导数压轴题训练

合集下载

第14讲 导数解答压轴题(原卷版)

第14讲  导数解答压轴题(原卷版)

第14讲 导数解答压轴题1.(2021·山东临沂模拟)已知函数 (1)求函数的极值;(2)①当时,恒成立,求正整数的最大值 ②证明:2.(2021·江苏徐州二模)已知函数,为的导数.(1)设函数,求的单调区间;(2)若有两个极值点, ①求实数a 的取值范围; ②证明:当时,.3.(2021·广东汕头一模)已知函数有两个相异零点. (1)求a 的取值范围. (2)求证:.()()ln 111kxf x x x =+-++0x >()0f x >k ()()()32111212311n n n n e⎛⎫- ⎪+⎝⎭+⨯+⨯⋅⋅⋅++>⎡⎤⎣⎦()e (ln 1)()ax f x x a =+∈R ()'f x ()f x ()()e axf xg x '=()g x ()f x ()1212,x x x x <322a e <()()1212f x f x x x <()ln f x x x a =--()1212,x x x x <12423a x x ++<4.(2021·湖北七市三月联考)已知函数,其中为自然对数的底数.(1)求的单调区间;(2)若对恒成立,记,证明:.5.(2021·山东德州一模)已知函数,.定义新函数.(1)当时,讨论函数的单调性;(2)若新函数的值域为,求的取值范围.6.(2021·河南驻马店期末(理))已知函数. (1)若函数在处取得极值,求曲线在点处的切线方程; (2)已知,若方程有两个不相等的实数根,,且,证明:.()1x e f x x-= 2.71828e =()f x 2ln 10x e x x kx ---≥0x ∀>max k λ= 1.1λ>()()321ln 1xf x xe a x x =-++-()()2ln 2g x a x a x x=-+++()()()min ,d f g f x g x =-2a ≤-()g x (),d f g [)0,+∞a ()2a f x x x=+()fx x =()y f x =(1,(1))f ()(21)ln =-+g x a x b ()()f x g x =1x 2x 0122x x x =+()()00''>f x g x7.(2021·浙江杭州期末)已知函数,恰好有两个极值点. (Ⅰ)求证:存在实数,使; (Ⅰ)求证:.8.(2021·天津滨海新区·高三期末)已知函数.()(Ⅰ)令,讨论的单调性并求极值; (Ⅰ)令,若有两个零点;(i )求a 的取值范围;9.(2021·天津高三期末)已知函数,e 是自然对数的底数,若,且恰为的极值点. (1)证明:; (2)求在区间上零点的个数.10.(2021·天津和平区期末)已知函数,,.21()ln (1)2f x x x a x =-+a R ∈()1212,x x x x <1,12m ⎛⎫∈ ⎪⎝⎭0a m <<()1514f x e-<<-()22ln ln f x x x a x =---a R ∈()()g x xf x '=()g x ()()22ln h x f x x =++()h x ()ln sin xf x a xe a x -=⋅+0a >0x =()f x 112a <<()f x (,)π-∞()21xf x e ax =--()()2ln 1g x a x =+a R ∈(1)若在点处的切线倾斜角为,求的值; (2)求的单调区间;(3)若对于任意,恒成立,求的取值范围.11.(2021·陕西渭南一模(理))已知函数. (1)讨论的单调性.(2)当时,若无最小值,求实数的取值范围.12.(2021·陕西汉中一模(理))已知函数.(1)当时,求在[]2,2-上的最值;(2)设,若有两个零点,求的取值范围.13.(2021·广西梧州模拟(理))已知a >0,函数.(1)若f (x )为减函数,求实数a 的取值范围;()f x (0,(0))f 4πa ()f x [0,)x ∈+∞()()f x g x x +≥a 121()(1)e (0)2x f x x a x ax x -=---+>()f x 2a ≤()f x a ()2x f x xe ax a =-+()a R ∈0a =()f x 2()2x g x e ax =-()()()h x f x g x =-a 21()ln (1)2f x x x x a x =-+-(2)当x >1时,求证:.(e =2.718…)14.(2021·河南六市联考(理))已知函数.(1)求的单调区间;(2)证明:.15.(2021·江西五市九校联考)已知函数,其中. (1)当时,求函数在处的切线方程;(2)记函数的导函数是,若不等式对任意的实数恒成立,求实数的取值范围;(3)设函数,是函数的导函数,若函数存在两个极值点,,且,求实数的取值范围.16.(2021·安徽六校二月联考(理))已知函数. (1)讨论的单调性;(2)若,证明:对任意的.2e ()e 2aa f x <-1()2ln x f x e x x -=-+()f x 3()(2)3(2)f x x x ---211()4ln 22f x x ax a x a =-+++a R ∈1a =()f x 1x =()f x ()'f x ()()f x xf x '<(1,)x ∈+∞a()()2g x f x a =+()'g x ()g x ()g x 1x 2x ()()()1212g x g x g x x '+≥a ()21,xx mx f x m R e++=∈()f x ()1,0m ∈-[]()1212,1,1,45x x m f x x ∈-+<17.(2021·江西新余期末(理))设函数,.(1)求函数的单调区间;(2)若函数有两个零点,; (i )求满足条件的最小正整数的值. (ii )求证:.18.(2021·海口市·海南中学高三月考)设函数2()ln (1)f x ax x b x =+-,曲线()y f x =过点2(,1)e e e -+,且在点(1,0)处的切线方程为0y =. (1)求,a b 的值;(2)证明:当1≥x 时,2()(1)f x x ≥-;(3)若当1≥x 时,2()(1)f x m x ≥-恒成立,求实数m 的取值范围.19.(2021·沈阳二模)已知函数()ln f x x x a =+,0a <. (1)证明:()f x 有且仅有一个零点; (2)当()22,0a e ∈-时,试判断函数()2211ln 24g x x x x ax =-+是否有最小值?若有,设最小值为()h a ,求()h a 的值域;若没有,请说明理由.()2ln f x x a x =-()()2g x a x =-()f x ()()()F x f x g x =-1x 2x a 12'02x x F +⎛⎫> ⎪⎝⎭20.(2021·浙江绍兴一模)已知函数(其中,e 为自然对数的底数).(1)求函数的单调区间;(2)设函数的极小值点为m ,极大值点为n ,证明:当时,.21.(2021·陕西西安月考(理))已知函数.(Ⅰ)求的极值;(Ⅰ)设求证:在上有两个零点.22.(2021·天一大联考(理))已知函数.(1)求的图象在点处的切线方程,并证明的图象上除点以外的所有点都在这条切线的上方;(2)若函数,,证明:.()(xf x ax e -=02a <<()f x ()f x (,)x m n ∈()1ln a f x x x e--<()2ln ln 2f x x x =()f x ()()ln ,h x f x x =-()h x [)1,+∞()ln f x x x =()f x ()()1,1A f ()f x A ()()()ln 1sin 22cos2g x x x f x x =+⋅-1,2x e π⎡⎫∈⎪⎢⎣⎭()22cos g x e e≥23.(2021·湖南衡阳一模)已知函数,,其中,.(1)当时,求函数的最大值;(2)是否存在实数,使得只有唯一的,当时,恒成立,若存在,试求出,的值;若不存在,请说明理由.24.(2021·天津和平区·高三一模)已知函数,.(1)当时,直线与相切于点,①求的极值,并写出直线的方程;②若对任意的都有,,求的最大值;(2)若函数有且只有两个不同的零点,,求证:.25.(2021·天津南开区·高三一模)已知曲线与轴交于点,曲线在点处的切线方程为,且.(1)求的解析式; (2)求函数的极值; ()axf x e =()g x kx a =+0a >k ∈R 1k a ==()()g x y f x =k a 0x >()()f x g x ≥k a ()ln f x ax x =a R ∈1a =l ()y f x =2233,e f e ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭()f x l x e ≥()mx m f x e x≥0m >m ()()2g x f x x =+1x 2x 212x x e >()ln y x m =+x P P ()y f x =()12f =()y f x =()()x f x g x e=(3)设,若存在实数,,使成立,求实数的取值范围.26.(2021·江西八校4月联考(理))已知函数,.(1)讨论函数的单调性; (2)若,求的值; (3)证明:.27.(2021·吉林吉林三模(理))已知函数,.(1)求函数的单调区间; (2)、,使得不等式成立,求的取值范围; (3)不等式在上恒成立,求整数的最大值.28.(2021·江苏常州一模)已知函数.(1)当时,一次函数对任意,恒成立,求的表达式; (2)讨论关于x 的方程解的个数.()()2ln 1ln 1x a x h x x+-+=[]11,x e ∈12e ,1x -⎡⎤∈⎣⎦()()21222222ln 1ln h x x x a x x x <+-+a ()ln f x x a x =+()ln 2xg x e x x -=--()f x ()00g x =00ln x x +2ln x x x x e x --≤+()2sin xf x e x x =-+()()sin cos xg x ex x a =-++()f x 1x ∃20,2x π⎡⎤∈⎢⎥⎣⎦()()12g x f x ≥a ()ln f x mx x'->()1,+∞m ()1ln ()f x m x m R -=+∈2m =()g x ()0x ∈+∞,()()2f xg x x ≤≤()g x 2()1f x x f x =⎛⎫ ⎪⎝⎭29.(2021·天津十二校联考)已知,(n 为正整数,)(Ⅰ)若在处的切线垂直于直线,求实数m 的值; (Ⅰ)当时,设函数,,证明:仅有1个零点. (Ⅰ)当时,证明:.30.(2021·山东烟台一模)已知函数为的导函数. (1)求函数的极值;(2)设函数,讨论的单调性;(3)当时,,求实数的取值范围.31.(2021·辽宁铁岭一模)已知函数,为自然对数的底数.(1)讨论的单调性;(2)当时,不等式恒成立,求实数的取值范围.()sin ,()ln n xf x xg x x me ==+m R ∈()y g x =1x =12y x =1n =2()12()h x x f x =--(0,)x π∈()h x 2n =()()()12x f x g x x m e <+'+-()()21cos ,2f x x x f x '=+()f x ()f x ()23sin cos 1sin 226,x x x xg x x e a x x x a R +=-+-+-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝∈⎭()g x 0x ≥()1xf x e bx '≤+-b ()22xf x xe ax ax =++e ()f x 0x >()()()21ln 1a x f x x x ≥+-+a32.(2021·浙江温州二模)已知函数. (1)若函数没有极值点,求实数的取值范围;(2)若对任意的恒成立,求实数和所满足的关系式,并求实数的取值范围.33.(2021·湖北十一校3月联考)已知函数在时取到极大值.(1)求实数a 、b 的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数t 的取值范围.221(),()21ekx x f x g x ax ax +==++()f x k ()()g x f x ≤x ∈R k a k 2()x ax bf x e +=2x =24e min{.,)m n ,m n 1()min (),(0)g x f x x x x ⎧⎫=->⎨⎬⎩⎭2 ()()h x g x tx =-。

导数压轴小题汇编(学生版)

导数压轴小题汇编(学生版)

导数压轴小题练习1. 【图像法】设函数f(a)=e²(2x-1)-ax+a,其中a<1,若存在唯一的整数ag使得f(x₀)<0,则a的取值范围是( )A.1)B.C.D.2. 【图像法】已知函数f(x)=xe²-mx+m,若f(a)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是( )A B. C. D.3. 【切线应用】若函数f(x)=w³+ax²+bx(a,b∈R)的图象与α轴相切于一点A(m,0)(m≠0),且f(a)的极大值为 ,则m 的值为34. 【导数的切线法】设函数f(x)= 2 x²-2ax(a>0)与g(a)=a²lnz+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为( )A. B. C. D.5. 【导数的切线法】若对于函数f(x)=ln(x+1)+a²图象上任意一点处的切线l,在函数g(x)=asinxcosx-a的图象上总存在一条切线L2,使得l工L,则实数a的取值范围为( )A. C.B.D.(-w,- 1)U[1,+w)6. 【导数的切线法】已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足2d-c- √5=0,则(a-c)2+(b-d)²的最小值为( )A.1B.2C.3D.±7. 【导数的切线法】若直线kx-y-k+1=0(x∈R)和曲线E: 的图像交于A(aj,y),B(xz,yz),C(xg,y3)(x₁<a₂<a3)三点时,曲线E在点A,点C处的切线总是平行,则过点(b, a)可作曲线E的( )条切线.A.0B.1C.2D.38. 【导数的直接应用】若是定义在R上的可导函数,且满足(x-1)f'(a)≥0,则必有( )A.f(0)+f(2)<2f(1)B.f(0)+f(2)>2f(1)C.f(0)+f(2)≤2f(1)D.f(0)+f(2)≥2f(1)9. 【导数的直接应用】若函)上单调递增,则实数a的取值范围是()A.(-c1)B.(- 1)C.(1,+o)D.(1+c)10. 【利用对称中心破题】已知函则)的值为( )A.0B.504C.1008D.201611. 【利用对称中心破题】已知函则的值为( )A.2016B.1008C.504D.012. 【利用对称中心破题】已知函,且f(2017)= 2016,则f(-2017)=( )A.-2014B.-2015C.-2016D.-201713. 【利用对称中心破题】已知函)的图象上存在关于(1,0)对称的点,则实数m的取值范围是( )A.(-o,1-ln2)B.(-w,1-ln2)C.(1-ln2,+o)D.(1-ln2,+c)14. 【通过构造函数破题】已知函数f(a)=e²+mlnx(m∈R,e为自然对数的底数),若对任意的正数ai,αz2,当ai>a2时,都有f(a₁)-f(a₂)>x-az恒成立,则实数m的取值范围为.15. 【通过构造函数破题】已知函数f(a)=aln(a+1) -q²,在区间(0,1)内任取两个实数p,g,且p<q,若不等式恒成立,则实数a的取值范围是( B )A. 15,+α)B.(15,+c)C.(-w,6)D.(-o,6)16. 【直接法】已知直线l与函数f(a)=ln( √e x)-ln(1-x)的图象交于A,B两点,若AB中点为则m的大小为( )A. B. C.1 D.217. 【函数性质+K法】已知函数f(a)=x+sinx(x ∈R),且f(y² - 2y+3)+f(x² - ±w+1)≤0,则当y≥1时,的取值范围是( )A. B.[0, C.. D.18. 【考查函数性质】已知函数f(a)=x²+(a+8)x+a²+a- 12(a<0),且f(a²-4)=f(2a-8),则的最小值为( )A. B. C. D.19【分离参数法+隐含零点】已知函数f(a)=x+alna,若k∈Z,并且h(x-1)<f(a)对任意的x>1恒成立,则k的最大值为( )A.2B.3C.4D.520. 【考查函数的零点+嵌套函数】已知函数,则方程,的实根个数不可能为( )A . 8个B . 7个C . 6个D . 5个21【考查函数的零点】定义在R上的偶函数f(a)满足f(2-a)=f(x),且当a∈[1,2]时,f(a) =lnx-a+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()B.D.22. 【考查函数的零点】设函 ),若存在唯二的αo.. 使得h(n)=min{f(x),g(x)}的最小值为h(xo). 则实数a的取值范围是( )A.a<-2B.a≤-2C.a<- 1D.a≤- 123. 【考查函数的零点】已知函数(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是( )A.(0,2)B.(0,C.(0,e)D.(0,+c)24. 【转化法+零点】已知函数f(a)=alnx+a²+(a-6)a在(0,3)上不是单调函数,则实数a的取值范围是25. 【图像法+转化法+零点】函的图象上存在关于y轴对称的点,则实数a的取值范围是( )A.(-w,3-2ln2)B.[3-2ln2,+c)C.(√e,+o)D.(-w,-Ve)26. 【多变量转化+等与不等转化】已知函数f(a)=lna,g(x)=(2m+3)x+n,若对任意的x∈(0,+o),总有f(a)≤g(x)恒成立,记(2m+3)n的最小值为f(m,n),则f(m,n)最大值为( )A.1B.C.D.27. 【多变量转化+等与不等转化】已知不等式e²- (a+2)x≥b-2恒成立,则的最大值为( )A.-ln3B.-ln2C.- 1-ln3D.- 1-ln228.【多变量转化+等与不等转化】对于任意b>0,a∈R,不等式[b-(a-2)]²+[Inb- (a- 1)]²≥m²-m恒成立,则实数m的最大值为()A.√eB.2C.eD.329.嵌套函数+零点图像法】函.若方程af²(a)+bf(a)+c=0有8个不同的实根,则此8个实根之和是( )A. B.4 C. D.230. 【嵌套函数法】已知函,则f(f(w))<2的解集为( )A.(1-ln2,+o)B.(+o,1-ln2)C.(1-ln2,1)D.(1,1+ln2)31. 【导数+嵌套函数法+分离参数】函数f(x)=-a²+3w+a,g(a)=2³-w²,若flg(w)]≥0对a∈[0,1]恒成立,则实数a的取值范围是( )A.(-e,+c)B.(-ln2,+o)C.(-2,+o)D.32. 【导数+嵌套函数法+定义域与值域的关系】已知函数f(x)=e²+a-e- ²+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x))的值域相同,则a的取值范围是()A.a<0 B . a≤- 1 C.O<a≤4 D . a < 0或O < a ≤ 433. 【导数+嵌套函数法+分离参数】已知函),其中e为自然对数的底数.若函数y=f(a)与y=flf(x)]有相同的值域,则实数a的最大值为( )A.. eB.. 2C.1D..34. 【导数+嵌套函数法+导函数零点】已知函有两个极值点ai,αz,若αi<f(x₁)<z2,则关于n方程(f(a))²-2af(a)-b=0的实根个数不可能为( )A.2B.3C.4D.535. 【导数+嵌套函数法+导函数零点】已知函数,有两个极值点ai,x2,若,则关于a方程(f(x))²-2af(a)-b=0的实根个数为( )A.. 2B.. 3C.4D.536. 【嵌套函数法+零点】已知偶函数f(a)满足f(x+4)=f(±-x),且当x∈(0,4)时,关于a的不等式f(a)+af(a)>0在[-200,200]上有且只有300个整数解,则实数a的取值范围是( )C. D.37. 【导数极值点常规处理手段-转化法】已知函数f(a)=xlnx-ae²(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )A. B.(0,e) C. D.(-c,e)38. 【分析法】已知函数f(x)=e²-ax- 1,g(x)=lnx-ax-a,若存在ap ∈(1,2),使得f(x₀)g(x₀)<0,则实数a的取值范围为( )A.(ln2,B.(ln2,e- 1)C.(1,e- 1)D.[1,39. 【导函数构造法】设f(x)定义在R上的可导函数,若f(3)=1,且3f(a)+af(n)>ln(x+1),则不等式(x-2017)f(α-2017)-27>0的解集为( )A.(2014,+o)B.(0,2014)C.(0,2020)D.(2020,+c)40. 【导函数2次构造法】已知f(x)是定义在R上的可导函数,且满足(x+2)f(a)+af'(a)>0,则( )A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(a)为增函数41. 【导函数2次构造法】定义在R上的函数f(x)满足:f"(a) -f(a)=w ·e²,且, 则的最大值为( )A.0B.C.1D.242. 【导函数构造法】设函数f(a)满足2x²f(x)+x³f'(x)=e²,,则w∈(2,+o)时,f(a)的最小值为( )A. B. C. D.43. 【导函数构造法】已知函数f(x)是定义在R上的奇函数,其导函数为f(x),若对任意的正实数z,都有af"(x)+2f(a)>0恒成立,且f( √②)=1,则使a²f(x)<2成立的实数α的集合为( )A.(-w,-√2)U(√2,+c)B.(-√2,√2)C.(-w,√2)D.(√2,+α)44.已知函数f(a)为R上的可导函数,其导函数为f(x),且满足f(x)+f(a)<1恒成立,f(0)=2018,则不等式f(x)<2017e-3+1的解集为( )A.f(a)=x-sinzB.f(a-2)+f(a²)≥0D.f(x)=x³+a45. 【导函数构造法】已知定义在f(x)=x³+a上的可导函数f(a-2)+f(a²)≥0的导函数为f'(a),对任意实数z均有(1-x)f(a)+af'(x)>0成立,且y=f(x+1)-e是奇函数,则不等式af(x)-e³>0的解集是( )A.(-w,e)B.(e,+c)C.(-α,1)D.(1,+o)46. 【导函数构造法】已知定义域为R的函数的导函数为f'(x),并且满足f"(a)>f(a)+1,则下列正确的是()A.f(2018)-ef(2017)>e- 1B.f(2018)-ef(2017)<e- 1C.f(2018)-ef(2017)>e+1D.f(2018)-ef(2017)<e+147.(50)16【导函数类极值零点最值】 .关于a的方有两个不等实根,则实数k的取值范围是48. 【导函数类极值零点最值】已知函数f(a)=x(lnx-ax)有极值,则实数a的取值范围是( )B. D.49. 【导函数类极值零点最值】已知函数f(x)=e²>-ax²+bw-1,其中a,b∈R,e为自然对数的底数.若f(1)=0.f'(a)是f(x)的导函数,函数f(a)在区间(0,1)内有两个零点,则a的取值范围是( )A.(e²-3,e²+1)B.(e²-3,+o)C.(-w,2e²+2)D.(2e²-6,2e²+2)50. 【导函数类极值零点最值】已知a∈R,若区间(0,1)上有且只有一个极值点,则a的取值范围是( )A.a<0B.a>0C.a≤1D.a≥051. 【分析结构+换元法】若存在正实数m,使得关于α的方程α+a(2x+2m-tex)[ln(x+m)-lna]=0有两个不同的根,其中e为自然对数的底数,则实数a的取值范围是( D )A.(-α,0)B.(0,D. 152. 【函数性质+单调性】定义在w∈R上的函数f(x)在(-w,-2)上单调递增,且f(α-2)是偶函数,若对一切实数α,不等式f(2sinx-2)>f(sinx-1-m)恒成立,则实数m的取值范围为53. 【函数性质法-单调性+奇偶性】已知函,若f( - a)+f(a)≤2f(w),则实数的取值范围是( )A.(-w1)U[1,+o)B.[- 1,0]C.[0,1]D.[- 1,1]54. 【函数性质法】已知函数f(x)是偶函数,f(x)是奇函数,且对于任意αi,Xz∈[0,1],且ai≠α2,都有(x₁-x2)[f(a₁)-f'(x2)]<0, 则下列结论正确的是( )A.a>b>CB.b>a>cC.b>c>aD.c>a>b55. 【函数性质-周期函数法】设函数fo(n)=sing,定义fa(m)=f[fo(n)],fo(n)=f[fa(z)], …, fn(a)=f[fn-y(a)],则fa(15°)+fg(15°)+fo(15°)+…+foom(15°)的值是()B. C.0 D.156. 【函数性质-周期函数法】若函数y=f(x),A∈M对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数α,都有af(a)=f(x+T)恒成立,此时T为f(a)的假周期,函数f(a)是M上的a 级假周期函数.若函数f(w)是定义在区间(0,+o)内的3级假周期且T=2,当a∈(0,2),有:,若3αi∈[6,8],3αz∈(0,+w)使g(a2)-f(a₁)≤0成立,则实数m的取值范围是( )A. B.(-c,12) C.(-c,39) D.(12,+c)57. 【图像法十零点】已 ,若函数f(a)有四个零点,则实数a 的取值范围是( )A. B . (一w, - e) C.(e,+c) D.58. 【图像法+零点】已知函,若函数y=f(f(a)-a)- 1有三个零点,则实数 a 的取值范围是( B ).. 59. 【导数十零点】若函岁有三个不同的零点,则实数a 的取值范围是( ) A.(1 B. C. D.60. 【零点】已知关于的方程x²e²+t -a=0,m∈[-1,1],若对任意的t∈[1,3],该方程总存在唯一的实数解,则实数a 的取值范围是( )B. C. D. 1,e]61. 【零点】已知当a∈(1,+α)时,关于a 的方程有唯一实数解,则k 的范围为 ( )A.3,4)B.(4,5)C.(5,6)D.(6,7)62. 【考查三次函数值域】已知函数f(x)=(w-a)³ -3m+a(a>0)在[- 1,b]上的值域为[-2-2a,0],则b的取值范围是( )A..[0,3]B.[0,2]C.[2,3]D.(- 1,3)63. (【外接球与内切球】 .如图,圆形纸片的圆心为○,半径为6cm,该纸片上的正方形ABCD 的中心为O . E,F,G,H 为圆O 上的点,△ABE, △BCF, △CDG,△ADH 分别是以AB,BC,CD,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA 为折痕折起△ABE, △BCF, △CDG, △ADH,使得E ,F ,G ,H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为64. 【导数法】设函数f(a)=e² -3w,则关于函数y=f(x)说法错误的是( )A. 在区间(0,1),(1,+o)内均有零点B. 与y=lng 的图象有两个交点C . Vx ₁ ∈R,3x ₂ ∈R 使得f(a)在x=xi,x=az 处的切线互相垂直D . f(a)≥ - 1恒成立65. 【极值点偏移】已知函数y=e² -ax 有两个零点ai,Zz ,α₁<x2,则下面说法正确的是( )A.Qi+α₂<2B.a<eC.αjα₂>1D.有极小值点xg,且aj+x ₂<2o66. 【恒成立-分离参数法】已知函数f(a)=ax+alnx (a∈R)的图像在点处的切线斜率为1,当k∈Z 时,不等式f(x)-kx+k 在x∈(1,+o)上恒成立,则k 的最大值是( C )A.1B. 2C.3D.4 D C67.已知函数f(a)=ax,g(x)=lnz,存在t∈(0,e),使得f(t)-g(t)最小值为3,则函数g(a)=lnx图象上一点P到函数发f(a)=ax图象上一点Q的最短距离为( )A. B..√5 C.2√2 D.368. 【存在与任意】设函数f(a)=a²-wlnx+2,若存在区间,使f(a)在[a,b]上的值域为[k(a+2),k(b+2)],则k的取值范围是( )A. B. C. D.69.【存在与任意】已知函,g(a)=-ex²+aa(e是自然对数的底数),对任意的x∈R,存在],有f(x₁)≤g(x2),则a的取值范围为70. 【导数综合】已知函数f(x)=sinα-xcosx,现有下列结论:①当x ∈[0,π]时,f(x)≥0;②当0<a<β<π时,a-sinB>β ·s ina;③若对)恒成立,则m-n的最小值等于④已知k∈[0,1],当x;∈(0,2π)时,满足的个数记为n,则n的所有可能取值构成的集合为{0,1,2,3}.其中正确的个数为( )A.1B.2C.3D.471.(105)12【导数+隐含零点】已知函2,ag是函数f(a)的极值点。

压轴题10 导数的简单应用(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题10 导数的简单应用(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题10导数的简单应用题型/考向一:导数的计算及几何意义题型/考向二:利用导数研究函数的单调性题型/考向三:利用导数研究函数的极值、最值○热○点○题○型一导数的计算及几何意义1.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.2.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.3.导数中的公切线问题,重点是导数的几何意义,通过双变量的处理,从而转化为零点问题,主要考查消元、转化、构造函数、数形结合能力以及数学运算素养.一、单选题1.函数()()ln 322f x x x =--的图象在点()()1,1f 处的切线方程是()A .10x y ++=B .230x y ++=C .230x y --=D .30x y --=2.若函数()e ln xf x x a =++的图象在点()()1,1f 处的切线方程为1y kx =-,则=a ()A .1B .0C .-1D .e3.已知直线l 为曲线22ln y x x =-在1x =处的切线,则点()3,2-到直线l 的距离为()AB .10C .5D 4.若直线y x a =+与函数()x f x e =和()ln g x x b =+的图象都相切,则a b +=()A .1-B .0C .1D .35.曲线221e 24x y x -=⋅+在1x =处的切线与坐标轴围成的面积为()A .32B .3C .4916D .4986.已知函数()()21220232023ln 22f x x xf x '=-++-,则()2023f '=()A .2022B .2021C .2020D .20197.若对m ∀∈R ,,a b ∃∈R ,使得()()()f a f b f m a b-=-成立,则称函数()f x 满足性质Ω,下列函数不满足...性质Ω的是()A .()23f x x x=+B .()()211f x x =+C .()1ex f x -+=D .()()cos 12f x x =-8.已知函数()f x 的定义域是()(),00,∞-+∞U ,()f x '为()f x 的导函数,若()()()121f f x f x x'=+-,则()f x 在()0,∞+上的最小值为()A .4215-B 1C 1D 1二、多选题9.已知函数()332f x x ax =+-的极值点分别为()1212,x x x x <,则下列选项正确的是()A .0a >B .()()122f x f x +=C .若()20f x <,则1a >D .过()0,2仅能做曲线()=y f x 的一条切线10.若函数()()22ln 12x axf x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是()A .-1B .3C .1D .211.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数,记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数,以下四个函数在π0,2⎛⎫ ⎪⎝⎭上是凸函数的是()A .()sin cos f x x x=-B .()ln 3f x x x=-C .()331f x x x =-+-D .()exf x x -=12.设函数()y f x =在区间(),a b 上的导函数为()f x ,()f x 在区间(),a b 上的导函数为()f x '',若区间(),a b 上()0f x ''<,则称函数()f x 在区间(),a b 上为“凸函数”.已知()5421122012f x x mx x =--在()1,2上为“凸函数”则实数m 的取值范围的一个必要不充分条件为()A .1m >-B .m 1≥C .1m >D .0m >○热○点○题○型二利用导数研究函数的单调性利用导数研究函数单调性的关键(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.(2)单调区间的划分要注意对导数等于零的点的确认.(3)已知函数单调性求参数范围,要注意导数等于零的情况.一、单选题1.函数()2e =-xf x x 的单调递增区间为()A .(),0∞-B .()ln2,+∞C .(],ln2∞-D .[)0,∞+2.已知函数()2,0,ln ,,x a xf x x x a x⎧<<⎪⎪=⎨⎪≥⎪⎩若()f x 在()0,∞+上单调递减,则实数a 的取值范围是()A .21,e ⎡⎤⎣⎦B .[]e,2eC .2,e e ⎡⎤⎣⎦D .[)e,+∞3.设0.33e a -=,0.6e b =, 1.6c =,则()A .c b a <<B .c a b <<C .b a c <<D .b c a<<4.若函数()y f x =满足()()xf x f x '>-在R 上恒成立,且a b >,则()A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <5.已知()f x 是定义在R 上的偶函数,当0x ≥时,()e sin xf x x =+,则不等式()π21e f x -<的解集是()A .1π,2+⎛⎫+∞⎪⎝⎭B .1π0,2+⎛⎫⎪⎝⎭C .π1e 0,2⎛⎫+ ⎪⎝⎭D .1π1π,22-+⎛⎫⎪⎝⎭6.已知函数()f x 与()g x 定义域都为R ,满足()()()1e xx g x f x +=,且有()()()0g x xg x xg x ''+-<,()12e g =,则不等式()4f x <的解集为()A .()1,4B .()0,2C .(),2-∞D .()1,+∞7.已知函数()x f x e =,若存在0[1,2]x ∈-使得00()()f t x f x t =+-恒成立,则0()b f x t =-的取值范围()A .10,1e ⎡⎤+⎢⎥⎣⎦B .211,e 2e⎡⎤+-⎢⎥⎣⎦C .11,1e ⎡⎤+⎢⎥⎣⎦D .21,e 2⎡⎤-⎣⎦8.已知函数()312x f x x +=+,()()42e xg x x =-,若[)12,0,x x ∀∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值范围是()A .21,e e ⎡⎤⎢⎥⎣⎦B .22,e ⎤-⎦C .)2⎡++∞⎣D .()2e,⎡+∞⎣二、多选题9.已知函数()(1)e x f x x =+的导函数为()f x ',则()A .函数()f x 的极小值点为21e -B .(2)0f '-=C .函数()f x 的单调递减区间为(,2)-∞-D .若函数()()g x f x a =-有两个不同的零点,则21(,0)e a ∈-10.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭三、解答题11.已知函数()321132f x x ax =-,a ∈R .(1)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)讨论()f x 的单调性.12.已知函数()222ln 12x x f x x-+=.求函数()f x 的单调区间;○热○点○题○型三利用导数研究函数的极值、最值1.由导函数的图象判断函数y =f (x )的极值,要抓住两点(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点.(2)由y =f ′(x )的图象可以看出y =f ′(x )的函数值的正负,从而可得到函数y =f (x )的单调性,可得极值点.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值.(2)求函数在区间端点处的函数值f (a ),f (b ).(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.一、单选题1.函数()32142f x x x x =+-的极小值为()A .43-B .1C .52-D .104272.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ()A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点3.已知函数()π2sin 3f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在()0,π上有3个极值点,则ω的取值范围为()A .13,6⎛⎫+∞ ⎪⎝⎭B .1319,66⎡⎤⎢⎥⎣⎦C .1319,66⎛⎤ ⎥⎝⎦D .713,66⎛⎤ ⎥⎝⎦4.已知函数()2e ln 2xx f x x =+-的极值点为1x ,函数()ln 2x h x x =的最大值为2x ,则()A .12x x >B .21x x >C .12x x ≥D .21x x ≥5.若函数()3222f x x ax a x =++在1x =处有极大值,则实数a 的值为()A .1B .1-或3-C .1-D .3-6.已知函数()()2ln 11f x x x =+++,则()A .0x =是()f x 的极小值点B .1x =是()f x 的极大值点C .()f x 的最小值为1ln 2+D .()f x 的最大值为37.若函数()3e 3ln x f x a x x x ⎛⎫=-+ ⎪⎝⎭只有一个极值点,则a 的取值范围是()A .2e ,4⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .(]3e ,09⎧⎫-∞⎨⎬⎩⎭ D .32e e ,49 纟禳镲çú-¥睚çú镲棼铪8.已知定义域为()0,∞+的函数()f x 满足()1()1f x xf x x'+=+,()10f '=,()1122g x a ax x=+--,若01a <<,则()()f x g x -的极值情况是()A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极小值,也无极大值二、多选题9.已知函数()2211e e x x f x -+=+,则()A .()f x 为奇函数B .()f x 在区间()0,2上单调递减C .()f x 的极小值为22e D .()f x 的最大值为411e +10.设函数()ln xf x ax x=-,若函数()f x 有两个极值点,则实数a 的值可以是()A .12B .18C .2D .14-三、解答题11.已知函数()()322113f x x ax a x b =-+-+(a ,b ∈R ),其图象在点()()1,1f 处的切线方程为30x y +-=.(1)求a ,b 的值;(2)求函数()f x 的单调区间和极值;(3)求函数()f x 在区间[]2,5-上的最大值.12.已知函数()ln xf x x a=+,其中a 为常数,e 为自然对数的底数.(1)当1a =-时,求()f x 的单调区间;(2)若()f x 在区间(]0,e 上的最大值为2,求a 的值.。

