2017年天津市高考数学试卷(理科)及答案
【数学】2017年高考真题——天津卷(理)(解析版)
2 设变
2 x + y ≥ 0, x + 2 y − 2 ≥ 0, 则目标函数 z = x + y 的最大值为 x, y 满足约束条件 x ≤ 0, y ≤ 3,
B.1 C.
A.
2 3
3 2
D.3
3 阅读 面的程序框图,
行相 的程序,若输入 N 的值为 24,则输出 N 的值为
4 3 πR . 3
其中 R 表示球的半径.
1 设集合 A = {1, 2, 6}, B = {2, 4}, C = { x ∈ R | −1 ≤ x ≤ 5} ,则 ( A U B ) I C = B. {1, 2, 4} C. {1, 2, 4, 6} D. { x ∈ R | −1 ≤ x ≤ 5}
且 f ( x) 的最小正周期大于 2π ,则
A. ω = C. ω =
2 π ,ϕ = 3 12 1 11π ,ϕ = − 3 24
B. ω = D. ω =
2 11π ,ϕ = − 3 12 1 7π ,ϕ = 3 24
8
x 2 − x + 3, x ≤ 1, x 知函数 f ( x) = 设 a ∈ R ,若关于 x 的 等式 f ( x) ≥| + a | 在 R 2 2 x + , x > 1. x
2017 年普通高等学校招生全国统一考试 数学
分钟.第 卷 1 至 2 ,第 卷 3 至 5 .
天津卷
理工类
本试卷分为第 卷 选择题 和第 卷 非选择题 两部分,共 150 分,考试用时 120
答卷前,考生务必将自 的姓 、准考证号填写在答题考 ,并在规定位置粘贴考试用 条形码.答卷时,考生务必将答案涂写在答题卡 ,答在试卷 的无效.考试结束 卷和答题卡一并交回. 祝各位考生考试 利! 第 注意 1. 小题选出答案 , 用铅笔将答题卡 对 题目的答案标号涂黑.如需改动, 用橡皮擦 净 卷 ,将本试
2017年天津理数高考试题文档版(含答案)
2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I 卷(选择题)和第H 卷(非选择题)两部分,共 150分,考试用时120分钟。
至2页,第n 卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷 时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1•每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,他答案标号。
2•本卷共8小题,每小题5分,共40分。
参考公式:如果事件A , B 互斥,那么 如果事件A , B 相互独立,那么 P(A U B)=P(A)+P(B). P(AB)=P(A) P(B).1棱柱的体积公式 V=Sh. 棱锥的体积公式 V Sh .3其中S 表示棱柱的底面面积, 其中S 表示棱锥的底面面积,h 表示棱锥的高.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(1)设集合 A {1,2,6}, B {2,4}, C {x R| 1 (A) {2} ( B ) {1,2,4} ( C ) {1,2,4,6} ( D ) {x2x y 0,y 3,(A) - ( B ) 1 ( C ) - ( D ) 33 2绝密★启用前再选涂其x 5},贝U (AUB)I C5}(2)设变量x,y 满足约束条件x 0y 2 0,则目标函数z x y的最大值为(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 ( B )1( C ) 2( D )3n n1(4 )设 R ,则 “ || ”是 “si n — ” 的 12 12 2(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件点的直线平行于双曲线的一条渐近线,则双曲线的方程为c的大小关系为(A ) a b c (B ) c b a (C ) b a c(D ) b c a(7)设函数f (x) 2si n( x ),x R , 其中0 , 1| 若f®2 ,f(8)0 ,且f (x)的最小正周期大于2 ,则(A )2, 312(B )2 312(C )1 3,241 (D )1, 324(8 )已知函数 2xf(x)x x 3,x 2 ,x 1.x1,设aR , 若关于x 的不等式 f(x) U 2 a |在R 上恒成立,则a 的取值范围是(5)已知双曲线b 21(a 0,b 0)的左焦点为F ,学 科&网离心率为 2 •若经过F 和P(0, 4)两2‘ x1 (B )82y_ 8 2 , x 1 (C )4 2 y_ 8 2 ,x 1 (D ) 82y_ 4 (6)已知奇函数f (x)在R 上是增函数,g(x) xf(x).若 a0 Qg( log 2 5.1) , b g(2 ■ ) , cg(3),则 a , b ,(A)47,2] (C) [ 2.3,2]注意事项:1用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考真题(天津卷)数学理科含解析
2017年普通高等学校招生统一考试(天津卷)理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C = (A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-= ,,,,,, ,选B.(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 【答案】D【解析】目标函数为四边形ABCD 及其内部,其中324(0,1),(0,3),(,3),(,)233A B C D --,所以直线z x y =+过点B 时取最大值3,选D.(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 【答案】C【解析】依次为8N = ,7,6,2N N N ===,输出2N = ,选C. (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. (6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a << (C )b a c <<(D )b c a <<【答案】C(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16-【答案】A所以2a -≤≤, 综上47216a -≤≤.故选A . 二. 填空题:本大题共6小题,每小题5分,共30分. (9)已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 【答案】2-【解析】()(2)(21)(2)2122(2)(2)555a i a i i a a i a a i i i i -----+-+===-++-为实数, 则20,25a a +==-. (10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π 【解析】设正方体边长为,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯= (11)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】2【解析】直线为210y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点(12)若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】【解析】442241414a b a b ab ab+++≥≥ ,当且仅当21a b ==时取等号 (13)在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R,且4AD AE ⋅=- ,则λ的值为___________.【答案】311(14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答) 【答案】 1080【解析】413454541080A C C A +=三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求和sin A 的值; (Ⅱ)求πsin(2)4A +的值.【答案】 (1) b =2616.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】 (1)1312 (2) 1148【解析】(Ⅰ)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148. (17)(本小题满分13分)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2. (Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE AH 的长.【答案】 (1)证明见解析(2 (3)85 或12(Ⅰ)证明:DE =(0,2,0),DB=(2,0,2-).设(,,)x y z =n ,为平面BDE 的法向量,则0DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩.不妨设1z =,可得(1,0,1)=n .又MN =(1,2,1-),可得0MN ⋅=n.所以,线段AH 的长为或12.18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为.由262n a n =-,12124n n b --=⨯,有221(31)4n n n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯ ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前项和为1328433n n +-⨯+. (19)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设上两点P ,Q 关于轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与轴相交于点D .若APD △AP 的方程.【答案】 (1)22413y x +=, 24y x =.(2)330x -=,或330x -=. 【解析】(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.所以,直线AP 的方程为330x -=,或330x -=. (20)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈ ,函数0()()()()h x g x mx f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈满足041||p x q Aq -≥. 【答案】(1)增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-.(2)(3)证明见解析 【解析】(Ⅰ)由432()2336f x xxx x a=+--+,可得32()()8966g x f x x x x '==+--,进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以,()g x 的单调递增区间是(,1)-∞-,(,)4+∞,单调递减区间是(1,)4-. (Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.(III )证明:对于任意的正整数 p ,,且00[1)(,],2px x q∈ , 令pm q=,函数0()()()()h g m x x x m f =--. 由(II )知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点; 当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点.- 11 - 所以041|2|()p x q g q -≥.所以,只要取()2A g =,就有041||p x q Aq -≥.。
2017天津高考理科数学试题解析
成立,则 a 的取值范围是 (A) [
47 , 2] 16
(B) [
47 39 , ] 16 16
(C) [2 3, 2]
(D) [2 3,
39 ] 16
【答案】 A
3
所以 2 3 a 2 , 综上
47 a 2 .故选 A. 16
ai 为实数,则 a 的值为 2i
(A)
x2 y2 x2 y2 x2 y2 x2 y2 1 (B) 1 (C) 1 ( D) 1 4 4 8 8 4 8 8 4
【答案】 B 【解析】由题意得 a b,
4 x2 y2 1 c 4, a b 2 2 1 ,选 B. c 8 8
) 1 0 与 圆 2sin 的 公 共 点 的 个 数 为 6
【解析】直线为 2 3 x 2 y 1 0 ,圆为 x ( y 1) 1 ,因为 d 个交点 (12)若 a, b R , ab 0 ,则 【答案】
2
2
3 1 ,所以有两 4
(B)
2 , 3 12
(C)
1 , 3 24
( D )
1 , 3 24
【答案】 A
5 2k1 4 2 8 2 【解析】由题意 ,其中 k1 , k 2 Z ,所以 ( k 2 2k1 ) ,又 3 3 11 k 2 8
(9)已知 a R ,i 为虚数单位,若 【答案】 2 【解析】
.
