2017年九年级函数综合试题(附答案)
人教版九年级上数学册《第22章二次函数》综合检测试卷有答案AlHKHU

人教版九年级上册数学综合检测含答案第22章 二次函数(时间:120分钟 总分120分)一、选择题(本大题共6个小题,每小题3分,共18分。
在每小题给出的四个选项中,只有一个正确选项。
) 1.下列各式中,y 是x 的二次函数的个数为( A )①y =2x 2+2x +5;②y =-5+8x -x 2;③y =(3x +2)(4x -3)-12x 2;④y =ax 2+bx +c ;⑤y =mx 2+x ;⑥y =bx 2+1(b 为常数,b ≠0).A .3B .4C .5D .62.若函数y =226a a ax --是二次函数且图象开口向上,则a =( B ) A .-2 B .4 C .4或-2 D .4或33.将抛物线y =3x 2平移得到抛物线y =3(x -4)2-1 的步骤是( D ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位4.抛物线y =12x 2-4x +3的顶点坐标和对称轴分别是( D )A .(1,2),x =1B .(1-,2),x =-1C .(-4,-5),x =-4D .(4,-5),x =45.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图 ,则下列结论:第5题图①a ,b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能为0,其中正确的个数是( B )A .1个B .2个C .3个D .4个6.我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图 所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1 m ,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m 处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为( B )第6题图A .1.5 mB .1.625 mC .1.66 mD .1.67 m二、填空题(本大题共6小题,每小题3分,共18分)7.已知函数y =(m -2)x 2+mx -3(m 为常数). (1)当m ____≠2______时,该函数为二次函数; (2)当m _____=2_____时,该函数为一次函数.8.已知抛物线y =ax 2+bx +c 经过点(-1,10)和(2,7),且3a +2b =0,则该抛物线的解析式为___y =2x 2-3x +5_____.9.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为k <-74且k ≠0 .10.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =___4___元,一天出售该种手工艺品的总利润y 最大.11.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 1或0 . 12.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数2y ax bx c =++的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称. 根据现有信息,得出有关这个二次函数的下列结论:①过点(3,0);②顶点是(2,-2);③在x 轴上截得的线段的长是2; ④与y 轴的交点是(0,3).其中正确的有__①③④_____(填序号).三、解答题 (本大题共5小题,每小题6分,共30分)13.已知抛物线y =ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上; (3)求出抛物线上纵坐标为-6的点的坐标. 解:(1)把(-2,-8)代入y =ax 2,得-8=a (-2)2.解得a =-2,故函数解析式为y =-2x 2.(2)∵-4≠-2(-1)2,∴点B (-1,-4)不在抛物线上. (3)由-6=-2x 2,得x 2=3,x =±3.∴纵坐标为-6的点有两个,它们分别是(3,-6)与(-3,-6).14.如图 ,A (-1,0),B (2,-3)两点都在一次函数y 1=-x +m 与二次函数y 2=ax 2+bx -3的图象上. (1)求m 的值和二次函数的解析式;(2)请直接写出当y 1>y 2时,自变量x 的取值范围.第14题图解:(1)由于点A (-1,0)在一次函数y 1=-x +m 的图象上,得-(-1)+m =0,即m =-1;已知点A (-1,0),点B (2,-3)在二次函数y 2=ax 2+bx -3的图象上,则有 ⎩⎪⎨⎪⎧ a -b -3=0,4a +2b -3=-3.解得⎩⎪⎨⎪⎧a =1,b =-2.∴二次函数的解析式为y 2=x 2-2x -3.(2)由两个函数的图象知:当y 1>y 2时,-1<x <2.15.已知抛物线y =x 2-2x -8.(1)试说明抛物线与x 轴一定有两个交点,并求出交点坐标;(2)若该抛物线与x 轴两个交点分别为A ,B (A 在B 的左边),且它的顶点为P ,求S △ABP 的值. 解:(1)∵Δ=(-2)2-4×1×(-8)=4+32=36>0, ∴抛物线与x 轴一定有两个交点.当y =0,即x 2-2x -8=0时,解得x 1=-2,x 2=4. 故交点坐标为(-2,0),(4,0). (2)由(1),可知:|AB |=6.y =x 2-2x -8=x 2-2x +1-1-8=(x -1)2-9.∴点P 坐标为(1,-9).过点P 作PC ⊥x 轴于点C ,则|PC |=9.∴S △ABP =12|AB |·|PC |=12×6×9=27.16.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分.(1)求演员弹跳离地面的最大高度; (2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.17.如图,抛物线y =ax 2-5x +4a 与x 轴相交于点A ,B ,且过点C (5,4). (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.第17题图解:(1)a =1,P ⎝⎛⎭⎫52,-94. (2)答案不唯一,满足题意即可.如向上平移104个单位长度后,再向左平移3个单位长度等.四、(本大题共3小题,每小题8分,共24分)18.如图,二次函数y=ax 2-4x+c 的图象过原点,与x 轴交于点A(-4,0).(1)求此二次函数的解析式.(2)在抛物线上存在点P,满足S △AOP =8,请直接写出点P 的坐标.解:(1)依题意,得⎩⎨⎧=+=016160a c 错误!未找到引用源。
2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。
2017年全国中考数学真题分类 二次函数概念、性质和图象2017(解答题)

2017年全国中考数学真题分类 二次函数概念、性质和图象解答题三、解答题1. (2017山东滨州,24,14分)(本小题满分14分)如图,直线y =kx +b (k 、b 为常数)分别与x 轴、y 轴交于点A (-4,0)、B (0,3),抛物线y =-x 2+2x +1与y 轴交于点C . (1)求直线y =kx +b 的解析式;(2)若点P (x ,y )是抛物线y =-x 2+2x +1上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;(3)若点E 在抛物线y =-x 2+2x +1的对称轴上移动,点F 在直线AB 上移动,求CE +EF 的最小值.思路分析:(1)将A 、B 两点坐标代入y =kx +b 中,求出k 、b 的值;(2)作出点P 到直线AB的距离后,由于∠AHC =90°,考虑构造“K 形”相似,得到△MAH 、△OBA 、△NHP 三个三角形两两相似,三边之比都是3∶4∶5.由“345NH CN CH==”可得23(3)(21)4345m x x x m d +--++-==,整理可得d 关于x 的二次函数,配方可求出d 的最小值;(3)如果点C 关于直线x =1的对称点C ′,根据对称性可知,CE =C ′E .当C ′F ⊥AB 时,CE+EF 最小. 解:(1)∵y =kx +b 经过A (-4,0)、B (0,3),∴403k b b -+=⎧⎨=⎩,解得k =34,b =3.∴y =34x +3.(2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P 作MN 的垂线段,垂足分别为M 、N .设H (m ,34m +3),则M (-4,34m +3),N (x ,34m +3),P (x ,-x 2+2x +1).∵PH ⊥AB ,∴∠CHN +∠AHM =90°,∵AM ⊥MN ,∴∠MAH +∠AHM =90°.∴∠MAH =∠CHN ,∵∠AMH =∠CNH =90°,∴△AMH ∽△HNP . ∵MA ∥y 轴,∴△MAH ∽△OBA .∴△OBA ∽△NHP . ∴345NH CN CH==. ∴23(3)(21)4345m x x x m d+--++-==. 整理得:24855d x x =-+,所以当x =58,即P (58,11964).(3)作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K .则C ′(2,1)设F (m ,34m +3)∵C ′F ⊥AB ,∠AFJ +∠C ′FK =90°,∵CK ⊥JK ,∴∠C ′+∠C ′FK =90°.∴∠C ′=∠AFJ ,∵∠J =∠K =90°,∴△AFJ ∽△FC ′K .∴'AJ JF FK C K =,∴33443224m m m m ++=-+,解得m =825或-4(不符合题意). ∴F (825,8125),∵C ′(2,1),∴FC ′=145.∴CE +EF 的最小值=C ′E =145.2. (2017江苏徐州,26,9分)如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .已知y 与x 之间的函数关系.如图②所示,其中,OM MN 为线段,曲线NK 为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当12x <<时,BPQ ∆的面积 (填“变”或“不变”); (2)分别求出线段OM ,曲线NK 所对应的函数表达式; (3)当x 为何值时,BPQ ∆的面积是52cm ?Ds )图① 图②思路分析:(1)观察图象②可知,当1<x <2时,y =10,故△BPQ 的面积不变; (2)用待定系数法求其解析式即可;(3)把y =5分别代入(2)中的一次函数及二次函数解析式,求出x 的值即可,对x 的值注意取舍.解:(1)不变(2)设OM所在直线的函数表达式为y=kx,把M(1,10)代入,得k=10. ∴线段OM的函数表达式为y=10x(0<x<1)在曲线NK上取一点G,使它的横坐标52,由题意可得其纵坐标为52.∴曲线NK过三点N(2,10),G(52,52),K(3,0)∵曲线NK为抛物线的一部分,设其表达式为y=ax2+bx+c,可得42102555422930a b ca b ca b c++=⎧⎪⎪++=⎨⎪++=⎪⎩解得106090abc=⎧⎪=-⎨⎪=⎩∴曲线NK的函数表达式为y=10x2-60x+90(2<x<3)(3)把y=5代入y=10x,解得x=1 2,把y=5代入y=10x2-60x+90,解得x1=3-22,x2=3+22(舍去)∴当x=3-22或x=12时,BPQ∆的面积是52cm3.(2017江苏南京,26,8分)已知函数y=-x2+(m-1)x+m(m为常数)(1)该函数的图像与x轴公共点的个数是()A.0 B.1 C.2 D.1或2(2)求证∶不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)当-2≤m≤3时,求该函数的图像的顶点纵坐标的取值范围.思路分析∶(1)计算二次函数对应一元二次方程的判别式b2-4ac,判断即可;(2)先利用配方法求出(1)的函数的顶点坐标,然后代入y=(x+1)2,即可得证;(3)由(2)可知函数图像的顶点纵坐标,再表示为z=,然后分类讨论即可.解∶(1)D.二次函数对应的一元二次方程为-x2+(m-1)x+m=0,则b2-4ac=(m-1)2+4m=(m+1)2≥0,所以一元二次方程有两个相等或两个不相等的实数根,即对应的二次函数图像与x轴有1个或2个交点.(2)y=-x2+(m-1)x+m=-,所以该函数的图像的顶点坐标为(,)()211,24mm⎛⎫⎝+-⎪⎪⎭.把x=代入y=(x+1)2,得y=.因此,不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)设函数z=.当m=-1时,z有最小值0.当m<-1时,z随m的增大而减小;当1m>-时,z随m的增大而增大.又当2m=-时,在z=;当m=3时,z==4.因此,当-2≤m≤3时,该函数的的图像的顶点纵坐标的取值范围是0≤z≤4.4.(2017湖南衡阳,26,10分)(本小题满分10分)如图,△AOB的顶点A、B分别在x轴、y轴上,∠BAO=450,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G 向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.思路分析:(1)因为∠BAO=450,所以OA=OB,且△AOB的面积为8,所以OA=OB=4,故直接写出点A、B的坐标为(4,0),(0,4)。
