学量可以通过测量和计算得出。相对 运动是指两个物体之间的相对位置和相对速

大学物理学第五版马文蔚高等教育出版社静电场2

大学物理学第五版马文蔚高等教育出版社静电场2
S S
(5-13) (5-14)
S
规定: 闭合曲面上任一点的外法线为正向!
{
E 线穿出: </2, d E >0 E 线穿入: >/2, d E < 0
通过闭合曲面的电 场线数目与该曲面 内的电荷间的关系
三.高斯定理
q3
+ -
+ -q
2
q1
S
1. 定理的表述 q4 在任意的静电场中,通过任一闭合曲面的 E 通量,等于该曲面内电荷量的代数和除以0 。 1 E E d S qi (5-16) S
1
2
无限长均匀 带电圆柱
E E r O
+ + + S下 + + +
E
r 2 20 R
E
1 r
R
r
E
r 2 20 R
无限长均匀 带电圆柱面
E
E
E=0 O
1 r
无限长均匀带电圆柱面内 ? E =0
R
r
用高斯定理求E的要点:
由电荷分布的对称性→电场分布的对称性! 1.分析电场的对称性。 由此判断出:① 各点 E 的方向 ② 那些点 E 的大小相等。 点电荷,均匀带电球面(体)、球层(套叠); a.球对称:

o
dE
x
(3) 分解变量
(4) 统一变量
dl d Ex dE sin sin 2 40 R dl d E y dE cos cos 2 40 R d l Rd
参与题:一均 匀带电圆弧, 电荷线密度为 ,圆弧圆心 角为0,求Eo=?
0
方向:沿y轴正向。

大学物理学第五版马文蔚高等教育出版社导体与电介质2

大学物理学第五版马文蔚高等教育出版社导体与电介质2

q 定义电容: C VA VB
(6-11)
(q ~任一极板上电荷的绝对值~自由电荷)
沈 辉 奇 制 作
物理意义:电容器升高单位电势差所需的电量。
A
+ + ++ + +++++ B
沈 辉 奇 制 作
三.电容的计算 1.平行板电容器 构造: 极板面积S, 间距d , 板间介质0 S>>d2
E
RB
-
= q/l E=0 l
RB - A RA E d r 20 ln RA + + +q l C VA VB VA VB q 20l 2r 0l C 有电介质时的电容: C VA VB ln( RB / RA ) ln( RB / RA )
d2
S 2
r2
d
S 2
0
r
6-5 静电场的能量 能量密度
A
一.电容器的电能
设电容 C dq(>0)
当带电±q 时 电势差 VA VB BA 电源做元功
C q VA VB
+ + + + +
– – – – –
B
q d W d q(VA VB ) dq C
在电介质的表面上,极化方向与介质 E 法线方向夹角 为锐角的地方,出现一 层正的束缚电荷。 为钝角的地方出现一层负的束缚电荷。
+ + + + + +
en
l

+ + + + +
表面电荷的厚度是|lcos |
故薄层面元dS上束缚电荷为:
dq nql cos dS P cosdS

马文蔚 《物理学教程》教案chapter 02 牛顿定律

马文蔚 《物理学教程》教案chapter 02 牛顿定律

第二章 牛顿定律 §2-1 牛顿定律一、牛顿第一定律按照古希腊哲学家亚里士多德(Aristotle ,公元前384-322)的说法,静止是物体的自然状态,要使物体以某一速度作匀速运动,必须有力对它作用才行。

意大利物理学家和天文学家伽利略指出,如果没有外力作用,物体将以恒定的速度运动下去。

力不是维持物体运动的原因,而是使物体运动状态改变的原因。

1686年,牛顿在他的名著《自然哲学的数学原理》一书中写道:任何物体都要保持静止或匀速直..............线运动状态,直到外力迫使它改变运动状态为止.....................,这就是牛顿第一定律......,牛顿第一定律的数学形式表示为:恒矢量时,==v F 0 (2-1)第一定律表明,任何物体都具有保持其运动状态不变的性质,这个性质叫做惯性,一定要有其它物体对它作用,这种作用被称之为力。