a i (a i )(2 i ) (2a 1) (a 2)i 2a 1 a 2 i 为实数, 2 i (2 i)(2 i) 5 5 5
【真题】2017年天津市高考理科数学试题含答案解析
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件 A ,B 互斥,那么·如果事件 A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ).P (AB )=P (A ) P (B ).·棱柱的体积公式V =Sh .·球的体积公式. 343V R =π其中S 表示棱柱的底面面积,其中表示球的半径.R h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ()A B C =(A ) (B )(C )(D ){2}{1,2,4}{1,2,4,6}{|15}x x ∈-≤≤R 【答案】B 【解析】 ,选B.(){1246}[15]{124}A BC =-= ,,,,,,(2)设变量满足约束条件则目标函数的最大值为,x y 20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩z x y =+(A ) (B )1(C ) (D )32332【答案】D 【解析】目标函数为四边形ABCD 及其内部,其中,所以直324(0,1),(0,3),(,3),(,233A B C D --线过点B 时取最大值3,选D.学*科*网z x y =+(3)阅读右面的程序框图,运行相应的程序,若输入的值为24,则输出的值为N N (A )0 (B )1(C )2(D )3【答案】C 【解析】依次为 ,,输出 ,选C.8N =7,6,2N N N ===2N =(4)设,则“”是“”的θ∈R ππ||1212θ-<1sin 2θ<(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A(5)已知双曲线的左焦点为.若经过和两点22221(0,0)x y a b a b -=>>F F (0,4)P 的直线平行于双曲线的一条渐近线,则双曲线的方程为(A ) (B )(C )(D )22144x y -=22188x y -=22148x y -=22184x y -=【答案】B【解析】由题意得 ,选B.224,14,188x y a b c a b c ==-⇒===⇒-=-(6)已知奇函数在R 上是增函数,.若,,,()f x ()()g x xf x =2(log 5.1)a g =-0.8(2)b g =(3)c g =则a ,b ,c 的大小关系为(A )(B )(C )(D )a b c<<c b a <<b a c <<b c a<<【答案】 C(7)设函数,,其中,.若,,且()2sin()f x x ωϕ=+x ∈R 0ω>||ϕ<π5()28f π=()08f 11π=的最小正周期大于,则()f x 2π(A ),(B ),(C ),(D ),23ω=12ϕπ=23ω=12ϕ11π=-13ω=24ϕ11π=-13ω=24ϕ7π=【答案】A【解析】由题意,其中,所以,又125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩12,k k Z ∈2142(2)33k k ω=--,所以,所以,,由得,故选A .22T ππω=>01ω<<23ω=11212k ϕππ=+ϕπ<12πϕ=(8)已知函数设,若关于x 的不学&科&网等式在R 上23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩a ∈R ()||2x f x a≥+恒成立,则a 的取值范围是(A )(B )(C )(D )47[,2]16-4739[,]1616-[-39[16-【答案】A所以,2a -≤≤综上.故选A .学&科*网47216a -≤≤第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年天津理数高考试题文档版(含答案)
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试用时120分钟。
第1卷1 至2页,第【【卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I卷注意班项:1・每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦T•净后,再选涂其他答案标号。
2•本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A, 〃互斥,那么•如果事件A,〃相互独立,那么P(A U B)=P(A)+P(B). P(AB)=P(A) P(B).♦棱柱的体积公式V=Sh..棱锥的体积公式其中S表不棱柱的底面面积,其中S表不棱锥的底而而积,方表不棱锥的高.〃表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的•(1)设集合A={1,2,6},B={2,4),C={XG RI-1<X<5),则(AUB)r)C =(A) {2} (B) {1,2,4} (C) {1,2,4,6} (D) {xeRI-l<x<5}2x+y>0,⑵设变S满足约束条件::?4o,则目标函数“宀的最大值为(A) - (B) 1 (C) - (D) 3 3 2(3) 阅读右而的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A) 0 (B) 1 (C) 2 (D) 3 (4) 设0wR,贝I]k —"是 “sin0v 丄”的 12 12 2(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(5) 已知双曲线g - 4 = l(a>0,/?>0)的左焦点为F,学科&网离心率为若经过F 和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为X 2V 2X 2V 2X 2V 2X 2V 2(A) ---^- = 1 (B) ---^- = 1 (C)---丄=1 (D) ---^-=14 4 8 8 48 8 4g(x) = xf(x)Ma = g(-log 2 5.1),乃=&(2"“),c = g ⑶ (•的大小关系为xeR,其中e>(),⑷匕兀.若/•(竺) = 2, /(—) = o,且/'(x)的最小8 8正周期犬于",则x 2 -x + 3,x<l, 2 设若关于x 的不等式+ 在R 上恒成立,则a 的取 x + -,x> 1. 2x值范甬是(A) H —,2] (B) H —](C) [-275,2] (D) [-2^,—]16 16 16 16(A) a <h <c (B) c <h<a (C) b <a <c (D) b<c <a / A x 2 n (A 丿<y = — , (p =— 3 12 7n (p =—24(B)2 11冗 M = — 9 (P — ---------------------------------------312(c )g?厂一罟 < D ) “冷(6)已知奇函数(7)设函数 f(x) = 2sin(ft}x+(p), (8)已知函数/(x) =注意事项:1. 用黑色噩水的钢笔或签字笔将答案写在答题卡上。
2017年普通高等学校招生全国统一考试理科数学(天津卷)
2017年普通高等学校招生全国统一考试(天津)理科数学1.(2017·天津,理1)设集合A={1,2,6},B={2,4},C={x ∈R |-1≤x ≤5},则(A ∪B )∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{x ∈R |-1≤x ≤5}A={1,2,6},B={2,4},∴A ∪B={1,2,4,6}.∵C={x ∈R |-1≤x ≤5},∴(A∪B )∩C={1,2,4}.故选B . 2.(2017·天津,理2)设变量x ,y 满足约束条件{2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z=x+y 的最大值为( )A.23B.1C.32D.3.目标函数z=x+y 可化为y=-x+z.作直线l 0:y=-x ,平行移动直线y=-x ,当直线过点A (0,3)时,z 取得最大值,最大值为3.故选D .3.(2017·天津,理3)阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A.0B.1C.2D.3,当输入N 的值为24时,24能被3整除,所以N=8.因为8≤3不成立,且8不能被3整除,所以N=7. 因为7≤3不成立,且7不能被3整除,所以N=6. 因为6≤3不成立,且6能被3整除,所以N=2. 因为2≤3,所以输出N=2.故选C .4.(2017·天津,理4)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件|θ-π12|<π12时,0<θ<π6,∴0<sin θ<12. ∴“|θ-π12|<π12”是“sin θ<12”的充分条件.当θ=-π6时,sin θ=-12<12,但不满足|θ-π12|<π12.∴“|θ-π12|<π12”不是“sin θ<12”的必要条件.∴“|θ-π12|<π12”是“sin θ<12”的充分而不必要条件.故选A.5.(2017·天津,理5)已知双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点为F,离心率为√2,若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.x 24−y24=1 B.x28−y28=1C.x 24−y28=1 D.x28−y24=1c(c>0),则双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点F的坐标为(-c,0),渐近线方程为y=±bax.∵点P的坐标为(0,4),∴直线PF的斜率为k=4c.由题意得4c =ba.①∵双曲线的离心率为√2,∴ca=√2.②在双曲线中,a2+b2=c2,③联立①②③解得a=b=2√2,c=4.∴所求双曲线的方程为x 28−y28=1.故选B.6.(2017·天津,理6)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<af (x )是R 上的奇函数,∴g (x )=xf (x )是R 上的偶函数.∴g (-log 25.1)=g (log 25.1). ∵奇函数f (x )在R 上是增函数, ∴当x>0时,f (x )>0,f'(x )>0.