2017北师大新版九年级上册《反函数》各知识点典型练习及答案

《反函数》经典练习题一.选择题(共30小题)1.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1 D.2y=x2.反比例函数y=﹣中常数k为()A.﹣3 B.2 C.﹣ D.﹣3.下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长L与边长a的关系C.长方形的长为a,宽为20,其面积S与a的关系D.长方形的面积为40,长为a,宽为b,a与b的关系4.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.﹣15.已知函数y=(m﹣2)x是反比例函数,则m的值为()A.2 B.﹣2 C.2或﹣2 D.任意实数6.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.7.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B. C.D.8.在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C.D.9.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤1610.反比例函数y=的图象在()A.第一,三象限B.第二,四象限C.第一,二象限D.第三,四象限11.已知点A(x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是()A.y1>y2>0 B.y1>0>y2C.0>y1>y2D.y2>0>y112.如图,双曲线y=﹣(x<0)经过▱ABCO的对角线交点D,已知边OC在y轴上,且AC⊥OC于点C,则▱OABC的面积是()A.B.C.3 D.613.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2 C.4 D.414.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.215.反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣16.如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.817.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0) C.(,0)D.(3,0)18.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.19.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y220.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()A.y= B.y= C.y= D.y=21.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣22.如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD ⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣623.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)24.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(2,3),B(﹣6,﹣1),则不等式kx+b>的解集为()A.x<﹣6 B.﹣6<x<0或x>2C.x>2 D.x<﹣6或0<x<225.如图,是反比例函数y 1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()A.1<x<6 B.x<1 C.x<6 D.x>126.如图,反比例函数y=(x<0)与一次函数y=x+4的图象交于A、B两点的横坐标分别为﹣3,﹣1.则关于x的不等式<x+4(x<0)的解集为()A.x<﹣3 B.﹣3<x<﹣1 C.﹣1<x<0 D.x<﹣3或﹣1<x<027.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.B.C.D.28.如图,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣(x<0)交于点B,若S=2,则b的值是()△AOBA.4 B.3 C.2 D.129.一次函数y 1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.﹣2<x<0或x>1 B.﹣2<x<1 C.x<﹣2或x>1 D.x<﹣2或0<x<130.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1。
【最新】2016-2017学年人教版九年级数学上册第22章二次函数单元测试卷及答案

设点 P 运动的路程为 x,
MP 2 =y,则表示 y 与 x 的函数关系的图象大致为( ).
y
y
y
y
A
D7
7
7
7
M
B
PC
4x A
4x B
4x C
4x D
二、填空题:(每题 3,共 30 分) 11. 已知函数 y m 1 xm2 1 3x ,当 m=
时,它是二次函数 .
12、抛物线 y 4 x2 8x 3的开口方向向
x 9、二次函数与 y kx2 8x 8 的图像与 轴有交点,则 k 的取值范围是(
)
A. k 2 B. k 2且k 0 C. k 2 D. k 2且k 0
10. 如图,菱形 ABCD 中, AB=2,∠ B=60°, M 为 AB 的中点.动点 P 在菱
形的边上从点 B 出发,沿 B→C→ D 的方向运动,到达点 D 时停止.连接 MP,
15、已知抛物线 y ax 2 2ax c 与 x 轴一个交点的坐标为 1, 0 ,则一
元二次方程 ax2 2ax c 0 的根为
.
B.函数 y=ax2+bx+c(a≠0)的最小值是- 4 C.- 1 和 3 是方程 ax2+bx+c=0(a≠0)的两个根 D.当 x<1 时, y 随 x 的增大而增大
10. 如图,菱形 ABCD 中, AB=2,∠ B=60°, M 为 AB 的中点.动点 P 在菱
形的边上从点 B 出发,沿 B→C→ D 的方向运动,到达点 D 时停止.连接 MP,
设点 P 运动的路程为 x,
MP 2 =y,则表示 y 与 x 的函数关系的图象大致为( ).
y
天津市和平区二十一中 2017年 九年级数学上册 二次函数 单元测试题(含答案)

2017年二次函数单元测试题一、选择题:1.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A、开口向下B、对称轴是x=-1C、顶点坐标是(1,2)D、与x轴有两个交点2.二次函数y=-x2+bx+c的图象如图所示:若点A(x,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关1系是( )A.y1≤y2B.y1<y2C.y1≥y2D.y1>y23.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米4.对于y=ax2+bx+c,有以下四种说法,其中正确的是( )A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对5.二次函数y=(x-1)2+2的最小值是( )A.2B.1C.-1D.-26.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0B.ab>0,c<0C.ab<0,c>0D.ab<0,c<07.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是( )A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=4时,y>0D.方程ax2+bx+c=0的正根在3与4之间8.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20mB.10mC.20mD.﹣10m9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是 ( )A.4米 B.3米 C.2米 D.1米10.已知二次函数y=ax2+k的图象如图所示,则对应a,k的符号正确的是( )A.a>0,k>0B.a>0,k<0C.a<0,k>0D.a<0,k<011.已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d、d2.设d=d1+d2,下列结论1中:①d没有最大值;②d没有最小值;③-1<x<3时,d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有( )12.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为( )A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=-5D.x1=-1,x2=5二、填空题:13.二次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为14.如果函数y=(k-3)+kx+1是二次函数,那么k= .15.抛物线y=2(x﹣3)2+3的顶点在象限.16.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为.17.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.18.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系,已知足球被踢出后经过4s落地,则足球距地面的最大高度是 m.三、解答题:19.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。
2017年中考数学真题分类解析 函数初步(含平面直角坐标系)

一、选择题1. (2017浙江丽水·10·3分)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系图象.下列说法错误的是( ) A .乙先出发的时间为0.5小时 B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早121小时答案:D .解析:由图象可知乙先出发0.5小时后两车相距70千米,即乙的速度是60千米/小时,这样乙从B 地出发到达A 地所用时间为32160100=÷小时,由函数图形知此时两车相距不到100千米,即乙到达A 地时甲还没有到达B 地(甲到B 地比乙到A 地迟),故选项D 错误.2. .(2017四川泸州,5,3分)已知点A (a ,1)与点B (-4,b )关于原点对称,则a +b 的值为( )A .5B .-5C .3D .-3答案:C ,解析:关于原点对称的两个点的纵、横坐标均互为相反数,故a =4,b =-1,所以a +b =4-1=3. 3. (2017四川泸州,8,3分)下列曲线中不能表示y 是x 的函数的是( )答案:C ,解析:若y 是x 的函数,那么x 取一个值时,y 有唯一的一个值与x 对应,C 选项图像中,在x 轴上取一点(图像与x 轴交点除外),即确定一个 x 的值,这个点都对应图像上两个点,即一个x 的值有两个y 的值与之对应,故此图像不是y 与x 的函数图像.故选C .4. (2017山东济宁,10,3分)如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表示y 与x 的函数关系的是A .①B .④C .②或④D .①或③答案:D ,解析:根据“直径是圆中最长的弦”,点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,分两种情况:点P 顺时针运动时,BP 长先变大再变小直至0再变大选③;点P 逆时针运动时,BP 长先变小直至0再变大再变小选①.5. (2017四川攀枝花,16,4分)如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 处出发沿折线BE -ED -DC 运动到点C 停止,点Q 从点B 处出发沿BC 运动到点C 停止,它们运动的速度都是lcm /s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②S ∆ABE =48 cm 2 ;③当14<t <22时,y = 110-5t ;④在运动过程中,使得∆ABP 是等腰三角形的P 点一共有3个;⑤∆BPQ 与∆ABE 相似时,即t =14.5.