二、牛顿第二定律 1. 动量物体运动时总具有速度,我们把物体的质量m 与其运动速度v 的乘积叫做物体的动量..,用p表示,即p mv =(2-2) 动量p 显然也是一个矢量,其方向与速度v的方向相同。

与速度可表示物体运动状态一样,动量也是表述物体运动状态的量,但动量较之速度其涵义更为广泛,意义更为重要,当外力作用于物体时,其动量发生改变,牛顿第二定律阐明了作用物体的外力与物体动量变化的关系。

2. 牛顿第二定律牛顿第二定律表明,动量为...p 的物体...,在合外力....F(F)i =∑ 的作用下....,其动量随时间的变化.........率应当等于作用物体的合外力.............,即 d d(mv)d d F t t== p (2-3a)当物体在低速情况下运动时,即物体的运动速度v 远小于光速c (v <<c )时,物体的质量可以视为是不依赖于速度的常量,于是上式可写成d m dt = v F (2-3b)或 m =F a3. 直角坐标系中分量形式在直角坐标系中也可写成 d d d d d d d d y x z m m m m t t t t ==++ v v v v F i j k 即 x y z ma ma ma =++F i j k (2-3c)式(2-3)是牛顿第二定律的数学表达式............,又称牛顿力学的质点动力学方程............。

大学物理学第五版马文蔚高等教育出版社磁场2

大学物理学第五版马文蔚高等教育出版社磁场2
L
(7-19)
讨论: (1) 式中各量的含义: B ~环路上各点的磁感应强度。 由环路内、外电流共同产生的。 I ~穿过环路内的电流的代数和。注意 I 的正负的确定方法。 L1 I2 I1 L2 I
I1

L3 L4
I2
① B d l 0 ( 2 I 2 I1 ) L1 ③ B d l 0 ( I1 I 2 )
n1 O
n2
7-4 毕奥-萨伐尔定律(Biot-Savart law) 四.运动电荷的磁场
L
E
r
•P
+++ ++++ + ++++ +++ +++ +++ ++++++++ ++++ ++++ + ++ + ++ + +++ + ++ + +++ + ++ ++ ++ + + + +++ ++ ++ + + ++++ I d l e r +++ + ++++ +++++++++ + +++++ ++++++ +++d B 0 + + + + +++++ +++ +++ ++ ++ + + + + + + + (7-12c) 2 4 r dl S 运动电荷 q 产生的磁场 导体单位体积内电荷数 n dB 0 (qnvS)dl B dl内电荷数: dN= nSdl sin 2 dN 4r (nSdl ) 0 I d l 0 dB sin vq sin 2 2 4 r 4 r 方向与 d B 同向,仍为 I d l r 。 q 的平均速度 v 取dl = v dt 0 qv r (7-15a) 矢量式:B 3 则电流元体积dV = Sdl = Svdt 4 r 0 qv er dN=ndV=nSvdt 此体积内电荷数: B (7-15b) 2 4 r dq qdN q(nSvdt) 说明: B 的方向垂直于 v 和 I qnvS 所确定的平面。 dt dt dt r

大学物理 马文蔚 课堂笔记2

大学物理 马文蔚 课堂笔记2
抛体在运动过程中受到重力p和空气阻力f作用如图所示由牛顿第二定律的分量形式mgdt24牛顿定律的应用举例mgdtln代入初始条件coslnlndtdx积分得dt24牛顿定律的应用举例sinln整理上式可得抛体沿y轴方向的速度分量为代入积分常数c可得sinlnmgdt24牛顿定律的应用举例mgdtdymgdytancos显然7式不是抛物线方程说明考虑空气阻力后抛体的运动轨迹不再是抛物线