∴当x>0时,g'(x )=f (x )+xf'(x )>0恒成立, ∴g (x )在(0,+∞)上是增函数.∵2<log 25.1<3,1<20.8<2,∴20.8<log 25.1<3. 结合函数g (x )的性质得b<a<c.故选C .7.(2017·天津,理7)设函数f (x )=2sin(ωx+φ),x ∈R ,其中ω>0,|φ|<π,若f (5π8)=2,f (11π8)=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24,2πω>2π,11π8−5π8≥14·2πω, 所以23≤ω<1.所以排除C,D .当ω=23时,f (5π8)=2sin (5π8×23+φ)=2sin (5π12+φ)=2, 所以sin (5π12+φ)=1.所以5π12+φ=π2+2k π,即φ=π12+2k π(k ∈Z ). 因为|φ|<π,所以φ=π12.故选A .8.(2017·天津,理8)已知函数f (x )={x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是( )A.[-4716,2] B.[-4716,3916] C.[-2√3,2]D.[-2√3,3916]f (x )={x 2-x +3,x ≤1,x +2x,x >1易知f (x )>0恒成立. ∵关于x 的不等式f (x )≥|x2+a|在R 上恒成立, ∴关于x 的不等式-f (x )≤x2+a ≤f (x )在R 上恒成立, 即关于x 的不等式-f (x )-x2≤a ≤f (x )-x2在R 上恒成立.设p (x )=f (x )-x2,则p (x )={x 2-32x +3,x ≤1,x 2+2x,x >1.当x ≤1时,p (x )=x 2-32x+3=(x -34)2+3916, ∴当x ≤1时,p (x )min =3916.当x>1时,p (x )=x 2+2x ≥2√x 2·2x =2,当且仅当x 2=2x ,即x=2时,取等号, ∴当x>1时,p (x )min =2.∵3916>2,∴p (x )min =2. 设q (x )=-f (x )-x 2,则q (x )={-x 2+x 2-3,x ≤1,-3x 2-2x ,x >1.当x ≤1时,q (x )=-x 2+x2-3=-(x -14)2−4716,∴当x ≤1时,q (x )max =-4716.当x>1时,q (x )=-3x 2−2x =-(3x 2+2x )≤-2√3,当且仅当3x 2=2x ,即x=2√33时,取等号. ∴当x>1时,q (x )max =-2√3. ∵-4716>-2√3,∴q (x )max =-4716.∵关于x 的不等式-f (x )-x2≤a ≤f (x )-x2在R 上恒成立,∴-4716≤a ≤2.故选A .9.(2017·天津,理9)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为 .∵a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15−a+25i 为实数,∴-a+25=0,即a=-2.210.(2017·天津,理10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .a ,外接球的半径为R ,则2R=√3a.∵正方体的表面积为18,∴6a 2=18.∴a=√3,R=32.∴该球的体积为V=43πR 3=4π3×278=9π2.11.(2017·天津,理11)在极坐标系中,直线4ρcos (θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为 .4ρcos (θ-π6)+1=0,展开得2√3ρcos θ+2ρsin θ+1=0,∴直线的直角坐标方程为2√3x+2y+1=0. ∵ρ=2sin θ两边同乘ρ得ρ2=2ρsin θ,∴圆的直角坐标方程为x 2+y 2-2y=0,圆心为(0,1),半径r=1. ∴圆心到直线的距离d=√3×0+2×1+1√(2√3)+2=34<r=1.∴直线与圆相交.∴直线与圆公共点的个数为2.12.(2017·天津,理12)若a ,b ∈R ,ab>0,则a 4+4b 4+1ab 的最小值为.a ,b ∈R ,且ab>0,∴a 4+4b 4+1ab≥4a 2b 2+1ab =4ab+1ab≥4(当且仅当{a 2=2b 2,4ab =1ab ,即{a 2=√22,b 2=√24时取等号).13.(2017·天津,理13)在△ABC 中,∠A=60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R ),且AD ⃗⃗⃗⃗⃗ ·AE⃗⃗⃗⃗⃗ =-4,则λ的值为 .BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ . 又AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,∠A=60°,AB=3,AC=2,AD ⃗⃗⃗⃗⃗ ·AE⃗⃗⃗⃗⃗ =-4. ∴AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =3×2×12=3,(23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-4, 即2λ3AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ 2+(λ3-23)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗=-4,∴2λ3×4-13×9+(λ3-23)×3=-4,即113λ-5=-4,解得λ=311.14.(2017·天津,理14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)没有一个数字是偶数的四位数有A 54=120个;②有且只有一个数字是偶数的四位数有C 41C 53A 44=960个.所以至多有一个数字是偶数的四位数有120+960=1 080个.15.(2017·天津,理15)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a>b ,a=5,c=6,sin B=35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.在△ABC 中,因为a>b ,故由sin B=35,可得cos B=45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B=13, 所以b=√13.由正弦定理asinA =bsinB ,得sin A=asinB b=3√1313. 所以,b 的值为√13,sin A 的值为3√1313. (2)由(1)及a<c ,得cos A=2√1313,所以sin 2A=2sin A cos A=1213,cos 2A=1-2sin 2A=-513.故sin (2A +π4)=sin 2A cos π4+cos 2A sin π4=7√226.16.(2017·天津,理16)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.随机变量X 的所有可能取值为0,1,2,3.P (X=0)=(1-12)×(1-13)×(1-14)=14, P (X=1)=12×(1-13)×(1-14)+(1-12)×13×(1-14)+(1-12)×(1-13)×14=1124,P (X=2)=(1-12)×13×14+12×(1-13)×14+12×13×(1-14)=14,P (X=3)=12×13×14=124. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312. (2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数, 则所求事件的概率为P (Y+Z=1)=P (Y=0,Z=1)+P (Y=1,Z=0) =P (Y=0)P (Z=1)+P (Y=1)P (Z=0) =14×1124+1124×14=1148. 所以,这2辆车共遇到1个红灯的概率为1148.17.(2017·天津,理17)如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,∠BAC=90°,点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,PA=AC=4,AB=2. (1)求证:MN ∥平面BDE ; (2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为√721,求线段AH 的长.,以A 为原点,分别以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系. 依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ⃗⃗⃗⃗⃗ =(0,2,0),DB⃗⃗⃗⃗⃗⃗ =(2,0,-2), 设n =(x ,y ,z )为平面BDE 的法向量,则{n ·DE ⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗⃗ =0,即{2y =0,2x -2z =0. 不妨设z=1,可得n =(1,0,1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n =0.因为MN ⊄平面BDE ,所以MN ∥平面BDE.(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x ,y ,z )为平面EMN 的法向量,则{n 2·EM ⃗⃗⃗⃗⃗⃗ =0,n 2·MN⃗⃗⃗⃗⃗⃗⃗ =0. 因为EM ⃗⃗⃗⃗⃗⃗ =(0,-2,-1),MN⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1), 所以{-2y -z =0,x +2y -z =0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos <n 1,n 2>=n 1·n 2|n 1||n 2|=-√21,于是sin <n 1,n 2>=√10521.所以,二面角C-EM-N 的正弦值为√10521.(3)依题意,设AH=h (0≤h ≤4),则H (0,0,h ),进而可得NH ⃗⃗⃗⃗⃗⃗ =(-1,-2,h ),BE⃗⃗⃗⃗⃗ =(-2,2,2). 