其中正确结论的序号是 . 答案:①、③、⑤解析:由图8可判断出10BE =,4DE =,当P 点在ED 上运动时40BPQ S ∆=,∴此时PBQ ∆的高为8,级8AB =,∴6AE =,∴10BC AD ==,∴当0<t ≤10时,点P 在BE 上运动,BP BQ =,∴BPQ ∆是等腰三角形;所以①对;1242ABE S AB AE ∆==g ,所以②错;当14<t <22时,点P 在CD 上运动,y = 110-5t ,所以③对;ABP ∆为等腰三角形需要分类讨论,当AB AP =时,ED 存在一个P 点,当BA BP =时,BE 上存在一个P 点,当PA PB =时,点P 在AB 垂直平分线上,所以BE 和CD 上各存在一个P 点,共有4个满足条件的点,所以④错;∆BPQ 与∆ABE 相似时,只存在BPQ BAE ∆∆∽这种情况,此时Q 点与点C 重合,即34PC AE BC AB ==,所以7.5PC =,即t =14.5,所以⑤对. 6. 4.(2017江苏淮安,4,3分)点P (1,-2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(-2,1)答案:C ,解析:关于y 轴对称的点的坐标规律是“横坐标互为相反数,纵坐标不变”,可知点P (1,-2)关于y 轴对称的点的坐标是(-1,-2).7. 2.(2017江苏无锡,2,3分)函数2xy x=-中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >2答案:A .解析:由分母不为0,得2-x ≠0,∴x ≠2 .8. (2017湖南岳阳,9,4分)函数1y 7x =-中自变量x 的取值范围是 . 答案:x ≠7,解析:分母不为0有意义,则x -7≠0,解得,x ≠7.9. 7.(2017浙江义乌,7,4分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是OthA BCA .B .C .D .答案:D ,解析:由均匀地向容器注水可知,单位时间内注水量相同.对于长方体容器,底面积越大,水面高度上升的速度越小,根据图象可得,最上面的容器底面积最小,中间的容器底面积最大.10. (2017湖南邵阳,9,3分)如图(五)所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中 x 表示时间,y 表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A .1.1 千米B .2 千米C .15 千米D .37 千米答案:A ,解析:由图知从家出发经过15分钟到达菜地.浇水时间为15——25分钟,接着用(37-25)分钟时间去玉米地,第37——第55分钟时在玉米地除草,从55分钟开始回家,故菜地离家的距离为1.1千米,故选A .11.(2017湖南邵阳,10,3分)如图(六)所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30 秒后,飞机P飞到P′ (4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′ (2,3 ),R′ ( 4,1 ) B.Q′ (2,3 ),R′ ( 2,1 )C.Q′ (2,2 ),R′ ( 4,1 ) D.Q′ (3,3 ),R′ ( 3,1 )答案:A,解析:因为保持编队不变,所以由P(-1,1)移动到P′(4,3)知是向右平移了5个单位,向上平移了2个单位,所以Q,R平移后的坐标分别为(2,3),(4,1),故选A.12. 4.(2017呼和浩特,3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大答案:D,解析:2012年的增长率最大,为100%。
人教版 九年级数学上册 第22章 二次函数 综合复习(含答案)

人教版九年级数学第22章二次函数综合复习一、选择题(本大题共10道小题)1. 若函数y=(2-m)xm2-2是关于x的二次函数,则m的值是 ( )A.2 B.-2 C.±2 D.±12. 二次函数y=(x+1)2的图象的对称轴是( )A.直线x=-1B.直线x=1C.直线x=-2D.直线x=23. 二次函数y=x2-2x-2的图象与坐标轴的交点个数是()A.0 B.1 C.2 D.34. 抛物线y=x2+2x+3的对称轴是( )A. 直线x=1B. 直线x=-1C. 直线x=-2D. 直线x=25. 对抛物线y=-x2+2x-3而言,下列结论正确的是( )A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3) D.顶点坐标是(1,-2)6. 二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误..的是( )A.a>0 B.c>0C.b2-4ac>0 D.a+b+c>07.点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y38.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.有下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab+ba<-4.正确的个数是( )A.1 B.2 C.3 D.49.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.有下列结论:①abc<0;②3a +c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中正确结论的个数为( )A.1 B.2 C.3 D.410.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2-4c>0;②b+c+1=0;③3 b+c+6=0;④当1<x<3时,x2+(b-1)x+c<0.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本大题共7道小题)11.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.12. (2019•武汉)抛物线经过点、两点,则关于的一元二次方程的解是__________.13. 若抛物线y=x2+bx+25的顶点在x轴上,则b的值为________.14.某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)15. 已知二次函数y=kx2-6x-9的图象与x轴有两个不同的交点,则k的取值范围为____________.16.将抛物线y=2x2向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为_ _______________.17. 二次函数y=ax2+bx+c的图象如图22-2-2所示,若方程ax2+bx+c=k 有两个不相等的实数根,则k的取值范围为_______.三、解答题(本大题共4道小题)18. 如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1 m处的点A飞出,其飞行的最大高度是4 m,最高处距离飞出点的水平距离是6 m,且飞行的路线是抛物线的一部分.以点O为坐标原点,竖直向上的方向为y 轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:4 3≈7)(1)求足球的飞行高度y(m)与飞行的水平距离x(m)之间的函数关系式;(不必写出自变量的取值范围)(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到1 m)(3)若对方一名1.7 m的队员在距落地点C 3 m的点H处跃起0.3 m进行拦截,则这名队员能拦到球吗?19. 有一个窗户边框的形状如图①,上部是由4个全等扇形组成的半圆,下部是矩形,如果制作窗户边框的材料总长为6 m,如何设计这个窗户边框的尺寸,使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m,窗框矩形部分的另一边长约为1.23 m时,窗户的透光面积最大,最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m,利用图③,解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与题干中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-35x2+3x+1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.21.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、流速、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v (千米/小时) … 5 10 20 32 40 48 … 流量q (辆/小时) … 550 1000 1600 1792 1600 1152 … 需填上正确答案的序号)①q =90v +100; ②q =32 000v ; ③q =-2v 2+120v .(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q ,v ,k 满足q =vk .请结合(1)中选取的函数关系式继续解决下列问题. ①市交通运行监控平台显示,当12≤v <18时道路出现轻度拥堵.试分析当车流密度k 在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d (米)均相等,求流量q 最大时d 的值.人教版 九年级数学 第22章 二次函数 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】B [解析] 根据二次函数的定义,得⎩⎪⎨⎪⎧m2-2=2,2-m≠0,解得m =-2.2. 【答案】A3. 【答案】D4.【答案】B【解析】已知解析式为抛物线解析式的一般式,利用对称轴公式直接求解.抛物线y =x 2+2x +3的对称轴是直线x =-b 2a =-22×1=-1 .5. 【答案】D6. 【答案】D7.【答案】D【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x 2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P 1(-1,y 1),P 2(3,y 2)关于直线x =1对称,P 3(5,y 3)在图象的右下方部分上,因此,y 1=y 2>y 3.8. 【答案】C [解析] ①∵抛物线开口向上,∴a >0.∵抛物线对称轴在y 轴的右侧,∴b <0. ∵抛物线与y 轴的交点在x 轴上方,∴c >0, ∴abc <0,故①正确.②∵图象与x 轴交于两点(x 1,0),(2,0),其中0<x 1<1, ∴2+02<-b 2a <2+12,∴1<-b 2a <32,当-b 2a <32时,b >-3a.∵当x =2时,y =4a +2b +c =0, ∴b =-2a -12c ,∴-2a -12c >-3a ,∴2a -c >0,故②正确.③当x =12时,y =a 4+b 2+c =14(a +2b +4c).∵1<-b 2a <32,∴直线x =12关于抛物线对称轴对称的直线在直线x =32与直线x =52之间(不包括直线x =32与直线x =52).由图可知,当32<x<52时,y 值的正负不确定,故③错误.④∵-b2a >1,∴2a +b<0,∴(2a +b)2>0,4a 2+b 2+4ab >0,4a 2+b 2>-4ab.∵a >0,b <0,∴ab <0,∴4a2+b2ab <-4,即4a b +ba<-4,故④正确. 故选C.9. 【答案】C [解析] ①∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴右侧,∴b <0. ∵抛物线与y 轴交于负半轴, ∴c<0,∴abc>0,所以①错误.②当x=-1时,y>0,∴a-b+c>0.∵-b2a=1,∴b=-2a.把b=-2a代入a-b+c>0中,得3a+c>0,所以②正确.③当x=1时,y<0,∴a+b+c<0.当x=-1时,y>0,∴a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,所以③正确.④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+bm+c(m为实数),即a+b≤m(am+b),所以④正确.故选C.10. 【答案】B二、填空题(本大题共7道小题)11. 【答案】150 [解析] 设AB=x m,则AB=EF=CD=x m,所以AD=BC=1 2(900-3x)m.