0
d(g - kv 2 ) g k 2
mg
y
1 1 1 g k 2 2 2 ln(g k ) 0 [ln(g k ) ln g ] ln( ) 2k 2k 2k g
2 g k0 1 1 g k 2 ) ln( ) 将h值代入得, h ln( 2k g 2k g
f h mg
0
g k02 g k 2 g ln( ) ln( ) ln( ) 2 g g g k
上海师范大学
y
12 /13
§2.4
牛顿定律的应用举例
f h y 0
g k02 g k 2 g ln( ) ln( ) ln( ) 2 g g g k g k02 g g g k 2
§2.4
b
牛顿定律的应用举例
0 0
F0 m t F e ( 0 ) b b
化简得
F0 v (1 e b

b t m
0
)
FB Fr
速度随时间而增大, 如右下图所示.
t , vL F0 / b (极限速度)
当 当
t 3 m b 时 v vL (1 0.05) 0.95vL t 5 m b 时 v 0.993vL

物理学教程第二版马文蔚上册课后答案完整版[参考]

物理学教程第二版马文蔚上册课后答案完整版[参考]

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为,平均速率为.v v (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) ||= ,||= (B) ||≠,||≠ v v v v v v v v(C) ||= ,||≠ (D) ||≠,||= v v v v v v v v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故,即||≠.ts t ΔΔΔΔ≠r v v 但由于|d r |=d s ,故,即||=.由此可见,应选(C).ts t d d d d =r v v 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1); (2); (3); (4).t r d d t d d r t s d d 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通tr d d 常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标t d d r 系中速度大小可用公式计算,在直角坐标系中则可由公式求t s d d =v 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.a 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的(D) 只有(3)是对的分析与解 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方td d v 向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率v r (如题1 -2 所述);t r d d 在自然坐标系中表示质点的速率v ;而表示加速度的大小而不是切向加速度a t.因ts d d t d d v 此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5 已知质点沿x 轴作直线运动,其运动方程为,式中x 的单位为m,t 的单32262t t x -+=位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移0Δx x x t -=的大小和路程就不同了.为此,需根据来确定其运动方向改变的时刻t p ,求出0~t p 和0d d =tx t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程,如图所示,至于t =4.0 s 时21x x s ∆+∆=质点速度和加速度可用和两式计算.tx d d 22d d t x题 1-5 图解 (1) 质点在4.0 s 内位移的大小m32Δ04-=-=x x x (2) 由0d d =tx 得知质点的换向时刻为 (t =0不合题意)s 2=p t 则m0.8Δ021=-=x x x m40Δ242-=-=x x x 所以,质点在4.0 s 时间间隔内的路程为m48ΔΔ21=+=x x s (3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -6 已知质点的运动方程为,式中r 的单位为m,t 的单位为s.求:j i r )2(22t t -+=(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为, j r 20=ji r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得ji j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图 1 -7 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v 设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为, 2s m 60d d -⋅==ta x x v 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x ya a ββ=-33°41′(或326°19′)1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m716.0='-=h h d题 1-8 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由和可得和.如a =a (t )或v =v (t ),则可两t a d d v =tx d d =v t a d d =v t x d d v =边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 (1)03314v v +-=t t 由 ⎰⎰=txx t x 0d d 0v 得(2)00421212x t t t x ++-=v 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为后再两边积分.t a d )(d =v v 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知(1)v v B A t a -==d d 用分离变量法把式(1)改写为 (2)t B A d d =-vv 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度)e 1(Bt B A --=v 由此可知当,t →∞时,为一常量,通常称为极限速度或收尾速度.B A →v (2) 再由并考虑初始条件有)e 1(d d Bt BA t y --==v t BA y t Bt y d )e 1(d 00⎰⎰--=得石子运动方程)1(e 2-+=-Bt B A t B A y 1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即和20021t a t x x x x ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.20021t a t y y y y ++=v 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==tt t t 000)d 46(d d j i a vvji t t 46+=v 又由及初始条件t =0 时,r 0=(10 m)i ,积分可得td d r =v ⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v ji r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率,α=33°41′.轨迹如图所示.32tan d d ===αx y k 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即,它与时间间隔Δt 的大t ΔΔr =v 小有关,当Δt →0 时,平均速度的极限即瞬时速度.切向和法向加速度是指在自然坐td d r =v 标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即,后者只t t te a d d v =反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式求ρ.