由已知,得|cos <NH ⃗⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ >|=|NH ⃗⃗⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗⃗ ||NH ⃗⃗⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗⃗ |=√ℎ+5×2√3=√721, 整理得10h 2-21h+8=0,解得h=85或h=12. 所以,线段AH 的长为85或12.18.(2017·天津,理18)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2.所以,b n =2n .由b 3=a 4-2a 1,可得3d-a 1=8.① 由S 11=11b 4,可得a 1+5d=16,② 联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n ,故T n =2×4+5×42+8×43+…+(3n-1)×4n ,4T n =2×42+5×43+8×44+…+(3n-4)×4n +(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1 =-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 19.(2017·天津,理19)设椭圆x 2a 2+y 2b 2=1(a>b>0)的左焦点为F ,右顶点为A ,离心率为12,已知A 是抛物线y 2=2px (p>0)的焦点,F 到抛物线的准线l 的距离为12. (1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D.若△APD 的面积为√62,求直线AP 的方程.设F 的坐标为(-c ,0).依题意,c a =12,p 2=a ,a-c=12,解得a=1,c=12,p=2,于是b 2=a 2-c 2=34.所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x. (2)设直线AP 的方程为x=my+1(m ≠0),与直线l 的方程x=-1联立,可得点P (-1,-2m), 故Q (-1,2m ).将x=my+1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my=0,解得y=0或y=-6m 3m 2+4. 由点B 异于点A ,可得点B (-3m 2+43m 2+4,-6m 3m 2+4).由Q (-1,2m ),可得直线BQ 的方程为(-6m 3m 2+4-2m )(x+1)-(-3m 2+43m 2+4+1)(y -2m )=0,令y=0,解得x=2-3m 23m 2+2,故D (2-3m 23m 2+2,0).所以|AD|=1-2-3m 23m 2+2=6m 23m 2+2. 又因为△APD 的面积为√62, 故12×6m 23m 2+2×2|m |=√62,整理得3m 2-2√6|m|+2=0,解得|m|=√63,所以m=±√63. 所以,直线AP 的方程为3x+√6y-3=0或3x-√6y-3=0.20.(2017·天津,理20)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m-x 0)-f (m ),求证:h (m )h (x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],满足|p q -x 0|≥1Aq 4.f (x )=2x 4+3x 3-3x 2-6x+a ,可得g (x )=f'(x )=8x 3+9x 2-6x-6,进而可得g'(x )=24x 2+18x-6.令g'(x )=0,解得x=-1或x=14. 当x 变化时,g'(x ),g (x )的变化情况如下表:所以,g (x )的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1,14).h (x )=g (x )(m-x 0)-f (m ),得h (m )=g (m )(m-x 0)-f (m ),h (x 0)=g (x 0)(m-x 0)-f (m ).令函数H 1(x )=g (x )(x-x 0)-f (x ),则H'1(x )=g'(x )(x-x 0).由(1)知,当x ∈[1,2]时,g'(x )>0,故当x ∈[1,x 0)时,H'1(x )<0,H 1(x )单调递减;当x ∈(x 0,2]时,H'1(x )>0,H 1(x )单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x )>H 1(x 0)=-f (x 0)=0,可得H 1(m )>0,即h (m )>0. 令函数H 2(x )=g (x 0)(x-x 0)-f (x ),则H'2(x )=g (x 0)-g (x ).由(1)知g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H'2(x )>0,H 2(x )单调递增;当x ∈(x 0,2]时,H'2(x )<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x )<H 2(x 0)=0,可得H 2(m )<0,即h (x 0)<0.所以,h (m )h (x 0)<0.p ,q ,且p q ∈[1,x 0)∪(x 0,2],令m=p q ,函数h (x )=g (x )(m-x 0)-f (m ).由(2)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h (x 1)=g (x 1)(p q -x 0)-f (p q)=0. 由(1)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2).于是|p q -x 0|=|f (p q )g (x 1)|≥|f (p q)|g (2) =|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|g (2)q 4. 因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点, 而p q ≠x 0,故f (p q)≠0. 又因为p ,q ,a 均为整数,所以|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1.所以|p q -x 0|≥1g (2)q 4.所以,只要取A=g (2),就有|p q -x 0|≥1Aq 4.。
2017年高考天津卷理数试题解析(正式版)(解析版)
第 1 页 共 12 页绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ).P (AB )=P (A )P (B ).·棱柱的体积公式V=Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R【答案】B【解析】(){1,2,4,6}[1,5]{1,2,4}A B C =-=U I I ,故选B .(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A)23(B)1(C)32(D)3 【答案】D(3)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(A)0 (B)1 (C)2 (D)3【答案】C【解析】初始:24N=,进入循环后N的值依次为8,7,6,2N N N N====,输出2N=,故选C.(4)设θ∈R,则“ππ||1212θ-<”是“1sin2θ<”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A【解析】πππ||012126θθ-<⇔<<1sin2θ⇒<,但0θ=时1sin02θ=<,不满足ππ||1212θ-<,第 2 页共 12 页所以“ππ||1212θ-<”是“1sin2θ<”的充分而不必要条件,故选A.(5)已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,离心率为2.若经过F和(0,4)P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)22144x y-=(B)22188x y-=(C)22148x y-=(D)22184x y-=【答案】B【解析】由题意得2240,14,2210()88x ya b c a bc-==⇒===⇒-=--,故选B.(6)已知奇函数()f x在R上是增函数,()()g x xf x=.若2(log5.1)a g=-,0.8(2)b g=,(3)c g=,则a,b,c的大小关系为(A)a b c<<(B)c b a<<(C)b a c<<(D)b c a<<【答案】C(7)设函数()2sin()f x xωϕ=+,x∈R,其中0ω>,||ϕ<π.若5()28fπ=,()08f11π=,且()f x的最小正周期大于2π,则(A)23ω=,12ϕπ=(B)23ω=,12ϕ11π=-(C)13ω=,24ϕ11π=-(D)13ω=,24ϕ7π=【答案】A【解析】由题意得125282118kkωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k∈Z,所以2142(2)33k kω=--,又22Tωπ=>π,所以01ω<<,所以23ω=,11212kϕ=π+π,由ϕ<π得12ϕπ=,故选A.(8)已知函数23,1,()2, 1.x x xf xx xx⎧-+≤⎪=⎨+>⎪⎩设a∈R,若关于x的不等式()||2xf x a≥+在R上恒成立,则a的取第 3 页共 12 页值范围是(A)47 [,2] 16-(B)4739[,]1616-(C)[23,2]-(D)39[23,]16-【答案】A当1x>时,(*)式为222xx a xx x--≤+≤+,32222xx ax x--≤≤+.又3232()2322x xx x--=-+≤-23x=,22222x xx x+≥⨯=(当2x=时取等号),所以232a-≤≤.综上,47216a-≤≤.故选A.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考理数真题天津卷(试题及详细答案解析)
2
2
2
5
又
x2
x 2
3
x
1 4
2
47 16
47 16
(当
x
1 4
时等号成立),
x2
3 2
x
3
x
3 4
2
39 16
39 16
(当
x
3 4
时等号成立),
∴ 47 a 39 ,
16
16
当 x 1 时,①式可化为 x 2 x a x 2 ,∴ 3x 2 a x 2 ,
x2
1 3
,
24
D.
1 3
,
24
8.已知函数
f
(x)
x
2
x
x
2 x
,
x
3, x 1, 1.