导数压轴小题精选80题(含答案解析)

导数压轴小题精选80题(含答案解析)

专治学霸不服——导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357A. (−∞,−1]∪[1,+∞)B. [−1,0]C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞)C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( )A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e ) B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( )高中数学资料共享群QQ 群号:734924357A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( ) A. 3f (ln2)>2f (ln3) B. 3f (ln2)=2f (ln3) C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞) C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( ) A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( )A. (0,π4) B. (0,π4] C. (0,π3) D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足 fʹ(x 1)=f (b )−f (a )b−a ,fʹ(x 2)=f (b )−f (a )b−a,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( )A. (0,12e ) B. (−∞,12e ) C. (12e ,+∞) D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1) 若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )高中数学资料共享群QQ 群号:734924357 A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( )A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. [−1,1]B. [−1,13]C. [−13,13]D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1) 时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x 2e x 1>x 1e x 2D. x 2e x 1<x 1e x 264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )高中数学资料共享群QQ群号:734924357A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( ) A. (−∞,0)B. (0,12e )C. (−∞,0)∪(12e ,+∞)D. (12e ,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数 f (x )=e x (x 3−3x +3)−ae x −x (x ≥−2),若不等式 f (x )≤0有解.则实数 a 的最小值为 ( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.高中数学资料共享群QQ群号:734924357所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].4. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],高中数学资料共享群QQ群号:734924357所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).22. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .28. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。

导数压轴大题归类 (解析版)

导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。

导数(历届高考压轴题)

导数(历届高考压轴题)

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23m x f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.(I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.已知函数()ln(1)(1)1=---+.f x x k x(I)当1k=时,求函数()f x的最大值;(II)若函数()f x没有零点,求实数k的取值范围6.已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性; (II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意7.设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值; (II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '.8.定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.9.(全国卷22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=xlnx,(i)求函数f(x)的最大值;(ii)设0<a<b,证明0<g(a)+g(b)-2g(2ba )<(b-a)ln2.10.(2009全国卷Ⅱ理)(本小题满分12分)设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x <(I )求a 的取值范围,并讨论()f x 的单调性;(II )证明:()21224In f x ->11.(1)已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+; (2)已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。

导数压轴题

导数压轴题

导数压轴题(1)一.解答题(共21小题)1.(2011•黑龙江一模)巳知函数f(x)=x2﹣2ax﹣2alnx(x>0,a∈R,g(x)=ln2x+2a2+.(1)证明:当a>0时,对于任意不相等的两个正实数x1、x2,均有>f()成立;(2)记h(x)=,(i)若y=h′(x)在[1,+∞)上单调递增,求实数a的取值范围;(ii)证明:h(x)≥.2.设函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.3.已知函数f(x)=(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设g(x)=x2+2x+3,证明:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2).4.已知函数f(x)=ax2﹣(2a+1)x+lnx,a∈R,(I)讨论函数f(x)的单调性;(II)设a<﹣1,证明:对任意x1,x2∈(2,+∞),|f (x1)﹣f(x2)|≥2|x1﹣x2|.5.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).6.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.7.(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.(Ⅰ)当a>0时,求函数f(x)的单调区间;(Ⅱ)函数F(x)=f(x)﹣xlnx在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;(Ⅲ)若f(x)≥0对任意x≥0恒成立,求a的取值范围.9.(2014•重庆一模)已知函数f(x)=tx﹣t﹣lnx(t>0).(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求实数t 的取值范围;(Ⅱ)当n≥2且n∈N*时,证明:.10.(2014•钟祥市模拟)已知函数f(x)=e x﹣1﹣ax,(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)试探究函数F(x)=f(x)﹣xlnx在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由.(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,且f(g(x))<f (x)在x∈(0,+∞)上恒成立,求实数a的取值范围.11.(2014•资阳二模)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数).(Ⅰ)若k<0,试判断函数f(x)在区间(0,+∞)上的单调性;(Ⅱ)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明0<f(x1)<1.12.(2014•张掖一模)已知函数f(x)=lnx,g(x)=+bx﹣1,(1)当a=0且b=1时,证明:对∀x>0,f(x)≤g(x);(2)若b=2,且h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;(3)数列{a n},若存在常数M>0,∀n∈N*,都有a n<M,则称数列{a n}有上界.已知b n=1++…+,试判断数列{b n}是否有上界.13.(2014•张掖模拟)已知函数f(x)=[ax2+(a﹣1)2x﹣a2+3a﹣1]e x(a∈R).(Ⅰ)若函数f(x)在(2,3)上单调递增,求实数a 的取值范围;(Ⅱ)若a=0,设g(x)=+lnx﹣x,斜率为k的直线与曲线y=g(x)交于A(x1,y1),B(x2,y2)(其中x1<x2)两点,证明:(x1+x2)k>2.14.(2014•宜昌二模)已知函数f(x)=.(1)当a=1,求函数y=f(x)的图象在x=0处的切线方程;(2)若函数f(x)在(0,1)上单调递增,求实数a(3)已知x,y,z均为正实数,且x+y+z=1,求证:++≤0.15.(2014•阳泉二模)已知函数f(x)=21nx+ax2﹣1 (a∈R)(I)求函数f(x)的单调区间;(Ⅱ)若a=1,试解答下列两小题.(i)若不等式f(1+x)+f(1﹣x)<m对任意的0<x<l恒成立,求实数m的取值范围;(ii)若x1,x2是两个不相等的正数,且以f(x1)+f (x2)=0,求证:x1+x2>2.16.(2014•信阳一模)已知m∈R,函数f(x)=(x2+mx+m)•e x.(Ⅰ)当m<2时,求函数f(x)的极大值;(Ⅱ)当m=0时,求证:f(x)≥x2+x3.17.(2014•乌鲁木齐一模)已知函数f(x)=e x﹣e﹣x(xϵR)(Ⅰ)求证:当x≥0时,;(Ⅱ)试讨论函数H(x)=f(x)﹣ax(x∈R)的零点个数.18.(2014•文登市二模)已知函数f(x)=ax2﹣(2a+1)x+2lnx(a>0).(Ⅰ)若a=,求f(x)在[1,3]上的最大值;(Ⅱ)若a≠,求函数f(x)的单调区间;(Ⅲ)当<a<1时,判断函数f(x)在区间[1,2]上有无零点?写出推理过程.19.(2014•潍坊模拟)已知函数f(x)=ax+lnx,函数g (x)的导函数g′(x)=e x,且g(0)g′(1)=e,其中e为自然对数的底数.(Ⅰ)求f(x)的极值;(Ⅱ)若∃x∈(0,+∞),使得不等式成立,试求实数m的取值范围;(Ⅲ)当a=0时,对于∀x∈(0,+∞),求证:f(x)<g (x)﹣2.20.(2014•太原二模)设函数f(x)=x2+aln(x+1)(a 为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单凋递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.21.(2014•深圳一模)已知函数.(1)求f(x)在上的最大值;(2)若直线y=﹣x+2a为曲线y=f(x)的切线,求实数a的值;(3)当a=2时,设,且x1+x2+…+x14=14,若不等式f(x1)+f(x2)+…+f(x14)≤λ恒成立,求实数λ的最小值.参考答案与试题解析(1)首先分别求出与f();然后通过作差法或基本不等式等知识比较两代数式中部分的大小;最后得出两代数式整体的大小.(2)(i)首先求出h(x)及其导函数h′(x);然后根据y=h′(x)在[1,+∞)上单调递增,得y=h′(x)的导函数大于等于0恒成立,则利用分离参数的方法可得关于a的不等式a≥﹣x2+lnx﹣1(x≥1)恒成立;再运用导数法求出﹣x2+lnx﹣1的最大值,此时a≥[﹣x2+lnx﹣1]max即可.(ii)首先把h(x)表示成a为主元的函数h(x)=a2﹣(x+lnx)a+(x2+ln2x)+;然后利用配方法得P(a)=a2﹣(x+lnx)a+(x2+ln2x)=(a﹣)2+≥;再通过构造函数Q(x)=x﹣lnx,并由导数法求其最小值进而得P(a)的最小值;最后得h(x)的最小值,即问题得证.解答:(1)证明:由题意得,=﹣a(x1+x2)﹣aln(x1x2),f()=﹣a(x1+x2)﹣2aln=﹣a(x1+x2)﹣aln∵﹣=>0(x1≠x2),∴>①又∵0<x1x2<∴lnx1x2<ln∵a>0∴﹣alnx1x2>﹣aln②由①②知>f().(2)(i)解:h(x)==x2﹣ax ﹣alnx+ln2x+a2+.∴h′(x)=x﹣a﹣+令F(x)=h′(x)=x﹣a﹣+,则y=F(x)在[1,+∞)上单调递增.∴F′(x)=,则当x≥1时,x2﹣lnx+a+1≥0恒成立.即x≥1时,a≥﹣x2+lnx﹣1恒成立.令G(x)=﹣x2+lnx﹣1,则当x≥1时,G′(x)=<0.∴G(x)=﹣x2+lnx﹣1在[1,+∞)上单调递减,从而G(x)max=G(1)=﹣2.故a≥G(x)max=﹣2.即a的取值范围是[﹣2,+∞).(ii)证明::h(x)=x2﹣ax﹣alnx+ln2x+a2+=a2﹣(x+lnx)a+(x2+ln2x)+.令P(a)=a2﹣(x+lnx)a+(x2+ln2x),则P(a)=(a﹣)2+≥.令Q(x)=x﹣lnx,则Q′(x)=1﹣=.显然Q(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则Q(x)min=Q(1)=1,则P(a)≥.故h(x)≥+=.解:(Ⅰ).(2分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g(x)=ax﹣f(x),则==.故当时,g'(x)≥0.又g(0)=0,所以当x≥0时,g(x)≥g(0)=0,即f(x)≤ax.(9分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0时,有.因此,a的取值范围是.(12分)法二:(Ⅱ)应用洛必达法则和导数sin()2cosxf x axx=≤+若0x=,则a R∈;若0x>,则sin2cosxaxx≤+等价于sin(2cos)xax x≥+,即sin()(2cos)xg xx x=+则222cos2sin sin cos'()(2cos)x x x x x xg xx x--+=+.记()2cos2sin sin cosh x x x x x x x=--+,2'()2cos2sin2cos cos212sin cos212sin2sin2sin(sin) h x x x x x xx x x x x x x x x=---+=--+=-=-】因此,当(0,)xπ∈时,'()0h x<,()h x在(0,)π上单调递减,且(0)0h=,故'()0g x<,所以()g x在(0,)π上单调递减,而000sin cos1lim()lim lim(2cos)2+cos sin3x x xx xg xx x x x x→→→===+-.另一方面,当[,)xπ∈+∞时,sin111()(2cos)3xg xx x xπ=≤≤<+,因此13a≥.解答:解:(Ⅰ)∵f′(x)==设,则>0,∴h(x)在(1,+∞)是增函数,又h(2)=0,∴当x∈(1,2)时,h(x)<0,则f′(x)<0,f(x)是单调递减函数;当x∈(2,+∞)时,h(x)>0,则f′(x)>0,f(x)是单调递增函数.综上知:f(x)在(1,2)单调递减函数,f(x)在(2,+∞)单调递增函数.(Ⅱ)对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2)恒成立,等价于f(x)>g(x)min恒成立,而g(x)min=2,即证f(x)>2恒成立.等价于﹣2>0,也就是证[ln(x﹣1)+﹣2]>0设G(x)=ln(x﹣1)+﹣2,G′(x)=﹣=≥0∴G(x)在(1,+∞)单调递增函数,又G(2)=0∴当x∈(1,2)时,G(x)<0,则[ln(x﹣1)+﹣2]>0当x∈(2,+∞)时,G(x)>0,则[ln(x﹣1)+﹣2]>0综上可得:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2)分(Ⅰ)求出函数定义域及导数f′(x)=,分①a=0,②0<a<,③a=,④a>,⑤a<0五种情况进行讨论解不等式f′(x)>0,f′(x)<0,解出不等式即为单调区间;(Ⅱ)证明不等式|f(x1)﹣f(x2)|≥2|x1﹣x2|,即≥2,可证明|f′(x)|≥2,利用导数可转化为函数的最值问题证明;解答:解:(Ⅰ)函数的定义域为(0,+∞).f′(x)=2ax﹣(2a+1)+==,①若a=0,则f′(x)=,当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减;②若0<a<,令f′(x)>0,得0<x<1或x>,令f′(x)<0,得1<x<,所以f(x)在(0,1),(,+∞)上递增,在(1,)上递减;③若a=,f′(x)=≥0,f(x)在(0,+∞)上单调递增;令f′(x)>0,得0<x<,或x>1,令f′(x)<0,得<x<1,所以f(x)在(0,),(1,+∞)上单调递增,在(,1)上单调递减;⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,所以f(x)在(0,1)上递增,在(1,+∞)上递减;综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<时,f(x)在(0,1),(,+∞)上递增,在(1,)上递减;a=时,f(x)在(0,+∞)上单调递增;a>时,f(x)在(0,),(1,+∞)上单调递增,在(,1)上单调递减;a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;(Ⅱ)|f(x1)﹣f(x2)|≥2|x1﹣x2|,即≥2,所以有|f′(x)|≥2.所以证明对任意x1,x2∈(2,+∞),|f(x1)﹣f (x2)|≥2|x1﹣x2|,≥2对任意x∈(2,+∞)成立,也即证明2a≤(x>2),令g(x)=(x>2),则g′(x)=,当x>2时,g′(x)>0,所以g(x)在(2,+∞)上单调递增,g(x)>g(2)=﹣,而a<﹣1时,2a<﹣2,所以2a<﹣<g(x),即2a≤(x>2)成立.故a<﹣1时,对任意x1,x2∈(2,+∞),|f(x1)﹣f(x2)|≥2|x1﹣x2|.分析:(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f(x)=x﹣ln(x+a)的最小值为0,即可求得a的值;(2)当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意;当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数,令g′(x)=0,可得x1=0,,分类讨论:①当k≥时,,g(x)在(0,+∞)上单调递减,g(x)≤g(0)=0;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,,由此可确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤x2,从而可得,由此可证结论.(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,因此取时,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴(i≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,(n∈N*).试题分为三问,题面比较简单,给出的函数比较常分(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.解答:解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x≥0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).7.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.分(Ⅰ)直接对f(x)求导,当a>0时,f′(x)=e x ﹣a的正负即可确定函数f(x)单调区间;(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=(x>0),研究函数h(x)的单调性和最小值,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)求f(x)的导数,利用导数研究函数f(x)确定f(x)的最值,即可确定实数a的取值范围.解答:解:(Ⅰ)由f(x)=e x﹣ax﹣1,则f′(x)=e x﹣a.由f′(x)>0,得x>lna;由f′(x)<0,得x<lna,所以函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna);(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得(x>0)令h(x)=(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故h(x)≥h(1)=e﹣1.又由(Ⅰ)知当a=1时,对∀x>0,有f(x)>f(lna)=0,即,当a>e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1时,函数F(x)有且仅有一个零点;当a<e﹣1时,函数F(x)没有零点.(Ⅲ)由f(x)=e x﹣ax﹣1,则f′(x)=e x﹣a.①当a≤1时,对∀x≥0,有f′(x)>0,所以函数f(x)在区间(0,+∞)上单调递增,又f(0)=0,即f(x)≥f(0)=0对∀x≥0恒成立.②当a>1时,由(Ⅰ),f(x)单调递增区间为(lna,+∞),单调递减区间为(﹣∞,lna),若f(x)≥0对任意x≥0恒成立,只需f(x)min=f(lna)=a﹣alna﹣1≥0,令g(a)=a﹣alna﹣1(a>1),g′(a)=1﹣lna﹣1=﹣lna<0,即g(a)在区间(1,+∞)上单调递减,又g(1)=0,故g(a)<0在(1,+∞)上恒成立,故当a>1时,满足a﹣alna﹣1≥0的a不存在.综上所述,a的取值范围是(﹣∞,1].(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求实数t 的取值范围;(Ⅱ)当n≥2且n∈N*时,证明:.分析:(Ⅰ)由f(x)在[1,+∞)上为增函数,得在x∈[1,+∞)上恒成立,分离参数t后化为函数最值解决;(Ⅱ)由(I)可知当t=1,x≥1时,f(x)≥f(1)=0,从而可得x﹣1≥lnx(当x=1时,等号成立),可证x∈(0,1]时,也有x﹣1≥lnx在(0,1]恒成立,从而有x∈(0,+∞)时,x﹣1≥lnx…①恒成立,(当且仅当x=1时,等号成立),用x代替x﹣1,得x≥ln(x+1)…②恒成立(当且仅当x=0时,等号成立),则k≥2时,k∈N*,由①得k﹣1>lnk,即,由②得.进而可得当k≥2,k∈N*时,,即.令k=2,3,…n,然后把各式累加可得结论;解答:解:(I)函数f(x)=tx﹣t﹣lnx的定义域为(0,+∞).∵f(x)在[1,+∞)上为增函数,∴在x∈[1,+∞)上恒成立,即在x∈[1,+∞)上恒成立,∵,∴t≥1,∴t的取值范围为[1,+∞).(Ⅱ)由(I)当t=1,x≥1时,f(x)≥f(1),又f(1)=0,∴x﹣1﹣lnx≥0(当x=1时,等号成立),即x﹣1≥lnx.又当x∈(0,1]时,设g(x)=x﹣1﹣lnx,则,∴g(x)在(0,1]上递减,∴g(x)≥g(1)=0,即x﹣1≥lnx在(0,1]恒成立,∴x∈(0,+∞)时,x﹣1≥lnx…①恒成立,(当且仅当x=1时,等号成立),用x代替x﹣1,则x≥ln(x+1)…②恒成立(当且仅当x=0时,等号成立),∴当k≥2时,k∈N*,由①得k﹣1>lnk,即,当k≥2时,k∈N*,,由②得.∴当k≥2,k∈N*时,,即.∴,,,….∴.分(Ⅰ)直接对f(x)求导,讨论a≤0和a>0时,f′(x)=e x﹣a的正负即可确定函数f(x)单调区间;(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=,研究函数h(x)的单调性和最小值,从而画出h(x)的简图,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)构造函数H(x)=xe x﹣e x+1,(x>0),求其导数,利用导数研究函数H(x)的单调性,从而确定H(x)的最值,可得到H(x)>H(0)=0,然后讨论a的取值即可确定实数a的取值范围.解答:解:(Ⅰ)∵f(x)=e x﹣1﹣ax,(x∈R,a∈R),∴f′(x)=e x﹣a,①当a≤0时,则∀x∈R有f′(x)>0,∴函数f(x)在区间(﹣∞,+∞)单调递增;②当a>0时,f′(x)>0⇒x>lna,f′(x)<0⇒x<lna∴函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).综合①②的当a≤0时,函数f(x)的单调增区间为(﹣∞,+∞);当a>0时,函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).(Ⅱ)函数F(x)=f(x)﹣xlnx定义域为(0,+∞),又,令h(x)=,则h′(x)=,∴h′(x)>0⇒x>1,h′(x)<0⇒0<x<1,∴函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∴h(x)≥h(1)=e﹣1由(1)知当a=1时,对∀x>0,有f(x)>f(lna)=0,即∴当x>0且x趋向0时,h(x)趋向+∞随着x>0的增长,y=e x﹣1的增长速度越来越快,会超过并远远大于y=x2的增长速度,而y=lnx的增长速度则会越来越慢.故当x>0且x趋向+∞时,h(x)趋向+∞.得到函数h(x)的草图如图所示故①当a>e﹣1时,函数F(x)有两个不同的零点;②当a=e﹣1时,函数F(x)有且仅有一个零点;③当a<e﹣1时,函数F(x)无零点;(Ⅲ)由(2)知当x>0时,e x﹣1>x,故对∀x >0,g(x)>0,先分析法证明:∀x>0,g(x)<x要证∀x>0,g(x)<x只需证即证∀x>0,xe x﹣e x+1>0构造函数H(x)=xe x﹣e x+1,(x>0)∴H′(x)=xe x>0,∀x>0故函数H(x)=xe x﹣e x+1在(0,+∞)单调递增,∴H(x)>H(0)=0,则∀x>0,xe x﹣e x+1>0成立.①当a≤1时,由(1)知,函数f(x)在(0,+∞)单调递增,则f(g(x))<f(x)在x∈(0,+∞)上恒成立.②当a>1时,由(1)知,函数f(x)在(lna,+∞)单调递增,在(0,lna)单调递减,故当0<x<lna时,0<g(x)<x<lna,∴f(g(x))>f(x),则不满足题意.综合①②得,满足题意的实数a的取值范围(﹣∞,1].11解答:解:(Ⅰ)由f′(x)=ke x﹣2x可知,当k<0时,由于x∈(0,+∞),f′(x)=ke x﹣2x<0,故函数f(x)在区间(0,+∞)上是单调递减函数.(Ⅱ)当k=2时,f(x)=2e x﹣x2,则f′(x)=2e x﹣2x,令h(x)=2e x﹣2x,h′(x)=2e x﹣2,由于x∈(0,+∞),故h′(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f′(x)=2e x ﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(Ⅲ)函数f(x)有两个极值点x1,x2,则x1,x2是f′(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ′(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ′(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ′(x)<0,函数φ(x)单调递减且φ(x)>0.要使有两个根,只需.故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由,得,∴,由于x1∈(0,1),故,(1)把f(x)和g(x)作差后构造辅助函数,然后利用导数求函数的最值,由最值的符号得到要证明的结论;(2)由h(x)=f(x)﹣g(x)存在单调递减区间,得其导函数小于0在定义域内有解,由导函数分离变量a后换元,然后利用配方法求得分离变量后的代数式的值域,则实数a的范围可求;(3)令,则,由(1)得到不等式,累加后可证明数列{b n}无上界.(1)证明:当a=0且b=1时,设g(x)=f(x)﹣g(x)=lnx﹣(x﹣1)=lnx﹣x+1,对∀x>0,,解g′(x)=0,得x=1.当0<x<1时,,g(x)单调递增;当x>1时,,g(x)单调递减,∴g(x)在x=1处取最大值,即∀x>0,g(x)≤g(1)=ln1﹣1+1=0,lnx≤x ﹣1,即f(x)≤g(x);(2)解:当b=2时,h(x)=f(x)﹣g(x)=,∴,∵函数h(x)存在单调递减区间,∴h'(x)<0在(0,+∞)上有解,∴ax2+2x﹣1>0在(0,+∞)上有解,∴在(0,+∞)上有解,即∃x∈(0,+∞),使得,令,则t>0,则y=t2﹣2t=(t﹣1)2﹣1,t>0,当t=1时,ymin=﹣1∴a>﹣1;(3)解:数列{b n}无上界∀n∈N*.设,,由(1)得,,,∴=ln(n+1),∀M>0,取n为任意一个不小于e M的自然数,则,∴数列{b n}无上界.本题考查利用导数研究函数的最值,主要用导函数构造法和数学转化思想方法,解答(3)的关键是借助于(1)的结论得到含有自然数n的不等式,是难度较大的题目.分(Ⅰ)首先求出函数f(x)的导数f'(x),对a讨论,分a≥0,a<0①﹣1<a<0,②a=﹣1,③a<﹣1,分别求出单调区间,再求并集;(Ⅱ)化简a=0时的g(x),由两点的斜率公式写出k,运用分析法证(x1+x2)k>2,注意运用对数的运算法则和同时除以x1的变形,再令,构造函数h(x)=lnx﹣(x>1),求出导数,求出单调区间,运用单调性说明h(x)>0成立即可.解答:解:(Ⅰ)函数f(x)的导数f'(x)=[2ax+(a﹣1)2]•e x+[ax2+(a﹣1)2x+a﹣(a﹣1)2]•e x=[ax2+(a2+1)x+a]•e x,当a≥0时,∵x∈(2,3),∴f'(x)>0,∴f(x)在(2,3)上单调递增,当a<0时,∵f(x)在(2,3)上单调递增,∴f'(x)=a(x+a)(x+)•e x≥0,①当﹣1<a<0时,解得﹣a≤x≤﹣,由题意知(2,3)⊆[﹣a,﹣],得≤a<0,②当a=﹣1时,f'(x)=﹣(x﹣1)2•e x≤0,不合题意,舍去,③当a<﹣1时,解得≤x≤﹣a,则由题意知(2,3)⊆[﹣,﹣a],得a≤﹣3,综上可得,实数a的取值范围是(﹣∞,﹣3]∪[﹣,+∞);(Ⅱ)a=0时,g(x)=+lnx﹣x=lnx﹣1,k=,∵x2﹣x1>0,要证(x2+x1)k>2,即证(x1+x2)>2,即证ln﹣>0(>1),设h(x)=lnx﹣(x>1),h'(x)=﹣=>0,∴h(x)在(1,+∞)上单调递增,h(x)>h(1)=0,∴ln﹣>0(>1)成立,即(x1+x2)k>2成立.14.析:(1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1)上恒成立,构造h(x)=(x+1)ln(x+1)﹣x,证明h (x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;(3)由(2)知,当a=﹣1时,f(x)=在(0,1)上单调递增,证明(3x﹣1)f(x)≥(3x﹣1)•,即≤(3x﹣1)•,从而可得结论.答:(1)解:当a=1时,f(x)=,则f(0)=0,f′(x)=,∴f′(0)=1,∴函数y=f(x)的图象在x=0处的切线方程为y=x;(3分)(2)解:∵函数f(x)在(0,1)上单调递增,∴ax+1=0在(0,1)上无解当a≥0时,ax+1=0在(0,1)上无解满足当a<0时,只需1+a≥0,∴﹣1≤a<0 ①(5分)f′(x)=∵函数f(x)在(0,1)上单调递增,∴f′(x)≥0在(0,1)上恒成立即a[(x+1)ln(x+1)﹣x]≤1在(0,1)上恒成立设h(x)=(x+1)ln(x+1)﹣x,则h′(x)=ln(x+1),∵x∈(0,1),∴h′(x)>0,∴h(x)在(0,1)上单调递增∴h(x)在(0,1)上的值域为(0,2ln2﹣1)(7分)∴a≤在(0,1)上恒成立,∴a≤②综合①②得实数a的取值范围为[﹣1,](9分)(3)证明:由(2)知,当a=﹣1时,f(x)=在(0,1)上单调递增(10分)于是当0<x≤时,f(x)=≤f()=当≤x<1时,f(x)=≥f()=(12分)∴(3x﹣1)f(x)≥(3x﹣1)•,即≤(3x﹣1)•,同理有≤(3y﹣1)•,≤(3z﹣1)•,三式相加得:++≤0.(14分).(分,令f′(x)>0,分类讨论可得函数的单调区求出g(t)min,即可证得结论.(I)解:函数f(x)的定义域为(0,+∞),f′(x)=令f′(x)>0,∵x>0,∴2ax2+2>0①当a≥0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)递增区间是(0,+∞);②当a<0时,由2ax2+2>0可得<x<x>0,∴f(x)递增区间是(0,),递减区间为;(Ⅱ)(i)解:设F(x)=f(1+x)+f(1﹣x)=2ln(1+x)+2ln(1﹣x)+2x2,则F′(x)=∵0<x<l,∴F′(x)<0在(0,1)上恒成立,∴F(x)在(0,1)上为减函数∴F(x)<F(0)=0,∴m≥0,∴实数m的取值范围为[0,+∞);(ii)证明:∵f(x1)+f(x2)=0,∴21nx1+x12﹣1+21nx2+x22﹣1=0∴2lnx1x2+(x1+x2)2﹣2x1x2﹣2=0∴(x1+x2)2=2x1x2﹣2lnx1x2+2设t=x1x2,则t>0,g(t)=2t﹣2lnt+2,∴g′(t)=令g′(t)>0,得t>1,∴g(t)在(0,1)上单调递减,在(1,+∞)上单调递增∴g(t)min=g(1)=4,∴(x1+x2)2>4,∴x1+x2奇偶性和单调性,研究函数零点的个数.答:解:(Ⅰ)令则g'(x)=f'(x)﹣2﹣x2=e x+e﹣x﹣2﹣x2,g''(x)=f(x)﹣2x,∵g'''(x)=f'(x)﹣2=e x+e﹣x﹣2当x≥0时,e x>0,e﹣x>0,∴∴g'''(x)≥0,∴函数y=g''(x)(x≥0)为增函数,∴g''(x)≥g''(0)=0,即f(x)﹣2x≥0∴函数y=g'(x)(x≥0)为增函数,∴g'(x)≥g'(0)=0,即e x+e﹣x≥2+x2∴函数y=g(x)(x≥0)为增函数,∴g(x)≥g(0)=0,即当x≥0时,成立;(Ⅱ)(1)当a≤2时,∵H(x)=f(x)﹣ax∴∴函数y=H(x)(x∈R)为增函数,当x>0时,H(x)>H(0)=0,当x<0时,H (x)<H(0)=0,∴当a≤2时,函数y=H(x)的零点为x=0,其零点个数为1个(2)当a>2时,∵对∀x∈R,H(﹣x)=﹣H(x)∴函数y=H(x)为奇函数,且H(0)=0下面讨论函数y=H(x)在x>0时的零点个数:由(Ⅰ)知,当x0>0时,,令∴则,H''(x)=f''(x)=e x﹣e﹣x当x>0时,e x>1,0<e﹣x<1,∴e x﹣e﹣x>0,∴H''(x)>0∴函数y=H'(x)(x>0)为增函数∴当0<x≤x0时,H'(x)≤H'(x0)=0;当x>x0时,H'(x)≥H'(x0)=0∴函数y=H(x)(x>0)的减区间为(0,x0],增区间为(x0,+∞)∴当0<x<x0时,H(x)<H(0)=0即对∀x0∈(0,x0]时,H(x)<0又由(Ⅰ)知,=当x0>0时,由③知,∴故,当时,∴,即H(x)>0由函数y=H(x)(x≥x0)为增函数和⑥⑦及函数零点定理知,存在唯一实数使得H(x*)=0,又函数y=H(x),x∈R为奇函数∴函数y=H(x),x∈R,有且仅有三个零点.本题(Ⅰ)通过三阶导数的研究,逐步通过导函数性研究零点,对学生计算能力和表达能力要求高.分(Ⅰ)求出a=的函数f(x)的导数,分别令f'(x)≥0,f'(x)≤0,求出f(x)在[1,3]上的单调性,从而确定极大值点2,也是最大值点,写出最大值;(Ⅱ)先求导数,并分解因式,讨论与2的大小,注意a>0,分别求出函数f(x)的单调区间;(Ⅲ)根据(Ⅱ)求出函数f(x)在区间[1,2]上的极大值,也是最大值且为f(),根据条件,说明最大值小于0即可.解答:解:(Ⅰ)当,,,当x∈[1,2]时f'(x)≥0,f(x)在[1,2]是增函数,当x∈[2,3]时f'(x)≤0,f(x)在[2,3]是减函数,∴f(x)的极大值也是最大值,且为;(Ⅱ)∵f'(x)=ax﹣(2a+1)+(x>0),即f'(x)=(x>0),当>2时,即0<a<时,由f'(x)>0得x>或x<2,由f'(x)<0,得2<x<,∴当0<a<,f(x)的单调增区间是(0,2]和[,+∞),单调减区间是[2,],同理当a>,f(x)的单调增区间是(0,]和[2,+∞),单调减区间是[,2];(Ⅲ)由(Ⅱ)知,当<a<1时,f(x)在[1,]上单调递增,在[,2]上单调递减,∴f(x)的极大值为f(),也是最大值f(x)max=f()=﹣2﹣﹣2lna,由<a<1,可知﹣2﹣2lna<0,f(x)max<0,∴在区间[1,2]上,f(x)<0恒成立,∴当a>时,函数f(x)在区间[1,2]上没有零点.点评:本题是导数在函数中的综合运用,考查运用导数则一定为最值的结论的运用..析:(Ⅰ)求出函数f(x)的定义域,求出导数f'(x)=a+,分a≥0,a<0两种情况进行讨论,a≥0时由单调性易判断;当a<0时可得极值;(Ⅱ)由g'(x)=e x,可设g(x)=e x+c,再由g(0)g'(1)=e可得g(x成立,分离出参数m后可得,令,则问题可转化为:m<h(x)max,利用导数可求得h(x)max;(Ⅲ)a=0时,f(x)=lnx,令φ(x)=g(x)﹣f (x)﹣2,则φ(x)=e x﹣lnx﹣2,,且φ'(x)在(0,+∞)上为增函数,设φ'(x)=0的根为x=t,则,即t=e﹣t,易知φ(x)的最小值为φ(t),通过放缩可判断φ(t)>0,从而可得结论;答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),(x>0).当a≥0时,f'(x)>0,∴f(x)在(0,+∞)上为增函数,f(x)没有极值;当a<0时,,若时,f'(x)>0;若时,f'(x)<0,∴f(x)存在极大值,且当时,;综上可知:当a≥0时,f(x)没有极值;当a<0时,f(x)存在极大值,且当时,;(Ⅱ)∵函数g(x)的导函数g'(x)=e x,∴g(x)=e x+c,又∵g(0)g'(1)=e,∴(1+c)e=e⇒c=0,∴g(x)=e x,∵∃x∈(0,+∞),使得不等式成立,∴∃x∈(0,+∞),使得成立,令,则问题可转化为:m<h(x)max,对于,x∈(0,+∞),由于,当x∈(0,+∞)时,∵e x>1,,∴,∴h'(x)<0,从而h(x)在(0,+∞)上为减函数,∴h(x)<h(0)=3,∴m<3;(Ⅲ)当a=0时,f(x)=lnx,令φ(x)=g(x)﹣f(x)﹣2,则φ(x)=e x﹣lnx﹣2,∴,且φ'(x)在(0,+∞)上为增函数,设φ'(x)=0的根为x=t,则,即t=e﹣t,∵当x∈(0,t)时,φ'(x)<0,φ(x)在(0,t)上为减函数;当x∈(t,+∞)时,φ'(x)>0,φ(x)在(t,+∞)上为增函数,∴,∵φ'(1)=e﹣1>0,,∴,由于φ(t)=e t+t﹣2在上为增函数,∴,∴f(x)<g(x)﹣2..解:(Ⅰ)根据题意知:f′(x)=在[1,+∞)上恒成立.即a≥﹣x2﹣2x在区间[1,+∞)上恒成立.∵﹣2x2﹣2x在区间[1,+∞)上的最大值为﹣4,∴a≥﹣4;经检验:当a=﹣4时,,x∈[1,+∞).∴a的取值范围是[﹣4,+∞).(Ⅱ)在区间(﹣1,+∞)上有两个不相等的实数根,即方程2x2+2x+a=0在区间(﹣1,+∞)上有两个不相等的实数根.记g(x)=2x2+2x+a,则有,解得.∴,.∴令.,.∴,.在使得p′(x0)=0.当,p′(x)<0;当x∈(x0,0)时,p′(x)>0.而k′(x)在单调递减,在(x0,0)单调递增,∵,∴当,∴k(x)在单调递减,即.本题考查的是导数知识,重点是利用导数法研究函即二次求导,本题还用到消元的方法,难度较大.21析:(1)先求f'(x),令f'(x)=0,可得极值点,分极值点在区间[,2]内、外进行讨论可得函数的最大值;(2)设切点为(t,f(t)),则,解出方程组可求;(3)f(x1)+f(x2)+…+f(x14)≤λ恒成立,等价于f(x1)+f(x2)+…+f(x14)的最大值小于等件.解:(1),令f'(x)=0,解得x=(负值舍去),由,解得.(ⅰ)当0<a时,得f'(x)≥0,∴f(x)在[,2]上的最大值为.(ⅱ)当a≥4时,由,得f'(x)≤0,∴f (x)在[,2]上的最大值为f()=.(ⅲ)当时,∵在时,f'(x)>0,在<x<2时,f'(x)<0,∴f(x)在[,2]上的最大值为f()=.(2)设切点为(t,f(t)),则,由f'(t)=﹣1,有=﹣1,化简得a2t4﹣7at2+10=0,即at2=2或at2=5,①由f(t)=﹣t+2a,有=2a﹣t,②由①、②解得a=2或a=.(3)当a=2时,f(x)=,由(2)的结论直线y=4﹣x为曲线y=f(x)的切线,∵f(2)=2,∴点(2,f(2))在直线y=4﹣x上,根据图象分析,曲线y=f(x)在直线y=4﹣x下方.下面给出证明:当x∈[,2]时,f(x)≤4﹣x.∵f(x)﹣(4﹣x)=﹣4+x==,∴当x∈[,2]时,f(x)﹣(4﹣x)≤0,即f(x)≤4﹣x.∴f(x1)+f(x2)+…+f(x14)≤4×14﹣(x1+x2+…+x14),∵x1+x2+…+x14=14,∴f(x1)+f(x2)+…+f(x14)≤56﹣14=42.∴要使不等式f(x1)+f(x2)+…+f(x14)≤λ恒成立,必须λ≥42.又当x1=x2=…=x14=1时,满足条件x1+x2+…+x14=14,且f(x1)+f(x2)+…+f(x14)=42,因此,λ的最小值为42.。