设矩形ABCD的面积为y m2,则y=x·12(900-3x)=-32x2+450x(0<x<300).由于二次项系数小于0,所以y有最大值,且当x=-b 2a=-4502×(-32)=150时,函数y取得最大值.故当AB=150 m矩形ABCD的面积最大.12. 【答案】,【解析】依题意,得:,解得:,所以,关于x的一元二次方程a(x-1)2+c=b-bx为:,即:,化为:,解得:,,故答案为:,.13. 【答案】±1014. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y=-2x+400,∵-2<0,∴y随x的增大而减小,∴当x=150时,y取得最小值,最小值为100,故①正确;当x=70时,y取得最大值,最大值为260,故②正确;设销售这种文化衫的月利润为W元,则W=(x-60)(-2x+400)=-2(x-130)2+9800,∵70≤x≤150,∴当x=70时,W取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x=130时,W取得最大值,最大值为9800,故④错误.故答案为①②③.15. 【答案】k>-1且k≠016. 【答案】y=2(x+1)2-217. 【答案】k<2【解析】从图象上来看,当k<2时,抛物线y=ax2+bx+c与直线y=k有两个不同的交点,此时方程ax2+bx+c=k有两个不相等的实数根.三、解答题(本大题共4道小题)18. 【答案】解:(1)由题意,设y=a(x-6)2+4.∵A(0,1)在抛物线上,∴1=a(0-6)2+4,解得a=-1 12,∴y=-112(x-6)2+4.(2)令y=0,则0=-112(x-6)2+4,解得x 1=4 3+6≈13,x 2=-4 3+6<0(舍去),∴在没有队员干扰的情况下,球飞行的最远水平距离约是13 m. (3)当x =13-3=10时,y =83>1.7+0.3=2, ∴这名队员不能拦到球.19. 【答案】解:(1)设窗户的透光面积为S m 2,则由已知得AD =54 m ,∴S =54. 故此时窗户的透光面积为54 m 2. (2)变大了.理由:设AB =x m ,则AD =(3-74x )m. ∵3-74x >0, ∴0<x <127.由已知得S =AB ·AD =x (3-74x )=-74x 2+3x =-74(x -67)2+97. ∵x =67在0<x <127范围内,∴当x =67时,S 取得最大值,S 最大值=97>1.05,∴与题干中的例题比较,改变窗户形状后,窗户透光面积的最大值变大了.20. 【答案】解:(1)y =-35x 2+3x +1=-35(x -52)2+194.∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC ,所以这次表演成功.21. 【答案】【思路分析】(1)可用图象得出函数关系,也可直接代入数据进行检验;(2)由已知的二次函数q =-2v 2+120v 解析式,用配方法或公式法直接可求得最大值;(3)①把q =vk 代入q =-2v 2+120v 中,消去q ,得到k 和v 的关系式,再根据v 的取值word 版 初中数学 11 / 11 范围12≤v <18,就可求得k 的取值范围;②由(2)中已知,当v =30时,q 的最大值为1800,代入k =-2v +120中,求得k =60,因为d =1000k ,把k =60代入,得d=503.解:(1)③;(3分)【解法提示】解法一:根据数据用描点法画出图象,得出一个开口向下的二次函数图象,故选③;解法二:用代入法进行检验:把表中的数据v =5,q =550代入,可排除②;由数据v =20,q =1600可排除①;所以刻画q ,v 关系最准确的是③;(2)q =-2v 2+120v =-2(v -30)2+1800,(6分)当v =30时,q 最大=1800;(8分)(3)①由⎩⎪⎨⎪⎧q =-2v2+120v q =vk 得,k =-2v +120,∵12≤v <18,∴84<-2v +120≤96,即84<k ≤96;(10分)②当v =30时,q 最大=1800,此时k =60,d =100060=503.(12分)。
2017-2018学年人教版九年级上册数学第22章二次函数同步单元试题附答案

人教版九年级数学 第22章 二次函数 同步检测试题(全卷总分100分) 姓名 得分一、选择题(每小题3分,共30分)1.下列各式中,y 是x 的二次函数的是( )A .xy +x 2=1 B .x 2-y +2=0 C .y =1x 2 D .y 2-4x =32.下列关于二次函数y =-12x 2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标为(0,0).其中正确的有( ) A .1个 B .2个 C .3个 D .4个3.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度 4.二次函数y =-x 2+2x +4的最大值为( ) A .3 B .4 C .5 D .65A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =06.已知二次函数y =3(x -1)2+k 的图象上有A(2,y 1),B(2,y 2),C(-5,y 3)三个点,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 17.同一坐标系中,抛物线y =(x -a)2与直线y =a +ax 的图象可能是( )8.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y =ax 2+bx +c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第8秒B .第10秒C .第12秒D .第15秒 9.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,给出以下四 个结论:①abc =0;②a +b +c>0;③a>b ;④4ac -b 2<0.其中,正确 的结论有( )A .1个B .2个C .3个D .4个10.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( )A .34或1B .14或1C .34或12D .14或34 二、填空题(每小题4分,共24分)11.如图,圆的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是 .12.二次函数y =-x 2+2x +3的图象与x 轴交于A 、B 两点,P 为它的顶点,则S △PAB = .13.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是 .(写出所有正确结论的序号)①b >0;②a -b +c <0;③阴影部分的面积为4;④若c =-1,则b 2=4a.14.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线y =-x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门,已知计划中的材料可建墙体总长为27 m ,则能建成的饲养室总占地面积最大为 m 2.16.已知二次函数y =(x -2a)2+(a -1)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当a =-1,a =0,a =1,a =2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是 .三、解答题(共46分)17.(8分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为 ; (2)不等式ax 2+bx +c>0的解集为 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 .18.(8分)如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A、B两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y1>y2的x的取值范围.19.(8分)在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面209m,与篮圈中心的水平距离为7 m,球出手后水平距离为4 m时达到最大高度4 m,设篮球运行轨迹为抛物线,篮圈距地面3 m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1 m处跳起盖帽拦截,已知乙的最大摸高为3.1 m,那么他能否获得成功?20.(10分)(成都中考)某果园有100颗橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?21.(12分)矩形OABC的顶点A(-8,0)、C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A、D两点,如图所示.(1)求点D关于y轴的对称点D′的坐标及a、b的值;(2)在y轴上取一点P,使PA+PD长度最短,求点P的坐标;(3)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1,当抛物线平移到某个位置时,恰好使得点O是y轴上到A1、D1两点距离之和OA1+OD1最短的一点,求此抛物线的解析式.人教版九年级数学 第22章 二次函数 同步检测试题参考答案一、选择题(每小题3分,共30分)1.下列各式中,y 是x 的二次函数的是( B )A .xy +x 2=1 B .x 2-y +2=0 C .y =1x 2 D .y 2-4x =32.下列关于二次函数y =-12x 2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标为(0,0).其中正确的有( D ) A .1个 B .2个 C .3个 D .4个3.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( B )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度 4.二次函数y =-x 2+2x +4的最大值为( C ) A .3 B .4 C .5 D .65A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =06.已知二次函数y =3(x -1)2+k 的图象上有A(2,y 1),B(2,y 2),C(-5,y 3)三个点,则y 1,y 2,y 3的大小关系是( D )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 17.同一坐标系中,抛物线y =(x -a)2与直线y =a +ax 的图象可能是( D )8.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y =ax 2+bx +c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( B )A .第8秒B .第10秒C .第12秒D .第15秒 9.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,给出以下四 个结论:①abc =0;②a +b +c>0;③a>b ;④4ac -b 2<0.其中,正确 的结论有( C )A .1个B .2个C .3个D .4个10.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( A )A .34或1B .14或1C .34或12D .14或34 二、填空题(每小题4分,共24分)11.如图,圆的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是 2π .12.二次函数y =-x 2+2x +3的图象与x 轴交于A 、B 两点,P 为它的顶点,则S △PAB = 8 .13.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是 ③④ .(写出所有正确结论的序号)①b >0;②a -b +c <0;③阴影部分的面积为4;④若c =-1,则b 2=4a.14.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线y =-x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 15 .15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门,已知计划中的材料可建墙体总长为27 m ,则能建成的饲养室总占地面积最大为 75 m 2.16.已知二次函数y =(x -2a)2+(a -1)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当a =-1,a =0,a =1,a =2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是 y =12x -1 .