设
aR
,若关于
x
的不等式
f
(x)
|
x 2
a
|
在
R
上恒成立,
则 a 的取值范围是( )
A. [ 47 , 2] 16
B. [ 47 , 39] 16 16
C. [2 3, 2]
D. [2 3, 39] 16
b
13
∴ b 13 , sin A 3 13 . 13
(Ⅱ)由(Ⅰ)及 a c 得 cos A 2 13 , 13
∴ sin 2 A 2sin Acos A 12 , cos 2 A 1 2sin 2 A 5 ,
13
13
∴
sin
2
A
4
sin
2 Acos
E,N 分别为棱 PA,PC,BC 的中点,M 是线段 AD 的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面 BDE; (Ⅱ)求二面角 C-EM-N 的正弦值;
2017年高考天津卷理数试题解析(正式版)(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ).P (AB )=P (A )P (B ).·棱柱的体积公式V=Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()AB C =(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R【答案】B 【解析】(){1,2,4,6}[1,5]{1,2,4}AB C =-=,故选B .(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23(B )1 (C )32(D )3【答案】D(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1 (C )2 (D )3【答案】C【解析】初始:24N =,进入循环后N 的值依次为8,7,6,2N N N N ====,输出2N =,故选C . (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】πππ||012126θθ-<⇔<<1sin2θ⇒<,但θ=时1sin02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin2θ<”的充分而不必要条件,故选A.(5)已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,离心率为2.若经过F和(0,4)P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)22144x y-=(B)22188x y-=(C)22148x y-=(D)22184x y-=【答案】B【解析】由题意得2240,14,2210()88x ya b c a bc-==⇒===⇒-=--,故选B.(6)已知奇函数()f x在R上是增函数,()()g x xf x=.若2(log5.1)a g=-,0.8(2)b g=,(3)c g=,则a,b,c的大小关系为(A)a b c<<(B)c b a<<(C)b a c<<(D)b c a<<【答案】C(7)设函数()2sin()f x xωϕ=+,x∈R,其中0ω>,||ϕ<π.若5()28fπ=,()08f11π=,且()f x的最小正周期大于2π,则(A)23ω=,12ϕπ=(B)23ω=,12ϕ11π=-(C)13ω=,24ϕ11π=-(D)13ω=,24ϕ7π=【答案】A【解析】由题意得125282118kkωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k∈Z,所以2142(2)33k kω=--,又22Tωπ=>π,所以01ω<<,所以23ω=,11212kϕ=π+π,由ϕ<π得12ϕπ=,故选A.(8)已知函数23,1, ()2, 1.x x xf xx xx⎧-+≤⎪=⎨+>⎪⎩设a∈R,若关于x的不等式()||2xf x a≥+在R上恒成立,则a的取值范围是(A)47[,2]16-(B)4739[,]1616-(C)[23,2]-(D)39[23,]16-【答案】A当1x>时,(*)式为222xx a xx x--≤+≤+,32222xx ax x--≤≤+.又3232()2322x xx x--=-+≤-23x=,22222x xx x+≥⨯=(当2x=时取等号),所以232a-≤≤.综上,47216a-≤≤.故选A.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考理科数学天津卷(含答案解析)
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷参考公式:·如果事件,A B 互斥,那么()()()P AB P A P B =+.·如果事件,A B 相互独立,那么()()()P AB P A P B =.·棱柱的体积公式V Sh =.其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式343V R π=.其中R 表示球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,2,6A =,{}2,4B =,{}|15C x R x =∈-≤≤,则()A B C =A .{}2B .{124},,C .16}2{4,,, D .{}1|5x R x ∈-≤≤2.设变量x ,y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为A .23B .1C .32D .33.阅读右边所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的 A .0B .1C .2D .34.设θ∈R ,则“ππ121||2θ-<”是“1sin 2θ<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件5.已知双曲线()222210,0x y a b a b-=>>的左焦点为F.若经过F 和()0,4P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144y x -= B .22188y x -= C .22148y x -= D .22184y x -=6.已知奇函数f x ()在R 上是增函数,g x xf x =()().若25.1a g log =-(),0.82b g =(),3c g =(),则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<7.设函数2sin f x x ωϕ=+()(),x ∈R ,其中0ω>,πϕ<.若5π28f ⎛⎫=⎪⎝⎭,11π08f ⎛⎫= ⎪⎝⎭,且f x ()的最小正周期大于2π,则 A .2π,312ωϕ== B .211π,312ωϕ==-C .111π,324ωϕ==-D .17π,324ωϕ==8.已知函数()23,1,2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()2f x a x ≥+在R 上恒成立,则a 的取值范围是毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)A .47,216⎡⎤⎢⎥⎣⎦-B .4739,1616-⎡⎤⎢⎥⎣⎦C.2-⎡⎤⎣⎦D.3916-⎡⎤⎢⎥⎣⎦第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 10.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .11.在极坐标系中,直线π4cos 106ρθ⎛⎫-+= ⎪⎝⎭与圆2sin ρθ=的公共点的个数为 .12.若a ,b ∈R ,0ab >,则4441a b ab++的最小值为 .13.在ABC ∆中,60A ∠=︒,3AB =,2AC =.若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为 .14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (1)求b 和sin A 的值; (2)求π24sin A +()的值. 16.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.17.(本小题满分13分)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证:MN ∥平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为21,求线段AH 的长.数学试卷 第5页(共20页) 数学试卷 第6页(共20页)18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n S n ∈Ν(),{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和*n ∈N ().19.(本小题满分14分)设椭圆222210x y a ba b +=>>()的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线()220y px p =>的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD ∆AP 的方程.20.(本小题满分14分)设a Z ∈,已知定义在R 上的函数()4322336f x x x x x a =+--+在区间()12,内有一个零点0x ,()g x 为()f x 的导函数. (1)求()g x 的单调区间;(2)设0012[]m x x ∈,)(,,函数()()()()0h x g x m x f m =--,求证:()()00h m h x <;(3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且00[]12qx x p∈,)(,,满足041p x q Aq -≥.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2017年普通高等学校招生全国统一考试(天津卷)数学答案解析1.【答案】B 【解析】{}(){}1,2,4,6,1,2,4AB A BC ==,选项B 符合.【提示】解题时应根据集合的运算法则,以及集合元素的三大特征,借助数轴或图示求解.【考点】集合的运算 2.【答案】D【解析】作出约束条件所表示的可行域如图中阴影部分所示,由z x y =+得y x z =-+,作出直线y x =-,平移使之经过可行域,观察可知,最优解在()03B,处取得,故max 033z =+=,选项D 符合.【提示】常常需画出约束条件所表示的可行域,画图时一定要注意边界是实线还是虚线,求解时要注意z 的几何意义。
2017年普通高等学校招生全国统一考试数学试题理(天津卷,含解析)
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然绝密★启用前2017年普通高等学校招生全国统一考试数学试题 理天津卷【试卷点评】2017年天津高考数学试卷考点变化不大,题型结构与2016年相同,从知识结构角度看,试卷考查内容覆盖面广,与往年基本一致。
与此同时,试卷命题中出现的综合与创新,体现了能力立意的命题思路与稳中求变的命题特点。
整卷难度分布合理,具有较好的区分度,整体难度与去年相比稍有降低。
纵观整篇试卷,命题严格按照《考试说明》与课程标准,双基内容占了相当大的比例,体现了命题人回归教材、突出主干的思路,重视对考生基本数学素养的考查。
对于此部分题目,只要考生熟练掌握基本概念和定理,就可以轻松得分。
试卷在知识点选择上与去年相比略有改变,考验学生基础知识掌握的全面性。
试卷命题风格稳定,试题布局合理,利于考生发挥自身真实水平,具有较好的信度和效度。
在注重基础和应用的同时,今年天津高考试卷也加强了综合性与创新性的考查,以提高试卷区分度,如第8题,主要考查基本初等函数的图象和性质,设问综合了分段函数单调性、函数零点以及图象变换等典型考点,充分考查了考生的数形结合思想与转化化归思想,考验学生的知识理解深度与分析问题解决问题的能力。
第19题总的来说需要考生熟练掌握解析几何中常见几何图形性质的代数表达并合理选择参数简化运算,对考生的运算和解题技巧要求较高。
第20题设问较为新颖,命题具有一定的抽象性与综合性,需要学生基于三次函数单调性与极值最值的关系进行探索分析,考查函数与方程、分类讨论、转化等数学思想,问题思路环环相扣,逻辑严密,难度较大,充分考验学生的心理素质,具有较好的区分度,体现了高考的选拔性,另外也给优秀学生提供了展示自身能力的平台,也引导我们数学教学工作需注重数学能力与创新意识的培养。
(精校版)2017年天津理数高考试题文档版(含答案)
2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I 卷(选择题)和第n 卷(非选择题)两部分,共 150分,考试用时120分钟。
第I 卷1至2页,第n 卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷 时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!注意事项:1•每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其 他答案标号。
2•本卷共8小题,每小题5分,共40分。