2024届新高考新试卷结构第19题新定义导数压轴题

2024届新高考新试卷结构第19题新定义导数压轴题

2024新高考新试卷结构19题新定义导数压轴题分类汇编【精选例题】1悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.通过适当建立坐标系,悬链线可为双曲余弦函数ch x =e x+e-x2的图象,类比三角函数的三种性质:①平方关系:①sin2x+cos2x=1,②和角公式:cos x+y=cos x cos y-sin x sin y,③导数:sin x=cos x, cos x=-sin x,定义双曲正弦函数sh x =e x-e-x2.(1)直接写出sh x ,ch x 具有的类似①、②、③的三种性质(不需要证明);(2)若当x>0时,sh x >ax恒成立,求实数a的取值范围;(3)求f x =ch x -cos x-x2的最小值.【答案】(1)答案见解析;(2)-∞,1;(3)0【详解】(1)平方关系:ch2x -sh2x =1;和角公式:ch x+y=ch x ch y +sh x sh y ;导数:sh (x)=ch(x)ch (x)=sh(x).理由如下:平方关系,ch2x -sh2x =e x+e-x22-e x-e-x22=e2x+e-2x+24-e2x+e-2x-24=1;ch x+y=e x+y+e-x-y2,和角公式:ch x ch y +sh x sh y =e x+e-x2⋅ey+e-y2+e x-e-x2⋅ey-e-y2=e x+y+e x-y+e-x+y+e-x-y4+ex+y-e x-y-e-x+y+e-x-y4=ex+y+e-x-y2,故ch x+y=ch x ch y +sh x sh y ;导数:sh x =e x--e-x2=e x+e-x2=chx,ch x =e x-e-x2=shx;(2)构造函数F x =sh x -ax,x∈0,+∞,由(1)可知F x =ch x -a,i.当a≤1时,由ch(x)= e x+e-x2≥e x⋅e-x=1≥a可知,故F (x)≥0,故F(x)单调递增,此时F(x)≥F(0)=0,故对任意x>0,sh(x)>ax恒成立,满足题意;ii.当a>1时,令G x =F x ,x∈0,+∞,则G x =sh x ≥0,可知G x 单调递增,由G(0)=1-a<0与G(ln2a)=14a>0可知,存在唯一x0(0,ln2a),使得G(x0)=0,故当x∈(0,x0)时,F (x)=G(x) <G(x0)=0,则F(x)在(0,x0)内单调递减,故对任意x∈(0,x0),F(x)<F0 =0,即sh x <ax,矛盾;综上所述,实数a的取值范围为-∞,1.(3)f x =ch x -cos x-x2,f x =sh x +sin x-2x,令g x =f x =sh x +sin x-2x,则g x = ch x +cos x-2,令h x =g x =ch x +cos x-2,则h x =sh x -sin x,当x∈0,+∞时,由(2)可知,sh x ≥x,则h x =sh x -sin x≥x-sin x,令u x =x-sin x,则u x =1-cos x≥0,故u x 在0,+∞内单调递增,则h x ≥u x ≥u0 =0,故h x 在0,+∞内单调递增,则g x =h x ≥h0 =0,故g x 在0,+∞内单调递增,则f x =g x ≥g0 =0,故f x 在0,+∞内单调递增,因为f-x=ch-x-cos-x--x2=chx-cos x-x2=f x ,即f x 为偶函数,故f x 在-∞,0内单调递减,则f x min=f0 =0,故当且仅当x=0时,f x 取得最小值0.2已知a 为实数,f x =x +a ln x +1 .对于给定的一组有序实数k ,m ,若对任意x 1,x 2∈-1,+∞ ,都有kx 1-f x 1 +m kx 2-f x 2 +m ≥0,则称k ,m 为f x 的“正向数组”.(1)若a =-2,判断0,0 是否为f x 的“正向数组”,并说明理由;(2)证明:若k ,m 为f x 的“正向数组”,则对任意x >-1,都有kx -f x +m ≤0;(3)已知对任意x 0>-1,f x 0 ,f x 0 -x 0fx 0 都是f x 的“正向数组”,求a 的取值范围.【答案】(1)0,0 不是f x 的“正向数组”;(2)证明见解析;(3)a 的取值范围是-∞,1 .【详解】(1)若a =-2,f x =x -2 ln x +1 ,对k ,m =0,0 ,即kx 1-f x 1 +m kx 2-f x 2 +m =f x 1 ⋅f x 2 ,而当x 1∈0,2 ,x 2∈2,+∞ 时,f x 1 =x 1-2 ln x 1+1 <0,f x 2 =x 2-2 ln x 2+1 >0,即f x 1 ⋅f x 2 <0,不满足题意. 所以0,0 不是f x 的“正向数组”.(2)反证法:假设存在x 0>-1,使得kx -f x +m >0,∵k ,m 为f x 的“正向数组”,∴对任意x 0>-1,都有kx 0-f x 0 +m ⋅kx 0-f x 0 +m ≥0.∴对任意x >-1,kx -f x +m ≥0恒成立.令F x =x +a ln x +1 -kx -m ,则F x ≤0在-1,+∞ 上恒成立,F x =ln x +1 +x +ax +1-k =ln x +1 +a -1x +1+1-k ,设G x =F x =ln x +1 +a -1x +1+1-k ,G x =1x +1-a -1x +1 2=x +2-ax +1 2,则当a >1时,G x 在-1,a -2 上为负,在a -2,+∞ 上为正,所以G x =F x 在-1,a -2 上单调递减,在a -2,+∞ 上单调递增;若F a -2 <0,当x →-1,F x →+∞,当x →+∞,Fx →+∞,即存在Fx 1 =Fx 2 =0,使Fx 在-1,x 1 上为正,在x 1,x 2 上为负,在x 2,+∞ 上为正,所以F x 在-1,x 1 上单调递增,在x 1,x 2 上单调递减,在x 2,+∞ 上单调递增,又当x →-1,F x →-∞,当x →+∞,F x →+∞,则F x 的值域为R ;若F a -2 ≥0,F x ≥F a -2 ≥0,F x 在-1,+∞ 上单调递增,又当x →-1,F x →-∞,当x →+∞,F x →+∞,则F x 的值域为R . 当a ≤1时,G x =x +2-ax +12≥0,G x =F x 在-1,+∞ 上单调递增,又当x →-1,F x →-∞,当x →+∞,F x →+∞,必存在F x 1 =0,使F x 在-1,x 1 上为负,在x 1,+∞ 上为正,所以F x 在-1,x 1 上单调递减,在x 1,+∞ 上单调递增,又当x →-1,F x →+∞,当x →+∞,F x →+∞,则F x 的值域为F x 1 ,+∞ . 由值域可看出,与F x≤0在-1,+∞ 上恒成立矛盾.对任意x >-1,都有kx -f x +m ≤0.(3)∵f x0 ,f x 0 -x 0f x 0 都是f x 的“正向数组”,对任意x 1,x 2∈-1,+∞ ,都有fx 0 x 1-f x 1 +f x 0 -x 0fx 0 fx 0 x 2-f x 2 +f x 0 -x 0fx 0 ≥0,则f x 0 x -f x +f x 0 -x 0f x 0 ≥0恒成立或f x 0 x -f x +f x 0 -x 0f x 0 ≤0恒成立,即f x -f x 0 x ≤f x 0 -f x 0 x 0恒成立或f x -f x 0 x ≥f x 0 -f x 0 x 0恒成立,设g x =f x -f x 0 x =x +a ln x +1 -fx 0 x ,则f x 0 -fx 0 x 0=g x 0 ,即g x 0 是g x 的最大值或最小值. gx =f x -f x 0 =ln x +1 +x +a x +1-f x 0 =ln x +1 +a -1x +1+1-f x 0 ,且g x 0 =f x 0 -fx 0 =0. 当a >1时,由(2)可得,g x =x +a ln x +1 -f x 0 x =F x +m 的值域为R ,无最大值或最小值;当a ≤1时,g x =ln x +1 +a -1x +1+1-f x 0 在-1,+∞ 上单调递增,又g x 0 =fx 0 -fx 0 =0,则g x 在-1,x 0 上为负,在x 0,+∞ 上为正,所以g x =f x -f x 0 x 在-1,x 0 上单调递减,在x 0,+∞ 上单调递增,则g x 0 是g x 的最小值,满足g x =f x -f x 0 x ≥f x 0 -fx 0 x 0,此时对任意x 1,x 2∈-1,+∞ ,都有f x 0 x 1-f x 1 +f x 0 -x 0f x 0 f x 0 x 2-f x 2 +f x 0 -x 0fx 0 ≥0.∴a 的取值范围是-∞,1 .3帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m ,n ,函数f (x )在x =0处的[m ,n ]阶帕德近似定义为:R (x )=a 0+a 1x +⋯+a m x m 1+b 1x +⋯+b n x n ,且满足:f (0)=R (0),f(0)=R (0),f (0)=R (0)⋯,f (m +n )(0)=R (m +n )(0).已知f (x )=ln (x +1)在x =0处的[1,1]阶帕德近似为R(x )=ax 1+bx .注:f (x )=f (x ) ,f (x )=f (x ) ,f (4)(x )=f (x ) ,f (5)(x )=f (4)(x ) ,⋯(1)求实数a ,b 的值;(2)求证:(x +b )f 1x>1;(3)求不等式1+1x x <e <1+1x x +12的解集,其中e =2.71828⋯.【答案】(1)a =1,b =12;(2)证明见解析;(3)0,+∞【详解】(1)因为R (x )=ax 1+bx ,所以R (x )=a 1+bx2,R (x )=-2ab 1+bx 3,f (x )=ln (x +1),则f(x )=1x +1,f (x )=-1x +12,由题意知,f 0 =R 0 ,f 0 =R0 ,所以a =1-2ab =-1 ,解得a =1,b =12.(2)由(1)知,即证x +12 ln 1+1x >1,令t =1+1x,则t >0且t ≠1,即证t ∈0,1 ∪1,+∞ 时t +12t -1⋅ln t >1,记φt =ln t -2t -1 t +1,t ∈0,1 ∪1,+∞ ,则φt =1t -4t +1 2=t -1 2t t +12>0,所以φt 在0,1 上单调递增,在1,+∞ 上单调递增,当t ∈0,1 时φt <φ1 =0,即ln t <2t -1 t +1,即t +12t -1⋅ln t>1成立,当t ∈1,+∞ 时φt >φ1 =0,即ln t >2t -1 t +1,即t +12t -1⋅ln t >1成立,综上可得t ∈0,1 ∪1,+∞ 时t +12t -1⋅ln t >1,所以x +12 ln 1+1x >1成立,即(x +b )f 1x>1成立.(3)由题意知,欲使得不等式1+1x x <e <1+1x x +12成立,则至少有1+1x>0,即x >0或x <-1,首先考虑e <1+1x x +12,该不等式等价于ln 1+1x x +12>1,即x +12 ln 1+1x>1,又由(2)知x +12 ln 1+1x >1成立,所以使得e <1+1x x +12成立的x 的取值范围是-∞,-1 ∪0,+∞ ,再考虑1+1x x<e ,该不等式等价于x ln 1+1x <1,记h x =ln x -x +1,x ∈0,1 ∪1,+∞ ,则h x =1x -1=1-xx,所以当0<x <1时h x >0,x >1时h x <0,所以h x 在0,1 上单调递增,在1,+∞ 上单调递减,所以h x<h 1 =0,即ln x <x -1,x ∈0,1 ∪1,+∞ ,所以ln 1+1x <1x,x ∈-∞,-1 ∪0,+∞ ,当x ∈0,+∞ 时由ln 1+1x <1x ,可知x ln 1+1x <1成立,当x ∈-∞,-1 时由ln 1+1x <1x,可知x ln 1+1x<1不成立,所以使得1+1x x<e 成立的x 的取值范围是0,+∞ ,综上可得不等式1+1x x <e <1+1x x +12的解集为0,+∞ .4在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs =y 1+y 2 32(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y 3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【答案】(1)1;(2)16749;(3)2e ,1 【详解】(1)K =ΔθΔs=π3π3=1.(2)y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24 -32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.(3)fx =ln x -1,fx =1x ,故φy =22y 1+y 3=22x ln x 3=223s ln s3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln t t -1,其中t =t 2t 1>1(不妨t 2>t 1),令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e >t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1 t +1>0,故有h t =1t -12ln t -2t -1 t +1 >0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.5“让式子丢掉次数”:伯努利不等式伯努利不等式(Bernoulli 'sInequality ),又称贝努利不等式,是高等数学的分析不等式中最常见的一种不等式,由瑞士数学家雅各布·伯努利提出:对实数 x ∈-1,+∞ ,在 n ∈1,+∞ 时,有不等式 1+x n ≥1+nx 成立;在 n ∈0,1 时,有不等式 1+x n ≤1+nx 成立.(1)猜想伯努利不等式等号成立的条件;(2)当 n ≥1时,对伯努利不等式进行证明;(3)考虑对多个变量的不等式问题.已知 a 1,a 2,⋯,a n n ∈N * 是大于-1的实数(全部同号),证明1+a 1 1+a 2 ⋯1+a n ≥1+a 1+a 2+⋯+a n【答案】(1) n = 0,1,或 x = 0;(2)证明见解析;(3)证明见解析【详解】(1)猜想:伯努利不等式等号成立的充要条件是 n = 0,1,或 x = 0.当n =0时, 1+x 0=1+0x ,当n =1时, 1+x 1=1+x ,当x =0时, 1+0 n =1+0n ,其他值均不能保证等号成立,猜想,伯努利不等式等号成立的充要条件是 n = 0,1,或 x = 0;(2)当 n ≥1时,我们需证 1+x n ≥1+nx ,设 f x =1+x n -nx -1x <-1,a ≥1 ,注意到 f 0 =0,f x =n 1+x n -1-n =n 1+x n -1-1 ,令 1+x n -1-1=0得 x =0,即f 0 =0,x =0是 f x 的一个极值点.令 g x =f x ,则g x =n n -1 1+x n -2>0,所以 f x 单调递增.当 -1<x <0时,f x <f 0 =0,当 x >0时,f x >f 0 =0,故f x 在 -1,0 上单调递减,在0,+∞ 上单调递增.所以在 x =0处 f x 取得极小值 f 0 =0,即 f x ≥0恒成立,1+x n ≥nx +1.伯努利不等式对 n≥1得证.(3)当 n =1时,原不等式即1+a 1≥1+a 1,显然成立.当 n ≥2时,构造数列 x n :x n =1+a 1 1+a 2 ⋯1+a n -1+a 1+a 2+⋯+a n ,则 x n +1-x n =a n +11+a 1 1+a 2 ⋯1+a n -1 ,若 a i >0i =1,2,⋯,n +1 ,由上式易得 x n +1-x n >0,即 x n +1>x n ;若-1<a i ≤0i =1,2,⋯,n +1 ,则 0<1+a i <1,所以 1+a 1 1+a 2 ⋯1+a n -1<0,故x n +1-x n =a n +11+a 1 1+a 2 ⋯1+a n -1 >0,即此时 x n +1>x n 也成立.所以 x n 是一个单调递增的数列(n ≥2),由于 x 2=1+a 1 1+a 2 -1+a 1+a 2 =a 1a 2>0,所以 x n >x 2>0∀n >2 ,故原不等式成立.6梨曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数f x =x s -1e x -1(x >0,s >1,s 为常数)密切相关,请解决下列问题.(1)当1<s ≤2时,讨论f x 的单调性;(2)当s >2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.【答案】(1)f x 在0,+∞ 上单调递减;(2)①证明见解析;②在2,+∞ 上单调递增,证明见解析;【详解】(1)由f x =x s -1e x -1,x ∈0,+∞ ,1<s ≤2可得fx =s -1 ⋅x s -2⋅e x -1 -x s -1⋅e xe x -12=x s -2⋅s -1-x ⋅e x -s -1e x -12,令h x =s -1-x ⋅e x -s -1 ,则h x =-e x +s -x -1 ⋅e x =s -x -2 ⋅ex;又1<s ≤2,x >0,所以s -x -2<0,e x >0,即h x <0恒成立;即函数h x 在0,+∞ 上单调递减,又h 0 =0,所以h x <h 0 =0,可得f x =x s -2⋅s -1-x ⋅e x -s -1e x -1 2<0恒成立,因此函数f x 在0,+∞ 上单调递减,即当1<s ≤2时,函数f x 在0,+∞ 上单调递减;(2)当s >2时,①由(1)可知令h x =s -x -2 ⋅e x =0,可得x =s -2>0,易知当x ∈0,s -2 时,hx =s -x -2 ⋅ex>0,即函数h x 在0,s -2 上单调递增,当x ∈s -2,+∞ 时,h x =s -x -2⋅e x <0,即函数h x 在s -2,+∞ 上单调递减,即函数h x 在x =s -2处取得极大值,也是最大值;注意到h 0 =0,由单调性可得h s -2 >h 0 =0,可知h x 在0,s -2 大于零,不妨取x =2s -2,则h 2s -2 =1-s ⋅e 2s -2-s -1 =1-s e 2s -2+1 <0;由零点存在定理可知h x 存在唯一变号零点x 0∈s -2,+∞ ,所以fx =x s -2⋅s -1-x ⋅e x -s -1 e x -12存在唯一变号零点x 0满足f x 0 =0,由h x 单调性可得,当x ∈0,x 0 时,f x >0,当x ∈x 0,+∞ 时,f x <0;即可得函数f x 在0,x 0 上单调递增,在x 0,+∞ 单调递减;所以f x 有唯一极大值点x 0;②记f x 的唯一极值点为g s ,即可得x 0=g s由h x 0 =s -1-x 0 ⋅e x 0-s -1 =0可得s =x 0⋅e x 0e x 0-1+1,即可得g s 的反函数g -1s =x 0⋅e xe x 0-1+1,令φx =x ⋅e x e x -1+1,x ∈s -2,+∞ ,则φx =e x e x -x -1 e x -12,构造函数m x =e x -x -1,x ∈0,+∞ ,则m x =e x -1,显然m x =e x -1>0在0,+∞ 恒成立,所以m x 在0,+∞ 上单调递增,因此m x >m 0 =0,即e x >x +1在0,+∞ 上恒成立,而s >2,即s -2>0,所以e x >x +1在s -2,+∞ 上恒成立,即可得φ x =e x e x -x -1e x -1 2>0在s -2,+∞ 上恒成立,因此g -1s 在s -2,+∞ 单调递增;易知函数g s 与其反函数g -1s 有相同的单调性,所以函数g s 在2,+∞ 上单调递增;7定义函数f n x =1-x +x 22-x 33+⋯+-1 n x nnn ∈N *.(1)求曲线y =f n x 在x =-2处的切线斜率;(2)若f 2x -2≥ke x 对任意x ∈R 恒成立,求k 的取值范围;(3)讨论函数f n x 的零点个数,并判断f n x 是否有最小值.若f n x 有最小值m ﹐证明:m >1-ln2;若f n x 没有最小值,说明理由.(注:e =2.71828⋯是自然对数的底数)【答案】(1)1-2n ;(2)-∞,-1 ;(3)答案见详解【详解】(1)由f n x=-1+x -x 2+⋯+-1 n x n -1,可得fn -2=-1-2-22-⋯-2n -1=-1-2n 1-2=1-2n ,所以曲线y =f n x 在x =-2处的切线斜率1-2n .(2)若f 2x -2≥ke x 对任意x ∈R 恒成立,所以k ≤f 2x -2e x=-1-x +x22e x对任意x ∈R 恒成立,令g (x )=-1-x +x22e x ,则g (x )=x 4-xex,由g (x )>0解得x <0,或x >4;由g (x )<0解得0<x <4,故g (x )在-∞,0 上单调递减,在0,4 上单调递增,在4,+∞ 上单调递减,又g (0)=-1,且当x >4时,g (x )>0,故g (x )的最小值为g (0)=-1,故k ≤-1,即k 的取值范围是-∞,-1 .(3)fn -1=-1-1-⋯-1 =-n ,当x ≠-1时,f n x=-1+x -x 2+⋯+-1 n xn -1=-1--x n 1--x=-xn-1x +1,因此当n 为奇数时,f n x =1-x +x 22-x 33+⋯+x n -1n -1-x nn ,此时f n x =-x n -1x +1,x ≠-1,-n ,x =-1.则f n x <0,所以f n x 单调递减.此时f n 0 =1>0,f 1x =1-x 显然有唯一零点,无最小值.当n ≥2时,f n 2 =1-2+222-233+⋯+2n -1n -1-2n n =1-2 +22332-2 +⋅⋅⋅+2n -1n nn -1-2 <0,且当x >2时,f nx =1-x +x 22-x 33 +⋯+x n -1n -1-x n n =1-x +x 2332-x +⋯+x n -1n nn -1-x <1-x ,由此可知此时f n x 不存在最小值.从而当n 为奇数时,f n x 有唯一零点,无最小值,当n =2k k ∈N * 时,即当n 为偶数时,f n x =1-x +x 22-x 33+⋯-x n -1n -1+xnn ,此时f n x =x n -1x +1,x ≠-1,-n ,x =-1.,由f n x >0,解得x >1;由f n x <0,解得x <1,则f n x 在-∞,1 上单调递减,在1,+∞ 上单调递增,故f n x的最小值为f n 1 =1-1 +12-13 +⋯+1n -2-1n -1 +1n>0,即f n x ≥f n 1 >0,所以当n为偶数时,f n x 没有零点.设h x =ln 1+x -x x +1x >0 ,h x =11+x -1x +1 2=xx +12>0,所以h x 在0,+∞ 上单调递增,h x >h 0 =0,即ln 1+x >x x +1x >0 .令x =1n 可得ln n +1n >1n +1,当n =2k k ∈N * 时1-f 2k 1 =1-12+13-14+⋯+12k -1-12k =1+12+13+⋅⋅⋅+12k -212+14+⋯+12k=1+12+13+⋅⋅⋅+12k -1+12+⋯+1k =1k +1+1k +2⋅⋅⋅+12k <ln k +1k +ln k +2k +1⋅⋅⋅+ln 2k 2k -1=ln 2k k=ln2,即m =f 2k 1 >1-ln2.从而当n 为偶数时,f n x 没有零点,存在最小值m >1-ln2.综上所述,当n 为奇数时,f n x 有唯一零点,无最小值;当n 为偶数时,f n x 没有零点,存在最小值m >1-ln2.8如果函数F x 的导数Fx =f x ,可记为F x =f x d x .若f x ≥0,则b af x d x =F b -F a 表示曲线y =f x ,直线x =a ,x =b 以及x 轴围成的“曲边梯形”的面积.(1)若F x =1x d x ,且F 1 =1,求F x ;(2)已知0<α<π2,证明:αcos α<acos x d x <α,并解释其几何意义;(3)证明:1n 1+cos πn +1+cos 2πn +1+cos 3πn +⋯+1+cos n πn <22π,n ∈N *.【答案】(1)F x =ln x +1;(2)答案见解析;(3)证明见解析【详解】(1)当x >0时,因为ln x =1x,所以设F x =ln x +C 1,又F 1 =1,代入上式可得F 1 =ln1+C 1=1⇒C 1=1,所以,当x >0时,F x =ln x +1;当x <0时,设F x =ln -x +C 2,同理可得C 2=1,综上,F x =ln x +1.(2)因为F x =∫cos x d x =sin x +C ,所以a0cos x d x =sin α-sin0=sin α ,设g x =x -sin x ,0<x <π2,则g x =1-cos x >0恒成立,所以g x 在0<x <π2上单调递增,所以g x min >g 0 =0,故sin α<α,即acos x d x <α;设h x =sin x -x cos x ,0<x <π2,则h x =x sin x >0恒成立,所以h x 在0<x <π2上单调递增,h x min >h 0 =0,所以αcos α<a 0cos x d x ,综上,αcos α<acos x d x <α.几何意义:当0<x <π2时,曲线y =cos x 与直线x =0(y 轴),x =α以及x 轴围成的“曲边面积”大于直线x =0(y 轴),x =α以及x 轴,直线y =cos α围成的矩形面积,小于x =0(y 轴),x =α以及x 轴,直线y =1围成的矩形面积.(3)因为1+cos k πn =2cos 2k π2n =2cos k π2n,k =1,2,⋯n ,所以1n 1+cos πn +1+cos 2πn +1+cos 3πn +⋯+1+cos n πn=2n cos π2n +cos 2π2n +cos 3π2n +⋯+cos π2 <2∫1cos π2x d x ,设F x =2πsin π2x ,则F x =cos π2x ,所以∫1cosπ2x d x =F 1 -F 0 =2πsin π2=2π,故1n 1+cosπn +1+cos 2πn+1+cos 3πn +⋯+1+cos n πn<22π.9对于函数y =f x ,x ∈I ,若存在x 0∈I ,使得f x 0 =x 0,则称x 0为函数f x 的一阶不动点;若存在x 0∈I ,使得f f x 0 =x 0,则称x 0为函数f x 的二阶不动点;依此类推,可以定义函数f x 的n 阶不动点. 其中一阶不动点简称不动点,二阶不动点也称为稳定点.(1)已知f x =2x +2x -3,求f x 的不动点;(2)已知函数f x 在定义域内单调递增,求证: “x 0为函数f x 的不动点”是“x 0为函数f x 的稳定点”的充分必要条件;(3)已知a >-1,讨论函数f x =2e2ln x +a +1 x -1x 的稳定点个数.【答案】(1)1;(2)证明见解析;(3)答案见解析【详解】(1)设g x =f x -x =2x +x -3,则g x =2x ln2+1>0恒成立,故函数g x 在R 上单调递增,又g (1)=0,故函数g x 在R 上有唯一零点,即f x 有唯一不动点1;(2)证明:充分性:设x 0为函数f x 的不动点,则f x 0 =x 0,则f f x 0 =f x 0 =x 0,即x 0为函数f x 的稳定点,充分性成立;必要性:设x 0为函数f x 的稳定点,即f f x 0 =x 0,假设f x 0 =y 0,而f x 在定义域内单调递增,若y 0>x 0,则f f x 0 =f y 0 >f x 0 =y 0>x 0,与f f x 0 =x 0矛盾;若y 0<x 0,则f f x 0 =f y 0 <f x 0 =y 0<x 0,与f f x 0 =x 0矛盾;故必有y 0=x 0,即f f x 0 =f y 0 =f x 0 =y 0=x 0,即f x 0 =y 0=x 0,故x 0为函数f x 的不动点,综上, “x 0为函数f x 的不动点”是“x 0为函数f x 的稳定点”的充分必要条件;(3)当a >-1时,函数f x =2e 2ln x +a +1x -1x 在(0,+∞)上单调递增,由(2)知f x 的稳定点与f x 的不动点等价,故只需研究f x 的不动点即可;令F x =f x -x =2e2ln x +ax -1x ,x ∈0,+∞ ,则F x =2e 2x +a +1x2,x ∈0,+∞ ,则F x 在0,+∞ 上单调递减,①当a ≥0时,F x >0恒成立,即F x 在0,+∞ 上单调递增,当x 无限接近于0时,F x 趋向于负无穷小,且F e 2 =4e 2+ae 2-1e 2=3e2+ae 2>0,故存在唯一的x 0∈0,e 2 ,使得F x 0 =0,即f x =x 有唯一解,所以此时f x 有唯一不动点;②当a <0时,即-1<a <0时,F 1 =2e 2+a +1>0,当x 趋向无穷大时,2e 2x 1+1x 21趋近于0,此时Fx 1 <0,存在唯一x 1∈0,+∞ ,使得F x 1 =2e 2x 1+a +1x 21=0,此时f x 在(0,x 1)上单调递增,在(x 1,+∞)上单调递减,故F x max =F x 1 =2e 2ln x 1+ax 1-1x 1=2e 2ln x 1-1x 1-2e 2-1x 1=2e 2ln x 1-2x 1-2e2,当x 趋近于0时,F x 趋向于负无穷大,当x 趋向正无穷大时,F x 趋向于负无穷大,设h x =2e 2ln x -2x -2e2,则h x在0,+∞ 上单调递增,且h e 2 =4e 2-2e 2-2e 2=0,又a =-1x 21-2e 2x 1在x 1∈0,+∞ 时单调递增,故(i )当F x max =2e 2ln x 1-2x 1-2e 2=0时,即x 1=e 2,此时a =-3e4,方程F x =0有一个解,即f x 有唯一不动点;(ii )当F x max =2e 2ln x 1-2x 1-2e 2<0shi ,即x 1<e 2,此时-1<a <-3e4,方程F x =0无解,即f x 无不动点;(iii )当F x max =2e 2ln x 1-2x 1-2e 2>0时,即x 1>e 2,此时-3e4<a <0,方程F x =0有两个解,即f x有两个不动点;综上,当a ≥0时或a =-3e 4时,f x 有唯一稳定点;当-1<a <-3e4时,f x 无稳定点;当-3e 4<a <0,f x 有两个稳定点;【跟踪训练】10已知y =f x 与y =g x 都是定义在0,+∞ 上的函数,若对任意x 1,x 2∈0,+∞ ,当x 1<x 2时,都有g x 1 ≤f x 1 -f x 2x 1-x 2≤g x 2 ,则称y =g x 是y =f x 的一个“控制函数”.(1)判断y =2x 是否为函数y =x 2x >0 的一个控制函数,并说明理由;(2)设f x =ln x 的导数为f x ,0<a <b ,求证:关于x 的方程f b -f ab -a=f x 在区间a ,b 上有实数解;(3)设f x =x ln x ,函数y =f x 是否存在控制函数?若存在,请求出y =f x 的所有控制函数;若不存在,请说明理由.【答案】(1)是,理由见解析;(2)证明见解析;(3)存在,y =ln x +1【详解】(1)对任意0<x 1<x 2,则x 21-x 22x1-x 2=x 1-x 2 x 1+x 2 x 1-x 2=x 1+x 2,且2x 1≤x 1+x 2≤2x 2,故y =2x 是函数y=x2x>0的一个控制函数;(2)因为0<a<b,则f b -f ab-a=ln b-ln ab-a=ln bab-a,则f b -f ab-a-1a=ln bab-a-1a,f b -f ab-a-1b =ln aba-b-1b,∵0<a<b,∴ba>1,0<ba<1,设y=ln x-x+1,x>0,在x>1上y =1x-1<0,在0<x<1上y =1x-1>0,则y=ln x-x+1在x>1单调递减,在0<x<1上单调递增,最大值y max=ln1-1+1=0,∵0<a<b,∴ba >1,0<ba<1,b-a>0,a-b<0,∴ln ba-ba+1<0,ln ab-ab+1<0,则ln ba-b-aa<0,∵b-a>0,∴ln bab-a-1a<0,即f b -f ab-a<1a,同理,lnab-a-bb<0,∵a-b<0,∴ln ab-a-b b >0,即f b -f ab-a>1b,综上:1b<f b -f ab-a<1a,fx =1x,在区间a,b上的值域为1 b ,1 a,则f b -f ab-a =f x 在区间a,b上有实数解.(3)①先证引理:对任意0<a<b,关于x的方程f(b)-f(a)b-a=f (x)在区间(a,b)上恒有实数解.这等价于ln a+1<b ln b-a ln ab-a <ln b+1⇔(ln a+1)(b-a)<b ln b-a ln a<(ln b+1)(b-a)⇔1b<ln b-ln a b-a <1a,由(2)知结论成立.②(证控制函数的唯一性)假设y=f(x)存在“控制函数”y=g(x),由上述引理知,对任意x1,x2∈(0,+∞),当x1<x2时,都存在c∈x1,x2使得g x1≤f (c)≤g x2⋯⋯.(*),下证:g(x)=f (x),x∈(0,+∞).若存在t1∈(0,+∞)使得g t1 >f t1 ,考虑到f (x)=ln x+1是值域为R的严格增函数,故存在t2>t1使得f t2 =g t1 .由(*)知存在c0∈t1,t2使得g t1 ≤f c0 ≤g t2 ,于是有f c0 ≥g t1 =f t2 ,由f (x)的单调性知c0≥t2,矛盾.故对任意x∈(0,+∞)都有g(x)≤f (x),同理可证,对任意x∈(0,+∞)都有g(x)≥f (x),从而g(x)=f (x).③(证控制函数的存在性)最后验证,g(x)=f (x)是y=f(x)的一个“控制函数”.对任意x1,x2∈(0,+∞),当x1<x2时,都存在c∈x1,x2使得f x1-f x2x1-x2=f (c),而由f (x)的单调性知f x1≤f (c)≤f x2,即g x1≤f x1-f x2x1-x2≤g x2.综上,函数y=f(x)存在唯一的控制函数y=ln x+1.11利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d b2-c2+e c2-a2+f a2-b2d(b-c)+e(c-a)+f(a-b)<b+c.【答案】(1)-12e+2,+∞;(2)证明见解析.【详解】(1)由题意G (f )=d (a -b )(a -c )+e (b -a )(b -c )+f (c -a )(c -b )=4-1×(-2)+e1×(-1)+f 2×1=12f -e +2又f >e ,所以G (f )>12e -e +2=-12e +2.即G (f )的值域是-12e +2,+∞ ;(2)因为a <b <c ,d >0,e <0,f >0,所以d (b -c )+e (c -a )+f (a -b )<0,(a +b )[d (b -c )+e (c -a )+f (a -b )]=d (b -c )(a +b )+e (c -a )(a +b )+f (a 2-b 2)=d (b -c )([(b +c )+(a -c )]+e (c -a )[(c +a )+(b -c )]+f (a 2-b 2)=d (b 2-c 2)+e (c 2-a 2)+f (a 2-b 2)+d (b -c )(a -c )+e (c -a )(b -c )因为a <b <c ,d >0,e <0,f >0,所以d (b -c )(a -c )>0,e (c -a )(b -c )>0,所以(a +b )[d (b -c )+e (c -a )+f (a -b )]>d (b 2-c 2)+e (c 2-a 2)+f (a 2-b 2),所以a +b <d b 2-c 2 +e c 2-a 2 +f a 2-b 2d (b -c )+e (c -a )+f (a -b ),(b +c )[d (b -c )+e (c -a )+f (a -b )]=d (b 2-c 2)+e (c-a )(b +c )+f (a -b )(b +c )=d (b 2-c 2)+e (c -a )(c -a +b -a )+f (a -b )(a +b +c -a )=d (b 2-c 2)+e (c 2-a 2)+f (a 2-b 2)+e (c -a )(b -a )+f (a -b )(c -a )因为a <b <c ,d >0,e <0,f >0,所以e (c -a )(b -a )<0,f (a -b )(c -a )<0,所以(b +c )[d (b -c )+e (c -a )+f (a -b )]<d (b 2-c 2)+e (c 2-a 2)+f (a 2-b 2),所以b +c >d b 2-c 2 +e c 2-a 2 +f a 2-b 2d (b -c )+e (c -a )+f (a -b ),综上,原不等式成立.12多元导数在微积分学中有重要的应用.设y 是由a ,b ,c ⋯等多个自变量唯一确定的因变量,则当a 变化为a +Δa 时,y 变化为y +Δy ,记lim Δa →0Δy Δa 为y 对a 的导数,其符号为d yda.和一般导数一样,若在a 1,a 2上,已知d y da >0,则y 随着a 的增大而增大;反之,已知d yda<0,则y 随着a 的增大而减小.多元导数除满足一般分式的运算性质外,还具有下列性质:①可加性:d y 1+y 2 da =d y 1da +d y 2da ;②乘法法则:d y 1y 2 da=y 2d y 1da +y 1d y 2da ;③除法法则:d y 1y 2da =y 2d y 1da -y 1d y2da y 22;④复合法则:d y 2da =d y 2d y 1⋅d y 1da .记y =e x +1e x 2ln x -12e x 2-ex -a .(e =2.7182818⋯为自然对数的底数),(1)写出d y d x 和d yda的表达式;(2)已知方程y =0有两实根x 1,x 2,x 1<x 2.①求出a 的取值范围;②证明d x 1+x 2da >0,并写出x 1+x 2随a 的变化趋势.【答案】(1)d y d x =e x +2e x ln x -e ,d y da=-1;(2)①-12e ,1 ;②证明见解析,x 1+x 2随a 增大而减小【详解】(1)解:设f x =g a =e x +1e x 2ln x -12e x 2-ex -a ,则d y d x =lim Δx →0Δy Δx =lim Δx →0f x +Δx -f x Δx=fx =e x+2e x ln x -e ,同理d y da=g ′a =-1.(2)解:①由(1),可得f x =e x +2ex ln x -e ,则f 1 =0,且x <1时,e x <e ,x ln x <0,f x <0即f x 单调递减,x >1时,f x >0即f x 单调递增,故f x ≥f 1 =-12e-a ,又由x →0时,x 2趋近于0的速度远远快于ln x 趋近于-∞的速度,故x 2ln x →0,f x →1-a ,因此只需1-a >0且-12e-a<0,即由零点存在性定理,x 1∈0,1 ,x 2>1,存在两个零点,故a ∈-12e ,1 ;②由d x 1+x 2 da =d x 1da +d x 2da =d x 1d y ⋅d y da +d x 2d y ⋅d y da =-d x 1d y +d x 2d y=-1d y d x 1+1d y d x 2 =-d yd x 1+d yd x 2d y d x 1⋅d y d x 2=-f x 1 +fx 2 f x 1 f x 2,由①可得f x 1 <0,f x 2 >0,故只需证明f x 1 +f x 2 >0,令x 1+x22=m ,设h x =f m +x -f m -x 0≤x ≤x 2-x 12 ,则h 0 =h x 2-x12=f x 2 -f x 1 =0,且h x =f m +x +f m -x ,则h x 2-x 12 =f x 1 +f x 2 ,又h x =f m +x -f m -x =e m +x +2eln m +x +1 -e m -x+2e ln m -x +1 单调递增,且h 0 =0,故h x ≥h 0 =0,h x 单调递增,则h x ≤h x 2-x 12,必然h x 2-x 12 =f x 1 +f x 2 >0,否则h x ≤0即h x 单调递减,不符合题意,h 0 =h x 2-x12=f x 2 -f x 1 =0,故原命题成立。