三、解答题(共46分)17.(8分)二次函数y=ax 2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为 x 1=1,x 2=3 ; (2)不等式ax 2+bx +c>0的解集为 1<x<3 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 x>2 ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 k<2 .18.(8分)如图,一次函数y 1=kx +b 与二次函数y 2=ax 2的图象交于A 、B 两点. (1)利用图中条件,求两个函数的解析式; (2)根据图象写出使y 1>y 2的x 的取值范围.解:(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上, ∴4=a·22.∴a =1.则y 2=x 2.又∵A(-1,n)在二次函数y 2=x 2图象上, ∴n =(-1)2.∴n =1.则A(-1,1).又∵A 、B 两点在一次函数y 1=kx +b 图象上, ∴⎩⎨⎧1=-k +b ,4=2k +b.解得⎩⎨⎧k =1,b =2.则y 1=x +2. ∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2. (2)根据图象可知:当-1<x<2时,y 1>y 2.19.(8分)在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面209 m ,与篮圈中心的水平距离为7 m ,球出手后水平距离为4 m 时达到最大高度4 m ,设篮球运行轨迹为抛物线,篮圈距地面3 m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1 m 处跳起盖帽拦截,已知乙的最大摸高为3.1 m ,那么他能否获得成功?解:(1)由题意知,抛物线的顶点为(4,4),经过点(0,209).设抛物线解析式为y =a(x -4)2+4,代入(0,209),解得a =-19,∴y =-19(x -4)2+4.当x =7时,y =-19×(7-4)2+4=3,∴一定能准确投中.(2)当x =1时,y =-19×(1-4)2+4=3<3.1,∴队员乙能够成功拦截.20.(10分)(成都中考)某果园有100颗橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x 之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?解:(1)平均每棵树结的橙子个数y(个)与x 之间的关系为:y =600-5x(0≤x <120). (2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w =(600-5x)(100+x)=-5x 2+100x +60 000=-5(x -10)2+60 500, ∴当x =10时,w 最大=60 500.即果园多种10棵橙子树时,可使橙子的总产量最大,最大为60 500个.21.(12分)矩形OABC 的顶点A(-8,0)、C(0,6),点D 是BC 边上的中点,抛物线y =ax 2+bx 经过A 、D 两点,如图所示. (1)求点D 关于y 轴的对称点D′的坐标及a 、b 的值;(2)在y 轴上取一点P ,使PA +PD 长度最短,求点P 的坐标; (3)将抛物线y =ax 2+bx 向下平移,记平移后点A 的对应点为A 1,点D 的对应点为D 1,当抛物线平移到某个位置时,恰好使得点O 是y 轴上到A 1、D 1两点距离之和OA 1+OD 1最短的一点,求此抛物线的解析式.解:(1)由矩形的性质可知:B(-8,6),∴D(-4,6).∴点D 关于y 轴对称点D′(4,6). 将A(-8,0)、D(-4,6)代入y =ax 2+bx ,得⎩⎨⎧64a -8b =0,16a -4b =6.解得⎩⎪⎨⎪⎧a =-38,b =-3.(2)设直线AD′的解析式为y =kx +n ,∴⎩⎨⎧-8k +n =0,4k +n =6.解得⎩⎪⎨⎪⎧k =12,n =4.∴直线y =12x +4与y 轴交于点(0,4).∴P(0,4).(3)解法1:由于OP =4,故将抛物线向下平移4个单位长度时,有OA 1+OD 1最短.∴y +4=-38x 2-3x ,即此时的解析式为y =-38x 2-3x -4.解法2:设抛物线向下平移了m 个单位长度,则A 1(-8,-m),D 1(-4,6-m),∴D′1(4,6-m).令直线A 1D′1为y =k′x +b′.则 ⎩⎨⎧-8k′+b′=-m ,4k′+b′=6-m.解得⎩⎪⎨⎪⎧k′=12,b′=4-m.∵点O 为使OA 1+OD 1最短的点, ∴b′=4-m =0.∴m =4,即将抛物线向下平移了4个单位长度.∴y +4=-38x 2-3x ,即此时的解析式为y =-38x 2-3x -4.。
江苏徐州市2017年中考数学总复习《函数》单元测试卷(B)含答案

2
2
C.(
,一
)
2
2
11
D.( ,一 )
22
5. 已知二次函数 y = a x 2 +bx+ c 中,其函数 y 与自变量 x 之间的部分对应值如下表所示 :
点 A( , y1 )、 B( , y2 ) 在函数的图像上,则当 1< x 1 < 2,3< x2 < 4 时, y1 与 y2 的大小
关系正确的是
2
2m n 3 的值等于
()
A. 1
B. 4
二、填空. 16
D. 25
k2
k2
9.如图,直线 l⊥ x 轴于点 P,且与反比例函数 y1= (x > 0)及 y2 =
x
x
(X> 0)的图像
分别交于点 A,B ,连接 OA ,OB,已知 △ OAB 的面积为 2,则 k1一 k2 =___________ .
m
且点 A 在点 B 的左侧. (1) 若抛物线过点 G(2, 2),求实数 m 的值; (2) 在(1) 的条件下,解答下列问题: ①求出 △ ABC 的面积; ②在抛物线的对称轴上找一点 H,使 AH +CH 最小,并求出点 H 的坐标; (3) 在第四象限内。 抛物线上是否存在点 M ,使得以点 A 、B、M 为顶点的三角形与 △ACB
x
3.若反比例函数
y= k 与一次函数 x
y=x+2 的图像没.有.交点,则
k 的值可以是
()
A .一 2
B.一 1
C. 1
D .2
4.如图, 点 A 的坐标为 (1,0),点 B 在直线 y=一 x 上运动, 当线段 AB 最短时,
5.点 B 的 坐标为
人教版九年级数学上 2017年秋人教版九年级上第22章 二次函数检测题(含答案)

第22章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -32.若二次函数y =x 2+bx +5配方后为y =(x -2)2+k ,则b ,k 的值分别为( D )A .0,5B .0,1C .-4,5D .-4,13.在平面直角坐标系中,将抛物线y =x 2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( B )A .y =(x +2)2+2B .y =(x -2)2-2C .y =(x -2)2+2D .y =(x +2)2-24.若(2,5),(4,5)是抛物线y =ax 2+bx +c 上的两个点,则它的对称轴是( C )A .x =1B .x =2C .x =3D .x =45.(2016·广州)对于二次函数y =-14x 2+x -4,下列说法正确的是( B ) A .当x >0时,y 随x 的增大而增大 B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点6.同一坐标系中,一次函数y =ax +1与二次函数y =x 2+a 的图象可能是( C )7.(2016·绍兴)抛物线y =x 2+bx +c (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是( A )A .4B .6C .8D .108.如图,抛物线y =x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,∠OBC =45°,则下列各式成立的是( B )A .b -c -1=0B .b +c +1=0C .b -c +1=0D .b +c -1=09.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:下列结论:①ac <0;②当x >1时,y 的值随x 的增大而减小;③3是方程ax 2+(b -1)x +c =0的一个根;④当-1<x <3时,ax 2+(b -1)x +c >0.其中正确的个数为( B )A .4个B .3个C .2个D .1个10.(2016·台湾)如图,坐标平面上,二次函数y =-x 2+4x -k 的图形与x 轴交于A ,B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1∶4,则k 值为何?( D )A .1 B.12 C.43 D.45二、填空题(每小题3分,共24分)11.二次函数y =x 2+2x -4的图象的开口方向是__向上__,对称轴是__x =-1__,顶点坐标是__(-1,-5)__.12.小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x (单位:cm )的边与这条边上的高之和为40 cm ,这个三角形的面积S (单位:cm 2)随x 的变化而变化.则S 与x 之间的函数关系式为__S =-12x 2+20x __. 13.若抛物线y =ax 2+bx +c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为__y =-x 2+4x -3__.14.公路上行驶的汽车急刹车时,刹车距离s (m )与时间t (s )的函数关系式为s =20t -5t 2,当遇到紧急情况时,司机急刹车,但由于惯性的作用,汽车要滑行__20__米才能停下来.15.如图,二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2),则使y 1>y 2成立的x 的取值范围是__x <-2或x >8__.16.隧道的截面是抛物线形,且抛物线的解析式为y =-18x 2+3.25,一辆车高3 m ,宽4 m ,该车__不能__通过该隧道.(填“能”或“不能”)17.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为__y =-x 2+5__.(写出一个即可)18.(2016·泸州)若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为__-4__. 三、解答题(共66分)19.(9分)已知二次函数y =-x 2-2x +3.(1)求它的顶点坐标和对称轴;(2)求它与x 轴的交点;(3)画出这个二次函数图象的草图.解:(1)顶点(-1,4),对称轴x =-1 (2)(-3,0),(1,0) (3)图略20.(8分)如图,二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.解:(1)y =-12x 2+4x -6 (2)∵该抛物线对称轴为直线x =-42×(-12)=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2,∴S △ABC =12·AC ·OB =12×2×6=621.(8分)已知二次函数y =x 2+bx -c 的图象与x 轴两交点的坐标分别为(m ,0),(-3m ,0)(m ≠0).(1)求证:4c =3b 2;(2)若该函数图象的对称轴为直线x =1,试求二次函数的最小值.解:(1)由题意,m ,-3m 是一元二次方程x 2+bx -c =0的两根,根据一元二次方程根与系数的关系,得m +(-3m )=-b ,m ·(-3m )=-c ,∴b =2m ,c =3m 2,∴4c =12m 2,3b 2=12m 2,∴4c =3b 2 (2)由题意得-b 2=1,∴b =-2,由(1)得c =34b 2=34×(-2)2=3,∴y =x 2-2x -3=(x -1)2-4,∴二次函数的最小值为-422.(9分)如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A ,B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x (s ),△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ 的面积的最大值.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x ,∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4) (2)由(1)知:y =-x 2+9x ,∴y =-(x -92)2+814,∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,即△PBQ 的最大面积是20 cm 223.