参考公式:如果事件A , B 互斥,那么 P(A U B)=P(A)+P(B). 棱柱的体积公式 V=Sh 其中S 表示棱柱的底面面积, h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有(1)设集合 A ={1,2,6}, B ={2,4}, C 叫x R | 一1 乞5},则(AUB )r|C -(A) {2} ( B ) {1,2,4} (C ) {1,2,4,6} ( D ) {x R | -仁 X 乞 5}‘2x + y 工0, x+2v —2 艺0(2)设变量x, y 满足约束条件则目标函数z =x • y 的最大值为|x ",心,(A) 3 ( B ) 1 (C ) 3 (D ) 33 2绝密★启用前如果事件A , B 相互独立,那么 P(AB)=P(A) P(B).43球的体积公式V R .3其中R 表示球的半径.项是符合题目要求的(3)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(A)0 (B)1(C) 2(D)3n (4)设才R,则“ | |冗”12’ 12(A )充分而不必要条件2 2(5)已知双曲线笃-每a b sin —丄”的2(B)必要而不充分条件(C)充要条件(D )既不充分也不必要条件=1(a 0,b 0)的左焦点为F,离心率为 2 若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为2 2x y (B)18 8 (C)2 2x y1 (D)4 8x2(6)已知奇函数 f (x)在R上是增函数, g(x)二xf(x).若a =g(-log25.1),b=g(2°.8),c=g(3),则a,b,c的大小关系为(A) a :::b :::c (B) c ::: b ::: a b ::: a :::c(7)设函数f (x)二2si n(・・x •「),x •二R,其中>0,| h 二.若f(• ) =2,81 1兀f ( .)=0,且f(X)的最小8正周期大于2二,则1211JI甲=12(C)lln甲=24(D) -=~3 24(8 )已知函数-x 3,x <1,2设a • R,若关于x ,x 1.xx的不等式f (x)」a |在R上恒成立, 则a的取值范围是(A )卜( B )追曙(C )[^ 3,2] 234注意事项: 1用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考理科数学天津卷含答案
绝密★启用前2017年普通高等学校招生全国统一考试理科数学(天津卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A,B互斥,那么·如果事件A,B相互独立,那么P(A∪B)=P(A)+P(B).P(AB)=P(A) P(B).·棱柱的体积公式V=Sh. ·球的体积公式343V R =π.其中S表示棱柱的底面面积,其中R表示球的半径.h表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,6},{2,4},{|15}A B C x x===∈-≤≤R,则()A B C=【B】(A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为【D 】 (A )23 (B )1(C )32 (D )3(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为【C 】(A )0 (B )1(C )2(D )3(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的【A 】(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为【B 】(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为【C 】(A )a b c << (B )c b a <<(C )b a c <<(D )b c a << (7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则【A 】(A )23ω=,12ϕπ=(B )23ω=,12ϕ11π=-(C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是【A 】(A )47[,2]16-(B )4739[,]1616-(C)[-(D)39[16-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考真题——数学(理)(天津卷) Word版含答案
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ). ·棱柱的体积公式V =Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =(A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 (3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a << (C )b a c << (D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )47[,2]16-(B )4739[,]1616-(C )[- (D )39[]16- 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017高考数学天津卷理(附参考答案及详解)
第卷
二 填 空 题本大题共&小题每 小 题 " 分共 (# 分!把 答 案 填 在
题中横线上
3!已
知+(#7为
虚
数
单
位
#若+07为 $/7
实
数
#则
+
的
值
为
!
!
!
!
!
!#!已知一个正方体的所有顶点在 一 个 球 面 上#若 这 个 正 方 体 的 表
面 积 为 !.#则 这 个 球 的 体 积 为 ! ! ! ! !
'$'#'&#
的
焦
点
.
到
抛
物
线
的
准 线/
的
距离
为
! $
!
!求 椭 圆 的 方 程 和 抛 物 线 的 方 程 !
$设/上两点6C 关 于# 轴 对 称直 线 "6 与 椭 圆 相 交 于 点
$点 $ 异于点"直 线 $C 与# 轴 相 交 于 点 &!若 /"6& 的
面
积
为槡&求 $
XB +"',#
,*".+"';"#
,2-.
¯
=$#%'/$#%0
# "
#
Q
#-!
R
#=$#%'#"
0#.(0
# "
'#"
0("#.(
$ % '
#0
( +
".!(3;#
2017年高考天津理科数学试题及答案解析版
2017年普通高等学校招生全国统一考试(天津卷)数学(理科)参考公式:• 如果事件A ,B 互斥,那么()()()P AB P A P B =+;• 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年天津,理1,5分】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){}2 (B ){}1,2,4 (C ){}1,2,4,6 (D ){}|15x x ∈-≤≤R 【答案】B 【解析】{}[]{}()1,2,4,61,51,2,4AB C =-=,故选B .(2)【2017年天津,理2,5分】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为( )(A )23 (B )1 (C )32(D )3【答案】D【解析】目标函数为四边形ABCD 及其内部,其中324(0,1),(0,3),(,3),(,)233A B C D --,所以直线z x y =+过点B时取最大值3,故选D .(3)【2017年天津,理3,5分】阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )(A )0 (B )1 (C )2 (D )3 【答案】C【解析】依次为8N = ,7,6,2N N N ===,输出2N =,故选C .(4)【2017年天津,理4,5分】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】10sin 121262πππθθθ-<⇔<<⇒<,0θ=,1sin 2θ<,不满足1212ππθ-<,所以 是充分不必要条件,故选A .(5)【2017年天津,理5,5分】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离心率为2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )(A )22144x y -= (B )22188x y -= (C )22148x y -= (D )22184x y -=【答案】B【解析】由题意得224,14,22188x y a b c a b c ==-⇒===⇒-=-,故选B .(6)【2017年天津,理6,5分】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( )(A )a b c << (B )c b a << (C )b a c << (D )b c a << 【答案】C 【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在[)0,+∞上是增函数,()()5.1 5.122log log a g g =-=,0.822<,又4 5.18<<, 5.122log 3<<,所以即0.8 5.1202log 3<<<,()()()0.8 5.122log 3g g g <<,所以b a c <<,故选C . (7)【2017年天津,理7,5分】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( )(A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .(8)【2017年天津,理8,5分】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( )(A )47[,2]16- (B )4739[,]1616- (C)[- (D)39[]16-【答案】A【解析】不等式()2x f x a ≥+为()()()*2x f x a f x -≤+≤,当1x ≤时,()*式即为22332xx x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+,又2214732416x x x ⎛⎫-+-=---⎪⎝⎭(14x =时取等号), 223339393241616x x x ⎛⎫-+=-+≥ ⎪⎝⎭(34x =时取等号),所以47391616a -≤≤,当1x >,()*式为222x x a x x x --≤+≤+,322222x x x a x x --≤+≤+,又323222x x x x ⎛⎫--=-+≤- ⎪⎝⎭(当x =号),222x x +≥=(当2x =时取等号),所以2a -≤≤,综上47216a -≤≤,故选A . 二、填空题:本大题共6小题,每小题5分,共30分.(9)【2017年天津,理9,5分】已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 .【答案】2-【解析】()(2)(21)(2)2122(2)(2)555a i a i i a a i a a i i i i -----+-+===-++-为实数,则20,25a a +==-.(10)【2017年天津,理10,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【解析】设正方体边长为a ,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=.(11)【2017年天津,理11,5分】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为 .【答案】2【解析】直线为210y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点.(12)【2017年天津,理12,5分】若,a b ∈R ,0ab >,则4441a b ab++的最小值为 .【答案】4【解析】442241414a b a b ab ab+++≥≥ ,当且仅当2,1a b ==时取等号.(13)【2017年天津,理13,5分】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R ,且4AD AE ⋅=-,则λ的值为 .【答案】311【解析】32cos603AB AC ⋅=⨯⨯︒=,1233AD AB AC =+,则()1233AD AE AB AC AC AB λ⎛⎫⋅=+- ⎪⎝⎭212334934333311λλλ=⨯+⨯-⨯-⨯=-⇒=. (14)【2017年天津,理14,5分】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答) 【答案】1080【解析】413454541080A C C A +=. 三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)【2017年天津,理15,13分】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(1)求b 和sin A 的值;(2)求πsin(2)4A +的值.解:(1)在ABC △中,a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,2222cos 13b a c ac B =+-=,所以b =由正弦定理a bB=,得sin sin a B A b ==所以b sin A .(2)由(1)及a c <,得cos A =,所以12sin 22sin cos 13A A A ==,25cos212sin 13A A =-=-.故πππsin(2)sin 2cos cos2sin 44426A A A +=+=.(16)【2017年天津,理16,13分】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解:(1)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=. X0 1 2 3 P14 1124 14 124随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148.