ρa n 2v =解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t t y t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=ty t x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j 切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v nn t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122sm 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -13 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为o 5.12arctan==xy θ(3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan ==取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为,他随即以仰角冲出,飞越跨度达57 m ,安全着陆在西岸木桥1500=v h km 1-⋅ 5=α上,求:题 1-14 图(1)柯飞车跨越黄河用了多长时间?(2)若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几米?(3)西岸木桥和起飞点的高度差为多少?分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中分别表示飞车的最大高度和飞跃跨度.m m x y 和解 在图示坐标系中,有(1) t v x )cos (0α=(2) 2021sin (gt t v y -=)α(3) gt v v y -=αsin 0(1) 由式(1),令 m ,得飞跃时间57m ==x x s 37.1cos 0m m ==αv x t (2)由式(3),令,得飞行到最大高度所需时间0=y v gv t αsin 0m =’将代入式(2),得飞行最大高度’m t m 67.02sin 220m ==gv y α则飞车在最高点时距河面距离为m m10m +=y h 67.10=(3)将 s 代入式(2),得西岸木桥位置为37.1m =t y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为m + 10=y 2021)sin (gt t v -α1 -15 如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角,球的抛射角 30=α,设球被抛出时的速率v 0 =19.6 m·s-1,忽略空气阻力,问球落在山坡上处离山60=β坡底端的距离为多少?此过程经历多长时间?题 1-15 图分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g和-g αcos ,看似复杂,但求解本题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题αsin所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.解 1 由分析知,在图(a )坐标系中,有(1)20)sin (21)]cos([t g t v x ααβ-+-=(2)20)cos (21)]sin([t g t v y ααβ-+-=落地时,有y =0,由式(2)解得飞行时间为s31.230tan 20== g v t 将 t 值代入式(1),得m1.26322===g v x OP 解 2 由分析知,在图(b )坐标系中,对小球(1)t v x )cos (0β=(2)2021)sin (gt t v y -=β对点P(3)αtan x y ='由式(1)、(2)可得球的轨道方程为(4)ββ2202cos 2tan v gx x y -=落地时,应有,即y y '=60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为(5)g v x 3320=则 m1.263230cos 2===g v x OP 联解式(1)和式(5)可得飞行时间s31.2=t讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 一质点沿半径为R 的圆周按规律运动,v 0 、b 都是常量.(1) 求t 时2021bt t s -=v 刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为, b t s a t -==22d d Rbt R a n 202)(-==v v 故加速度的大小为R)(402222bt b a a a a t t n -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由可得b bt b R R=-+4022)(1v bt 0v =(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-=因此质点运行的圈数为bRR s n π4π220v ==1 -17 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rt t ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα2s m 0.1-⋅==R αa t 总加速度n t t n R ωR αe e a a a 2+=+=()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为,式中θ 的单位为rad,t 342t θ+=的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于,则角速度.在t =2 s 时,法向加速度和切向加速342t θ+=212d d t tθω==度的数值分别为22s 2s m 30.2-=⋅==ωr a t n 2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当时,有,即22212/t n t a a a a +==223n t a a =()()422212243t r rt =得3213=t 此时刻的角位置为rad15.3423=+=t θ(3) 要使,则有t n a a =()()422212243t r rt =t =0.55s1 -19 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为 (如图所示),于是可得1'22v v v +=1o 12s m 36.575tan -⋅==v v 1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足.再由相对速度的矢量关系,即可求出所hl αarctan≥122v v v -='需车速v 1.题 1-20 图解 由[图(b)],有122v v v -='θθcos sin arctan 221v v v -=α而要使,则hl αarctan ≥hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于 (B) 必须等于gR μgRμ(C) 不得大于 (D) 还应由汽车的质量m 决定gR μ分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可R m θmg F N 2sin v =-见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有(1)ma αmg μαmg =-cos sin 又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -==则 (2)()αμααg l t cos sin cos 2-=为使下滑的时间最短,可令,由式(2)有0d d =αt ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 ,μα12tan -=o 49=α此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题2-7 图分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT-( m1+m2)g =(m1+m2)a (1)F N2 - m2g =m2a (2)解上述方程,得FT=(m1+m2)(g +a) (3)F N2=m2(g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=-1.98 ×103 N (2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A、B 的质量均为m=3.0kg 物体A 以加速度a =1.0 m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有m A g-FT=m A a (1)F ′T1 -F f =m B a ′(2)F ′T -2F T1 =0(3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得. 该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力=μmg的作用下,根据牛顿定律分别对木块、平板列出f F 动力学方程=μmg =ma 1f F =-=m ′a 2f F f F a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海师范大学
O
(1) (2)
2 /13
§2.4
d m x k x dt d m y m g k y dt
牛顿定律的应用举例
(1) (2)
y
0
α