(9分)如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?解:(1)A ,B ,C 的坐标分别为(1,0),(3,0),(2,3) (2)y =-3(x -2)2+3 (3)设抛物线的解析式为y =-3(x -2)2+k ,代入D (0,3),可得k =53,平移后的抛物线的解析式为y =-3(x -2)2+53,∴平移了53-3=43个单位24.(11分)(2016·宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m (30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元.(1)求y 关于x 的函数解析式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (m <x ≤100)(2)由(1)可知当0<x ≤30或m <x ≤100时,函数值y 都是随着x 的增加而增加,当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5625,∵a =-1<0,x ≤75时,y 随x 的增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m ≤7525.(12分)(2016·凉山州)如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (-1,0),B (3,0),C (0,-3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A ,点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.解:(1)抛物线的解析式:y =x 2-2x -3 (2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A ,点B 的距离之和最短,此时x =-b 2a=1,故P (1,0)(3)如图所示,抛物线的对称轴为x =-b 2a=1,设M (1,m ),已知A (-1,0),C (0,-3),则MA 2=m 2+4,MC 2=(3+m )2+1=m 2+6m +10,AC 2=10.①若MA =MC ,则MA 2=MC 2,得m 2+4=m 2+6m +10,解得m =-1;②若MA =AC ,则MA 2=AC 2,得m 2+4=10,解得m =±6;③若MC =AC ,则MC 2=AC 2,得m 2+6m +10=10,解得m 1=0,m 2=-6,当m =-6时,M ,A ,C 三点共线,不能构成三角形,不合题意,故舍去.综上可知,符合条件的M 点的坐标为(1,6)(1,-6),(1,-1),(1,0)。
全国2017年中考数学真题分类汇编11函数与一次函数解析答案(K12教育文档)

全国2017年中考数学真题分类汇编11函数与一次函数解析答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(全国2017年中考数学真题分类汇编11函数与一次函数解析答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为全国2017年中考数学真题分类汇编11函数与一次函数解析答案(word版可编辑修改)的全部内容。
函数与一次函数考点一、平面直角坐标系(3分)1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系.其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限.2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,"分开,横、纵坐标的位置不能颠倒.平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
考点二、不同位置的点的坐标的特征 (3分)1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0,0>⇔yx<点P(x,y)在第三象限0x⇔y,0<<点P(x,y)在第四象限0⇔yx>,0<2、坐标轴上的点的特征点P(x,y)在x轴上0=⇔y,x为任意实数点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
人教版数学九年级上册第22章二次函数单元综合测试(含答案)

第 1 页 共 45 页人教版数学九年级上册第22章二次函数单元综合测试(含答案) 一、精心选一选(每题3分,共30分)1.若抛物线c bx ax y ++=2的顶点在第一象限,与x 轴的两个交点分布在原点两侧,则点(a ,ac)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若双曲线)0(≠=k xky 的两个分支在第二、四象限内,则抛物线222k x kx y +-=的图象大致是图中的( )xyOxyO xyO O yx DCBA3.如图是二次函数c bx ax y ++=2的图象,则一次函数bc ax y +=的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若点(2,5),(4,5)是抛物线c bx ax y ++=2上的两个点,那么这条抛物线的对称轴是( )A .直线1=xB .直线2=xC .直线3=xD .直线4=x 5.已知函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .47- kB .047≠-≥k k 且C .47-≥kD .047≠-k k 且6.函数y=ax 2+bx+c 的图象如图所示,那么关于一元二次方程ax 2+bx+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根Oyx第 2 页 共 45 页C .有两个相等的实数根D .没有实数根7.现有A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),用小莉掷A 立方体朝上的数字为x ,小明掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各掷一次所确定的点P 落在已知抛物线y=-x 2+4x 上的概率为( ) A .118 B .112 C .19 D .168.已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 2)都在函数y=x 2的图象上,则( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3 9.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③ 第9题图 10. 已知二次函数y x x =++29342,当自变量x 取两个不同的值x x 12,时,函数值相等,则当自变量x 取x x 12+时的函数值与( )。
精品 2016-2017年九年级数学上册 二次函数 旋转综合测试题

二次函数 旋转综合测试题一、选择题(每小题3分,共12小题,共计36分)1.一元二次方程4x 2+1=4x 的根的情况是( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根2.用配方法解方程x 2+8x-7=0,则配方正确的是( )A.(x+4)2=23B.(x ﹣4)2=23C.(x ﹣8)2=49D.(x+8)2=643.如图,在等腰直角△ABC 中,∠B=900,将≤ABC 绕顶点A 逆时针方向旋转600后得到△AB /C /.则∠BAC /等于( )A.60°B.105°C.120°D.135°4.把抛物线y=x 2+4先向左平移1个单位,再向下平移3个单位,得到的抛物线的解析式为( )A.y=(x+1)2+1B.y=(x ﹣1)2+1C.y=(x ﹣1)2+7D.y=(x+1)2+75.抛物线y=x 2﹣4x+5的顶点坐标是( )A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)6.把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A.(-5,1) B.(1,-5) C.(-1,1) D.(-1,3)7.抛物线y=﹣x 2+bx+c 的部分图象如图所示,要使y >0,则x 的取值范围是( )A.﹣4<x<1B.﹣3<x<1C.x<﹣4或x>1D.x<﹣3或x>18.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②当x >2时,y >0;③a >c ;④3a+c >0.其中正确的结论有( )A.①②B.①④C.①③④D.②③④9.抛物线y=﹣x 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是( )①抛物线与x 轴的一个交点为(﹣2,0); ②抛物线与y 轴的交点为(0,6);③抛物线的对称轴是x=1; ④在对称轴左侧y 随x 增大而增大.A.1B.2C.3D.410.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A(0.5,y 1),B(2,y 2),C(﹣2,y 3),则y 1、y 2、y 3的大小关系为( )A.y 1>y 2>y 3B.y 3>y 2>y 1C.y 3>y 1>y 2D.y 2>y 3>y 111.函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别为( )A.4和-3B.5和-3C.5和-4D.-1和412.如图,△ABC 为等腰直角三角形,∠ACB=900,将△ABC 绕点 A 逆时针旋转750,得到△AB /C /,过点B /作B /D ⊥CA ,交CA 的延长线于点D ,若AC=6,则AD 的长为( )A.2B.3C.32D.23 二、填空题(每小题3分,共计6小题,共计18分)13.当关于x 的方程02)1()1(12=-+--+x m x m m是一元二次方程时,m 的值为____________; 14.若函数y =x 2-mx +m -2的图象经过(3,6)点,则m= .15.抛物线)5)(1(+-=x x y 的对称轴是:直线16.如图,把△ABC 绕点C 顺时针旋转350,得到△A /B /C,A /B /交AC 于点D,若∠A /DC=900,则∠A= .17.如图,直径AB 为4的半圆,绕A 点逆时针旋转600,此时点B 到了点B /,则图中阴影部分的面积是 .第17题图 第18题图 18.如图,抛物线3)2(21-+=x a y 与1)3(2122+-=x y 交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②32=a ;③当x=0时,612=-y y ;④AB+AC=10;⑤421-=-最小最小y y .其中正确结论的个数是 . 三、简答题(共7小题,共计66分)19.已知二次函数的图象经过 (-1,3)、(1,3)、(2,6)三点,(1)求二次函数的解析式;(2)写出二次函数图像的对称轴和顶点坐标。
2017中考数学真题汇编----函数(pdf版)