(17)【2017年天津,理17,13分】如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D E N ,,分别为棱PA PC BC ,,的中点,M 是线段AD 的中点,4PA AC ==,2AB =. (1)求证://MN 平面BDE ;(2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为7,求线段AH 的长.解:如图,以A 为原点,分别以AB ,AC ,AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得()0,0,0A ,()2,0,0B ,()0,4,0C ,()0,0,4P ,()0,0,2D ,()0,2,2E ,()0,0,1M ,()1,2,0N .(1)()0,2,0DE =,()2,0,2DB =-.设(,,)x y z =n ,为平面BDE 的法向量,则00DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩.不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-,可得0MN ⋅=n .因为MN ⊄平面BDE ,所以//MN 平面BDE .(2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的法向量,则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =--,(1,2,1)MN =-,所以2020y z x y z --=⎧⎨+-=⎩.不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||21⋅<>==-n n n n |n n ,于是12105sin ,<>=n n .二面角C EM N --的正弦值为105. (3)依题意,设AH h =(04h ≤≤),则()0,0,H h ,进而可得(1,2,)NH h =--,(2,2,2)BE =-.由已知, 得2||7|cos ,|||||523NH BE NH BE NH BE h ⋅<>===+⨯,整理得2102180h h -+=,解得85h =,或12h =.所以,线段AH 的长为85或12.(18)【2017年天津,理18,13分】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N .解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2n n b =.由3412b a a =-,可得138d a -=①.由114=11S b ,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-. 所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =.(2)设数列{}221n n a b -的前n 项和为n T ,由262n a n =-,1214n n b --=,有221(31)4n n n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(31)4n n T n +=⨯+⨯+⨯++-⨯,上述两式相减,得231324343434(31)4nn n T n +-=⨯+⨯+⨯++⨯--⨯112(14)4(31)414n n n +⨯-=---⨯-1(32)48n n +=--⨯-得1328433n n n T +-=⨯+.所以,数列{}221n n a b -的前n 项和为1328433n n +-⨯+.(19)【2017年天津,理19,14分】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD ∆AP 的方程; 解:(1)设F 的坐标为(),0c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,22234b a c =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.(2)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634my m -=+. 由点B 异于点A ,可得点222346,3434m m B m m ⎛⎫-+- ⎪++⎝⎭.由21,Q m ⎛⎫- ⎪⎝⎭,可得直线BQ 的方程为 22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++.又因为APD ∆,故221622||32m m m ⨯⨯=+23|20m m -+=,||m =,m =AP 的方程为330x +-=,或330x --=.(20)【2017年天津,理20,14分】设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间()1,2内有一个零点0x ,()g x 为()f x 的导函数.(1)求()g x 的单调区间;(2)设00[1,)(,2]m x x ∈,函数()()()()0h x g x m x f m =--,求证:()()00h m h x <; (3)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈ 满足041||p x q Aq -≥. 解:(1)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--,可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或1x =.当x 变化时,()(),g x g x '的变化情况如下表:所以,()g x 的单调递增区间是(),1-∞-,1,4⎛⎫+∞ ⎪⎝⎭,单调递减区间是11,4⎛⎫- ⎪⎝⎭.(2)由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-.由(1)知,当[1,2]x ∈时,()0g x '>, 故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减;当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增. 因此,当00[1,)(,2]x x x ∈时,1100()()()0H x H x f x >=-=,可得1()0H m >,()0h m >.令函数200()()()()H x g x x x f x =--,则20()()()H x g x g x ''=-.由(1)知,()g x 在[1,2]上单调递增, 故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈时,220()()0H x H x <=,可得2()0H m <,0()0h x <. 所以,0()()0h m h x <.(3)对于任意的正整数p ,q ,且00[1)(,],2p x x q ∈,令pm q=,函数0()()()()h g m x x x m f =--.由(2)知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点;当0(,2]m x ∈时()h x 在区间0(),x m 内有零点.所以()h x 在(1,2)内至少有一个零点,不妨设为1x ,则110()()()()0p ph g x f q x qx =--=.由(1)知()g x 在[1,2]上单调递增,故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p p f f p p p q p q pq aq q q x q g x g g q+--+-=≥=.因为当[12],x ∈时,()0g x >, 故()f x 在[1,2]上单调递增,所以()f x 在区间[1,2]上除0x 外没有其他的零点,而0p x q ≠,故()0pf q≠.又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数,从而432234|2336|1p p q p q pq aq +--+≥.041|2|()p x q g q -≥.只要取()2A g =,就有041||p x q Aq -≥.。
2017年高考天津卷理数试题解析(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么·如果事件A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ).P (AB )=P (A )P (B ).·棱柱的体积公式V=Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R【答案】B【解析】(){1,2,4,6}[1,5]{1,2,4}A B C =-=U I I ,故选B . 【考点】集合的运算【点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)设变量,x y满足约束条件20,220,0,3,x yx yxy+≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y=+的最大值为(A)23(B)1 (C)32(D)3【答案】D【解析】变量,x y满足约束条件202203x yx yxy+⎧⎪+-⎪⎨⎪⎪⎩……„„的可行域如图,目标函数z x y=+经过可行域的A点时,目标函数取得最大值,由3xy=⎧⎨=⎩可得(0,3)A,目标函数z x y=+的最大值为3.故选D.3【考点】线性规划【点睛】线性规划问题有三类:①简单的线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;②线性规划逆向思维问题,给出最值或最优解个数求参数的取值范围;③线性规划的实际应用.(3)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(A)0 (B)1 (C)2 (D)3【答案】C【解析】初始:24N=,进入循环后N的值依次为8,7,6,2N N N N====,输出2N=,故选C.【考点】程序框图【点睛】识别算法框图和完善算法框图是近几年高考的重点和热点.对于此类问题:①要明确算法框图中的顺序结构、条件结构和循环结构;②要识别运行算法框图,理解框图解决的问题;③按照框图的要求一步一步进行循环,直到跳出循环体输出结果.近几年框图问题考查很活,常把框图的考查与函数、数列等知识相结合.(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】ππ10sin 121262θθθπ-<⇔<<⇒<,但0θ=,1sin 2θ<,不满足ππ1212θ-<,所以“ππ1212θ-<”是“1sin 2θ<”的充分不必要条件.故选A.【考点】充要条件【点睛】本题考查充要条件的判断,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分而不必要条件,若B 是A 的真子集,则A 是B 的必要而不充分条件.(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得2240,14,10()88x y a b c a b c -==⇒===⇒-=--,故选B . 【考点】双曲线的标准方程【点睛】利用待定系数法求圆锥曲线的方程是高考的常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程(组),解方程(组)求出,a b 的值.另外要注意巧设双曲线方程的技巧:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b-=共渐近线的双曲线可设为2222x y a b-(0)λλ=≠,③等轴双曲线可设为22(0)x y λλ-=≠. (6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a << (C )b a c << (D )b c a <<【答案】C【解析】因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数,()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,所以()()()0.822log 5.13g g g <<,所以b a c <<.故选C.【考点】指数、对数、函数的单调性与奇偶性【点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=-(C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π= 【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A . 【考点】三角函数的图象与性质【点睛】关于sin()y A x ωϕ=+的问题有以下两种题型:①提供函数图象求解析式或参数的取值范围,一般先根据图象的最高点或最低点确定A ,再根据最小正周期求ω,最后利用最高点或最低点的坐标满足解析式,求出满足条件的ϕ的值;②题目用文字叙述函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己画出大致图象,然后寻求待定的参变量,题型很活,一般是求ω或ϕ的值、函数最值、取值范围等.