f
P

x
由(1)式得,
两边积分 得,
k dt x m k ln x t C m
y F
v P
B 为浮力
一般认为
t 3 m b , v vL
F0 b
v
t
8 /13
o
上海师范大学
§2.4
牛顿定律的应用举例
v0
(2) 若球体在水面上是具有竖直向下的速率 v0 ,且在水 中的重力与浮力相等, 即 FB P . 则球体在水中仅受 阻力 Fr bv 的作用. 由牛顿第二定律, 得
6)求解方程, 并根据物理意义对结果进行取舍.
上海师范大学
1 /13
§2.4
牛顿定律的应用举例
P41 例4
一物体以初速度为 v0斜向上抛出,抛射角为α , 假设物体受到空气
的阻力与物体的速度成正比. 求物体在空气中运动的轨迹.
解 抛体在运动过程中受到重力P和空气阻力f作用, 如图所示
由题设可知
f k ,
化简得,
2 2 g 2 gk 2 gk0 k 20 2 g 2 2 2 g 2 g0 k0 2 0 2 2 ( g k0 ) 2 g0 2 g0 2 2 ( g k0 )
mg
由此可得, 物体返回地面时速度的值为
0
g 2 ( g k0 )
F ma 得 mg FB 6rv ma
i i
重力和浮力都是常数, 因此 令 F0 mg FB ; b 6r
y F
v P
B 为浮力
上海师范大学
6 /13
mg FB 6rv ma
F0 mg FB ; b 6r
)
§2.4
牛顿定律的应用举例
0 0
dv 由此, 得 F0 bv ma m dt dv b F

0
FB Fr
dt
m
(
0
b
b dt 即 F0 ( v) m b 两边积分, 得 v dv b t 0 ( F0 b) m 0 dt
dv
y F
v P
B 为浮力
ln[
0
FB Fr
dv m bv dt
积分得 即 化简得
dv
b dt m

v dv b t dt v0 v 0 m

y
v P
FB 为浮力
b ln ln 0 t m
v v0e

b t m
v0
o
v
t , vL 0
(极限速度)
经过足够长的时间后, 小球将停止下来.
阻力的作用, 如图所示; 1. 上升过程: 由牛顿第二定律可得 v
化简得
dv mg km ma m dt
2
f
0
mg
y
dv dv dy dv m g km m m m dt dt dy dy
2
mg
dv dy g k 2
积分得

y
0
dy
P

x
由(2)式得,
d y
mg k y

1 dt m
k ln( mg k y ) t C 两边积分 得, m 代入初始条件, t=0, v0y=v0sinα 得
O
C ln(mg k0 sin )
代入积分常数C可得
ln[
mg k y
mg k0 sin
d x
O
代入初始条件, t=0, v0x= v0cosα 得 C ln0 x ln(0 cos ) 代入积分常数C可得抛体沿x轴方向的速度分量为,
k t m
x (0 cos )e
k
(3)