妙用洛必达法则-2023年新高考数学导数压轴题(解析版)

妙用洛必达法则-2023年新高考数学导数压轴题(解析版)

妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。

高中数学《导数》压轴小题精练100(含答案)

高中数学《导数》压轴小题精练100(含答案)

A. 22-1 , 1
C.
-
∞,
1-2 2

2-1 2

+

B.
-1

1-2 2
D. - ∞ , -1 ∪ 1, + ∞


答案 D
-1 -2 + 22
≤∃
kl2
<
0
试题6.12 【 导 数 的 切 线 法 】 已 知 实 数 ,则
满足
,实数
的 最 小 值 为(
满足 )
A. 1
B. 2
C. 3
试题25.11 【图像法 + 转化法 + 零点】函数 f x
= l-nx- xx>x0≤ 0
与 gx
=
1 2
x
+
a
+1
的图象
上存在关于 y 轴对称的点,则实数 a 的取值范围是
A. - ∞ , 3 - 2ln2 B. 3 - 2ln2, + ∞ C. e , + ∞
D. - ∞ , -e


B
画出
D. 0
B
试题12.12 【利用对称中心破题】已知函数 f x
=
x+12+ln1+9x2 -3xcosx x2+ 1
,且
f
2017
=
2016,则 f -2017 =
(2015
C. -2016
D. -2017
A
试题13.12 【利用对称中心破题】已知函数 f x
= lnx - x2与 gx
D. 4
A 【距离模型 + 转化法】

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03函数与导数常见经典压轴小题1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考向一:函数、零点嵌套问题考向二:函数整数解问题考向三:等高线问题考向四:零点问题考向五:构造函数解不等式考向六:导数中的距离问题考向七:导数的同构思想考向八:最大值的最小值问题(平口单峰函数、铅锤距离)1、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点,具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.a >()232f x ax bx c'=++判别式∆>0∆=0∆<图象()32f x ax bx cx d=+++单调性增区间:()1, x -∞,()2, x +∞;减区间:()12, x x 增区间:(), -∞+∞增区间:(), -∞+∞图象(1)当0∆≤时,()0f x '≥恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223bx x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d =+++的两个不相等的极值点,那么:①若()()120f x f x ⋅>,则()f x 有且只有1个零点;②若()()120f x f x ⋅<,则()f x 有3个零点;③若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.3、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.4、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.5、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.6、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.7、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.8、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.9、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.1.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m=+-=+>+,且()()120f x g x ==,则()2111em x x -+的最大值为()A .1B .eC .2eD .1e【答案】A【解析】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e ex m m m x x x m---+==,1(),0e m m t m m -=>,则11(),e m m t m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.2.(2023·湖南岳阳·统考二模)若函数()22ln 2e 2ln x xf x a x ax -=-+有两个不同的零点,则实数a 的取值范围是()A .(),e -∞-B .(],e -∞-C .()e,0-D .()【答案】A【解析】函数()f x 的定义域为(0,)+∞,()()222ln 22ln 2e 2ln e 2ln x x x x f x a x ax a x x --=-+=+-,设2()2ln (0)h x x x x =->,则22(1)(1)()2x x h x x x x+-'=-=,令()01h x x '>⇒>,令()001h x x '<⇒<<,所以函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,且(1)1h =,所以min ()(1)1h x h ==,所以()1h x ≥,函数()f x 有两个不同的零点等价于方程()0f x =有两个不同的解,则()222ln 2ln 22e e 2ln 02ln x x x x a x x a x x--+-=⇒-=-,等价于函数y a =-与22ln 2e 2ln x xy x x-=-图象有两个不同的交点.令22ln x x t -=,()1e ,tg t tt =>,则函数y a =-与()1e ,tg t tt =>图象有一个交点,则()()22e 1e e 0tt t t t g t t t '--==>,所以函数()g t 在(1,)+∞上单调递增,所以()()1e g t g >=,且t 趋向于正无穷时,()e tg t t=趋向于正无穷,所以e a ->,解得e a <-.故选:A.3.(2023·江西吉安·统考一模)已知,R,0,0x y x y ∈>>,且2x y xy +=,则8e y x-的可能取值为()(参考数据: 1.1e 3≈, 1.2e 3.321≈)A .54B .32C .e 1-D .e【答案】D【解析】由2x y xy +=,可得844x y =-且1y >,所以84e e 4y yx y-=+-,令()()4e 4,1,yg y y y =+-∈+∞,可得()24e y g y y='-,令()24e yh y y =-,可得()38e 0yh y y '=+>,()h y 为单调递增函数,即()g y '单调递增,又()()1.1 1.222441.1e 0, 1.2e 01.1 1.2g g =--'<'=>,所以存在()0 1.1,1.2y ∈,使得()00204e 0yg y y =-=',所以()()0min 002000444e 44, 1.1,1.2yg g y y y y y ==+-=-∈,设()0200444f y y y =+-,则()0320084f y y y =--',因为()0 1.1,1.2y ∈,所以()00f y '<,所以()0f y 在()1.1,1.2上单调递减,所以()()0191.229f y f >=>,又因为()22e 2e g =->,()g y 在()0,y ∞+上递增,所以D 正确.故选:D.4.(2023·河南开封·开封高中校考一模)若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-【答案】D 【解析】由11e x ax +⎛⎫+≥ ⎪⎝⎭两边取对数可得 1()ln 11x a x ⎛⎫++≥ ⎪⎝⎭①,令11,t x +=则11x t =-,因为[)1,x ∞∈+,所以(1,2]t ∈,则①可转化得1ln 11a t t ⎛⎫+≥⎪-⎝⎭,因为ln 0t >,11ln 1a t t ∴≥--因为存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,所以存在(1,2]t ∈,11ln 1a t t ≥--成立,故求11ln 1t t --的最小值即可,令11(),(1,2]ln 1g x x x x =-∈-2211()(ln )(1)g x x x x '∴=-+⋅-2222(ln )(1)(1)(ln )x x x x x x ⋅--=-2222222(1)1(ln )(ln )2(1)(ln )(1)(ln )x x x x x x x x x x ----+==--,令()h x 21(ln )2,(1,2]x x x x=--+∈212ln 11()2ln 1x x x h x x x xx-+'∴=⋅-+=,令1()2ln ,(1,2]x x x x xϕ=-+∈,2222121()1x x x x x x ϕ-+-'∴=--=22(1)0x x --=<,所以()ϕx 在(1,2]上单调递减,所以()(1)0x ϕϕ<=,()0h x '∴<,所以()h x 在(1,2]上单调递减,所以()(1)0,()0,h x h g x '<=∴<()g x ∴在(1,2]上单调递减,1()(2)1ln 2g x g ∴≥=-,11ln 2a ∴≥-,所以实数a 的最小值为11ln 2-故选:D5.(2023·河北石家庄·统考一模)已知210x x a -=在()0,x ∈+∞上有两个不相等的实数根,则实数a 的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,2e ⎛⎫⎪⎝⎭C .12e 1,e ⎛⎤ ⎥⎝⎦D .12e 1,e ⎛⎫ ⎪⎝⎭【答案】D【解析】由()0,x ∈+∞,则210x x a =>,故2ln ln xa x=,要使原方程在()0,x ∈+∞有两个不等实根,即2ln ()xf x x =与ln y a =有两个不同的交点,由432ln 12ln ()x x x x f x x x --'==,令()0f x '>,则120e x <<,()0f x '<,则12e x >,所以()f x 在12(0,e )上递增,12(e ,)+∞上递减,故12max 1()(e )2e f x f ==,又x 趋向于0时,()f x 趋向负无穷,x 趋向于正无穷时,()f x 趋向0,所以,要使()f x 与ln y a =有两个不同的交点,则10ln 2ea <<,所以12e 1e a <<.故选:D6.(2023·吉林·统考三模)已知不等式22e ln ln x x λλ+≥在()0,x ∈+∞上恒成立,则实数λ的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,4e ⎛⎤ ⎥⎝⎦C .1,2e ∞⎡⎫+⎪⎢⎣⎭D .1,4e ⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由22e ln ln x x λλ+≥得22e ln ln lnxxx λλλ≥-=,即22e lnxxxx λλ≥,令()e t f t t =,()0,t ∈+∞,则()()1e 0tf t t '=+>,所以()e tf t t =在()0,∞+上单调递增,而ln22e lnlne xxxxxx λλλλ≥=等价于()2ln x f x f λ⎛⎫≥ ⎪⎝⎭,∴2lnxx λ≥,即2e xx λ≥令()2e x g x x =,()0,x ∈+∞,则()212e xg x x-'=,所以()g x 在10,2x ⎛⎫∈ ⎪⎝⎭时()0g x '>,为增函数;在在1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0g x '<,为减函数,所以()g x 最大值为1122e g ⎛⎫= ⎪⎝⎭,∴12e λ≥.故选:C7.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)设()f x 是定义在R 上的可导函数,()f x 的导函数为()f x ',且()()32f x f x x '⋅>在R 上恒成立,则下列说法中正确的是()A .()()20232023f f <-B .()()20232023f f >-C .()()20232023f f <-D .()()20232023f f >-【答案】D【解析】由题设32()()4f x f x x ⋅>',构造24()()g x f x x =-,则3()2()()40g x f x f x x =-'>',所以()g x 在R 上单调递增,则(2023)(2023)g g >-,即2424(2023)2023(2023)(2023)f f ->---,所以22(2023)(2023)f f >-,即()()20232023f f >-.故选:D8.(2023·四川广安·统考二模)若存在[]01,2x ∈-,使不等式()022002e 1ln e 2ex ax a x +-≥+-成立,则a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【解析】()022002e 1ln e 2e x a x a x +-≥+-⇔()()222e 1ln e 12e x a a x ---≥-()()()000022222 e 1ln e 1ln e 2 e 1ln 2e e x x x x a a a a e ⇔---≥-⇔-≥-令ex at =,即()2e 1ln 220t t --+≥,因为0[1,2]x ∈-,所以21,e e a a t -⎡⎤∈⎢⎥⎣⎦,令()2()e 1ln 22f t t t =--+.则原问题等价于存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.()22e 12e 1()2t f t t t---'=-=令()0f t '<,即()2e 120,t --<解得2e 12t ->,令()0f t '>,即()2e 120,t -->解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞⎪⎝⎭上单调递减.又因为()()2222(1)0,e e 1ln e 2e 2f f ==--+222e 22e 20=--+=而22e 11e 2-<<,∴当21e t ≤≤时,()0f t ≥.若存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.只需22e e a ≤且11e a -≥,解得4ea ≤且1e a ≥,所以41e ea ≤≤.故a 的取值范围为41,e e ⎡⎤⎢⎥⎣⎦.故选:D9.(2023·河南郑州·统考二模)函数()ln ,01,0x x x f x x x >⎧=⎨+≤⎩,若关于x 的方程()()()210f x m f x m -++=⎡⎤⎣⎦恰有5个不同的实数根,则实数m 的取值范围是()A .10em -<<B .10em -<≤C .10em -≤<D .10em -≤≤【答案】A【解析】由()2[()]1()[()][()1]0f x m f x m f x m f x -++=--=,可得()f x m =或()1f x =,令ln y x x =且定义域为(0,)+∞,则ln 1y x ¢=+,当1(0,ex ∈时0'<y ,即y 递减;当1(,)ex ∈+∞时0'>y ,即y 递增;所以min 1e y =-,且1|0x y ==,在x 趋向正无穷y 趋向正无穷,综上,根据()f x 解析式可得图象如下图示:显然()1f x =对应两个根,要使原方程有5个根,则()f x m =有三个根,即(),f x y m =有3个交点,所以10em -<<.故选:A10.(2023·贵州·统考模拟预测)已知函数()f x 在R 上满足如下条件:(1)()()0f x f x -+=;(2)()20f -=;(3)当()0,x ∈+∞时,()()f x f x x'<.若()0f a >恒成立,则实数a 的值不可能是()A .3-B .2C .4-D .1【答案】B 【解析】设()()f x g x x =,则()()()2xf x f x g x x'-'=,因为当()0,x ∈+∞时,()()f x f x x'<,所以当0x >时,有()()0xf x f x '-<恒成立,即此时()g x '<0,函数()g x 为减函数,因为()f x 在R 上满足()()0f x f x -+=,所以函数()f x 是奇函数,又()20f -=,所以()20f =,又()()()()()f x f x f x g x g x x x x---====--,故()g x 是偶函数,所以()()220g g =-=,且()g x 在(),0x ∈-∞上为增函数,当0a >时,()0f a >,即()()0f a ag a =>,等价为()0g a >,即()()2g a g >,得02a <<;当a<0时,()0f a >,即()()0f a ag a =>,等价为()0g a <,即()()2g a g <-,此时函数()g x 为增函数,得2a <-,综上不等式()0f a >的解集是()(),20,2-∞- ,结合选项可知,实数a 的值可能是3-,4-,1.故选:B11.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a <<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.12.(2023·天津南开·统考一模)已知函数()()216249,1,11,1,9x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩则下列结论:①()1*9,Nn f n n -=∈②()()10,,x f x x∞∀∈+<恒成立③关于x 的方程()()R f x m m =∈有三个不同的实根,则119m <<④关于x 的方程()()1*9N n f x n -=∈的所有根之和为23n n +其中正确结论有()A .1个B .2个C .3个D .4个【答案】B【解析】由题意知,()()()()1211111219999n n f n f n f n f n n --=-=-==--=⎡⎤⎣⎦ ,所以①正确;又由上式知,要使得()()10,,x f x x∞∀∈+<恒成立,只需满足01x <≤时,()1f x x <恒成立,即2116249x x x-+<,即321624910x x x -+-<恒成立,令()(]32162491,0,1g x x x x x =-+-∈,则()248489g x x x '=-+,令()0g x '=,解得14x =或34x =,当1(0,4x ∈时,()0g x '>,()g x 单调递增;当13(,)44x ∈时,()0g x '<,()g x 单调递减;当3(,)4x ∈+∞时,()0g x '>,()g x 单调递增,当14x =时,函数()g x 取得极大值,极大值11101444g f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,所以②不正确;作出函数()f x 的图象,如图所示,由图象可知,要使得方程()()R f x m m =∈有三个不同的实根,则满足()()21f m f <<,即119m <<,所以③正确;由()1(1)9f x f x =-知,函数()f x 在(),1n n +上的函数图象可以由()1,n n -上的图象向右平移一个单位长度,再将所有点的横坐标不变,纵坐标变为原来的19倍得到,因为216249y x x =-+的对称轴为34x =,故()09f x =的两根之和为32,同理可得:()19f x =的两个之和为322+, ,()19nf x -=的两个之和为32(1)2n +-,故所有根之和为23333(2)[2(1)]2222n n n +++++-=+,所以④不正确.故选:B.13.(2023·山东济南·一模)函数()()()221xxx f x a a a =++-+(0a >且1a ≠)的零点个数为()A .1B .2C .3D .4【答案】B【解析】由()0f x =可得22011x x a a a a +⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,即11112011x xa a ⎛⎫⎛⎫-++-= ⎪ ⎪++⎝⎭⎝⎭,因为0a >且1a ≠,则1110,,1122a ⎛⎫⎛⎫∈ ⎪ ⎪+⎝⎭⎝⎭,令11t a =+,令()()()112x xg x t t =-++-,则()()010g g ==,()()()()()1ln 11ln 1xxg x t t t t '=--+++,令()()()()()1ln 11ln 1xxh x t t t t =--+++,则()()()()()221ln 11ln 10xxh x t t t t '=--+++>⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()g x '在R 上单调递增,因为()()()()20ln 1ln 1ln 1ln10g t t t'=-++=-<=,()()()()()11ln 11ln 1g t t t t '=--+++,令()()()()()1ln 11ln 1p t t t t t =--+++,其中01t <<,则()()()ln 1ln 10p t t t '=+-->,所以,函数()p t 在()0,1上单调递增,所以,()()()100g p t p >'==,由零点存在定理可知,存在()00,1x ∈,使得()00g x '=,且当0x x <时,()0g x '<,此时函数()g x 单调递减,当0x x >时,()0g x '>,此时函数()g x 单调递增,所以,()()()0010g x g g <==,所以,函数()g x 的零点个数为2,即函数()f x 的零点个数为2.故选:B.14.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()222g x f x a f x a =---⎡⎤⎣⎦恰有5个零点,则a 的取值范围是()A .()3e,0-B .470,e ⎛⎫ ⎪⎝⎭C .473e,e ⎛⎫- ⎪⎝⎭D .()0,3e 【答案】B【解析】函数()g x 恰有5个零点等价于关于x 的方程()()()2220f x a f x a ⎡⎤---=⎣⎦有5个不同的实根.由()()()2220f x a f x a ⎡⎤---=⎣⎦,得()f x a =或()2f x =-.因为()()25e x f x x x =+-,所以()()234e x f x x x '=+-()()41e xx x =+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减.因为()474e f -=,()13e f =-,当x →+∞时,()f x →+∞,当x →-∞时,()0f x →,所以可画出()f x 的大致图象:由图可知()2f x =-有2个不同的实根,则()f x a =有3个不同的实根,故470,e a ⎛⎫∈ ⎪⎝⎭,故A ,C ,D 错误.故选:B.15.(2023·山东枣庄·统考二模)已知()f x =,a ∈R ,曲线cos 2y x =+上存在点()00,x y ,使得()()00f f y y =,则a 的范围是()A .()8,18ln 3+B .[]8,18ln 3+C .()9,27ln 3+D .[]9,27ln 3+【答案】B【解析】因为[]cos 1,1x ∈-,所以[]cos 21,3y x =+∈,由题意cos 2y x =+上存在一点()00,x y 使得()()00f f y y =,即[]01,3y ∈,只需证明()00f y y =,显然()f x =假设()00f y y c =>,则()()()()000f f y f c c y f y ==>>不满足()()00f f y y =,同理()00f y c y =<不满足()()00f f y y =,所以()00f y y =,那么函数()[]1,3f x =即函数()f x x =在[]1,3x ∈有解,x =,可得[]2ln 9,1,3x x a x x +-=∈,从而[]2ln 9,1,3x x x a x +-=∈,令()[]2ln 9,1,3h x x x x x =+-∈,则()2119292x x h x x x x+-'=+-=,令()0h x '=,即21920x x +-=,解得12993,044x x -=>=(舍去),()0h x '>时03x <<<()0h x '<时x >所以()h x 在[]1,3单调递增,所以()()()13h h x h ≤≤,()1ln1918h =+-=,()3ln 3279ln 318h =+-=+,所以()h x 的取值范围为[]8,ln 318+,即a 的取值范围为[]8,ln 318+.故选:B.16.(2023·四川绵阳·盐亭中学校考模拟预测)已知()(0)ln kxx k xϕ=>,若不等式()11e kxxx ϕ+<+在()1+∞,上恒成立,则k 的取值范围为()A .1e⎛⎫+∞ ⎪⎝⎭,B .()ln2+∞,C .()0,eD .()0,2e 【答案】A【解析】由题意知,(1,)x ∀∈+∞,不等式11e ln kx x kx x+<+恒成立,即()(1,),1eln e(1)ln kxkxx x x ∀∈+∞+>+成立.设()(1)ln (1)f x x x x =+>,则()e ()kxf f x >.因为11()ln ln 10x f x x x x x+'=+=++>,所以()f x 在()1+∞,上单调递增,于是e kx x >对任意的()1x ∈+∞,恒成立,即ln xk x >对任意的()1x ∈+∞,恒成立.令ln ()(1)x g x x x=>,即max ()k g x >.因为21ln ()xg x x-'=,所以当(1,e)x ∈时,()0g x '>;当()e x ∈+∞,时,()g x '<0,所以()g x 在(1,e)上单调递增,在()e ,+∞上单调递减,所以max 1()(e)eg x g ==,所以1ek >.故选:A .17.(2023·江西·校联考模拟预测)已知()ee 1ln x x a x+>有解,则实数a 的取值范围为()A .21,e ⎛⎫-+∞ ⎪⎝⎭B .1,e⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e⎛⎫-∞ ⎪⎝⎭【答案】A【解析】不等式()e e 1ln x x a x+>可化为()e ln 1x a x x x ++>,()()e ln e 1x x a x x +>,令e x t x =,则ln 1at t +>且0t >,由已知不等式ln 1t at +>在()0,∞+上有解,所以1ln ta t ->在()0,∞+上有解.令()1ln t f t t -=,则()2ln 2t f t t ='-,当20e t <<时,()0f t '<,()f t 在()20,e 上单调递减;当2t e >时,()0f t '>,()f t 在()2e ,+∞单调递增,所以()min f t =()221e e f =-,所以21e a >-,所以a 的取值范围为21,e ⎛⎫-+∞ ⎪⎝⎭,故选:A.18.(2023·辽宁朝阳·校联考一模)设0k >,若不等式()ln e 0xk kx -≤在0x >时恒成立,则k 的最大值为()A .eB .1C .1e -D .2e 【答案】A【解析】对于()ln e 0xk kx -≤,即()e ln x kx k≤,因为()ln y kx =是e xy k =的反函数,所以()ln y kx =与e xy k =关于y x =对称,原问题等价于e x x k≥对一切0x >恒成立,即e xk x≤;令()e x f x x =,则()()'21e x x f x x -=,当01x <<时,()()'0,f x f x <单调递减,当1x >时,()()'0,f x f x >单调递增,()()min 1e f x f ==,e k ∴≤;故选:A.19.(2023·四川南充·统考二模)已知函数()()2ln ln 1212x x h x t t x x ⎛⎫=--+- ⎪⎝⎭有三个不同的零点123,,x x x ,且123x x x <<.则实数11ln 1x x ⎛-⎝)A .1t -B .1t -C .-1D .1【答案】D 【解析】令ln x y x =,则21ln xy x-'=,当(0,e)x ∈时0'>y ,y 是增函数,当(e,)x ∈+∞时0'<y ,y 是减函数;又x 趋向于0时y 趋向负无穷,x 趋向于正无穷时y 趋向0,且e 1|ex y ==,令ln xm x=,则2()()(12)12h x g m m t m t ==--+-,要使()h x 有3个不同零点,则()g m 必有2个零点12,m m ,若11(0,e m ∈,则21em =或2(,0]m ∞∈-,所以2(12)120m t m t --+-=有两个不同的根12,m m ,则2Δ(12)4(12)0t t =--->,所以32t <-或12t >,且1212m m t +=-,1212m m t =-,①若32t <-,12124m m t +=->,与12,m m 的范围相矛盾,故不成立;②若12t >,则方程的两个根12,m m 一正一负,即11(0,)em ∈,2(,0)m ∞∈-;又123x x x <<,则12301e x x x <<<<<,且121ln x m x =,32123ln ln x x m x x ==,故11ln 1x x ⎛⎫- ⎪⎝⎭(()()221111m m m =-=--12121()1m m m m =-++=.故选:D20.(2023·陕西咸阳·武功县普集高级中学统考二模)已知实数0a >,e 2.718=…,对任意()1,x ∈-+∞,不等式()e e 2ln xa ax a ⎡⎤++⎣⎦≥恒成立,则实数a 的取值范围是()A .10,e ⎛⎤⎥⎝⎦B .1,1e⎡⎫⎪⎢⎣⎭C .20,e⎛⎫⎪⎝⎭D .2,1e⎛⎫ ⎪⎝⎭【答案】A【解析】因为()e e 2ln xa ax a ⎡⎤++⎣⎦≥,所以()()1e2ln 2ln 2ln ln(1)x a ax a a a ax a a a a a x -⎡⎤++=++=+++⎣≥⎦,即11e 2ln ln(1)x a x a-⋅++≥+,即1ln 11ln e e 2ln ln(1)e 2ln ln(1)x x a a a x a x ---⋅+++⇔+≥++≥,所以1ln e 1ln ln(1)1x a x x a x --+≥--+++,令()e ,(1,)x f x x x =+∈-+∞,易知()f x 在()1,x ∈-+∞上单调递增,又因为ln(1)[ln(1)]e ln(1)1ln(1)x f x x x x ++=++=+++,所以(1ln )[ln(1)]f x a f x --≥+,所以1ln ln(1),(1,)x a x x --≥+∈-+∞,所以ln 1ln(1),(1,)a x x x ≤--+∈-+∞,令()1ln(1),(1,)g x x x x =--+∈-+∞,则1()111x g x x x '=-=++,所以当(1,0)x ∈-时,()0g x '<,()g x 单调递减;当,()0x ∈+∞时,()0g x '>,()g x 单调递增;所以min ()(0)1g x g ==-,所以ln 1a ≤-,解得10ea <≤.故选:A21.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()0g x f f x a a =->,则()g x 的零点个数不可能是()A .1B .3C .5D .7【答案】D【解析】令()0g x =,即()()f f x a =,因为()()25e xf x x x =+-,所以()2()34e x f x x x '=+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减,因为()474e f -=,()13e f =-,当+x →∞时,()+f x →∞,当x →-∞时,()0f x →,令()0f x =,解得1212x -=或1212x -=,所以可画出()f x 的大致图像,设()t f x =,则()f t a =,第一种情况:当470e a <<时,()f t a =有三个不同的零点1t ,2t ,3t ,不妨设123t t t <<,则14t <-,2142t -<<-,312t ->,①讨论()1f x t =根的情况:当13e t <-时,()1f x t =无实数根,当13e t =-时,()1f x t =有1个实数根,当13e 4t -<<-时,()1f x t =有2个实数根,②讨论()2f x t =根的情况:因为2142t -<<-,所以()2f x t =有2个实数根,③讨论()3f x t =根的情况:因为3t >47e>,所以()3f x t =只有1个实数根,第二种情况:当47e a =时,()f t a =有2个实数根44t =-,51212t ->,则()4f x t =有2个实数根,()5f x t =有1个实数根,故当47ea =时,()()f f x a =有3个实数根;第三种情况:当47e a >时,()f t a =有一个实数根612t ->,则()6f x t =有1个实数根,综上,当470ea <<时,()()f f x a =可能有3个或4个或5个实数根;当47e a =时,()()f f x a =有3实数根;当47e a >时,()()f f x a =有1个实数根;综上,()g x 的零点个数可能是1或3或4或5.故选:D .22.(多选题)(2023·河北唐山·开滦第二中学校考一模)若关于x 的不等式1ln ln e e ex m xm -+≥在(),m +∞上恒成立,则实数m 的值可能为()A .21e B .22e C .1eD .2e【答案】CD【解析】因为不等式1ln ln ee e x m x m -+≥在(),m +∞上恒成立,显然0x m >>,1x m >,ln 0xm>,因此ln 1ln ln 1ee ln e ln e ln e e e xx x x x mm x x x x x m x x m m m m m-+≥⇔≥⇔≥⇔≥⋅,令()e ,0x f x x x =>,求导得()(1)0x f x x e '=+>,即函数()f x 在(0,)+∞上单调递增,ln e ln e ()(ln xxm x x x f x f m m ≥⋅⇔≥,于是ln x x m ≥,即e e xx x x m m ≥⇔≥,令(),0e x xg x x =>,求导得1()ex x g x -'=,当01x <<时,()0g x '>,当1x >时,()0g x '<,因此函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,max 1()(1)eg x g ==,因为0x m >>,则当01m <<时,()g x 在(,1)m 上单调递增,在(1,)+∞上单调递减,1()(1)eg x g ≤=,因此要使原不等式成立,则有11em ≤<,当m 1≥时,函数()g x 在(,)m +∞上单调递减,()()()11eg x g m g <≤=,符合题意,所以m 的取值范围为1[,)e+∞,选项AB 不满足,选项CD 满足.故选:CD23.(多选题)(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()32e 04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩,其中e 是自然对数的底数,记()()()2h x f x f x a =-+⎡⎤⎣⎦,()()()3g x f f x =-,则()A .()g x 有唯一零点B .方程()f x x =有两个不相等的根C .当()h x 有且只有3个零点时,[)2,0a ∈-D .0a =时,()h x 有4个零点【答案】ABD【解析】因为32()461(0)f x x x x =-+≥,所以2()121212(1)(0)f x x x x x x '=-=-≥,所以(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>所以()()()32e04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩的图像如下图,选项A ,因为()()()3g x f f x =-,令()f x t =,由()0g x =,得到()3f t =,由图像知,存在唯一的01t >,使得()3f t =,所以0()1f x t =>,由()f x 的图像知,存在唯一0x ,使00()f x t =,即()()()3g x f f x =-只有唯一零点,所以选项A 正确;选项B ,令()g x x =,如图,易知()g x x =与()y f x =有两个交点,所以方程()f x x =有两个不相等的根,所以选项B 正确;选项C ,因为()()()2h x f x f x a =-+⎡⎤⎣⎦,令()f x m =,由()0h x =,得到20m m a -+=,当()h x 有且只有3个零点时,由()f x 的图像知,方程20m m a -+=有两等根0m ,且0(0,1)m ∈,或两不等根12,m m ,1210,1m m -<<>,或121,1m m =-=(舍弃,不满足韦达定理),所以140a ∆=-=或Δ140(0)0(1)0(1)0a f f f =->⎧⎪<⎪⎨->⎪⎪<⎩即14a =或14020a a aa ⎧<⎪⎪⎪<⎨⎪-<⎪<⎪⎩,所以14a =或20a -<<,当14a =时,12m =,满足条件,所以选项C 错误;选项D ,当0a =时,由()0h x =,得到()0f x =或()1f x =,由()f x 的图像知,当()0f x =时,有2个解,当()1f x =时,有2个解,所以选项D 正确.故选:ABD.24.(多选题)(2023·全国·模拟预测)已知函数()21ln 1f x a x x =++.若当()0,1x ∈时,()0f x >,则a 的一个值所在的区间可能是()A .()12,11--B .()0,1C .()2,3D .()24e ,e 【答案】ABC 【解析】设21t x =,因为01x <<,所以1t >,则211ln 1ln 12a x t a t x ++=-+.设()1ln 12g t t a t =-+,则()12ag t t'=-.若2a ≤,则()0g t '>,所以()g t 在()1,+∞上单调递增,所以()()120g t g >=>,则A ,B 符合题意.若2a >,则当1,2a t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,所以()g t 单调递减;当,2a t ⎛⎫∈+∞ ⎪⎝⎭时,()0g t '>,所以()g t 单调递增.所以()ln 12222a a a ag t g ⎛⎫≥=-+ ⎪⎝⎭.设()()ln 11h x x x x x =-+>,则()ln 0h x x '=-<,所以()h x 在()1,+∞上单调递减,且3533ln 02222h ⎛⎫=-> ⎪⎝⎭,所以若()2,3a ∈,则()30222a a g t g h h ⎛⎫⎛⎫⎛⎫≥=>> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0,1x ∈时,()0f x >,C 符合题意.因为()h x 在()1,+∞上单调递减,且()22e e 10h =-+<,所以若()24e ,e a ∈,则24e e ,222a ⎛⎫∈ ⎪⎝⎭,取22e a =,则()2e 022a a g h h ⎛⎫⎛⎫=<< ⎪ ⎝⎭⎝⎭,此时存在()1,t ∈+∞,使得()0g t <,即存在()0,1x ∈时,使得()0f x <,D 不符合题意.故选:ABC .25.(多选题)(2023·全国·本溪高中校联考模拟预测)已知函数()f x 是定义在()0,∞+上的函数,()f x '是()f x 的导函数,若()()122e xx f x xf x '+=,且()e 22f =,则下列结论正确的是()A .函数()f x 在定义域上有极小值.B .函数()f x 在定义域上单调递增.C .函数()()eln H x xf x x =-的单调递减区间为()0,2.D .不等式()12e e 4x f x +>的解集为()2,+∞.【解析】令()()m x xf x =,则()()()m x f x xf x ''=+,又()()22e xx f x xf x '+=得:()()2e xf x xf x x'+=,由()()m x f x x =得:()()()()()()()22222e xm x x m x xf x x f x m x m x f x x x x ''⋅-+--'===,令()()2e xh x m x =-得:()()2222e e e 2e 222x x x xx h x m x x x -''=-=-=⎛⎫ ⎪⎝⎭,当()0,2x ∈时,()0h x '<,()h x 单调递减;当()2,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()()()2e 2e 220h x h m f ≥=-=-=,即()0f x '≥,所以()f x 单调递增,所以B 正确,A 不正确;由()()eln H x m x x =-且定义域为()0,∞+得:()()2e e e x H x m x xx-''=-=,令()0H x '<,解得02x <<,即()H x 的单调递减区间为()0,2,故C 正确.()12ee 4xf x +>的解集等价于()2e e 4x x x xf x +>的解集,设()()2e e 44xx x x m x ϕ=--,则()()222ee ee e 11424424x xx x x x m x x ϕ⎛⎫⎛⎫''=-+-=-+- ⎪ ⎪⎝⎭⎝⎭2282e e 84x x x x --=⋅-,当()2,x ∈+∞时,2820x x --<,此时()0x ϕ'<,即()x ϕ在()2,+∞上递减,所以()()()22e 0x m ϕϕ<=-=,即()2e e 4x x x xf x +<在()2,+∞上成立,故D 错误.26.(多选题)(2023·山东泰安·统考一模)已知函数()()()ln f x x x ax a =-∈R 有两个极值点1x ,2x ()12x x <,则()A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-【答案】ACD【解析】对于A :()()()ln f x x x ax a =-∈R ,定义域()0,x ∈+∞,()()ln 120f x x ax x '=+->,函数()f x 有两个极值点1x ,2x ,则()f x '有两个变号零点,设()()ln 120g x x ax x =+->,则()1122axg x a xx-'=-=,当0a ≤时,()0g x '>,则函数()f x '单调递增,则函数()f x '最多只有一个变号零点,不符合题意,故舍去;当0a >时,12x a <时,()0g x '>,12x a>时,()0g x '<,则函数()f x '在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,若()f x '有两个变号零点,则102f a ⎛⎫'> ⎪⎝⎭,解得:12a <,此时x 由正趋向于0时,()f x '趋向于-∞,x 趋向于+∞时,()f x '趋向于-∞,则()f x '有两个变号零点,满足题意,故a 的范围为:102a <<,故A 正确;对于B :函数()f x 有两个极值点1x ,2x ()12x x <,即()f x '有两个变号零点1x ,2x ()12x x <,则1212x x a<<,故B 错误;对于C :当102a <<时,()1120f a '=->,则12112x x a <<<,即212x a >,11x ->-,则21112x x a->-,故C 正确;对于D :()f x '有两个变号零点1x ,2x ()12x x <,且函数()f x '先增后减,则函数()f x 在()10,x 与()2,x +∞上单调递减,在()12,x x 上单调递增,121x x << ,且102a <<,()()()()1210112f x f a f x f a ⎧<=-<⎪∴⎨>=->-⎪⎩,故D 正确;故选:ACD.27.(多选题)(2023·吉林·东北师大附中校考二模)已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<【答案】BCD【解析】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=,或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln (),()0,e,x xQ x Q x x x x -'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e ()e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x ak a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f x g x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--。