2017中考数学真题汇编----函数一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤33.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量4.下列各式中,能表示y是x的函数关系式是()A.y=B.y=x3 C.y=D.y=±5.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,y与x间的函数关系式是()A.y=12﹣4x B.y=4x﹣12 C.y=12﹣x D.以上都不对6.若函数,则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是()A.540 B.390 C.194 D.197二.填空题(共13小题)7.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.8.在函数y=中,自变量x的取值范围是.9.在函数y=中,自变量x的取值范围是.0.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数关系式是.11.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第象限.12.函数y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|的最小值是.三.解答题13.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(元),在乙店购(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间买的付款数为y乙的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算?14.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…1245689…y… 3.92 1.950.980.78 2.44 2.440.78…小风根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=7对应的函数值y约为.②该函数的一条性质:.15.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油盘Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油盘低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.16.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.(1)根据图,将表格补充完整.白纸张数12345…纸条长度40110145…(2)设x张白纸粘合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2017cm吗?为什么?17.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费.设小丽家每月用气量为x立方米,应交煤气费为y 元.(1)若小丽家某月用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的表达式;(3)若小丽家4月份的煤气费为88元,那么她家4月份所用煤气为多少立方米?(4)已知小丽家6月份的煤气费平均每立方米0.95元,那么6月份小丽家用了多少立方米的煤气?18.甲、以两家蓝莓采摘园的蓝莓品质相同,销售价格都是每千克30元,“五一”假期,两家均推出了优惠方案:甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的蓝莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的蓝莓超过10千克后,超过部分五折优惠,优惠期间,设某游客的蓝莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).(1)当蓝莓采摘量超过10千克时,求y1、y2与x的关系式;(2)若要采摘40千克蓝莓,去哪家比较合算?请计算说明.参考答案与解析一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x 是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选C.【点评】考查了函数的概念,理解函数的定义,是解决本题的关键.2.函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣3≠0,解得x≥1且x≠3,故选:B.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零是解题关键.3.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:∵三角形面积S=ah,∴当a为定长时,在此式中S、h是变量,,a是常量;故本题选A.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D 中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.4.下列各式中,能表示y是x的函数关系式是()A.y=B.y=x3 C.y=D.y=±【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应.【解答】解:根据函数的定义可知:只有函数y=x3,当x取值时,y有唯一的值与之对应;故选B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.5.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,y与x间的函数关系式是()A.y=12﹣4x B.y=4x﹣12 C.y=12﹣x D.以上都不对【分析】表示出新正方形的边长,再根据正方形的周长公式列式整理即可得解.【解答】解:∵各边边长减少xcm,∴新正方形的边长为3﹣x,∴y=4(3﹣x)=12﹣4x,即y=12﹣4x.故选A.【点评】本题考查了函数关系式,熟练掌握正方形的周长公式是解题的关键.6.若函数,则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是()A.540 B.390 C.194 D.197【分析】将x2﹣100x+196分解为:(x﹣2)(x﹣98),然后可得当2≤x≤98时函数值为0,再分别求出x=1,99,100时的函数值即可.【解答】解:∵x2﹣100x+196=(x﹣2)(x﹣98)∴当2≤x≤98时,|x2﹣100x+196|=﹣(x2﹣100x+196),当自变量x取2到98时函数值为0,而当x取1,99,100时,|x2﹣100x+196|=x2﹣100x+196,所以,所求和为(1﹣2)(1﹣98)+(99﹣2)(99﹣98)+(100﹣2)(100﹣98)=97+97+196=390.故选B.【点评】本题考查函数值的知识,有一定难度,关键是将x2﹣100x+196分解为:(x﹣2)(x﹣98)进行解答.二.填空题7.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.8.在函数y=中,自变量x的取值范围是x≥1且x≠2.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知x﹣1≥0;分母不等于0,可知:x﹣2≠0,则可以求出自变量x的取值范围.【解答】解:根据题意得:,解得:x≥1且x≠2.故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.在函数y=中,自变量x的取值范围是x>1.【分析】根据函数关系即可求出x的取值范围.【解答】解:由题意可知:解得:x>1故答案为:x>1【点评】本题考查自变量的取值范围,解题的关键是熟练运用二次根式有意义的条件以及分式有意义的条件,本题属于基础题型.10.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数关系式是y=3.5x.【分析】根据总价=单价×数量,单价为(3+0.5)元.【解答】解:依题意有:y=(3+0.5)x=3.5x.故y与x的函数关系式是:y=3.5x.故答案为y=3.5x.【点评】本题主要考查了列函数关系式.根据题意,找到所求量的等量关系是解决问题的关键.11.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第二象限.【分析】因为分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数大于或等于0.从而可以得到x<0,由x2>0,≥0可以得>0,∴y=>0,即求出点P所在的象限.【解答】解:∵,∴x<0,又∵x<0,∴>0,即y>0,∴P应在平面直角坐标系中的第二象限.故答案为:二.【点评】本题考查了分式和二次根式有意义的条件,难点是判断出所求的点的横、纵坐标的符号.12.函数y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|的最小值是8.【分析】根据式子特点,分x≤1,1<x≤2,2<x≤3,3<x≤4,x>4几种情况讨论.【解答】解:①x≤1时,y=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)=30﹣10x,当x=1时,y最小值=30﹣10=20;②1<x≤2时,y=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)=﹣8x+28,当x=2时,y=28﹣16=12;最小值③2<x≤3时,y=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)=﹣4x+20,当x=3时,y 最小值=20﹣12=8;④3<x≤4时,y=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)=2x+2,无最小值;⑤x>4时,y=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)=10x﹣30,无最小值.综上所述,原式的最小值为8.【点评】通过分类讨论,将原函数转化为分段函数,再根据x的取值范围求出各段的最小值,取其最小者,即为原函数最小值.三.解答题13.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算?【分析】(1)因为甲商店规定每买1副乒乓球拍赠1盒乒乓球,所以y甲=30×4+5×(x﹣4)=100+5x(x≥4);因为乙商店规定所有商品9折优惠,所以y乙=30×4×0.9+5x×0.9=4.5x+108(x≥4).(2)当x=16时,在甲商店购买所需商品和在乙商店购买所需商品一样便宜;当x>16时,在甲商店购买所需商品比较便宜;当4≤x<16时,在甲商店购买所需商品比较便宜.【解答】解:(1)由题意得y甲=30×4+5×(x﹣4)=100+5x(x≥4),y乙=30×4×0.9+5x×0.9=4.5x+108(x≥4);(2)当y甲=y乙时,即100+5x=4.5x+108,解得x=16,到两店价格一样;当y甲>y乙时,即100+5x>4.5x+108,解得x>16,到乙店合算;当y甲<y乙时,即100+5x<4.5x+10,解得4≤x<16,到甲店合算.【点评】考查了函数关系式,本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.14.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…1245689…y… 3.92 1.950.980.78 2.44 2.440.78…小风根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=7对应的函数值y约为 3.0.②该函数的一条性质:该函数没有最大值.【分析】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)如图,(2)①x=7对应的函数值y约为3.0;②该函数没有最大值.故答案为3,该函数没有最大值.【点评】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.15.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油盘Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油盘低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)根据平均每千米的耗油量=总耗油量÷行驶路程即可得出该车平均每千米的耗油量,再根据剩余油量=总油量﹣平均每千米的耗油量×行驶路程即可得出Q关于x的函数关系式;(2)代入x=280求出Q值即可;(3)根据行驶的路程=耗油量÷平均每千米的耗油量即可求出报警前能行驶的路程,与景点的往返路程比较后即可得出结论.【解答】解:(1)该车平均每千米的耗油量为(45﹣30)÷150=0.1(升/千米),行驶路程x(千米)与剩余油盘Q(升)的关系式为Q=45﹣0.1x;(2)当x=280时,Q=45﹣0.1×280=17(L).答:当x=280(千米)时,剩余油量Q的值为17L.(3)(45﹣3)÷0.1=420(千米),∵420>400,∴他们能在汽车报警前回到家.【点评】本题考查了函数的关系式以及一次函数图象上点的坐标特征,根据数量关系列出函数关系式是解题的关键.16.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.(1)根据图,将表格补充完整.白纸张数12345…纸条长度4075110145180…(2)设x张白纸粘合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2017cm吗?为什么?【分析】(1)根据图形可知每增加一张白纸,长度就增加35cm;(2)有x张纸条时,则在40的基础上增加了(x﹣1)个35cm的长度;(3)依据总长等于2017列方程求得x的值,然后可作出判断.【解答】解:(1)白纸张数为2时,纸条长度=40+35=75;白纸张数为2时,纸条长度=40+4×35=180;故答案为:75;180.(2)y=40+35(x﹣1)=35x+5(3)不能.理由:根据题意得:2017=35x+5,解得:x≈57.5.∵x为整数数,∴所以不能.【点评】本题主要考查的是列函数关系式,依据题意列出y与x的关系式是解题的关键.17.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费.设小丽家每月用气量为x立方米,应交煤气费为y 元.