t dx x (0 cos )e m 积分得 dt

x
0
dx ( 0 cos )e

0
dv g k 2
上海师范大学
10 /13

y
0
dy

0
dv g k 2
§2.4
牛顿定律的应用举例
y v
1 d(kv 2 ) 1 d(g kv 2 ) y 0 g k 2 2k 0 g k 2 2k 1 1 1 ln( g k 2 ) [ ln( g k 2 ) ln( g k02 )] 0 2k 2k 2k 1 g k 2 ln( ) 2 2k g k0
f h mg
0
g k02 g k 2 g ln( ) ln( ) ln( ) 2 g g g k
上海师范大学
y
12 /13
§2.4
牛顿定律的应用举例
f h y 0
g k02 g k 2 g ln( ) ln( ) ln( ) 2 g g g k g k02 g g g k 2
mg y
11 /13
上海师范大学
§2.4
g k 2
dv
dy

牛顿定律的应用举例 dv dy g k 2
f
0
物体回到地面时, 下落的距离为h, 因此上式两边积分得

h
h
0
dy
0
dv g k 2

0
dv 1 g k 2 2k


0
d(-kv 2 ) 1 g k 2 2k
§2.4
b
牛顿定律的应用举例
0 0
F0 m t F e ( 0 ) b b
化简得
F0 v (1 e b

b t m
0
)
FB Fr
速度随时间而增大, 如右下图所示.
t , vL F0 / b (极限速度)
当 当
t 3 m b 时 v vL (1 0.05) 0.95vL t 5 m b 时 v 0.993vL
F P f
y
0
α

f
P

x
由牛顿第二定律的分量形式
d x Fx m ax m dt d y Fy m ay dt d x m dt k x 可得 d m y m g k y dt
]
k t m
整理上式可得, 抛体沿y轴方向的速度分量为,
t mg mg m y ( 0 sin )e k k k
(5)
4 /13
上海师范大学
§2.4
k t m
牛顿定律的应用举例
y
mg mg y ( 0 sin )e (5) k k k t dy m g mg m 由 y ( 0 cos )e dt k k k t y t mg mg 积分得 dy [( 0 cos )e m ]dt 0 0 k k k t m mg mg 即 y ( 0 cos )(1 e m ) t k k k k k t t m x (0 cos )e m (1 e m ) k
5 /13
§2.4
牛顿定律的应用举例
物体在流体(液体和气体)运动时, 要受到流体对物体的阻力作用.
流体对物体的阻力称为粘滞阻力. 粘滞阻力与速率和物体形状有关. 对于球形物体, 且速率不太大时, 粘滞阻力的大小为
Fr 6rv
P42 例5

(斯托克斯公式)
一质量为 m ,半径 r 的球体在水中从水面向水底运动. 已知阻
由(4)(6)两式, 可得抛体的运动轨迹方程为
0
α

f
P

x
O
(6)
(4)
mg m2 g k y( tan ) x 2 ln(1 x) k0 cos k m0 cos
(7)
Hale Waihona Puke 显然(7)式不是抛物线方程, 说明考虑空气阻力后, 抛体的运动轨迹不再是抛物线.
上海师范大学
物体到达最高处时, v=0, 因此 2 g k0 1 g 1 h ymax ln( ) ln( ) 2 2k g k0 2k g 2. 下落过程: 由牛顿第二定律可得
f 0 mg 0
f
m g km 2 m a m g k
2
dv
dy
dv dv m dt dy
§2.4
牛顿定律的应用举例
质点动力学问题一般分为二类:
(i) 已知物体的受力情况, 根据牛顿定律求运动状态(运动方程, 速度等).
(ii) 已知物体的运动状态, 求作用在物体上的力.
解题的基本步骤:
1)确定研究对象,将被研究对象与其它物体“隔离” (隔离物体); 2) 进行受力分析,分析研究对象的受力情况, 并作出受力图; 3)建立坐标系,根据具体问题选取适当的坐标系(直角坐标系,极坐标系,自然坐标系); 4)根据牛顿定律列方程(一般用分量式); 5)利用其它的约束条件列补充方程;
F0 b ] t b m 0
ln[ F0 F0 b /( )] t b b m
b

ln(
F0 F b ) ln[ 0 ] t b b m
相关文档
最新文档