完整版导数压轴题题型学生版

完整版导数压轴题题型学生版

导数压轴题题型引例【2016高考山东理数】(本小题满分13分)(I )讨论f (x)的单调性;(II )当a 1时,证明f(x)>f' x |对于任意的x1.高考命题回顾例 1.已知函数 (X ) ae 2x +(a - 2) e x — x. (1)讨论f (x)的单调性;(2)若f (x )有两个零点,求a 的取值范围已知 f (x) ax In x2x 1 2,aXR .1,2成立.2例 2.(21)(本小题满分12分)已知函数f x x 2 e x a x 1 2有两个零点(I) 求a的取值范围;(II) 设x i,x2是f x的两个零点证明:X i X2 2.例3.(本小题满分12分)3 1已知函数 f (x) =x3ax —,g(x) In x 4(I )当a为何值时,x轴为曲线y f (x)的切线;第2 页共18 页(n)用min m,n 表示m,n 中的最小值,设函数h(x) min f (x), g(x) (x 0),讨论h (x)零点的个数例4.(本小题满分13分)已知常数八〉口,函数L:_hilln L''.x + 2(i)讨论在区间上的单调性;(n)若fi门存在两个极值点且/i : ■;':,求的取值范围例 5 已知函数f(x)= e x—In(x+ m).(1) 设x= 0是f(x)的极值点,求m,并讨论f(x)的单调性;(2) 当m<2 时,证明f(x)>0.1 例6已知函数f(x)满足f(x) f'⑴e x 1f(0)x -x2(1)求f(x)的解析式及单调区间;1 2⑵若f (x) x ax b,求(a 1)b的最大值。

2第4 页共18 页a In x b例7已知函数f(x) ,曲线y f(x)在点(1,f (1))处的切线方程为x 1 xx 2y 3 0。

(i)求a、b的值;(n )如果当x 0,且x 1时,f(x)山仝k,求k的取值范围。

导数压轴题

导数压轴题

导数压轴题1.已知函数()xf x e kx =-(k 为常数)的图象与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为1-.(Ⅰ)求k 的值及函数()x f 的极值; (Ⅱ)证明:当0>x 时,x e x <2;(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x ce x <2. 【答案】(Ⅰ)2k =,极小值为ln 2(ln 2)2ln 22ln 40,f e =-=->()f x 无极大值;(Ⅱ)详见解析; (Ⅲ)详见解析. 【解析】试题分析:(Ⅰ)由()x f x e kx =-,得'()x f x e k =-.再根据曲线()x f y =在点A 处的切线斜率为1-,便可得'(0)11f k =-=-从而得2k =.代入解析式得()2,'()2x x f x e x f x e =-=-.由此根据导数的符号即可得函数的极值;(Ⅱ)令2()x g x e x =-.为了证x e x <2,只需证()0g x >,而这利用导数很易证明;(Ⅲ)由(Ⅱ)知,当0x >时, 2x x e <.所以当1c ≥时必有0x >时, 2x x ce <.取00x =即可.若01c <<,为了使问题简化,作以下转化:令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立.而要使2x e kx >成立,则只要2ln()x kx >,即2ln ln x x k >+成立.令()2ln ln h x x x k =--,这样转化后,这个函数的导数就很简单了,利用导数可找到0x ,使得当()∞+∈,0x x ,恒有x ce x <2. 试题解析:解:(Ⅰ)由()xf x e kx =-,得'()xf x e k =-. 又'(0)11f k =-=-,得2k =. 所以()2,'()2xxf x e x f x e =-=-.令'()0f x =,得ln 2x =.当ln 2x <时, '()0,()f x f x <单调递减;当ln 2x >时,'()0,()f x f x >单调递增. 所以当ln 2x =时, ()f x 取得极小值,且极小值为ln2(ln 2)2ln 22ln 40,f e =-=->()f x 无极大值.(Ⅱ)令2()xg x e x =-,则'()2xg x e x =-.由(Ⅰ)得'()()(ln 2)0g x f x f =≥>, 故()g x 在R 上单调递增,又(0)10g =>, 因此,当0x >时, ()(0)0g x g >>,即2x x e <.(Ⅲ)①若1c ≥,则x x e ce ≤.又由(Ⅱ)知,当0x >时, 2x x e <. 所以当0x >时, 2x x ce <.取00x =,当0(,)x x ∈+∞时,恒有22x cx <. ②若01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立.而要使2x e kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22'()1x h x x x-=-=. 所以当2x >时, '()0,()h x h x >在(2,)+∞内单调递增. 取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+. 易知ln ,ln 2,50k k k k >>>.所以0()0h x >.即存在016x c=,当0(,)x x ∈+∞时,恒有2x x ce <.综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2xx ce <. .....14分解法二:(Ⅰ)同解法一(Ⅱ)同解法一(Ⅲ)对任意给定的正数c ,取o x =由(Ⅱ)知,当x>0时,2xe x >,所以2222()()22xx xx x e e e =⋅>,当o x x >时,222241()()()222xx x x e x c c>>=因此,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2xx ce <.考点:1、导数的应用;2、导数与不等式.2.已知函数2()1xe f x ax =+,其中a 为实数,常数 2.718e = .(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a的取值范围. 【答案】(1)95a =;(2)()f x 的单调增区间是1(1)2,1(,12;()f x 的单调减区间是1(,)2-∞-,1(,122--,(1)2++∞;(3)(1,)+∞.【解析】试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先对()f x 求导,由于13x =是函数()f x 的一个极值点,所以1()03f '=,解出a 的值,需验证,当95a =时,()f x 是否有极值点;第二问,把4a =-代入,对()f x 求导,利用'()0f x >,'()0f x <解不等式,解出函数()f x 的单调递增递减区间;第三问,对()f x 求导,令'()0f x =,讨论0,0,0∆>∆=∆<三种情况,来决定方程'()0f x =有没有根,再分别数形结合看()y f x =与y m =的图象是否有三个交点.试题解析:(1)222(21)()(1)xax ax e f x ax -+'=+ (2分) 因为13x =是函数()f x 的一个极值点,所以1()03f '=, 即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =. (4分)(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得1x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是因此()f x 的单调增区间是1(1)22-,1(,1)22+;()f x 的单调减区间是1(,)2-∞-,1(,12-,(1)+∞; (9分)(3) 当a 取正实数时,222(21)()(1)xax ax e f x ax -+'=+,令()0f x '=得2210ax ax -+=,当1a >时,解得12x x ==. ()f x 在1(,)x -∞和2(,)x +∞上单调递增,在12(,)x x 上单调递减,但是函数值恒大于零,极大值1()f x ,极小值2()f x ,并且根据指数函数和二次函数的变化速度可知当x →+∞时,2()1xe f x ax =→+∞+,当x →-∞时,2()01xe f x ax =→+.因此当21()()f x m f x <<时,关于x 的方程()f x m =一定总有三个实数根,结论成立;当01a <≤时,()f x 的单调增区间是(,)-∞+∞,无论m 取何值,方程()f x m =最多有一个实数根,结论不成立.因此所求a 的取值范围是(1,)+∞. (12分) 考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值. 3.已知函数1ln ()xf x x+=(1)若函数()f x 在(11)a a -+,(11)a a -+,(1)a >上有极值点,求实数a 的范围. (2)求证:1x ≥时,22(21)(1)()xx x x f x e++> 【答案】(1)(1,2);(2)见解析 【解析】试题分析:(1)先求出()f x 的导数,求出()f x 的单调区间,找出()f x 的极值点,让()f x 的极值点在(11)a a -+,,列出关于a 的不等式,从而求出a 的取值范围;(2)构造函数22(21)()(1)()xx x x x f x e ϕ+=+-,利用导数的运算法则求出()x ϕ的导函数,可判定当1x >时,()x ϕ的导函数恒大于0,所以()x ϕ在(1,+∞)上是增函数,所以当1x >时,()x ϕ>(1)ϕ>0,从而证明原不等式成立.试题解析:(1)0x >,2ln ()xf x x '=-2分 当01x <<时,2ln ()0x f x x '=->;当1x >时,2ln ()0xf x x'=-<故()f x 在(01),单增,在(1)+∞,上单减 4分 若函数()f x 在(11)a a -+,上有极值点须11111a a a -<⎧⎪+>⎨⎪>⎩解得12a << 故实数a 的范围是(12), 6分 (2)证明:证法一:设22(21)()(1)()xx x x x f x e ϕ+=+-,则22(21)()(1)(1l n )xx x x x e ϕ+=++- 22(21)()(1)(1ln )xx x x x e ϕ+=++-, 7分 求导化简得,218()2ln x xx x x e ϕ'=+++ 9分2181,ln 0,0,0x x x x x e ≥∴≥>>218()2ln 0x xx x x eϕ'∴=+++> 11分()x ϕ在[1)+∞,上单增,故22262(3)()(1)20e x e eϕϕ-≥=-=> 13分∴1x ≥时,22(21)(1)()xx x x f x e ++>14分 证法二:令()(1)()(1)(1ln )x x x f x x x ϕ=+=++(1)x ≥则1()2ln x x x ϕ'=++, 令1()2ln h x x x =++,则21()x h x x -'= 当1x ≥时21()0x h x x-'=≥,故()h x 在[1)+∞,单增 8分故()()(1)30x h x h ϕ'=≥=>,故()x ϕ在[1)+∞,上单增,故()(1)2x ϕϕ≥= 10分令()(1)xg x e x =-+,则()1xg x e '=-,当1x ≥时()110xg x e e '=-≥-> 故()g x 在[1)+∞,上单增,故()(1)20g x g e ≥=-> 12分∴1x e x >+ 22x ≥∴2210x e x >+>∴2211x x e +<∴22(21)2xx e+< 13分∴1x ≥时,22(21)(1)()2x x x x f x e ++≥>∴1x ≥时,22(21)(1)()x x x x f x e++>14分考点:常见函数的导数;导数的运算法;导数与函数单调性关系;导数与函数极值关系;利用导数证明不等式;运算求解能力 4.设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0. (1)求b 的值;(2)若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围.【答案】(1)1b =;(2)a 的取值范围是()()11,+∞ . 【解析】试题分析:(1)根据条件曲线()y f x =在点()()1,1f 处的切线的斜率为0,可以将其转化为关于a ,b 的方程,进而求得b 的值:()()1af x a x b x'=+--,()10f '=⇒()101a a b b +--=⇒=;(2)根据题意分析可得若存在[1,)x ∈+∞,使得不等式()1a f x a <-成立,只需min ()1af x a >-即可,因此可通过探求()f x 的单调性进而求得()f x 的最小值,进而得到关于a 的不等式即可,而由(1)可知()21ln 2a f x a x x x -=+-,则()()()11x a x a f x x---⎡⎤⎣⎦'=,因此需对a 的取值范围进行分类讨论并判断()f x 的单调性,从而可以解得a 的取值范围是()()11,--+∞ .试题解析:(1)()()1af x a x b x'=+--,2分 由曲线()y f x =在点()()1,1f 处的切线的斜率为0,得()10f '=,3分 即()10a a b +--=,1b =; 4分(2)由(1)可得,()21ln 2a f x a x x x -=+-, ()()()()()211111x a x a a x x a a f x a x x x x---⎡⎤--+⎣⎦'=+--==, 5分令()0f x '=,得11x =,21a x a =-,而21111a a a a--=--, 6分①当12a ≤时,11a a ≤-,在[)1,+∞上,()0f x '≥,()f x 为增函数,()()()min111122a a f x f ---==-=,令121a aa --<-,即2210a a +-<,解得11a <<. 8分 ②当11a <<时,1a >,()()()2minln 112111a a a a a f x f a a a a a a ⎛⎫==++> ⎪-----⎝⎭, 不合题意,无解,10分③当1a >时,显然有()0f x <,01a a >-,∴不等式()1af x a <-恒成立,符合题意, 12分综上,a 的取值范围是()()11,+∞ . 13分 考点:导数的运用.5.已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线的斜率为3.(1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围;(3)当1n m >>*(,)m n N ∈m n>. 【答案】(1)1a =;(2)1k ≥;(3)详见解析. 【解析】试题分析:(1)由'()l n 1f x a x =++结合条件函数()ln f x ax x x =+的图象在点x e=处的切线的斜率为3,可知'()3f e =,可建立关于a 的方程:ln 13a e ++=,从而解得1a =;(2)要使2()f x kx ≤对任意0x >恒成立,只需max 2()[]f x k x≥即可,而由(1)可知()ln f x x x x =+,∴问题即等价于求函数1ln ()xg x x+=的最大值,可以通过导数研究函数()g x 的单调性,从而求得其最值:221(1ln )ln '()x x x x g x x x⋅-+==-,令'()0g x =,解得1x =,当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数;当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数,因此()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求;(3)考虑采用分析法证明欲证的不等式:1111111111ln ln ln ln (1)ln (1)ln 11n m n mm n m m n m n m n nn m n m ---->⇔>⇔>⇔->-⇔>--,故可考虑构造函数ln ()1x xh x x =-,则问题等价于证明()h x 在(1,)+∞上单调递增,可以考虑利用导数求证:21ln '()(1)x xh x x --=-,由(2)知,1ln (0)x x x ≥+>,∴'()0h x ≥,∴()h x 是(1,)+∞上的增函数,即欲证不等式得证.试题解析:(1)∵()ln f x ax x x =+,∴'()ln 1f x a x =++, 1分 又∵()f x 的图象在点x e =处的切线的斜率为3,∴'()3f e =,即ln 13a e ++=, ∴1a =; 2分(2) 由(1)知,()ln f x x x x =+,∴2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 4分 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x x x g x x x ⋅-+==-,令'()0g x =,解得1x =, 5分 当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数;当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数. 6分 故()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求; 8分(3)令ln ()1x xh x x =-,则21ln '()(1)x x h x x --=-, 9分 由(2)知,1ln (0)x x x ≥+>,∴'()0h x ≥, 10分 ∴()h x 是(1,)+∞上的增函数,∵1n m >>,∴()()h n h m >,即ln ln 11n n m mn m >--, 11分 ∴ln ln ln ln mn n n n mn m m m ->-, 12分即ln ln ln ln mn n m m mn m n n +>+,ln ln ln ln mn m mn n n m m n +>+,ln()ln()n m m n mn nm >, 13分∴()()n mm nmn nm >mn>. 14分 考点:1.利用导数求切线方程;2.利用导数判断函数单调性与求函数极值. 6.已知函数),(3)(23R b a x bx ax x f ∈-+=,在点))1(,1(f 处的切线方程为02=+y .(I )求函数)(x f 的解析式;(II )若对于区间]2,2[-上任意两个自变量的值21,x x ,都有c x f x f ≤-|)()(|21,求实数c 的最小值;(III )若过点)2)(,2(≠m m M ,可作曲线)(x f y =的三条切线,求实数m 的取值范围.【答案】(1)x x x f 3)(3-=;(2)4;(3)26<<-m . 【解析】试题分析:(1)由题意,利用导函数的几何含义及切点的实质知:⎩⎨⎧='-=0)1(2)1(f f ,可建立a ,b 的方程,然后求解即可;(2)由题意,对于定义域内任意自变量都使得|f (x 1)-f (x 2)|≤c ,通过分离参数,可以转化为求函数在定义域下的最值即可得解;(3)由题意,若过点M (2,m )(m ≠2)可作曲线)(x f y =的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解,求参数m 的取值范围.试题解析:(1)323)(2-+='bx ax x f 根据题意,得⎩⎨⎧='-=,0)1(,2)1(f f 即⎩⎨⎧=-+-=-+,0323,23b a b a 解得⎩⎨⎧==.0,1b a.3)(3x x x f -=∴(2)令33)(2-='x x f 0=,解得1±=x(1)2,(1)2f f -==- ,2)2(,2)2(=-=-f f[2,2]x ∴∈-当时,max min ()2,() 2.f x f x ==-则对于区间[-2,2]上任意两个自变量的值12,x x ,都有12max min |()()||()()|4f x f x f x f x -≤-= 所以 4.c ≥所以c 的最小值为4.(Ⅲ)设切点为300000(,),3x y y x x =-则200()33f x x '=- , ∴切线的斜率为203 3.x -则3200003332x x m x x ---=- 即32002660x x m -++=,因为过点(2,)(2)M m m ≠,可作曲线()y f x =的三条切线所以方程32002660x x m -++=有三个不同的实数解即函数32()266g x x x m =-++有三个不同的零点,则2()612.g x x x '=- 令()0,0 2.g x x x '===解得或⎩⎨⎧<>∴0)2(0)0(g g 即⎩⎨⎧<->+0206m m ,∴26<<-m 考点:1.导数的几何意义;2.利用导数研究函数的极值;3.利用导数研究曲线上某点的切线方程.7.已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点(0,2)Q m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点. 【答案】(1)12-=m 或12--=m ;(2)当1k =时, 函数()y f x kx =-有一零点2mx =-; 当11k m >-(0m >),或11k m<-(0m <)时,函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11.【解析】 试题分析:(1)先根据二次函数的顶点式设出函数g (x )的解析式,然后对其进行求导,根据g (x )的导函数的图象与直线y=2x 平行求出a 的值,进而可确定函数g (x )、f (x )的解析式,然后设出点P 的坐标,根据两点间的距离公式表示出|PQ|,再由基本不等式表示其最小值即可.(2)先根据(1)的内容得到函数y=f (x )-kx 的解析式,即(1-k )x 2+2x+m=0,然后先对二次项的系数等于0进行讨论,再当二次项的系数不等于0时,即为二次方程时根据方程的判别式进行讨论即可得到答案.试题解析:(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=;又()g x '的图像与直线2y x =平行 22a ∴= 1a =m x x m x x g ++=-++=∴21)1()(22, ()()2g x mf x x x x ==++, 设(),o o P x y ,则202020202)()2(||x m x x y x PQ ++=-+= m m m m m x m x 2||2222222220220+=+≥++=当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m(2)由()()120my f x kx k x x=-=-++=(0≠x ),得()2120k x x m -++= ()*当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2mx =-; 当1k ≠时,方程()*有二解()4410m k ⇔∆=-->, 若0m >,11k m >-,函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即 1)1(11---±=k k m x ;若0m <,11k m <-,函数()y f x k x =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11综上,当1k =时, 函数()y f x kx =-有一零点2m x =-; 当11k m >-(0m >),或11k m<-(0m <)时, 函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11. 考点:1.导数的几何意义;2.利用导数研究函数的极值;3.函数零点与方程根的关系.8.已知函数f(x)=2e x-ax -2(a ∈R) (1)讨论函数的单调性;(2)若f(x)≥0恒成立,证明:x 1<x 2时,12121()()2(1)x f x f x e x x ->--【答案】(1)当x ∈(-∞,ln2a )时,f (x)单调递减;当x ∈(ln 2a,+∞)时,f (x)单调递增.(2)见解析【解析】试题分析:(1)利用导数值的正负,通过对a 范围的讨论,找出相应单调区间;(2)先确定a 的范围,然后利用(1)的结论找出f (x 2)-f (x 1)与x 2-x 1的关系式,试题解析:(Ⅰ)f '(x)=2e x-a .若a ≤0,则f '(x)>0,f (x)在(-∞,+∞)上单调递增; 若a >0,则 当x ∈(-∞,ln 2a)时,f '(x)<0,f (x)单调递减; 当x ∈(ln2a,+∞)时,f '(x)>0,f (x)单调递增. 4分 (Ⅱ)证明:由(Ⅰ)知若a ≤0,f (x)在(-∞,+∞)上单调递增,又f (0)=0,故f (x)≥0不恒成立.若a >0,则由f (x)≥0=f (0)知0应为极小值点,即ln2a=0, 所以a =2,且e x-1≥x ,当且仅当x =0时,取“=”. 7分当x 1<x 2时,f (x 2)-f (x 1)=2(e x2-e x1)-2(x 2-x 1)=2e x1(e x2-x1-1)-2(x 2-x 1)≥2e x1(x 2-x 1)-2(x 2-x 1)=2(e x1-1) (x 2-x 1), 所以()()2121f x f x x x -->2(e x1-1). 12分注:若有其他解法,请参照评分标准酌情给分.考点:利用导数讨论函数的单调性,分类与整合,不等式的证明9.已知函数)0()(>++=a c xbax x f 的图象在点))1(,1(f 处的切线方程为1-=x y .[来(1)用a 表示出b ,c ; (2)证明:当21≥a 时,x x f ln )(≥在),1[+∞上恒成立; (3)证明:)()1(2)1ln(131211*N n n n n n ∈+++>++++. 【答案】(1)⎩⎨⎧-=-=a c a b 211;(2)由(1)得a x a ax x f 211)(-+-+=,令x x f x g ln )()(-=x a xa ax ln 211--+-+=,),1[+∞∈x , 0)1(=g ,222')1)(1()1)(1(11)(x x a a x a x x a ax x x a a x g --+=--+=---=. 21≥a ,11≤-∴aa.1>∴x ,0)('>x g ,)(x g 是增函数,所以0)1()(=>g x g ,即x x f ln )(>,故当1≥x 时,x x f ln )(≥.所以当21≥a 时,x x f ln )(≥在),1[+∞上恒成立.(3)由(2)知,当21≥a 时,x x f ln )(≥在),1[+∞上恒成立. 令21=a ,则x xx x f ln )1(21)(≥-=,当且仅当1=x 时等号成立,即当1>x 时,总有x x x ln )1(21>-. 令kk x 1+=,则)111(21)11(211ln++=+-+<+k k k k k k k k ,即)111(21ln )1ln(++<-+k k k k . 令n k ,,2,1 =,得到n个不等式并将之累加得)1ln()1(21)13121(21+>++++++n n n ,整理得)()1(2)1ln(131211*N n n n n n ∈+++>++++. 【解析】 试题分析:(1)通过函数的导数,利用导数值就是切线的斜率,切点在切线上,求出b ,c 与a 的关系;(2)利用不等式x x f ln )(≥,构造函数x x f x g ln )()(-=,问题转化为0ln )()(≥-=x x f x g 在),1[+∞上恒成立,利用导数求出函数在),1[+∞上的最小值大于0,求a 的取值范围; (3)由(1)可知当21≥a 时,x x f ln )(≥在),1[+∞上恒成立,则当21=a 时,x xx ln )1(21≥-在),1[+∞上恒成立,对不等式的左侧每一项裂项,然后求和即可推出要证的结论.试题解析:(1)2')(xb a x f -=,则有0)1(=f ,1)1('=f ,代入得 ⎩⎨⎧=-==++=1)1(0)1('b a fc b a f ,解得⎩⎨⎧-=-=a c a b 211. (2)由(1)得a xa ax x f 211)(-+-+=,令x x f x g ln )()(-=x a xa ax ln 211--+-+=,),1[+∞∈x , 0)1(=g ,222')1)(1()1)(1(11)(xx a a x a xx a ax x x a a x g --+=--+=---=. 21≥a ,11≤-∴aa.1>∴x ,0)('>x g ,)(x g 是增函数,所以0)1()(=>g x g ,即x x f ln )(>,故当1≥x 时,x x f ln )(≥.所以当21≥a 时,x x f ln )(≥在),1[+∞上恒成立.(3)由(2)知,当21≥a 时,x x f ln )(≥在),1[+∞上恒成立. 令21=a ,则x xx x f ln )1(21)(≥-=,当且仅当1=x 时等号成立,即当1>x 时,总有x x x ln )1(21>-. 令kk x 1+=,则)111(21)11(211ln++=+-+<+k k k k k k k k ,即)111(21ln )1ln(++<-+k k k k . 令n k ,,2,1 =,得到n个不等式并将之累加得)1ln()1(21)13121(21+>++++++n n n ,整理得 )()1(2)1ln(131211*N n n nn n ∈+++>++++. 考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值;函数恒成立问题.10.已知函数x ax x x f 221ln )(2--=(0<a ).(Ⅰ)若函数)(x f 在定义域内单调递增,求实数a 的取值范围; (Ⅱ)若21-=a ,且关于x 的方程b x x f +-=21)(在[]4,1上恰有两个不等的实根,求实数b 的取值范围;(Ⅲ)设各项为正数的数列{}n a 满足11=a ,2ln 1++=+n n n a a a (*∈N n ),求证:12-≤n n a .【答案】(Ⅰ)(]1,-∞-;(Ⅱ)5ln 22,4⎛⎤-- ⎥⎝⎦;(Ⅲ)见解析【解析】试题分析:(Ⅰ)求出()f x 的定义域及导函数()f x ',由函数)(x f 在定义域内单调递增知,()f x '≥0在定义域内恒成立,通过参变分离化为()a g x ≤在定义域内恒成立,求出()g x 的最小值,即a ≤min [()]g x 即为a 的取值范围;(Ⅱ)先将关于x 的方程b x x f +-=21)(在[1,4]上恰有两个不等实根转化为方程1()2f x x + =b 在[1,4]上恰有两个不等实根,即函数y=1()2f x x +(x ∈[1,4])图像与y=b 恰有两个不同的交点,利用导数通过研究函数y=1()2f x x +(x ∈[1,4])的单调性、极值、最值及图像,结合y=1()2f x x +(x ∈[1,4])的图像,找出y=1()2f x x +(x ∈[1,4])与y=b 恰有两个交点时b 的取值范围,即为所求;(Ⅲ)利用ln 1x x <-(x ≠1),将2ln 1++=+n n n a a a 放缩为),1(211+≤++n n a a 即11021n n a a -+<<+,通过累积,求出n a 的范围,即为所证不等式.试题解析:(Ⅰ)函数的定义域为()+∞,0,)0(12)(2>-+-='x xx ax x f ,依题意0)(≥'x f 在0>x 时恒成立,则1)11(2122--=-≤x x x a 在0>x 时恒成立,即[])0(1)11(min 2>--≤x xa , 当1=x 时,1)11(2--x 取最小值-1,所以a 的取值范围是(]1,-∞- 4分(Ⅱ)21-=a ,由b x x f +-=21)(得0ln 23412=-+-b x x x 在[]4,1上有两个不同的实根, 设[]4,1,ln 2341)(2∈+-=x x x x x g xx x x g 2)1)(2()(--=',[)2,1∈x 时,0)(<'x g ,(]4,2∈x 时,0)(>'x g22ln )2()(min -==g x g ,22ln 2)4(,45)1(-=-=g g ,0)4ln 43(412ln 243)4()1(<-=-=-g g ,得)4()1(g g <则⎥⎦⎤ ⎝⎛--∈45,22ln b 8分 (Ⅲ)易证当0>x 且1≠x 时,1ln -<x x .由已知条件12212ln ,01+=++-≤++=>+n n n n n n n a a a a a a a , 故),1(211+≤++n n a a 所以当2≥n 时,,21101≤++<-n n a a ,211021≤++<--n n a a ⋅⋅⋅,,211012≤++<a a 相乘得,211011-≤++<n n a a 又,11=a 故n n a 21≤+,即12-≤n n a 12分 考点:常见函数的导数,导数的运算法则,导数函数单调性关系,导数的综合应用,利用导数证明不等式,运算求解能力. 11.已知关于x 的函数321()3f x x bx cx bc =-+++,其导函数为()f x '.记函数()()g x f x '= 在区间[]11-,上的最大值为M .(1) 如果函数()f x 在1x =处有极值43-,试确定b c 、的值; (2) 若1b >,证明对任意的c ,都有2M >; (3) 若M k ≥对任意的b c 、恒成立,试求k 的最大值. 【答案】(1)1b =-,3c =;(2)证明详见解析;(3)12. 【解析】试题分析:本题主要考查导数的运算、利用导数求函数的极值和最值等基础知识,考查学生的转化能力、分析问题解决问题的能力、计算能力.第一问,先对()f x 求导,由于()f x 在x=1处有极值43-,则'(1)0f =,4(1)3f =-,列出方程组,解出b 和c 的值,由于得到了两组值,则需要验证看是否符合已知条件,若不符合需舍掉;第二问,可以利用二次函数图象和性质直接证明()2g x >,也可以利用反证法证明出矛盾,从而得到正确结论;第三问,结合第二问的结论,可以直接得到1b >时的情况,当1b ≤时需分10b -≤≤,01b <≤,0b =三种情况讨论,最后综合所有情况再得出结论. 试题解析:(1) ∵2()2f x x bx c '=-++,由()f x 在1x =处有极值43-,可得 (1)12014(1)33f b c f b c bc '=-++=⎧⎪⎨=-+++=-⎪⎩,解得,11b c =⎧⎨=-⎩或13b c =-⎧⎨=⎩ 2分 若1b =,1c =-,则22()21(1)0f x x x x '=-+-=--≤,此时函数()f x 没有极值; 3分若1b =-,3c =,则2()23(1)(1)f x x x x x '=--+=-+-,此时当x 变化时,()f x ,()f x '的变化情况如下表:∴ 当1x =时,()f x 有极大值3-,故1b =-,3c =即为所求。