(1)若小丽家某月用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的表达式;(3)若小丽家4月份的煤气费为88元,那么她家4月份所用煤气为多少立方米?(4)已知小丽家6月份的煤气费平均每立方米0.95元,那么6月份小丽家用了多少立方米的煤气?【分析】(1)根据题意列出算式,求出即可;(2)分为两个阶段,列出函数式即可;(3)根据题意列出方程,求出方程的解即可;(4)根据题意列出方程,求出方程的解即可.【解答】解:(1)根据题意得:小丽家该月应交煤气费为0.8×50+1.2×(80﹣50)=76(元);(2)当x≤50时,y=0.8x;当x>50时,y=0.8×50+1.2(x﹣50)=1.2x﹣20;(3)设小丽家4月份用煤气x立方米,∵0.8×50=40(元),而88元>40元,根据题意得:1.2x﹣20=88,解得:x=90,答:小丽家4月份用煤气90立方米;(4)设6月份小丽家用了a立方米的煤气,根据题意得:1.2a﹣20=0.95a,解得:a=80,答:6月份小丽家用了80立方米的煤气.【点评】本题考查了函数关系式的应用,能根据题意列出函数关系式是解此题的关键.18.甲、以两家蓝莓采摘园的蓝莓品质相同,销售价格都是每千克30元,“五一”假期,两家均推出了优惠方案:甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的蓝莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的蓝莓超过10千克后,超过部分五折优惠,优惠期间,设某游客的蓝莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).(1)当蓝莓采摘量超过10千克时,求y1、y2与x的关系式;(2)若要采摘40千克蓝莓,去哪家比较合算?请计算说明.【分析】(1)根据题意即可得到结论;(2)把x=40,代入函数关系式即可得到结论.【解答】解:(1)y1=60+30×0.6x=60+18x;y2=10×30+30×0.5(x﹣10)=150+15x;(2)当x=40时,y1=60+18×40=780,y2=150+15×40=750,因为y1>y2,所以选择乙合算.【点评】本题考查了函数关系式,正确的理解题意是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数合测试题(总分150)姓名______ 分数:____一、 选择题:(每小题5分,共75分)1.已知h 关于t 的函数关系式为221gt h=,(g 为正常数,t 为时间),则函数图象为( )(A ) (B ) (C ) (D )2.在地表以下不太深的地方,温度y (℃)与所处的深度x (k m )之间的关系可以近似用关系式y =35x +20表示,这个关系式符合的数学模型是( ) (A )正比例函数 (B )反比例函数. (C )二次函数 (D )一次函数3.若正比例函数y =(1-2m )x 的图像经过点A (1x ,1y )和点B (2x ,2y ),当1x <2x 时1y >2y ,则m的取值范围是( )(A )m <0 (B )m >0 (C )m <21 (D )m >21 4.函数y = k x + 1与函数xy k =在同一坐标系中的大致图象是( )OxyOxyOxyOxy(A ) (B ) (C ) (D )5.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数y =a x +c 的大致图像,有且只有一个是正确的,正确的是( )(A )(B ) (C ) (D )6.抛物线1)1(22+-=x y 的顶点坐标是( )A .(1,1)B .(1,-1)C .(-1,1)D .(-1,-1)7.函数y =a x +b 与y =a x 2+bx +c 的图象如右图所示,则下列选项中正确的是( ) A . a b >0, c>0 B . a b <0, c>0 C . a b >0, c<0 D . a b <0, c<08.已知a ,b ,c 均为正数,且k=ba cc a b c b a +=+=+,在下列四个点中,正比例函数kx y = 的图像一定经过的点的坐标是( ) A .(l ,21) B .(l ,2) C .(l ,-21) D .(1,-1) 9.如图,在平行四边形ABCD 中,AC=4,B D=6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四边形的两条边分别交于点E ,F .设BP =x ,EF =y ,则能反映y 与x 之间关系的图象为……………( )10.如图4,函数图象①、②、③的表达式应为( )(A )x y 25-=,2+=x y ,xy 4-=(B )x y 25=, 2+-=x y ,x y 4=(C )x y 25-=,2-=x y ,x y 4=(D )x y 25-=,2-=x y ,xy 4-=11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系( )12.二次函数y =x 2-2x +2有 ( )A . 最大值是1B .最大值是2C .最小值是1D .最小值是2 13.设A (x 1,y 1)、B (x 2,y 2)是反比例函数y =x2-图象上的两点,若x 1<x 2<0,则y 1与y 2之间的关系是( ) A . y 2< y 1<0 B . y 1< y 2<0 C . y 2> y 1>0 D . y 1> y 2>0 14.若抛物线y =x 2-6x +c 的顶点在x 轴上,则c 的值是 ( )A . 9B . 3C .-9D . 0 15.二次函数2332+-=x x y 的图象与x 轴交点的个数是( ) A .0个 B .1个 C .2个 D .不能确定A BCDEFP二、 填空题:(每小题3分,共30分)1.完成下列配方过程:122++px x =()[]()________________22+++px x=()()____________2++x ;2.写出一个反比例函数的解析式,使它的图像不经过第一、第三象限:_________. 3.如图,点P 是反比例函数2y x=-上的一点,P D ⊥x 轴于点D ,则△P OD 的面积为 ;4、已知实数m 满足022=--m m ,当m =___________时,函数()11++++=m x m x y m的图象与x 轴无交点.5.二次函数)1()12(22-+++=m x m x y 有最小值,则m =_________;6.抛物线322--=x x y 向左平移5各单位,再向下平移2个单位,所得抛物线的解析式为___________;7.某商场销售一批名牌衬衫,平均每天可售出20件,每件可 盈利40元.为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件.若商场平均每天要赢利1200元,则每件衬衫应降价__________;8.某学生在体育测试时推铅球,千秋所经过的路线是二次函数图像的一部分,如果这名学生出手处为A (0,2),铅球路线最高处为B (6,5),则该学生将铅球推出的距离是________;9.二次函数)0(2≠++=a c bx ax y 的图像与x 轴交点横坐标为-2,b ,图像与y 轴交点到圆点距离为3,则该二次函数的解析式为___________; 10.如图,直线)0(2〉-=k kx y 与双曲线xky =在第一象限内的交点R ,与x 轴、y 轴的交点分别为P 、Q .过R 作RM ⊥x 轴,M 为垂足,若△OPQ 与△PRM 的面积相等,则k 的值等于 .三、 解答题:(1-3题,每题7分,计21分;4-6题每题8分,计24分;本题共45分)1已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值;(2)试判断点P (-1,2)是否在此函数图像上?2.已知一次函数y kx k =+的图象与反比例函数8y x=的图象交于点P (4,n ). x填空题第3题y PD O(1)求n的值.(2)求一次函数的解析式.3.看图,解答下列问题.(1)求经过A、B、C三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.4.已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.5.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)50 60 70 75 80 85 …每天售出件数300 240 180 150 120 90 …假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)6.如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.(1) (2)(1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1)7.已知抛物线y =-x 2+mx -m +2.(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB m的值;(Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.参考答案:一、 选择题: 1.A 2.D 3.D 4.B 5.D 6.A 7.D 8.A 9.A 10.C 11.D 12.C 13.C 14.A 15.C 二、填空题:1.2p ,21p -,p ,21p - .2 y =x 2- 3. 1 4.2或-1 5. 45- 6.1082++=x x y 7.10元或20元 8.6+52 9. 3412--=x x y 或 3412+=-=x x y 10.22三、解答题:1.2.解:(1)由题意得:84n =, 2.n ∴= (2)由点P (4,2)在y kx k =+上,24,k k ∴=+ 25k ∴=. ∴一次函数的解析式为2255y x =+. 3.解:(1)由图可知A (-1,-1),B (0,-2),C (1,1) 设所求抛物线的解析式为y =ax 2+bx +c依题意,得121a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩,, 解得212a b c =⎧⎪=⎨⎪=-⎩,, ∴ y =2x 2+x -2. (2)y =2x 2+x -2=2(x +41)2-817∴ 顶点坐标为(-41,817),对称轴为x =-41(3)图象略,画出正确图象4.解:(1)函数y =x 2+bx -1的图象经过点(3,2)∴9+3b -1=2,解得b =-2 . ∴函数解析式为y =x 2-2x -1(2)y =x 2-2x -1=(x -1)2-2 ,图象略, 图象的顶点坐标为(1,-2) (3)当x =3 时,y =2, 根据图象知,当x ≥3时,y ≥2∴当x >0时,使y ≥2的x 的取值范围是x ≥3.5.解:(1)由统计数据知,该函数关系为一次函数关系,每天售出件数y 与每件售价x 之间的函数关系为:x y 6600-=.(2)当168=y 时, 6006168+-=x , 解得:72=x ; 设门市部每天纯利润为z ①当72<x时,168>y()()()52807063406600402+--=⨯---=x x x z当70=x时,5280max =z②当72≥x 时,168≤y()()()53207062406600402+--=⨯---=x x x z70≥x 时,y 随x 的增大而减少72=∴x 时,52965320262max =+⨯-=z52805296> 72=∴x 当时,纯利润最大为5296元.6.(1) (2)解:(1)如图,建立直角坐标系, 设二次函数解析式为 y =ax 2+c ∵ D (-0.4,0.7),B (0.8,2.2), ∴⎩⎨⎧.=+,=+2.264.07.016.0c a c a ∴ ⎪⎩⎪⎨⎧.=,=2.0528c a ∴绳子最低点到地面的距离为0.2米.(2)分别作EG ⊥AB 于G ,FH ⊥AB 于H , AG =21(AB -EF )=21(1.6-0.4)=0.6.在Rt △AGE 中,AE =2,EG =22AG AE -=226.02-=64.3≈1.9.∴ 2.2-1.9=0.3(米). ∴ 木板到地面的距离约为0.3米.7.解: (I)设点A(x 1,0),B (x 2,0) , 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根.∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即m <2;又AB =∣x 1 x 2=m 2-4m +3=0 .解得:m =1或m =3(舍去) ,∴m 的值为1 . (II )设M (a ,b ),则N (-a ,-b ) .∵M 、N 是抛物线上的两点,∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2.∴当m <2时,才存在满足条件中的两点M 、N .∴a =.这时M 、N 到y又点C 坐标为(0,2-m ),而S △M N C = 27 ,∴2×12×(2-m ). ∴解得m =-7 .。