(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16- 【答案】A【解析】由不等式()2x f x a +…得()()2x f x a f x -+剟, ()()22x xf x a f x ---剟,只需要计算()()2x g x f x =--在R 上的最大值和()()2xh x f x =-在R 上的最小值即可, 当1x „时,又()g x =22147473241616x x x ⎛⎫-+-=---- ⎪⎝⎭„(当1=4x 时取等号),()h x =223339393241616x x x ⎛⎫-+=-+ ⎪⎝⎭…(当34x =时取等号),所以47391616a-剟, 当1>x 时,又()g x =323222x x x x ⎛⎫--=-+- ⎪⎝⎭„(当x =,()h x =222x x +=…(当=2x 时取等号),所以2a -, 综上47216a -剟.故选A . 【考点】不等式、恒成立问题、二次函数、基本不等式 【点睛】首先将()||2xf x a ≥+转化为()()22x x f x a f x --≤≤-,涉及分段函数问题要遵循分段处理的原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的取值范围.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|﹣1≤x≤5}2.(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.33.(5分)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1 C.2 D.34.(5分)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=16.(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣,2]B.[﹣,]C.[﹣2,2] D.[﹣2,]二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为.10.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.11.(5分)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为.12.(5分)若a,b∈R,ab>0,则的最小值为.13.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.14.(5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.16.(13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.17.(13分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.18.(13分)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).19.(14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.20.(14分)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.2017年天津市高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•天津)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|﹣1≤x≤5}【分析】由并集概念求得A∪B,再由交集概念得答案.【解答】解:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6},又C={x∈R|﹣1≤x≤5},∴(A∪B)∩C={1,2,4}.故选:B.2.(5分)(2017•天津)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.3【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3.故选:D.3.(5分)(2017•天津)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1 C.2 D.3【分析】根据程序框图,进行模拟计算即可.【解答】解:第一次N=24,能被3整除,N=≤3不成立,第二次N=8,8不能被3整除,N=8﹣1=7,N=7≤3不成立,第三次N=7,不能被3整除,N=7﹣1=6,N==2≤3成立,输出N=2,故选:C4.(5分)(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊂[﹣+2kπ,+2kπ],k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.5.(5分)(2017•天津)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=1【分析】由双曲线的离心率为,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.【解答】解:设双曲线的左焦点F(﹣c,0),离心率e==,c=a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x,则经过F和P(0,4)两点的直线的斜率k==,则=1,c=4,则a=b=2,∴双曲线的标准方程:;故选B.6.(5分)(2017•天津)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,即可求得b<a<c【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选C.7.(5分)(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【分析】由题意求得,再由周期公式求得ω,最后由若f()=2求得φ值.【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.8.(5分)(2017•天津)已知函数f(x)=,设a∈R,若关于x 的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣,2]B.[﹣,]C.[﹣2,2] D.[﹣2,]【分析】讨论当x≤1时,运用绝对值不等式的解法和分离参数,可得﹣x2+x ﹣3≤a≤x2﹣x+3,再由二次函数的最值求法,可得a的范围;讨论当x>1时,同样可得﹣(x+)≤a≤+,再由基本不等式可得最值,可得a的范围,求交集即可得到所求范围.【解答】解:当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3,由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值﹣;由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值,则﹣≤a≤①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣(x+)≤+a≤x+,即有﹣(x+)≤a≤+,由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2;由y=x+≥2=2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2②由①②可得,﹣≤a≤2.故选:A.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2017•天津)已知a∈R,i为虚数单位,若为实数,则a的值为﹣2.【分析】运用复数的除法法则,结合共轭复数,化简,再由复数为实数的条件:虚部为0,解方程即可得到所求值.【解答】解:a∈R,i为虚数单位,===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.10.(5分)(2017•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•()3=;故答案为:.11.(5分)(2017•天津)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为2.【分析】把极坐标方程化为直角坐标方程,求出圆心到直线的距离d,与半径比较即可得出位置关系.【解答】解:直线4ρcos(θ﹣)+1=0展开为:4ρ+1=0,化为:2x+2y+1=0.圆ρ=2sinθ即ρ2=2ρsinθ,化为直角坐标方程:x2+y2=2y,配方为:x2+(y﹣1)2=1.∴圆心C(0,1)到直线的距离d==<1=R.∴直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为2.故答案为:2.12.(5分)(2017•天津)若a,b∈R,ab>0,则的最小值为4.【分析】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【解答】解:a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.13.(5分)(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.14.(5分)(2017•天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有1080个.(用数字作答)【分析】根据题意,要求四位数中至多有一个数字是偶数,分2种情况讨论:①、四位数中没有一个偶数数字,②、四位数中只有一个偶数数字,分别求出每种情况下四位数的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、四位数中没有一个偶数数字,即在1、3、5、7、9种任选4个,组成一共四位数即可,有A54=120种情况,即有120个没有一个偶数数字四位数;②、四位数中只有一个偶数数字,在1、3、5、7、9种选出3个,在2、4、6、8中选出1个,有C53•C41=40种取法,将取出的4个数字全排列,有A44=24种顺序,则有40×24=960个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080个;故答案为:1080.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.【分析】(Ⅰ)由已知结合同角三角函数基本关系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA;(Ⅱ)由同角三角函数基本关系式求得cosA,再由倍角公式求得sin2A,cos2A,展开两角和的正弦得答案.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.16.(13分)(2017•天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【分析】(Ⅰ)随机变量X的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.【解答】解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3;则P(X=0)=(1﹣)×(1﹣)(1﹣)=,P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=,P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=,P(X=3)=××=;所以,随机变量X的分布列为X0123P随机变量X的数学期望为E(X)=0×+1×+2×+3×=;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0)=×+×=;所以,这2辆车共遇到1个红灯的概率为.17.(13分)(2017•天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE 所成角的余弦值为列式求得线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4.18.(13分)(2017•天津)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{a n}和{b n}的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.19.(14分)(2017•天津)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.【分析】(I)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(II)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出答案.【解答】(Ⅰ)解:设F的坐标为(﹣c,0).依题意可得,解得a=1,c=,p=2,于是b2=a2﹣c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),联立方程组,解得点P(﹣1,﹣),故Q(﹣1,).联立方程组,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,).∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令y=0,解得x=,故D(,0).∴|AD|=1﹣=.又∵△APD的面积为,∴×=,整理得3m2﹣2|m|+2=0,解得|m|=,∴m=±.∴直线AP的方程为3x+y﹣3=0,或3x﹣y﹣3=0.20.(14分)(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f (m),令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|﹣x0|=≥=.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.。