导数综合问题--2024届新高考满分突破压轴大题(解析版)

导数综合问题--2024届新高考满分突破压轴大题(解析版)

导数综合问题压轴秘籍1.导函数与原函数的关系f (x)>0,k>0,f(x)单调递增,f (x)<0,k<0,f(x)单调递减2.极值(1)极值的定义f(x)在x=x0处先↗后↘,f(x)在x=x0处取得极大值f(x)在x=x0处先↘后↗,f(x)在x=x0处取得极小值3.两招破解不等式的恒成立问题(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.4.常用函数不等式:①e x≥x+1,其加强不等式e x≥12x2+x+1;②e x≥ex,其加强不等式e x≥ex+(x-1)2.③e x−1≥x,ln x≤x−1,ln(x+1)≤x放缩1−1x<12x−1x<x−1x<ln x<2(x−1)x+1<−12x2+2x−32<x−1(0<x<1)1−1x <−12x2+2x−32<2(x−1)x+1<ln x<x−1x<12x−1x<x−1(1<x<2)−1 2x2+2x−32<1−1x<2(x−1)x+1<ln x<x−1x<12x−1x<x−1(x>2)x+1<e x<11−x (x<1),11−x<x+1<e x(x>1)5.利用导数证明不等式问题:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)转化为证不等式h(x)>0(或h(x)<0),进而转化为证明h(x)min>0(h(x)max>0),因此只需在所给区间内判断h (x)的符号,从而得到函数h(x)的单调性,并求出函数h(x)的最小值即可.6.证明极值点偏移的相关问题,一般有以下几种方法:(1)证明x 1+x 2<2a (或x 1+x 2>2a ):①首先构造函数g x =f x -f 2a -x ,求导,确定函数y =f x 和函数y =g x 的单调性;②确定两个零点x 1<a <x 2,且f x 1 =f x 2 ,由函数值g x 1 与g a 的大小关系,得g x 1 =f x 1 -f 2a -x 1 =f x 2 -f 2a -x 1 与零进行大小比较;③再由函数y =f x 在区间a ,+∞ 上的单调性得到x 2与2a -x 1的大小,从而证明相应问题;(2)证明x 1x 2<a 2(或x 1x 2>a 2)(x 1、x 2都为正数):①首先构造函数g x =f x -f a 2x ,求导,确定函数y =f x 和函数y =g x 的单调性;②确定两个零点x 1<a <x 2,且f x 1 =f x 2 ,由函数值g x 1 与g a 的大小关系,得g x 1 =f x 1 -f a 2x 1 =f x 2 -f a 2x 1与零进行大小比较;③再由函数y =f x 在区间a ,+∞ 上的单调性得到x 2与a 2x 1的大小,从而证明相应问题;(3)应用对数平均不等式x 1x 2<x 1-x 2ln x 1-ln x 2<x 1+x22证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到x 1-x 2ln x 1-ln x 2;③利用对数平均不等式来证明相应的问题.题型训练一、问答题7(2023·吉林·统考一模)已知函数f x =-2x +ln x .(1)求曲线y =f x 在1,f 1 处的切线方程;(2)若对∀x ∈0,+∞ ,f x ≤ax 2-2x 恒成立.求实数a 的取值范围.【答案】(1)x +y +1=0(2)12e ,+∞ 【分析】(1)求函数切线在某点处的切线方程时该点即为切点,在切点处导函数的值就是切线斜率,根据斜截式求切线方程;(2)解决恒成立问题时,可以利用分离变量法,将参数移到不等式的一边,构造出一个新的函数后,求出函数的最值,即可求得参数的范围;还可以将所有的式子放在不等式的一边,即:ax 2-ln x ≥0,同样构造函数g x =ax 2-ln x (x >0),只需求出g x 的最小值,过程中需要对a 进行分类讨论;还可将两个基本初等函数放在不等式的两边,即:ax 2≥ln x ,构造出两个函数g x =ax 2,h x =ln x ,结合两个函数图象,得到何时符合题意.【详解】(1)解:f x =-2+1x(x >0),所求切线斜率为f 1 =-1,切点为1,-2 ,故所求切线方程为y--2=-x-1,即x+y+1=0.(2)方法一:分离变量由f x ≤ax2-2x得a≥ln xx2在0,+∞恒成立,令g x =ln xx2(x>0),则a≥g(x)max,g x =1-2ln xx3,当g x =0时,x=e,即:g e=0,当0<x<e时,g x >0;当x>e时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故当x=e时,g x 取最大值为12e,故a≥12e,即a的取值范围是12e,+∞.方法二:分类讨论由f x ≤ax2-2x得ax2-ln x≥0在0,+∞恒成立,令g x =ax2-ln x(x>0),则g x =2ax-1x=2ax2-1x,①当a≤0时,g x ≤0恒成立,g x 在0,+∞上单调递减,又g1 =a≤0,故当x>1时,g x <0,不合题意;②当a>0时,令g x =0得x=12a,令g x >0得x>12a,令g x <0得0<x<12a,故g x 在0,1 2a上单调递减,g x 在12a,+∞上单调递增,故当x=12a时,g x 取最小值g12a=12-ln12a≥0,故a≥12e,即a的取值范围是12e,+∞,综上所述,a的取值范围是12e,+∞.方法三:数形结合由f x ≤ax2-2x得ax2≥ln x在0,+∞恒成立,令g x =ax2,h x =ln x,则当x>0时,g x ≥hx 恒成立,g x =2ax,h x =1x,若a≤0,当x>1时,ax2≤0,ln x>0,∴g x <h x ,不合题意;若a>0,∵g x ≥h x ,∴曲线y=g x 与曲线y=h x 有且只有一个公共点,且在该公共点处的切线相同.设切点坐标为x0,y0,则y0=ax20=ln x02ax0=1x0,解得x0=ea=12e,故当a≥12e时,g x ≥h x ,即a的取值范围是12e,+∞.8(2023·云南红河·统考一模)已知函数f(x)=mx-ln x-1(m∈R).(1)讨论函数f(x)的单调性;(2)若关于x的不等式e x-1+a ln x-(a+1)x+a≥0恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)(-∞,0]【分析】(1)先求得f x ,然后对m进行分类讨论,从而求得f x 的单调区间.(2)将要证明的不等式转化为e ln x-a ln x≤e x-1-a(x-1),然后利用构造函数法,结合导数证得不等式成立.【详解】(1)由题可知,f(x)的定义域为(0,+∞),f (x)=m-1x =mx-1x当m≤0时,mx-1<0在(0,+∞)上恒成立,所以f (x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)单调递减当m>0时,令f (x)>0解得x>1m,令f(x)<0解得0<x<1m,所以f(x)在0,1 m上单调递减,在1m,+∞上单调递增.(2)由e x-1+a ln x-(a+1)x+a≥0,得x-a ln x≤e x-1-a(x-1),即e ln x-a ln x≤e x-1-a(x-1)令g(x)=e x-ax则原不等式等价于g(ln x)≤g(x-1)由(1)得,当m=1时f(x)≥f(1)=0所以ln x≤x-1在(0,+∞)上恒成立.若g(ln x)≤g(x-1)在(0,+∞)上恒成立,则需g(x)=e x-ax在R上单调递增.所以g (x)=e x-a≥0在R上恒成立,即a≤e x在上R恒成立,则a≤0,所以实数a的取值范围是(-∞,0].【点睛】求解函数单调区间的步骤:(1)确定f x 的定义域;(2)计算导数f x ;(3)求出f x =0的根;(4)用f x =0的根将f x 的定义域分成若干个区间,考查这若干个区间内f x 的符号,进而确定f x 的单调区间:f x >0,则f x 在对应区间上是增函数,对应区间为增区间;f x <0,则f x 在对应区间上是减函数,对应区间为减区间.如果导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.9(2023·全国·模拟预测)已知函数f x =2e x-x.(1)求f x 的最值;(2)若方程f x =ae x-ae2x有两个不同的解,求实数a的取值范围.【答案】(1)答案见解析(2)4ln2e ,+∞【分析】(1)首先对f x 求导,利用导数研究函数f x 的单调性,可得函数f x 的最值;(2)构造函数g x =f x -ae x -ae 2x ,先将方程有两个不同的解的问题转化为函数g x 有两个不同的零点问题.再对a 进行分类讨论,根据函数单调性结合零点存在定理求解.【详解】(1)由题意可得:f x =2e x -1,令f x =0,得x =-ln2,当x ∈-∞,-ln2 时,f x <0,f x 单调递减;当x ∈-ln2,+∞ 时,f x >0,f x 单调递增.所以f x 的最小值为f -ln2 =1+ln2,无最大值.(2)令g x =f x -ae x -ae 2x =ae 2x +2-a e x -x ,则g x =2ae 2x +2-a e x -1=ae x +1 2e x -1 ,若方程f x =ae x -ae 2x 有两个不同的解,则g x 有两个不同的零点.(ⅰ)若a ≥0,则ae x +1>0,由g x =0得x =-ln2.当x ∈-∞,-ln2 时,g x <0,当x ∈-ln2,+∞ 时,g x >0,所以g x 在-∞,-ln2 上单调递减,在-ln2,+∞ 上单调递增,所以g x 的最小值为g -ln2 =ln2e -14a .①当a ∈0,4ln2e 时,ln2e -14a >0,即g -ln2 >0,故g x 没有零点,不满足题意;②当a =4ln2e 时,g -ln2 =0,g x 只有一个零点,不满足题意;③当a ∈4ln2e ,+∞ 时,ln2e -14a <0,即g -ln2 <0,当x <0时,ae 2x >0,0<e x <1,又因为2-a <0,故g x >2-a -x ,所以g 2-a >0,又2-a <-ln2,故g x 在2-a ,-ln2 上有一个零点.设h x =e x -x x >0 ,则h x =e x -1>0,h x 单调递增,所以h x >0,故当x >0时,g x >ae 2x +2-a e x -e x =e x ae x +1-a >e x ax +1-a ,又1-1a >0,所以g 1-1a >0,因此g x 在-ln2,1-1a上有一个零点,所以当a >4ln2e 时,g x 有两个不同的零点,满足题意;(ⅱ)若a <0,则由g x =0得x 1=-ln2,x 2=-ln -a .①当-2<a <0时,x 1<x 2,当x ∈-∞,-ln2 时,g x <0;当x ∈-ln2,-ln -a 时,g x >0;当x ∈-ln -a ,+∞ 时,gx <0.所以g x 在-∞,-ln2 和-ln -a ,+∞ 上单调递减,在-ln2,-ln -a 上单调递增.又g -ln2 =ln2e -14a >0,所以g x 至多有一个零点,不满足题意;②当a =-2时,x 1=x 2,则g x ≤0,所以g x 单调递减,至多有一个零点,不满足题意;③当a <-2时,x 1>x 2,当x ∈-∞,-ln -a 时,g x <0;当x ∈-ln -a ,-ln2 时,g x >0;当x ∈-ln2,+∞ 时,g x <0.所以g x 在-∞,-ln -a 和-ln2,+∞ 上单调递减,在-ln -a ,-ln2 上单调递增,又g -ln -a =1-1a+ln -a >0,所以g x 至多有一个零点,不满足题意;综上,实数a 的取值范围为4ln2e ,+∞ .【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法(1)直接法:直接根据题设条件对参数进行分类讨论,通过研究函数的零点情况来确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题.(3)数形结合法:先对解析式变形,将函数的零点问题转化为两函数图象的交点问题,再在同一平面直角坐标系中画出函数的图象,然后数形结合求解.10(2023·浙江金华·校联考模拟预测)已知f (x )=ax 2-ax -1x-ln x +e 1-x (a >0).(1)若当x =1时函数f x 取到极值,求a 的值;(2)讨论函数f x 在区间(1,+∞)上的零点个数.【答案】(1)1(2)答案见解析【分析】(1)求得f (x )=2ax -a +1x2-1x -e 1-x ,由f (1)=0,得到a =1,进而结合函数极值点的定义,即可求解;(2)当a ≥1时,求得f (x )=ax 2-ax -1x -ln x +e 1-x ≥x 2-x -1x -ln x +e 1-x ,令h (x )=x 2-x -1x-ln x +e 1-x ,利用导数的h x 单调性,结合f (x )>0,得到f x 在区间(1,+∞)上没有零点;当0<a <1时,求得f(x )=2ax -a +1x2-1x -e 1-x ,令n x =f (x ),求得n (x )>(x -2)e x -1+x 3x 3⋅e x -1,令φ(x )=(x -2)e x -1+x 3,利用导数求得f (x )在(1,+∞)单调递增.,结合f (1)<0,f 1+1a>0,得出函数f x 的单调区间,由f (1)=0,得出f x 在1,x 1 没有零点,在由f 1+1a>0,得到存在唯一x 2,使得f x 2 =0,即可得到答案.【详解】(1)解:函数f (x )=ax 2-ax -1x -ln x +e 1-x ,可得f (x )=2ax -a +1x2-1x -e 1-x因为x =1时函数f x 取到极值,可得f (1)=0,解得a =1,当a =1时,可得f (x )=2x -1+1x2-1x -e 1-x ,令m (x )=f (x )=2x -1+1x2-1x -e 1-x ,可得m (x )=2-2x 3+1x 2+e 1-x>2-2x 3+1x2=2x 3+x -2x 3,令λ(x )=2x 3+x -2,可得λ (x )=6x 2+1>0,所以λ(x )单调递增,又因为λ78=55256>0,所以在区间78,+∞ 上m (x )>0,即f (x )单调递增,所以x =1是f (x )的变号零点,所以当x =1时函数f x 取到极值.(2)解:当a ≥1时,因为x 2-x >0,所以f (x )=ax 2-ax -1x -ln x +e 1-x ≥x 2-x -1x -ln x +e 1-x ,令h (x )=x 2-x -1x -ln x +e 1-x ,则h (x )=2x -1+1x 2-1x -e 1-x >2x -2+1x 2-1x =(x -1)2-1x2>0,所以h x 在(1,+∞)单调递增,则f (x )≥h (x )>h (1)=0,所以,当a ≥1时,f x 在区间(1,+∞)上没有零点.当0<a <1时,可得f (x )=2ax -a +1x2-1x -e 1-x ,令n x =f (x )=2ax -a +1x2-1x -e 1-x ,可得n(x )=2a -2x 3+1x 2+e 1-x >-2x 3+1x2+e 1-x=(x -2)e x -1+x 3x 3⋅e x -1,令φ(x )=(x -2)e x -1+x 3,则φ (x )=(x -1)e x -1+3x 2>0,所以φx 在(1,+∞)单调递增,φ(x )>φ(1)=0,则n (x )>0,所以f (x )在(1,+∞)单调递增.因为f(1)=a -1<0,f1+1a =a +2+11+1a2-11+1a-e -1a>a +2-1-1>0,当x →+∞时,f (x )→+∞,所以存在x 1∈1,1+1a使得f x 1 =0.则f (x )在1,x 1 单调递减,在x 1,+∞ 单调递增,又因为f (1)=0,所以当x ∈1,x 1 时,f (x )<0,故f x 在1,x 1 没有零点,因为在x 1,+∞ 单调递增,且f x 1 <f (1)=0,而ln x ≤x -1,e 1-x >0,1x<1,所以f (x )=ax 2-ax -1x-ln x +e 1-x >ax 2-ax -1-(x -1),则f 1+1a >a 1+1a 2-(a +1)1+1a=0,所以存在唯一x 2∈x 1,1+1a,使得f x 2 =0,故f x 在x 1,+∞ 存在唯一零点x 2,因此当0<a <1时,f x 在(1,+∞)存在唯一零点,综上所述,当a ≥1时,f x 在区间(1,+∞)上没有零点;当0<a <1时,f x 在(1,+∞)存在唯一零点.【点睛】方法技巧:已知函数零点(方程根)的个数,求参数的取值范围问题的三种常用方法:1、直接法,直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数的取值范围2、分离参数法,先分离参数,将问题转化成求函数值域问题加以解决;3、数形结合法,先对解析式变形,在同一平面直角坐标系中作出函数的图象,然后数形结合求解.结论拓展:与e x 和ln x 相关的常见同构模型①ae a ≤b ln b ⇔e a ln e a ≤b ln b ,构造函数f x =x ln x 或g x =xe x ;②e a a <b ln b ⇔e a ln e a<b ln b ,构造函数f x =x ln x 或g x =e x x ;③e a ±a >b ±ln b ⇔e a ±ln e a >b ±ln b ,构造函数f x =x ±ln x 或g x =e x ±x .11(2022·江苏南通·模拟预测)已知函数f x =x -a e x -x 2.(1)若a =1,x ∈0,1 ,求函数f x 的最值;(2)若a ∈Z ,函数f x 在x ∈0,+∞) 上是增函数,求a 的最大整数值.【答案】(1)最小值为-1-ln2-1 2,最大值为-1(2)0【分析】(1)求导分析函数的单调性与最值即可;(2)将题意转化为f x ≥0在x ∈0,+∞) 上恒成立,参变分离可得1-a ≥2xe x-x ,x ∈0,+∞ ,设g x =2x ex-x ,求导后根据零点存在性定理可得0,12 上有极大值点,设为x 0,再根据x 0满足的方程代入g x ,结合x 0的取值范围分析最大值的范围即可.【详解】(1)若a =1,则函数f x =x -1 e x -x 2,f x =e x +x -1 e x -2x =x e x -2 .令f x =0,则x =0或x =ln2,由于x ∈0,1 ,因而当x ∈0,ln2 时.f x <0,f x 单调递减,当x ∈ln2,1 时.f x >0,f x 单调递增,所以f x 的最小值为f ln2 =-1-ln2-1 2,最大值为f 0 =f 1 =-1(2)f x =e x +x -a e x -2x =x +1-a e x -2x ,由f x 在x ∈0,+∞) 上是增函数,得f x ≥0在x ∈0,+∞ )上恒成立,即x +1-a e x -2x ≥0,x ∈0,+∞ ,分离参数得1-a ≥2xe x-x ,x ∈0,+∞ 设g x =2x e x -x ,则g x =2-2x e x -1=2-2x -e x e x,g x =0,即2-2x -e x =0设h x =2-2x -e x ,由于h 0 =1>0,h 12=1-e <0,因而方程2-2x -e x =0在0,12上有解,设为x 0,则e x=2-2x 0,且当x ∈0,x 0 时,g x >0,当x ∈x 0,+∞ 时,g x <0,所以g x 的最大值为g x 0 =2x 0ex 0-x 0=x 01-x 0-x 0=x 201-x 0.因而1-a ≥x 201-x 0,即a ≤1+x 20x 0-1=3+1x 0-1+x 0-1,又x 0∈0,12 ,x 0-1∈-1,-12 ,又3+1x 0-1+x 0-1∈12,1所以a 的最大整数值为0.【点睛】方法点睛:(1)函数在区间上单调递增或单调递减,转化为导函数在区间上非负或非正恒成立;(2)恒成立问题可考虑参变分离,再构造函数分析最值;(3)极值点不能求解则设隐零点x 0,将x 0满足的等式条件化简代入原函数,再根据x 0的区间可求出极值的范围.12(2023·江苏徐州·校考模拟预测)已知函数f (x )=-2x 3+mx 2,m ∈R ,且g (x )=|f (x )|在x ∈(0,2)上的极大值为1.(1)求实数m 的值;(2)若b =f (a ),c =f (b ),a =f (c ),求a ,b ,c 的值.【答案】(1)m =3(2)a =b =c =0,或a =b =c =12,或a =b =c =1【分析】(1)由题意得到g x 的表达式,对m ≤0,m ≥4和0<m <4这三种情况进行逐一分析,结合导数得到g x 的单调性和最值,进而可得实数m 的取值范围;(2)作出满足条件的函数图象,对a <0,a =0,0<a <12,a =12,12<a <1,a =1,1<a ≤32和a >32这八种情况进行分析,结合题意进行判断即可.【详解】(1)g (x )=x 2|2x -m |,0≤x ≤2,①m ≤0时,g (x )=2x 3-mx 2,∴g (x )=6x 2-2mx ≥0,无极值.②m ≥4时,g (x )=-2x 3+mx 2,∴g (x )=2x (m -3x ),当m 3≥2,即m ≥6时,g (x )≥0,无极大值;当4≤m <6时,x <m 3时,g (x )>0;m3<x <2时,g (x )<0,∴g (x )在x =m 3处取极大值,即g m 3 =m 327=1,∴m =3,舍去.③0<m <4时,g x =-2x 3+mx 2,0≤x ≤m 22x 3-mx 2,m 2<x ≤2 ,∴gx =2x m -3x ,0≤x ≤m22x 3x -m ,m 2<x ≤2,0<x <m 3时,g (x )>0;m 3<x <m 2时,g (x )<0;m 2<x <2时,g (x )>0.∴g (x )在x =m 3处取极大值m 327=1,∴m =3符合题意.综上,m =3.(2)由(1)可知,f (x )=-2x 3+3x 2,f (x )=-6x 2+6x =6x -x +1 ,令f x >0可得-1<x <0,令f x <0可得x >1或x <0,如图所示.①当a <0时,b =f (a )>0,当0<b ≤32时,0<c =f (b )≤1,则a =f (c )>0,矛盾;当b >32时,c =f (b )<0,∴a =f (c )>0,矛盾.②当a =0时,符合题意.③当0<a <12时,0<x <12时,f (x )<x ,∴0<b =f (a )<a <12,则0<c =f (b )<b <12,0<a =f (c )<c <12,∴a <c <b <a ,矛盾.④当a =12时,符合题意.⑤当12<a <1时,12<x <1时,f (x )>x ,∴1>b =f (a )>a >12,则1>c =f (b )>b >12,1>a =f (c )>c >12,∴a >c >b >a ,矛盾.⑥当a =1时,符合题意.⑦当1<a ≤32时,0≤b =f (a )<1,则0≤c =f (b )<1,∴a =f (c )<1,与a >1矛盾.⑧当a >32时,b =f (a )<0,c =f (b )>0,∴a =f (c )≤1,与a >32矛盾.综上,a =b =c =0,或a =b =c =12,或a =b =c =1.【点睛】关键点睛:本题第二问的关键点在于作出满足条件的函数图象,对a <0,a =0,0<a <12,a =12,12<a <1,a =1,1<a ≤32和a >32这八种情况进行分析,结合题意进行判断即可.13(2023·安徽·校联考模拟预测)已知函数f x =ae x -e -x ,(a ∈R ).(1)若f x 为偶函数,求此时f x 在点0,f 0 处的切线方程;(2)设函数g (x )=f (x )-(a +1)x ,且存在x 1,x 2分别为g (x )的极大值点和极小值点.(ⅰ)求实数a 的取值范围;(ⅱ)若a ∈(0,1),且g x 1 +kg x 2 >0,求实数k 的取值范围.【答案】(1)y +2=0(2)(i )(0,1)∪(1,+∞);(ii )(-∞,-1]【分析】(1)根据偶函数的定义,求出a 的值,然后利用导数求切线方程.(2)(ⅰ)对g (x )进行求导,将g (x )既存在极大值,又存在极小值转化成g (x )=0必有两个不等的实数根,利用导数得到g (x )的单调性和极值,进而即可求解;(ⅱ)对g (x )进行求导,利用导数分析g (x )的极值,将g x 1 +kg x 2 >0恒成立转化成ln a <1-1k⋅a -1a +1,构造函数,利用导数分类讨论求解即【详解】(1)f (x )为偶函数,有f (-x )=ae -x -e x =f (x )=ae x -e -x ,则a =-1,所以f (x )=-e x -e -x ,f (x )=-e x +e -x 所以f (0)=-2,f (0)=0所以f (x )在点(0,f (0))处的切线方程为y +2=0.(2)(ⅰ)g (x )=f (x )-(a +1)x =ae x -e -x -(a +1)x ,g(x )=ae x+e -x-(a +1)=ae 2x -(a +1)e x +1e x =ae x -1 e x-1e x,因为函数g (x )既存在极大值,又存在极小值,则g (x )=0必有两个不等的实根,则a >0,令g (x )=0可得x =0或x =-ln a ,所以-ln a ≠0,解得a >0且a ≠1.令m =min 0,-ln a ,n =max 0,-ln a ,则有:x(-∞,m )m(m ,n )n(n ,+∞)g (x )+0-0+g (x )↗极大值↘极小值↗可知g (x )分别在x =m 和x =n 取得极大值和极小值,符合题意.综上,实数a 的取值范围是(0,1)∪(1,+∞).(ⅱ)由a ∈(0,1),可得-ln a >0,所以x 1=0,x 2=-ln a ,g x 1 =a -1,g x 2 =1-a +(a +1)ln a 且有g x 2 <g x 1 <0,由题意可得a -1+k 1-a +(a +1)ln a >0对∀a ∈(0,1)恒成立,由于此时g x 2 <g x 1 <0,则k <0,所以k a +1 ln a >k -1 a -1 ,则ln a <1-1k ⋅a -1a +1,令h (x )=ln x -1-1k ⋅x -1x +1,其中0<x <1,则h(x )=1x -1-1k ⋅2(x +1)2=(x +1)2-2x 1-1k x (x +1)2=x 2+2k x +1x (x +1)2,令x 2+2k x +1=0,则Δ=4k 2-4=41-k 2k 2.①当Δ≤0,即k ≤-1时,h (x )≥0,h (x )在(0,1)上是严格增函数,所以h (x )<h (1)=0,即ln a <1-1k ⋅a -1a +1,符合题意;(2)当Δ>0,即-1<k <0时,设方程x 2+2k x +1=0的两根分别为x 3,x 4且x 3<x 4,则x3+x 4=-2k>0,x 3x 4=1,则0<x 3<1<x 4,则当x 3<x <1时,h (x )<0,则h (x )在x 3,1 上单调递减,所以当x 3<x <1时,h (x )>h (1)=0,即ln a >1-1k ⋅a -1a +1,不合题意.综上所述,k 的取值范围是(-∞,-1].【点睛】关键点点睛:本题(ⅱ)关键是将g x 1 +kg x 2 >0恒成立转化成ln a <1-1k ⋅a -1a +1,构造函数,利用导数分类讨论求解即可.14(2023上·广东深圳·高三深圳中学校考阶段练习)已知函数f x =x -m ln x -n ,其中m ,n∈R .(1)若m =n =1,求f x 在x =1处的切线方程;(2)已知不等式f x ≥x 恒成立,当nm取最大值时,求m 的值.【答案】(1)y =-1(2)m =e【分析】(1)根据切点和斜率求得切线方程.(2)构造函数g x =f x -x ,利用导数研究g x 的最小值,由此列不等式来求得nm的最大值,以及此时的m 的值.【详解】(1)当m =n =1时,f x =x -1 ln x -1,因为f x =ln x +x -1x,所以f 1 =0,又f 1 =-1,故f x 在x =1处的切线方程为y =-1;(2)显然m ≠0,若m <0,当x →0+时,x -m ln x -n →-∞,而x >0,矛盾,所以m >0,令g x =f x -x =x -m ln x -x -n ,则g x ≥0恒成立,即g (x )min ≥0.由于g x =ln x -m x ,ln x -m x =1x +mx2>0,则g x =ln x -mx在正实数集上是增函数,g 1 =-m <0,x →+∞时g x →+∞,故存在x 0>1,使得g x 0 =0,且在0,x 0 上g x <0,g (x )单减,在x 0,+∞ 上g x >0,g x 单增,且m =x 0ln x 0,故g (x )min =g x 0 =x 0ln x 0-m ln x 0-x 0-n ≥0,所以n ≤x 0ln x 0-m ln x 0-x 0=x 0ln x 0-x 0ln x 0 2-x 0,所以n m ≤x 0ln x 0-x 0ln x 0 2-x 0x 0ln x 0=1-ln x 0+1ln x 0≤-1,等号当且仅当ln x 0=1即x 0=e 时取得,此时m =x 0ln x 0=e ln e =e.故当n m取最大值时,m =e.15(2023·广东韶关·统考一模)已知函数f x =e x ,g x =2x .(1)若f x 在x =0处的切线与g x 的图象切于点P ,求P 的坐标;(2)若函数F x =f ax x 2-a +2a的极小值小于零,求实数a 的取值范围.【答案】(1)1,2 (2)(-∞,-2)∪(0,+∞)【分析】(1)由导数的几何意义可解;(2)求导得F x =ae ax x -1 x +a +2a,对a 进行分类讨论即可.【详解】(1)f x =e x .所以f x =e x 即切线斜率为k =e 0=1,又g x =2x ,所以g x =1x,令g x =1解得x =1,则g 1 =2,故点P 坐标为1,2 .(2)F x =f ax x 2-a +2a =e ax x 2-a +2a,因为F x =e ax ax 2+2x -a +2 =ae ax x -1 x +a +2a,令F x =0得x 1=-a +2a ,x 2=1,①当a >0,x 1=-a +2a <0由x 的变化可得x -∞,-a +2a-a +2a-a +2a,1 11,+∞F x +-0+F x单调递增极大值单调递减极小值单调递增F (1)极小值=e a -2a<0符合题意;②当-1<a <0,x 1=-a +2a >1由x 的变化可得x -∞,111,-a +2a-a +2a-a +2a,+∞ F x -0+-F x单调递减极小值单调递增极大值单调递减F (1)极小值=e a -2a>0不符合题意;③当a =1,F x ≤0,F x 单调递减,没极值点;④当a <-1,x 1=-a +2a <1由x 的变化可得x -∞,-a +2a-a +2a-a +2a,1 11,+∞F x -+0-F x单调递减极小值单调递增极大值单调递减F -a +2a 极小值=e x -a +2a -a +2a 2-a +2a<0,解得a<-2;综上所述,a∈(-∞,-2)∪(0,+∞).【点睛】关键点睛:本题主要考查导数的几何意义以及利用导数研究函数的极值,注意分类讨论思想的应用,本题难点在于a的范围的划分,属于常考题型.16(2023·湖北黄冈·统考模拟预测)已知函数f(x)=a ln x-2x+12x2.(1)讨论函数f x 的极值点个数;(2)若不等式f(x)≤x e x+12x-a-2-1恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)a=1【分析】(1)根据函数极值的定义,结合一元二次方程根的判别式分类讨论进行求解即可;(2)利用换元法构造函数,根据导数的性质进行求解即可.【详解】(1)∵f (x)=x2-2x+ax,x>0,.令g(x)=x2-2x+a,方程x2-2x+a=0的判别式为Δ=4-4a,①:当Δ≤0即a≥1时,f x ≥0,f x 单调递增,无极值点;②:当Δ>0即a<1时,函数g x 有两个零点x1=1-1-a,x2=1+1-a,(i)当a≤0时.x1≤0,x2>1,当x∈0,x2时f x <0,f x 单调递减,当x∈(x2,+∞)时f x >0,f x 单调递增,f x 有一个极小值点;(ii)当0<a<1时0<x1<1,x2>1,当x∈0,x1与(x2,+∞)时f x >0,f x 单调递增,当x∈x1,x2时f x <0,f x 单调递减,f x 有两个极值点.综上:当a≥1时f x 无极值点;当0<a<1时f x 有两个极值点;当a≤0时f x 有一个极小值点.(2)不等式f(x)≤x e x-2x+12x2恒成立,即a ln x+x≤xe x-1.∴xe x-a ln xe x-1≥0,令xe x=t,t>0,∴t-a ln t-1≥0.令h t =t-a ln t-1,h (t)=t-at,则需h t =t-a ln t-1≥0,当a≤0时,h t ≥0,h t 单调递增,又h1 =0,∴t∈0,1时h t <0,不合题意,∴a>0.当0<t<a时,h t 单调递减,当t>a时h t 单调递增,h(t)min=h(a)=a-a ln a-1.而h1 =0,∴h a =a-a ln a-1≤0,又由h t =t-a ln t-1≥0可得h a =a-a ln a-1≥0,所以需h a =a-a ln a-1=0,令m x =x-x ln x-1,m x =-ln x,当x∈0,1时m x 单调递增,当x∈(1,+∞)时m x 单调递减,∴m (x )max =m (1)=0,∴a =1.【点睛】关键点睛:本题的关键是根据换元法把a ln x +x ≤xe x -1变形为t -a ln t -1≥0.17(2023·山东潍坊·统考模拟预测)已知函数f (x )=mx -1+ln (x +1),m ∈R .(1)若函数f x 图象上存在关于原点对称的两点,求m 的取值范围;(2)当s >t >1时,(2s -2t )k s +t -2+f (t -2)+m s -3<f (s -2)+m t -3恒成立,求正实数k 的最大值.【答案】(1)-12e≤m ≤0(2)1【分析】(1)问题可转化f -x +f x =0有解,得到ln 1-x 2 =m x +1-m x -1=-2x 2-1m ,构造函数g (t )=12t ln t (0<t ≤1),求导讨论单调性,利用数形结合,找到y =m 与曲线在0,1 的有交点时m 的范围;(2)恒成立问题,把不等式变形成2k s -1t -1-1 s -1t -1+1<lns -1t -1,设s -1t -1=a (a >1),构造函数h (a )=2k (a -1)a +1-ln a (a >1),转化成零点的问题,再利用单调性求解.【详解】(1)要使函数f x 图象上存在关于原点对称的两点,则f -x +f x =0有解,则ln (-x +1)+m -x -1+ln (x +1)+mx -1=0,即ln 1-x 2 =m x +1-m x -1=-2x 2-1m ,令t =1-x 2,则0<t ≤1,设g (t )=12t ln t (0<t ≤1)g (t )=12(1+ln t )=0得t =1e,当0<t <1e时,g t <0,g t 单调递减,当1e<t ≤1时,g t >0,g t 单调递增,所以g (t )min =g 1e =-12e,g 1 =0,所以-12e≤m ≤0;(2)由题意知(2s -2t )k s +t -2+ln (t -1)+m t -3+m s -3<ln (s -1)+m s -3+mt -3,则(2s -2t )k s +t -2<ln (s -1)-ln (t -1),则2k [(s -1)-(t -1)](s -1)+(t -1)<ln s -1t -1,2k s -1t -1-1 s -1t -1+1<ln s -1t -1,设s -1t -1=a (a >1),则2k (a -1)a +1<ln a ,即2k (a -1)a +1-ln a <0,设h (a )=2k (a -1)a +1-ln a (a >1),h(a )=4k (a +1)2-1a =4ka -(a +1)2a (a +1)2=-a 2+(4k -2)a -1a (a +1)2,且h 1 =0,当h (1)=-1+4k -2-14=4k -44>0,即k >1时,易知方程-a 2+4k -2 a -1=0有一根a 1大于1,另一根a 2小于1,所以h a 在1,a 1 上单调递增,故有h a >h 1 =0不合题意,舍去, 当0<k ≤1时,有4ka -a +1 2≤4a -a +1 2=-a -1 2<0,所以h a ≤0,从而h a 在(1,+∞)上单调递减,故当a >1时,恒有h a <h 1 =0符合题意,所以正实数k 的取值范围为0<k ≤1,因此k 的最大值为1.【点睛】方法点睛:本题考查利用导数讨论方程根的个数问题.问题一可转化f -x +f x =0有解,得到ln 1-x 2 =m x +1-m x -1=-2x 2-1m ,构造函数g (t )=12t ln t (0<t ≤1),求导讨论单调性,利用数形结合,找到y =m 与曲线在0,1 的有交点时m 的范围;问题二转化成恒成立问题,把不等式变形成2k s -1t -1-1 s -1t -1+1<lns -1t -1,设s -1t -1=a (a >1),构造函数h (a )=2k (a -1)a +1-ln a (a >1),转化成零点的问题,再利用单调性求解.18(2023·河北保定·统考二模)已知函数f x =x 2e x +m ,m ∈R .(1)当m =-1时,求f x 在点A 1,e -1 处的切线方程.(2)若g x =f xx-ln x -1的图象恒在x 轴上方,求实数m 的取值范围.【答案】(1)3e -2 x -y -2e +1=0(2)m ≥-1【分析】(1)由题意,将m =-1代入函数f x 的解析式中,对函数f x 进行求导,得到f 1 和f 1 ,代入切线方程中即可求解;(2)将函数g x 的图像恒在x 轴上方,转化成m >ln x +1x -e x 恒成立,构造函数φx =ln x +1x-e x ,此时问题转化成函数最值问题,对函数φx 进行求导,利用导数的几何意义以及零点存在性定理进行求解即可.【详解】(1)∵f x =x 2e x -1∴f x =x 2+2x e x -2x∴f 1 =3e-2.又∵f1 =e-1∴f x 在点A1,e-1处的切线方程为3e-2x-y-2e+1=0(2)g x =f xx-ln x-1的图像恒在x轴上方,等价于x e x+m-ln x-1>0恒成立即m>ln x+1x-e x恒成立,令φx =ln x+1x-e x,则φ x =-ln xx2-e x=-ln x+x2e xx2令g x =-ln x+e x x2,则g x =-1x+x2e x+2xe x<0所以g x 在0,+∞上单调递减又g12>0,g1 <0,所以在0,+∞上存在唯一的x0使g x0=0当x∈0,x0时φ x >0,φx 单调递增,当x∈x0,+∞时φ x <0,φx 单调递减.故φx 的最大值为φx0=ln x0+1x0-e x0又1nx0+e x0x02=0,故x0e x0=-ln x0x0,两边取对数得ln x0+x0=ln-ln x0+-ln x0又h x =x+ln x在定义域内单调递增,所以x0=-ln x0,故e x0=1 x0所以φx0=ln x0+1x0-e x0=ln x0x0+1x0-1x0=-1所以m≥-1.【点睛】方法点睛:含参不等式恒成立求参数值(取值范围)常用的方法:(1)直接法:直接求导确定函数的单调性得到最值,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.19(2023下·福建宁德·高三统考阶段练习)已知函数f(x)=e x+2ax-1,其中a为实数,e为自然对数底数,e=2.71828⋯.(1)已知函数x∈R,f(x)≥0,求实数a取值的集合;(2)已知函数F(x)=f(x)-ax2有两个不同极值点x1、x2,证明2a(x1+x2)>3x1x2【答案】(1)-1 2(2)证明见解析【分析】(1)求出f(x)的导数,对实数a分类讨论求出f(x)的最小值,解不等式f(x)min≥0即可求解;(2)由函数F(x)=f(x)-ax2有两个不同极值点x1、x2,可求出a的取值范围,由已知得e x2e x1=x2-1x1-1,取对数得x2-x1=ln x2-1-ln x1-1,通过换元x1-1=t1,x2-1=t2,构造函数u t =t-ln t,讨论函数u t =t-ln t的单调性,确定t1,t2的不等关系,再转化为x1、x2的关系即可证明.【详解】(1)由f (x )=e x +2ax -1,得f (x )=e x +2a ,当a ≥0时,因为f (-1)=1e-1-2a <0,不合题意;当a <0时,当x ∈-∞,ln (-2a ) 时,f (x )<0,f (x )单调递减,当x ∈ln (-2a ),+∞ 时,f (x )>0,f (x )单调递增,所以f (x )min =f ln (-2a ) =-2a +2a ln (-2a )-1,要f (x )≥0,只需f (x )min =-2a +2a ln (-2a )-1≥0,令g (x )=x -x ln x -1,则g (x )=-ln x ,当x ∈(0,1)时,g (x )>0,g (x )单调递增;当x ∈(1,+∞)时,g (x )<0,g (x )单调递减;所以g (x )≤g (1)=0,则由g (-2a )=-2a +2a ln (-2a )-1≥0得-2a =1所以a =-12,故实数a 取值的集合-12 (2)由已知F x =e x -ax 2+2ax -1,则F x =e x -2ax +2a ,因为函数F x 有两个不同的极值点x 1、x 2,所以F x 有两个不同零点,若a ≤0时,则F x 在R 上单调递增,F x 在R 上至多一个零点,与已知矛盾,舍去;当a >0时,由e x -2ax +2a =0,得12a =x -1e x,令φx =x -1e x ,所以φx=2-x e x,当x ∈-∞,2 时,φ x >0,φx 单调递增;当x ∈2,+∞ 时,φ x <0,φx 单调递减.所以φx max =φ2 =1e2,且当x <1时,φx <0,当x >1时,φx >0,如下图所示:由图可知,当0<12a <1e2时,即当a >e 22时,直线y =12a 与函数φx 的图象有两个交点,不妨设这两个交点的横坐标分别为x 1、x 2,且x 1<x 2,且当x <x 1或x >x 2时,12a >x -1e x,则F x =2ae x 12a -x -1e x>0,当x1<x<x2时,12a <x-1e x,则F x =2ae x12a-x-1e x<0.综上所述,当a>e22时,函数F x 有两个极值点;设x1<x2,则1<x1<2<x2,因为φ(x1)=φ(x2)=0,所以e x1=2ax1-2a,e x2=2ax2-2a,则e x2e x1=x2-1x1-1,取对数得x2-x1=ln(x2-1)-ln(x1-1),令x1-1=t1,x2-1=t2,则t2-t1=ln t2-ln t1,即t2-ln t2=t1-ln t1(0<t1<1<t2),令u(t)=t-ln t,则u(t1)=u(t2),因为u (t)=t-1t,所以u(t)=t-ln t在(0,1)上单调递减,在(1,+∞)上单调递增,令v(t)=u(t)-u1t=t-1t-2ln t,则v (t)=(t-1)2t2≥0,v(t)在(0,+∞)上单调递增,又v(1)=0,所以当t∈(0,1)时,v(t)<v(1)=0,即u(t)<u1t ,因为t2>1,2-t1>1,u(t)=t-ln t在(1,+∞)上单调递增,所以t2<1t1,所以x2-1<1x1-1,即x1x2<x1+x2,所以x1x2<x1+x2<2312e2(x1+x2)<23a(x1+x2),故3x1x2<2a(x1+x2)成立.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.20(2023·广东·统考二模)已知a∈R,函数f x =x-1ln1-x-x-a cos x,f x 为f x 的导函数.(1)当a=0时,求函数f x 的单调区间;(2)讨论f x 在区间0,1上的零点个数;(3)比较110cos110与ln109的大小,并说明理由.【答案】(1)f x 的单调递增区间为-∞,0,单调递减区间为0,1(2)答案见解析(3)110cos110<ln109,理由见解析【分析】(1)求导可得f x =ln1-x(x<1),根据f x >0和f x <0即可求解;(2)令g x =f x ,则g x =a1-xcos x-11-x,x∈0,1.易知当a≤1时g x <0,从而g x 单调递减;当a >1时令h x =a 1-x cos x -1,利用导数讨论函数h (x )的单调性,根据零点的存在性定理分析函数g x 的单调性可得g x <0,即可得出零点的个数;(3)由(2)可得当a ≤1时ln 1-x +a sin x <0在0,1 上恒成立.利用导数讨论函数m x =x -tan x 的性质可得x cos x <sin x ,结合sin x <ln 11-x 得x cos x <ln 11-x,x ∈0,1 ,即可证明.【详解】(1)当a =0时,f x =x -1 ln 1-x -x ,其定义域为-∞,1 ,f x =ln 1-x ,令f x =ln 1-x =0,得x =0.当x ∈-∞,0 时,f x >0,故f x 在-∞,0 上单调递增;当x ∈0,1 时,f x <0,故f x 在0,1 上单调递减.因此,函数f x 的单调递增区间为-∞,0 ,单调递减区间为0,1 .(2)令g x =f x =ln 1-x +a sin x ,则g x =-11-x +a cos x =a 1-x cos x -11-x,x ∈0,1 .因为x ∈0,1 ,则1-x ∈0,1 ,cos x ∈0,1 ,则1-x cos x ∈0,1 .当a ≤1时,则a 1-x cos x -1<0,故g x <0,从而g x 在0,1 上单调递减;而g 0 =0,故当x ∈0,1 时,g x <g 0 =0,故g x 在区间0,1 上无零点;即f x 在区间0,1 上无零点;当a >1时,令h x =a 1-x cos x -1,则h x =-a cos x +1-x sin x ,因为x ∈0,1 ,则cos x +1-x sin x >0,从而h x <0,即h x 在0,1 上单调递减;而h 0 =a -1>0,h 1 =-1<0,因此存在唯一的x 0∈0,1 ,使得h x 0 =0,并且当x ∈0,x 0 时,h x >0;当x ∈x 0,1 时,h x <0.即当x ∈0,x 0 时,g x >0,当x ∈x 0,1 时,g x <0.故当x ∈0,x 0 时,g x 单调递增,当x ∈x 0,1 时,g x 单调递减.而g 0 =0,故g x 0 >0;取N =1-e -2a ∈0,1 ,当x >N 时,g x =ln 1-x +a sin x <a +ln e -2a =a -2a =-a <0,所以存在唯一的m ∈x 0,1 ,使得g m =0,即f x 在区间0,1 上有唯一零点.综上所述,当a >1时,f x 在0,1 上有唯一的零点;当a ≤1时,f x 在0,1 上没有零点.(3)110cos 110<ln 109理由如下:[解法一]由(2)可得,当a ≤1时,ln 1-x +a sin x <0在0,1 上恒成立.即当a =1时,sin x <ln 11-x ,x ∈0,1 .以下证明不等式:当x ∈0,π2时,有x <tan x .令m x =x-tan x,则m x =1-1cos2x<0,故m x 在0,π2上单调递减,则m x <m0 =0,即x<tan x,x∈0,π2,即有x cos x<sin x,而sin x<ln11-x,故x cos x<ln11-x,x∈0,1.取x=110,则有110cos110<ln109.[解法二]显然cos110∈0,1,故110cos110<110,以下证明不等式:当x∈-1,+∞时,有ln1+x≤x.令p x =ln1+x-x,则令p x =11+x-1=-x1+x=0,得x=0.故当x∈-1,0时,p x >0,从而p x 在-1,0上单调递增;当x∈0,+∞时,p x <0,从而p x 在0,+∞上单调递减.故x=0是p x =ln1+x-x的极大值点,并且是最大值点,故p x ≤p0 =0,即ln1+x≤x,x∈-1,+∞.取x=-110,则ln910<-110,故ln109>110,故110cos110<110<ln109,从而110cos110<ln109.【点睛】方点点睛:利用导数研究函数零点问题,不论哪种方法,其核心步骤都是构造函数.利用已知的函数或已知条件将问题转化,重新构造函数模型,通过导数研究函数模型的单调性、极值或最值等达到解决问题的目的.二、证明题21(2023·福建·校联考模拟预测)设函数f x =2x-2x-a ln x(a∈R).(1)讨论f x 的单调性;(2)若f x 有两个极值点x1,x2,记过点A x1,f x1,B x2,f x2的直线的斜率为k,若x2∈1,e,证明:2-4e-1<k<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出直线的斜率k,得k=4-2x1x2+1x1x2-1lnx1x2,令t=x1x2,t∈1e,1,要证:2-4e-1<k<0,即证ln t<2t-1t+1和ln t>e+1e-1⋅t-1t+1,求出函数的导数,根据函数的单调性证明即可.【详解】(1)f x =2+2x2-ax=2x2-ax+2x2,令g x =2x2-ax+2,Δ=a2-16.①当-4≤a≤4时,Δ≤0,f x ≥0,f x 在0,+∞单调递增:②当a<-4时,Δ>0,g x =0的两根都小于0,f x 在0,+∞上大于0,所以f x 在0,+∞单调递增;③当a>4时,由g x =0,解得x1=a-a2-164,x2=a+a2-164,x∈0,x1∪x2,+∞,g x >0,f x >0,f x 在0,x1,x2,+∞上单调递增:x∈x1,x2,g x <0,f x <0,f x 在x1,x2上单调递减.(2)证明:由(1)知当a>4时,f x 有两个极值点x1,x2,且满足x1+x2=a2,x1x2=1.f x1-f x2=2x1-x2-21x1-1x2-a ln x1-ln x2=4x1-x2-a ln x1-ln x2,k=f x1-f x2x1-x2=4-aln x1-ln x2x1-x2=4-2x1+x2x1-x2ln x1-ln x2=4-2x1x2+1x1x2-1lnx1x2.令t=x1x2=1x22∈1e,1,则k=4-2t+1t-1ln t.(ⅰ)要证k<0,即证ln t<2t-1 t+1.令h t =ln t-2t-1t+1,则ht =1t-4t+12=t2-2t+1t+12>0,所以h t 在1e,1上单调递增.又h1 =0,所以h t <0,即ln t<2t-1t+1,∴k<0.(ⅱ)要证k>2-4e-1,即证ln t>e+1e-1⋅t-1t+1.令F t =ln t-e+1e-1⋅t-1t+1,Ft =1t-e+1e-12t+12=t2-4e-1t+1t t+12,记G t =t2-4e-1t+1,则G1e=e3-e2-3e-1e2e-1>0,G1 =2e-6e-1<0,则G t 在1e,1有唯一实根t0,故F t 在1e,t0上单调递增,在t0,1单调递减,又F1e=F1 =0,所以当1e<t<1时,F t >F1e =0,∴ln t>e+1e-1⋅t-1t+1,即k>2-4e-1.由(ⅰ)(ⅱ),证得2-4e-1<k<0.【点睛】思路点睛:根据函数极值点个数求参数相关问题时,一般需要先对函数求导,根据导函数对应的方程,确定极值点与参数之间关系,再由消元法将问题转化为参数与其中一个极值点之间的关系式,根据极值点的范围,构造新的函数,利用导数的方法判定新函数的单调性,进而即可求解.。

2023高考数学-导数压轴题

2023高考数学-导数压轴题
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.
7.已知函数 .
(1)讨论 的单调性;
(2)若 存在两个极值点 ,证明: .
8.(12分)
已知函数 , 为 的导数.证明:
(1) 在区间 存在唯一极大值点;
(2) 有且仅有2个零点.
9.(12分)
已知函数f(x)=2sinx-xcosx-x,f ′(x)为f(x)的导数.
(3)当 时,证明:对任意 ,函数 有两个不同的零点 , ,满足 .(注: 是自然对数的底数)
18.(12分)设函数f(x)=aexlnx+ ,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.
(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.
19.已知函数 .
(1)讨论函数 的单调性;
(1)证明:f ′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
10.已知函数 .
(1)当a=1时,讨论f(x)的单调性;
(2)当x≥0时,f(x)≥ x3+1,求a的取值范围.
11.已知函数f(x)=sin2xsin2x.
(1)讨论f(x)在区间(0,π)的单调性;
(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.
5.(12分)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.
(Ⅰ)求a的取值范围;
(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.
6.(12分)(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)ex﹣x.

高中数学导数压轴题专题拔高训练 (二)

高中数学导数压轴题专题拔高训练 (二)

高中数学导数压轴题专题拔高训练一.选择题(共15小题)1.已知可导函数f(x)(x∈R)满足f′(x)>f(x),则当a>0时,f(a)和e a f(0)大小关系为()A.f(a)<e a f(0)B.f(a)>e a f(0)C.f(a)=e a f(0)D.f(a)≤e a f(0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),由f(a)=e2a,e a f(0)=e a,比较得出结论.解答:解:由题意知,可设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),f(a)=e2a,e a f(0)=e a,当a>0时,显然e2a>e a ,即f(a)>e a f(0),故选B.点评:本题考查求复合函数的导数的方法,以及指数函数的单调性,利用构造法求解是我们选择题常用的方法.2.已知函数f(x)=x3+bx2+cx+d在区间[﹣1,2]上是减函数,那么b+c()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣考点:利用导数研究函数的单调性.专题:压轴题.分析:先对函数f(x)求导,然后令导数在[﹣1,2]小于等于0即可求出b+c的关系,得到答案.解答:解:由f(x)在[﹣1,2]上是减函数,知f′(x)=3x2+2bx+c≤0,x∈[﹣1,2],则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.3.对任意的实数a,b,记若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值﹣2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示则下列关于函数y=F(x)的说法中,正确的是()A.y=F(x)为奇函数B.y=F(x)有极大值F(1)且有极小值F(﹣1)C.y=F(x)的最小值为﹣2且最大值为2 D.y=F(x)在(﹣3,0)上不是单调函数考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题;压轴题.分析:在同一个坐标系中作出两函数的图象,横坐标一样时取函数值较大的那一个,如图,由图象可以看出选项的正确与否.解答:解:∵f(x)*g(x)=max{f(x),g(x)},∴f(x)*g(x)=max{f(x),g(x)}的定义域为R,f(x)*g(x)=max{f(x),g(x)},画出其图象如图中实线部分,由图象可知:y=F(x)的图象不关于原点对称,不为奇函数;故A不正确y=F(x)有极大值F(﹣1)且有极小值F(0);故B不正确y=F(x)的没有最小值和最大值为,故C不正确y=F(x)在(﹣3,0)上不为单调函数;故D正确故选D.点评:本题考点是函数的最值及其几何意义,本题考查新定义,需要根据题目中所给的新定义作出相应的图象由图象直观观察出函数的最值,对于一些分段类的函数,其最值往往借助图象来解决.本题的关键是读懂函数的图象,属于基础题.4.已知函数f(x)=x3+ax2﹣bx+1(a、b∈R)在区间[﹣1,3]上是减函数,则a+b的最小值是()A.B.C.2D.3考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:求出f′(x),因为函数在区间[﹣1,3]上是减函数得到f(﹣1)和f(3)都小于0分别列出关于a与b的两个不等式,联立即可解出a的取值范围得到a的最小值,把a的最小值当然①即可求出b的最小值,求出a+b的值即可.解答:解:f′(x)=x2+2ax﹣b,因为函数f(x)在区间[﹣1,3]上是减函数即在区间[﹣1,3]上,f′(x)≤0,得到f′(﹣1)≤0,且f′(3)≤0,代入得1﹣2a﹣b≤0①,且9+6a﹣b≤0②,由①得2a+b≥1③,由②得b﹣6a≥9④,设u=2a+b≥1,v=b﹣6a≤9,假设a+b=mu+nv=m(2a+b)+n(﹣6a+b)=(2m﹣6n)a+(m+n)b,对照系数得:2m﹣6n=1,m+n=1,解得:m=,n=,∴a+b=u+v≥2,则a+b的最小值是2.故选C点评:此题考查学生会利用导数研究函数的单调性,灵活运用不等式的范围求未知数的最值,是一道综合题.5.定义在R上的可导函数f(x),当x∈(1,+∞)时,f(x)+f′(x)<xf′(x)恒成立,a=f(2),b=f(3),c=(+1)f(),则a,b,c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a考点:利用导数研究函数的单调性.专题:综合题;压轴题;导数的概念及应用.分析:根据x∈(1,+∞)时,f(x)+f′(x)<xf′(x),可得g(x)=在(1,+∞)上单调增,由于,即可求得结论.解答:解:∵x∈(1,+∞)时,f(x)+f′(x)<xf′(x)∴f′(x)(x﹣1)﹣f(x)>0∴[]′>0∴g(x)=在(1,+∞)上单调增∵∴g()<g(2)<g(3)∴∴∴c<a<b故选A.点评:本题考查导数知识的运用,考查函数的单调性,确定函数的单调性是关键.6.设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是()A.f(a)<e a f(0)B.f(a)>e a f(0)C.D.考点:利用导数研究函数的单调性;导数的运算.专题:压轴题;导数的概念及应用.分析:根据选项令f(x)=,可以对其进行求导,根据已知条件f′(x)>f(x),可以证明f(x)为增函数,可以推出f(a)>f(0),在对选项进行判断;解答:解:∵f(x)是定义在R上的可导函数,∴可以令f(x)=,∴f′(x)==,∵f′(x)>f(x),e x>0,∴f′(x)>0,∴f(x)为增函数,∵正数a>0,∴f(a)>f(0),∴>=f(0),∴f(a)>e a f(0),故选B.点评:此题主要考查利用导数研究函数单调性,此题要根据已知选项令特殊函数,是一道好题;7.若函数f(x)=x3+a|x2﹣1|,a∈R,则对于不同的实数a,则函数f(x)的单调区间个数不可能是()A.1个B.2个C.3个D.5个考点:利用导数研究函数的单调性.专题:证明题;压轴题.分析:先令a=0,即可排除A,再将函数化为分段函数,并分段求其导函数,得f′(x),最后利用分类讨论,通过画导函数f′(x)的图象判断函数f(x)的单调区间的个数,排除法得正确判断解答:解:依题意:(1)当a=0时,f(x)=x3,在(﹣∞,+∞)上为增函数,有一个单调区间①当a≠0时,∵f(x)=x3+a|x2﹣1|a∈R∴f(x)=∴f′(x)=(2)当0<a<时,∵﹣<﹣<0,0<<,∴导函数的图象如图1:(其中m为图象与x轴交点的横坐标)∴x∈(﹣∞,0]时,f′(x)>0,x∈(0,m)时,f′(x)<0,x∈[m,+∞)时,f′(x)>0,∴f(x)在x∈(﹣∞,0]时,单调递增,x∈(0,m)时,单调递减,x∈[m,+∞)时,单调递增,有3个单调区间②(3)当a≥3时,∵﹣<﹣1,>1,∴导函数的图象如图2:(其中n为x≤﹣1时图象与x轴交点的横坐标)∴x∈(﹣∞,n]时,f′(x)>0,x∈(n,﹣1]时,f′(x)<0,x∈(﹣1,0)时,f′(x)>0,x∈[0,1)时,f′(x)<0,x∈[1,+∞)时,f′(x)>0∴函数f(x)在x∈(﹣∞,n]时,单调递增,x∈(n,﹣1]时,单调递减,x∈(﹣1,0)时,单调递增,x∈[0,1)时,单调递减,x∈[1,+∞)时,单调递增,有5个单调区间③由①②③排除A、C、D,故选B点评:本题考查了含绝对值函数的单调区间的判断方法,利用导数研究三次函数单调区间的方法,函数与其导函数图象间的关系,排除法解选择题8.已知函数,那么下面结论正确的是()A.f(x)在[0,x0]上是减函数B.f(x)在[x0,π]上是减函数C.∃x∈[0,π],f(x)>f(x0)D.∀x∈[0,π],f(x)≥f(x0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:由函数的解析式f(x)=sinx﹣x可求其导数f′(x)=cosx﹣,又余弦函数在[0,π]上单调递减,判断导数在[x0,π]上的正负,再根据导数跟单调性的关系判断函数的单调性.解答:解:∵f(x)=sinx﹣x∴f′(x)=cosx﹣∵cosx0=,x0∈[0,π]又∵余弦函数y=cosx在区间[0,π]上单调递减∴当x>x0时,cosx<cosx0 即cosx<∴当x>x0时,f′(x)=cosx﹣<0∴f(x)=sinx﹣x在[x0,π]上是减函数.故选B.点评:利用导数判断函数的单调性,一定要注意其方法及步骤.(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)写出f(x)的单调区间.9.设,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则实数a的取值范围是()A.B.C.[1,4]D.考点:利用导数研究函数的单调性.专题:计算题;综合题;压轴题;转化思想.分析:根据对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,得到函数f(X)在[0,1]上值域是g(X)在[0,1]上值域的子集,下面利用导数求函数f(x)、g(x)在[0,1]上值域,并列出不等式,解此不等式组即可求得实数a的取值范围解答:解:∵,∴f′(x)=,当x∈[0,1],f′(x)≥0.∴f(x)在[0,1]上是增函数,∴f(x)的值域A=[0,1];又∵g(x)=ax+5﹣2a(a>0)在[0,1]上是增函数,∴g(X)的值域B=[5﹣2a,5﹣a];根据题意,有A⊆B∴,即.故选A.点评:此题是个中档题.考查利用导数研究函数在闭区间上的最值问题,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,10.设函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,则k的取值范围()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数f'(x),函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数转化成f'(x)≤0在区间(0,4)上恒成立,讨论k的符号,从而求出所求.解答:解:f'(x)=3kx2+6(k﹣1)x,∵函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,∴f'(x)=3kx2+6(k﹣1)x≤0在区间(0,4)上恒成立当k=0时,成立k>0时,f'(4)=48k+6(k﹣1)×4≤0,即0<k≤k<0时,f'(4)=48k+6(k﹣1)×4≤0,f'(0)≤0,k<0故k的取值范围是k≤故选D.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.11.若函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数,再进行分类讨论,同时将函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,转化为f′(x)在其定义域的一个子区间(k﹣1,k+1)内有正也有负,从而可求实数k的取值范围解答:解:求导函数,当k=1时,(k﹣1,k+1)为(0,2),函数在上单调减,在上单调增,满足题意;当k≠1时,∵函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数∴f′(x )在其定义域的一个子区间(k﹣1,k+1)内有正也有负∴f′(k﹣1)f′(k+1)<0∴∴×<0∴∵k﹣1>0∴k+1>0,2k+1>0,2k+3>0,∴(2k﹣3)(2k﹣1)<0,解得综上知,故选D.点评:本题以函数为载体,考查函数的单调性,考查学生分析解决问题的能力,分类讨论,等价转化是关键.12.已知g(x )为三次函数f(x)=x3+ax2+cx的导函数,则它们的图象可能是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求出函数的导函数,然后利用排除法进行判定,以及f′(x)=ax2+2ax+c与x轴交点处,函数取极值可得结论.解答:解:∵f(x)=x3+ax2+cx∴f′(x)=ax2+2ax+c对称轴为x=﹣1可排除选项B与选项C再根据f′(x)=ax2+2ax+c与x轴交点处,函数取极值可知选项D正确故选D.点评:本题主要考查了函数的单调性与导数的关系,解题的关键是原函数图象与导函数图象的关系,属于基础题.13.已知定义在R上的函数f(x)满足f(2)=1,f′(x)为f(x)的导函数.已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)>1,则的取值范围是()A.(B.C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)考点:函数的单调性与导数的关系;简单线性规划.专题:计算题;压轴题;数形结合.分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用线性规划的方法得到答案.解答:解:由图可知,当x>0时,导函数f'(x)<0,原函数单调递减,∵两正数a,b满足f(2a+b)>1,且f(2)=1,∴2a+b<2,a>0,b>0,画出可行域如图.k=表示点Q(2,1)与点P(x,y)连线的斜率,当P点在A(1,0)时,k最大,最大值为:;当P点在B(0,2)时,k最小,最小值为:.k的取值范围是(﹣,1).故选A.点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.14.已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为()D.{x|﹣1<x<1,且x≠0} A.{x|x<﹣1或x>1} B.{x|x<﹣1或0<x<1} C.{x|﹣1<x<0或0<x<1}考点:函数的单调性与导数的关系;其他不等式的解法.专题:计算题;压轴题.分析:由已知当x>0时总有xf′(x)<f(x)成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可解答:解:设g(x)=,则g(x)的导数为g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x)∴函数g(x)为定义域上的偶函数又∵g(1)==0∴函数g(x)的图象性质类似如图:数形结合可得不等式f(x)>0⇔x•g(x)>0⇔或⇔0<x<1或x<﹣1故选B点评:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.15.已知函数f(x)的定义域为[﹣2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是()X ﹣2 0 4f(x) 1 ﹣1 1A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题;数形结合.分析:由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到f(x)的单调性,结合函数的单调性求出不等式的解即a,b的关系,画出关于a,b的不等式表示的平面区域,给函数与几何意义,结合图象求出其取值范围.解答:解:由导函数的图形知,x∈(﹣2,0)时,f′(x)<0;x∈(0,+∞)时,f′(x)>0∴f(x)在(﹣2,0)上单调递减,在(0,+∞)上单调递增;∵f(2a+b)<1∴﹣2<2a+b<4∵a>0,b>0∴a,b满足的可行域为表示点(a,b)与(﹣3,﹣3)连线的斜率的2倍由图知当点为(2.,0)时斜率最小,当点为(0,4)时斜率最大所以的取值范围为故选A点评:利用导函数求函数的单调性问题,应该先判断出导函数的符号,当导函数大于0对应函数单调递增;当导函数小于0,对应函数单调递减.二.解答题(共15小题)16.已知m∈R,函数f(x)=x2﹣m x,g(x)=lnx.(1)当x∈[1,2]时,如果函数f(x)的最大值为f(1),求m的取值范围;(2)若对有意义的任意x,不等式f(x)>g(x)恒成立,求m的取值范围;(3)当m在什么范围内取值时,方程f(x)=g(x)分别无实根?只有一实根?有两个不同实根?考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题.分析:(1)本问题求出函数的最值代入已知最大值为f(1),即可解得参数m的值,(2)本题恒成立问题转化为函数的最值来解答,具体方法是由f(x)>g(x)等价于x2﹣mx>lnx,即,构造出函数,利用导数工具可以求解.(3)我们对本题可以这样处理,想根据函数y=x2,y=mx,y=lnx的图象的增减性,判断猜测出参数m取值时分别对应方程的根的情况,然后来证明这个结论.证明时可利用新构造的函数h(x)=f(x)﹣g(x),利用导数以及函数的单调性,求出函数的最值来判断根x0的性质以辨别是否存在这个根.解答:解:(1)函数f(x)=x2﹣mx的图象开口向上,函数在x=1或x=2处取得最大值,则f(1)≥f(2),1﹣m≥4﹣2m,得:m≥3.(2)f(x)>g(x)等价于x2﹣mx>lnx,其中x>0,即:由,令,得,当x=1时t′(x)=0,当x∈(0,1)时t′(x)<0;当x∈(1,+∞)时t′(x)>0,m<t(x)min=t(1)=1,∴m<1.(3)设h(x)=f(x)﹣g(x)=x2﹣mx﹣lnx,其中x>0.观察得当m=1时,方程f(x)=g(x)即为:x2﹣x﹣lnx=0的一个根为x=1.猜测当m<1,m=1,m>1时方程分别无根,只有一个根,有且只有两个根.证明:∵h′(x)==0,等价于2x2﹣mx﹣1=0此方程有且只有一个正根为,且当x∈(0,x0)时,h′(x)<0;当x∈(x0,+∞)时,h′(x)>0,函数只有一个极值h(x)min=h(x0)=x02﹣mx0﹣lnx0.1°当m<1时,由(2)得f(x)>g(x)恒成立,方程无解.2°当m=1时,x0=1,h(x)min=h(1)=0,则h(x)≥h(x)min=0,当且仅当x=1时,h(x)=0,此时只有一个根x=1.3°当m>1时,,关于m在(1,+∞)上递增,∴x0∈(1,+∞)时lnx0>0,∵m>1⇒1<m2⇒8<8m2⇒m2+8<9m2⇒⇒⇒⇒x0<m.∴h(x)min=h(x0)=x02﹣mx0﹣lnx0=x0(x0﹣m)﹣lnx0<0.证毕点评:本题考查二次函数在定区间上的最值问题,函数类型简单,是一个二次函数,第一问的设计很容易,后面两问的综合性较强,对学生的逻辑思维能力,运算能力有很好的锻炼价值,本题第二小题是一个恒成立的问题,求参数的范围,一般转化最值问题来求解,本题第三问也是构造函数来解答,转化为利用导数研究新构造的函数的单调性求出函数的最值,结合最值来判断根的存在与否.本题对运算能力有一定的要求,解题时一定要严谨.考查的思想方法有分类讨论,构造函数等方法思想.17.设函数h(x)=x2,φ(x)=2elnx(e为自然对数的底).(1)求函数F(x)=h(x)﹣φ(x)的极值;(2)若存在常数k和b,使得函数f(x)和g(x)对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.试问:函数h(x)和φ(x)是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题;新定义;数形结合;转化思想.分析:(1)根据所给的函数,对函数求导,使得导函数等于0,验证可能的极值点两侧导函数的符合相反,得到函数存在极值.(2)由题意知若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,两个函数的图象有公共点,设出直线的方程,根据函数的恒成立得到k的值,求出函数的极大值,得到结论.解答:解:(1)∵F(x)=h(x)﹣φ(x)=x2﹣2elnx(x>0)∴当x=时,F′(x)=0,当0<x<时,F′(x)<0,当x>时,F′(x)<0∴F(x)在处取得极小值0.(2)由(1)知当x>0时,h(x)≥φ(x),若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,∵两个函数的图象有公共点,∴隔离直线必过(,e)设直线的方程是y﹣e=k(x﹣)∴h(x)≥kx+e﹣k恒成立,∴△≤0∴k=2令G(x)=φ(x)﹣2x+e对函数求导有当x>时,F′(x)<0,当0<x<时,F′(x)<0∴当时有G(x)的极大值为0,也就是最大值为0.从而G(x)≤0,即恒成立.故函数h(x)和φ(x)存在唯一的“隔离直线”.点评:本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的极值,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.18.函数f(x)=x2+bln(x+1)﹣2x,b∈R.(1)当b=1时,求曲线f(x)在点(0,f(0))处的切线方程;(2)当时,求函数f(x)在(﹣1,1]上的最大值;(ln2≈0.69)(3)设g(x)=f(x)+2x,若b≥2,求证:对任意x1,x2∈(﹣1,+∞),且x1≥x2,都有g(x1)﹣g(x2)≥2(x1﹣x2).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:压轴题.分析:(1)把b=1代入解析式,使得解析式具体,对于函数求导利用导函数的几何意义即可求的;(2)把代入解析式,由函数求导得导函数,求出函数在定义域上的极值,在与区间端点值进行比较大小,进而求得函数在区间上的最值;(3)由于g(x)=f(x)+2x,由函数解析式求导得其导函数,利用导函数得到函数在区间上的单调性,进而得到要证明的不等式.解答:解:(1)当b=1时,f(x)=x2+ln(x+1)﹣2x定义域为(﹣1,+∞),,f′(0)=﹣1,又f(0)=0,故有直线的方程可知:曲线f(x)在点(0,f(0))出的切线方程为:y=﹣x,(2)当b=,求导得:,由f′(x)=0⇒,当x变化时,f′(x),f(x)的变化情况如下表:由上表可知:,,,所以,所以函数f(x)在(﹣1,1]上的最大值为:,(3)证明:∵f(x)=x2+bln(x+1)﹣2x∴=0.当且仅当2(x+1)=,即:b=2,且x=0时取等号,∴b≥2时,函数f(x)在(﹣1,+∞)内单调递增,从而对于任意x1,x2∈(﹣1,+∞)且x1≥x2,有f(x1)>f(x2),即g(x1)﹣2x1≥g(x2)﹣2x2∴g(x1)﹣g(x2)≥2(x1﹣x2)点评:此题考查了利用导数求函数在闭区间上的最值,还考查了导数的几何含义进而求出曲线上任意一点处的切线方程,还考查了利用均值不等式求解函数的最值.19.已知函数f(x)=ax+lnx,a∈R.(1)当a=﹣1时,求f(x)的最大值;(2)求证:;(3)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;压轴题;转化思想.分析:(1)当a=﹣1时,f(x)=﹣x+lnx,易求得f′(x),且f′(x)>0时,函数f(x)单调递增,f′(x)<0时,函数f(x)单调递减;故可求得f(x)的最大值.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,当取时,可得;把以上各式相加,可得证明.(3)直线P1P2的斜率k由P1,P2两点坐标可表示为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号;可得+<﹣1,整理可得<,同理,由,得;所以P1P2的斜率,在x∈(x1,x2)上,有,可得结论.解答:解:(1)当a=﹣1时,f(x)=﹣x+lnx,∴,且x∈(0,1)时,f′(x)>0,函数f(x)单调递增;x∈(1,+∞)时,f′(x)<0,函数f(x)单调递减.故当x=1时,f(x)取最大值f(1)=﹣1.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,取,可得;以上各式相加得:ln(n+1)<1+++…+(n∈N+)(3)直线P1P2的斜率为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号,∴,同理,由,可得;故P1P2的斜率,又在x∈(x1,x2)上,,所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.点评:本题综合考查了利用导数研究曲线上过某点的切线方程,利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值问题,也考查了利用函数证明不等式的问题,是较难的题目.20.已知函数(Ⅰ)若函数在区间()(其中m>0)上存在极值,求实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求实数k的取值范围;(Ⅲ)求证:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;证明题;压轴题.分析:(Ⅰ)求出函数的极值,在探讨函数在区间(m,m+)(其中a>0)上存在极值,寻找关于m的不等式,求出实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求出f(x)在x≥1时的最小值,把k分离出来,转化为求k的范围.(Ⅲ)借助于(Ⅱ)的结论根据叠加法证明不等式.解答:解:(Ⅰ)因为函数所以f′(x)=﹣.极值点为f′(x)=0解得x=1故m<1<m+,解得<m<1.即答案为<m<1.(Ⅱ)如果当x≥1时,f′(x)=﹣≤0故f(x)递碱.故f(x)≥f(1)=1又不等式恒成立,所以恒成立,所以k≤2证明:(Ⅲ)由(Ⅱ)知:恒成立,即令x=n(n+1),则所以,,,….叠加得:ln[1×22×32×…n2×(n+1)]×=则1×22×32×…n2×(n+1)>e n﹣2,所以:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).点评:此题主要考查应用导数研究函数的极值最值问题,有关恒成立的问题一般采取分离参数,转化为求函数的最值问题,体现了转化的思想方法,证明数列不等式,借助函数的单调性或恒成立问题加以证明.属难题.21.设函数.(p是实数,e是自然对数的底数)(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;(2)若f(x)在其定义域内为单调函数,求p的取值范围;(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:计算题;综合题;压轴题.分析:(1)由“函数f(x)的图象相切于点(1,0)求得切线l的方程,再由“l与g(x)图象相切”得到(p﹣1)x2﹣(p﹣1)x﹣e=0由判别式求解即可.(2)求导f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,再转化为“p≥=恒成立”,由最值法求解.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立”,再转化为“p≤=恒成立”,由最值法求解,最后两个结果取并集.(3)因为“在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立”,要转化为“f(x)max>g(x)min”解决,易知g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e],①当p≤0时,f(x)在[1,e]上递减;②当p≥1时,f(x)在[1,e]上递增;③当0<p<1时,两者作差比较.解答:解:(1)∵f′(x)=p+,∴f’(1)=2(p﹣1),设直线l:y=2(p﹣1)(x﹣1),∵l与g(x)图象相切,∴y=2(p﹣1)(x﹣1),得(p﹣1)(x﹣1)=,即(p﹣1)x2﹣(p﹣1)x﹣e=0,y=当p=1时,方程无解;当p≠1时由△=(p﹣1)2﹣4(p﹣1)(﹣e)=0,得p=1﹣4e,综上,p=1﹣4e(2)f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,即p≥=恒成立,又,所以当p≥1时,f(x)在(0,+∞)为单调增函数.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立,再转化为“p≤=恒成立”,又,所以当p≤0时,f(x)在(0,+∞)为单调减函数.综上所述,f(x)在(0,+∞)为单调函数,p的取值范围为p≥1或p≤0(3)因g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e]①当p≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max=f(1)=0<2,不合题意②当p≥1时,由(1)知f(x)在[1,e]上递增,f(1)<2,又g(x)在[1,e]上为减函数,故只需f(x)max>g(x)min,x∈[1,e],即:f(e)=p(e﹣)﹣2lne>2⇒p>.③当0<p<1时,因x﹣≥0,x∈[1,e]所以f(x)=p(x﹣)﹣2lnx≤(x﹣)﹣2lnx<2,不合题意综上,p的取值范围为(,+∞)点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知单调性求参数的范围往往转化为求相应函数的最值问题.22.设函数.(1)试判断当x>0,g(x)与f(x)的大小关系;(2)求证:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3(n∈N*);(3)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上的两点,且g′(x0)=(其中g′(x)为g(x)的导函数),证明:x0∈(x1,x2).考点:导数在最大值、最小值问题中的应用.专题:压轴题;导数的综合应用.分析:(1)欲求g(x)与f(x)的大小关系只需判断F(x)=g(x)﹣f(x)的正负,利用导数研究函数F(x)的最小值,使最小值与0比较即可;(2)由(1)知令x=n(n+1)(n∈N*),则,从而可证得结论;(3)根据,于是,,然后证明,等价于x1lnx2﹣x1lnx1﹣x2+x1<0,令h(x)=xlnx2﹣xlnx1﹣x2+x,利用导数研究最小值与0比较,对于同理可证,即可证得结论.解答:(1)解:设F(x)=g(x)﹣f(x)(x>0)则F′(x)=﹣由F′(x)=0得x=3当0<x<3时,F′(x)<0;当x>3时,F′(x)>0∴x=3时,F(x)取得最小值为F(3)=ln3﹣1>0∴F′(x)>0即g(x)>f(x)…(5分)(2)证明:由(1)知令x=n(n+1)(n∈N*),则…(7分)∴ln(1+1•2)+ln(1+2•3)+…+ln[1+n(n+1)]>(2﹣)+(2﹣)+…+[2﹣]=2n﹣3[++…+]=2n﹣3(1﹣)>2n﹣3∴(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3…(10分)(3)证明:,于是,,以下证明等价于x1lnx2﹣x1lnx1﹣x2+x1<0.令h(x)=xlnx2﹣xlnx1﹣x2+x …(12分)则h'(x)=lnx2﹣lnx1,在上,h'(x)>0所以h(x)在(0,x2]上为增函数当x1<x2时h(x1)<h(x2)=0,即x1lnx2﹣x1lnx1﹣x2+x1<0从而x0>x1,得到证明.对于同理可证.所以x0∈(x1,x2).…(16分)点评:本题主要考查了利用导数研究函数的最值,以及利用导数证明不等式,同时考查了转化的思想,以及考查计算能力,属于难题.23.已知函数f(x)=(x2﹣3x+3)e x的定义域为[﹣2,t],其中常数t>﹣2,e为自然对数的底数.(1)若函数f(x)是增函数,求实数t的取值范围;(2)求证:f(t)>13e﹣2;(3)设f'(x)表示函数f(x)的导函数,,求函数g(x)在区间(﹣2,t)内的零点个数.考点:导数在最大值、最小值问题中的应用.专题:综合题;压轴题;探究型;数形结合;分类讨论;转化思想.分析:(1)若函数f(x)是增函数,则必要导数f'(x)≥0,由此不等式即可解出实数t的取值范围;(2)由题意求证f(t)>13e﹣2,可解出函数f(x)在区间[﹣2,+∞)上的最小值,由此最小值与13e﹣2作比较即可证明此不等式;(3)由题意先解出的解析式,由所得的解析式,及零点判定定理知,可研究此函数在区间(﹣2,t)两个端点值的符号及区间内函数最值的符号,由定理判断出零点个数即可解答:解:(1)f(x)=(x2﹣3x+3)e x,f'(x)=(x2﹣x)e x=x(x﹣1)e x,…(1分)f'(x)≥0⇔x≥1或x≤0,…(2分)若函数f(x)是定义域[﹣2,t]上的增函数,知t的取值范围是(﹣2,0].…(4分)(2)由(1)知函数f(x)的增区间为[﹣2,0]与[1,+∞),减区间为[0,1],从而函数f(x)在区间[﹣2,+∞)上有唯一的极小值f(1)=e,…(6分)但f(﹣2)=13e﹣2<e(∵,故函数f(x)在区间[﹣2,+∞)上的最小值为f(﹣2)=13e﹣2,…(8分)因为t>﹣2,所以f(t)>f(﹣2)=13e﹣2.…(9分)(3)函数g(x)的图象是开口向上、对称轴为的抛物线,且,,.函数g(x)在区间(﹣2,t)内有两个零点;…(9分)当﹣2<t≤1时,g(﹣2)>0,g(t)≤0,又由可知,函数g(x)在区间(﹣2,t)内只有一个零点;…(11分)当t≥4时,g(﹣2)<0,g(t)>0,可知,函数g(x)在区间(﹣2,t)内只有一个零点.…(13分)综上,当1<t<4时,函数g(x)在区间(﹣2,t)内有两个零点;当﹣2<t≤1或t≥4时,函数g(x)在区间(﹣2,t)内只有一个零点.(14分)点评:本题考查导数在最值问题中的运用,利用导数研究单调性,再利用单调性求最值,这是导数的重要运用,解答本题,第一小题关键是理解导数与函数单调性的关系,第二小题关键是将证明不等式问题转化为利用导数解出函数的最值,从而证明不等式,第三题解题的关键是理解零点定理及函数区间内函数最值的判断,本题考查了转化的思想分类讨论思想等,由于本题运算量较大,易因运算导致错误,解题时要严谨24.已知函数f(x)=(a﹣1)lnx+ax2.(1)讨论函数y=f(x)的单调性;(2)求证:+++…+>(n≥2,n∈N+);(3)当a=0时,求证:f(x)≤﹣.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:(1)先求导得f′(x),通过对a分类讨论即可得出;(2)利用(1)的结论,取a=时,当x>1时,f(x)单调递增,f(x)>f(1),从而得出x2>lnx>0,取倒数得,令x=k,再利用放缩和裂项求和即可得出;(3)要证⇔⇔(xlnx)min≥,利用导数分别求出其极值即最值即可证明.解答:解:(1)f(x)=(a﹣1)lnx+ax2,定义域为(0,+∞).∵.当a≥1时,f'(x)>0,故f(x)在(0,+∞)单调递增;当a≤0时,f'(x)<0,故f(x)在(0,+∞)单调递减;当0<a<1时,令f'(x)=0,解得.则当时,f'(x)<0;时,f'(x)>0.故f(x)在单调递减,在单调递增.(2)当时,,由(1)知,时,y=f(x)递增,所以x>1时,∵x>1,∴x2>lnx>0,∴,,(3)就是要证,即需证.令g(x)=xlnx,则由g'(x)=lnx+1=0,得,当时g(x)递增,当时g(x)递减,所以g(x)的最小值为.设,。

(完整版)导数压轴题

(完整版)导数压轴题

导数压轴题4(1) 当a = 3时,求f(x)的极值点.1 3(2) 若 f(x)为2,2上的单调函数,求a 的取值范围.ax 2— 2ax + 1 e[解析]行’(x)二丹 1 + ax4 13(1)当 a = 3时,若 f'(x)= 0,则 4x 2 — 8x + 3= 0? x 1 =㊁,x 2 —:X1 — 是极大值点,x 2 — 2是极小值点.(2)记 g(x)— ax 2— 2ax + 1,则2g(x) — a(x — 1) + 1— a ,1 3••g(x)>0或 g(x)<0对 x € 2,2 恒成立, 1又g(x)的对称轴为x — 1,故g(x)的最小值为g(1),最大值为g 2 . 1 4由 g(1) >0 或 g 2 W 0? 0<a < 1 或 a >3,4•的取值范围是0<a < 1或a >3.10. (能力挑战题)函数 f(x) — xln x — ax 2— x(a € R).vf(x)为3,3上的单调函数,贝U f ' (x)在 刁3上不变号,9.(能力挑战题)设f(x) = 1 + ax 1 2,其中a 为正实数. 1 + ax 2 2>0,⑴若函数f(x)在x= 1处取得极值,求a的值.(2)若函数f(x)的图象在直线y= —x图象的下方,求a的取值范围.⑶求证:2 0133 4 012<2 0122 013[解析]⑴函数定义域为(0,+%), F(x)= In x—2ax,■-'f(x)在x= 1处取得极值,.•.f' (1) = 0,即一2a= 0,.°.a = 0.•••f' (x) = In x,当x€ (0,1)时,f' (x)<0,当x€ (1 ,+x)时,f' (x)>0,•■•f(x)在x= 1处取得极值.⑵由题意,得xln x—ax2—x< —x,•'•xln x—a点<0.(0,+^),In xa>vIn x设h(x)=—,1 —In x则h' (x) = —x—入令h' (x)>0,得0<x<e,•••h(x)在(0, e)上为增函数;令h' (x)<0,得x>e,•■•h(x)在(e,+x)上为减函数.3 a> .e1 •■•h(x) max=DIn x⑶由(2)知h(x) = p 在(e ,+^)上为减函数, 入 •••h(x)>h(x + 1), In x ln x + 5 6 .•— > ----- xx + 1 '-■.(x + 1)ln x>x ln(x + 1), •n x x + 1>l n(x + 1)x ,•••xx + 1>(x + 1)x .令 x = 2 012,得 2 0122 013>2 0132 012 ax 11. 已知函数 f(x) = ln(1 + x) — (a € R).1 — x2x — 2 + a x + 1 — a2 ,6 + x 1 — x由 f ' (x) = 0,得 x 2 — (2 + a)x + 1 — a = 0,(1) 求函数f(x)的单调区间;(2) 若数列{a }的通项公a m =12 0132m 1•k a 1 a 2 …a m <3(m € N ).[解析](1)由题意,函数的定义域为(一1,1)U (1, +013(m € N *),求证:1%), f ' (x)二 —1 + x2'1 a当a < 0时,注意到 >0, 产0,1 + x 1 — x所以f ' (x)>0,即函数f(x)的增区间为(—1,1), (1 , + ),无减区间;当 a>0 时,f ' (x) =1 1+ x1— xa + 2 —、/a2+ 8a a+ 2+、/a2+ 8a此方程的两根X1= 2 ,X2= 2 ,其中一1<X1<1<X2, 注意到(1 + x)(1 - X)2>0,所以f' (X)>0? - 1<x<x i 或X>X2,f' (X)<0? X1<X<1 或1<X<X2,即函数f(x)的增区间为(-1 , X1), (X2,+x),减区间为(X1,1), (1 , X2).综上,当a< 0时,函数f(X)的增区间为(一1,1)(1,+x),无减区间;当a>0时,函数f(x)的增区间为(-1, X1),(X2,+X),减区间为(X1,1), (1,X2),a + 2-、/a2+ 8a其中X1二2 ----------a + 2+ a2+ 8a x2= 2x⑵当a= 1时,由(1)知,函数f(x) = ln(1 + x)- 在(0,1)上为减函数,1 - xx则当0<X<1时,f(x) = ln(1 + x) —<f(0)= 0,1 - xX即ln(1 + X)<1-x令 * ^013^ 加N*),则1 + ______________________ln 2 013X 2m+ 1 <2 013X 2m,丄严才丄2 013 X 2" + 1 ) ' 2" T< e< 3.X212.已知函数f(x) = + a3ln(x —a—a2), a€ R 且a^0.(1)讨论函数f(x)的单调性;⑵当a<0时,若a2+ a<x i<x2<a2—a,证明:2f x2 —f x i a< 石—a. x2 —x i 2a3[解析](1 )由题意,f' (X)= X+ 2x—a—ax2—a+ a2 x+ a3x—a —a22x—a x—a= 2x —a —a令f' (x)>0,因为x— a —a2>0,故(x—a)(x —a2)>0.当a>0 时,因a+ a2>a 且a+ a2>a2,所以上面不等式的解集为(a+ a2,+x),从而此时函数f(x)在(a+ a2,+^)上单调递增.当a<0时,因a<a+ a2<a2,所以上面不等式的解集为(a2,+^),从而此时函数f(x)在(a2,+x)上单调递增,同理此时f(x)在(a+ a2,a2]上单调递减.⑵证法一:要证原不等式成立,只需证明2af(x2)—f(x i)<(x2 —x i) ——a,2 2 a a只需证明f(x2)——— a x2<f(x i)—~2— ax i.在x € (a 6 + a , a 2 — a)内单调递减.2a 由(1)知 h ' (x) = x — 2 — a4323 2 a a 2x —护 x + 2 + — ax — a — a 2因为 x — a — a 2>0,我们考察函数 g(x) = x 2 — |a 2x + 庁 + 亍—a 2, x € (a 2 + a , a 2 — a). 因 a + a + a _a = a 2>x 对称轴=警,且 7f<a 2 — a , 所以 g(x)< g(a 2— a) = 0.从而知 h ' (x)<0在 x € (a 2 + a , a 2 — a)上恒成立,2a 2 2所以函数h(x) = f(x) — — a x 在x € (a + a , a — a)内单调递减.6 2a a只需证明 f(x 2) — "2 — a x 2<f(x i )— — a x i . 又 a 2 + a<x i <x 2<a 2— a , 设 g(x) = f(x) — — a x ,则欲证原不等式只需证明函数 g(x) = f(x) — a ; — ax 在x € (a 2 + a,a 2 — a)内单 调递减.由⑴可知3a + 2x — a —a从而原命题成立.证法二:要证原不等式成立,2a 只需证明f(X2)—f(X1)V(X2—x i) — a ,g ' (x)二f ' (x)—冷—a 3 2aa—x + 2 — 2 — ax —a —a 232 . a—x — a — a + 2+ a +x — a — aa 32在(a 2 + a , a 2 — a)上为增函数, x — a — a 所以 g ' (x )w g ' (a 2— a) 2 2+ a + a 2— f — a = 0. a —a — a —a 2从而知g ' (x)<0在x € (a 2 + a , a 2 — a)上恒成立,2所以函数g(x) — f(x)—卡—a x 在x € (a 2 + a , a 2 — a)内单调递减. 从而原命题成立.13.已知函数 f(x) = e x sin x. (1) 求函数f(x)的单调区间; 冗(2)如果对于任意的x € 1, , f(x) > kx 总成立,求实数k 的取值范围;数F(x)图象的所有切线,令各切点的横坐标构成数列 之和S 的值.[解析](1)由于f(x) = e x sin x ,所以 f ' (x) = e x sin x + e x cos x = e x (sin x + cos x) =2e x sin x +.n — n 3 n 当 x + 4^ (2 k n 2k n+ n,即卩 x € 2k n- 4, 2k n+^ 时,f ' (x)>0;当 x +(2k n+ n, 2k n+ 2 n,)即 x € 2k n+ 手 2k n+ 于时,f ' (x)<0.a 22 a ~2— a .因为 a<0,所以 y =x — a — a 2+ 3—a 2— a — a — a 2+a(3)设函数 F(x) — f(x) + e xcos x , x € ?2 011 n 2 013 n - n 一 1寸【过点M —一- , 0作函{X n },求数列{X n }的所有项3nn 3 n所以f(x)的单调递增区间为2k n- 4,2k n+才化€ Z),3 n 7 n单调递减区间为2k n+j, 2k n+* (k€ Z).. n⑵令g(x)= f(x)- kx= e x sin x-kx,要使f(x) >kx 总成立,只需x€ 0, 2 时g(x)min》0.g' (x)= e<(sin x+ cos x) —k,n 令h(x) = e x(sin x+ cos x),贝U h' (x) = 2e x cos x>0, x€ 0, 2 ,n所以h(x)在o, 2上为增函数,所以h(x)€ [1, e'].对k分类讨论:n①当k< 1时,g' (x)>0恒成立,所以g(x)在0, 2上为增函数,所以g(x)min =g(0) = 0, 即卩g(x)>0 恒成立;n②当1<k<e时,g' (x)= 0在[1, e]上有实根x o,因为h(x)在0, 2上为增函数,所以当x€ (0, x o)时,g' (x)<0,所以g(x o)vg(0) = 0,不符合题意;▼n③当k>e时,g' (x)< 0恒成立,所以g(x)在0, 2上为减函数,则g(x)<g(0) =0,不符合题意;综合①②③可得,所求的实数k的取值范围是(―%, 1].(3) 因为F(x) = f(x) + e x cos x= e x(sin x+ cos x),所以F' (x)= 2e x cos x,设切点坐标为(x0, ex0(sin X0+ cos x。

高中数学导数压轴30题

高中数学导数压轴30题

高中数学导数压轴30题(解答题)解答题(共30小题),且XiVx2,1.设函数f (x) =x2+aln (14-x)有两个极值点X]、x2(I )求a的取值范围,并讨论f(X)的单调性;(II)证明:f(X2)>1二24考点:利用导数研究函数的极值;利用导数研究函数的单调性;不等式的证明。

专题:计算题;证明题;压轴题。

分析:(1)先确定函数的定义域然后求导数r (x),令g (x) =2x2+2x+a,由题意知X]、X2是方程g (x) =0的两个均大于-1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式f' (x) >。

和?(X)<0,求出单调区间;(2) X2是方程g (x) =0的根,将a用X2表示,消去a得到关于X2的函数,研究函数的单调性求出函数的最大值,即可证得不等式。

2解答:解:(I)F (x)二2肝胃二2x +2x3缶>7 1+x 1+x令g (x) =2x2+2x+a,其对称轴为肝-工. 2由题意知X1、X2是方程g(X)=0的两个均大于-1的不相等的实根,其充耍条件为得 lg ( -1) =a>0 2(1)当 XC ( - 1, XI)时,f (x) >0,「. f (x)在(-1, X1)内为增函数;(2)当 XC (X1,X2)时,f (x) <0, f (x)在(X1,X2)内为减函数;(3)当 xe(X2,+°°)时,f (x) >0, /. f (x)在(X2,+°°)内为增函数;(II)由(I) g (0) =a>0, -l<X2<0,a=- (2X22+2X2)2f(X2)=X22+aln (1+X2)=X22 - (2X22+2X2)In (1+x?)设h (x) = x2 - (2X2+2X) In (1+x) (x> -,贝ijh' (x) =2x - 2 (2x+l) In (1+x) - 2x= - 2 (2x+l) In (1+x)(1)当xE (-L 0)时,h' (x) >0, /. h (x)在[-工,0)单调递增;2 2(2)当 xC (0, +8)时,h, (x) <0, h (x)在(0, +8)单调递减.「•当正0)时,h 3 >h (-A) 2二:1n2 乙乙"故f (叼)=h(X2)点评:本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于基础题。

(完整版)导数压轴题

(完整版)导数压轴题

导数压轴题9.(能力挑战题)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点.(2)若f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,求a 的取值范围.[解析] ∵f ′(x )=(ax 2-2ax +1)e x(1+ax 2)2,(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0⇒x 1=12,x 2=32,∴x 1=12是极大值点,x 2=32是极小值点. (2)记g (x )=ax 2-2ax +1,则 g (x )=a (x -1)2+1-a ,∵f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,则f ′(x )在⎣⎢⎡⎦⎥⎤12,32上不变号,∵e x(1+ax 2)2>0, ∴g (x )≥0或g (x )≤0对x ∈⎣⎢⎡⎦⎥⎤12,32恒成立,又g (x )的对称轴为x =1,故g (x )的最小值为g (1),最大值为g ⎝ ⎛⎭⎪⎫12.由g (1)≥0或g ⎝ ⎛⎭⎪⎫12≤0⇒0<a ≤1或a ≥43, ∴a 的取值范围是0<a ≤1或a ≥43.10.(能力挑战题)函数f (x )=x ln x -ax 2-x (a ∈R ).(1)若函数f(x)在x=1处取得极值,求a的值.(2)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围.(3)求证:2 0132 012<2 0122 013.[解析](1)函数定义域为(0,+∞),f′(x)=ln x-2ax,∵f(x)在x=1处取得极值,∴f′(1)=0,即-2a=0,∴a=0.∴f′(x)=ln x,当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,∴f(x)在x=1处取得极值.(2)由题意,得x ln x-ax2-x<-x,∴x ln x-ax2<0.∵x∈(0,+∞),∴a>ln xx.设h(x)=ln xx,则h′(x)=1-ln xx2.令h′(x)>0,得0<x<e,∴h(x)在(0,e)上为增函数;令h′(x)<0,得x>e,∴h(x)在(e,+∞)上为减函数.∴h(x)max=h(e)=1e,∴a>1e.(3)由(2)知h (x )=ln xx 在(e ,+∞)上为减函数, ∴h (x )>h (x +1), ∴ln x x >ln (x +1)x +1.∴(x +1)ln x >x ln(x +1), ∴ln x x +1>ln(x +1)x , ∴x x +1>(x +1)x .令x =2 012,得2 0122 013>2 0132 012. 11.已知函数f (x )=ln(1+x )-ax1-x(a ∈R ). (1)求函数f (x )的单调区间;(2)若数列{a m }的通项公式a m =⎝ ⎛⎭⎪⎫1+12 013×2m +1 2 013(m ∈N *),求证:a 1·a 2·…·a m <3(m ∈N *).[解析] (1)由题意,函数的定义域为(-1,1)∪(1,+∞),f ′(x )=11+x-a(1-x )2, 当a ≤0时,注意到11+x >0,a (1-x )2≤0, 所以f ′(x )>0,即函数f (x )的增区间为(-1,1),(1,+∞),无减区间; 当a >0时,f ′(x )=11+x -a (1-x )2 =x 2-(2+a )x +1-a (1+x )(1-x )2, 由f ′(x )=0,得x 2-(2+a )x +1-a =0,此方程的两根x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2,其中-1<x 1<1<x 2,注意到(1+x )(1-x )2>0,所以f ′(x )>0⇔-1<x <x 1或x >x 2,f ′(x )<0⇔x 1<x <1或1<x <x 2,即函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2). 综上,当a ≤0时,函数f (x )的增区间为(-1,1)(1,+∞),无减区间; 当a >0时,函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2),其中x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2.(2)当a =1时,由(1)知,函数f (x )=ln(1+x )-x1-x在(0,1)上为减函数, 则当0<x <1时,f (x )=ln(1+x )-x1-x<f (0)=0, 即ln(1+x )<x1-x ,令x =12 013×2m+1(m ∈N *),则 ln ⎝ ⎛⎭⎪⎫1+12 013×2m+1<12 013×2m ,12.已知函数f (x )=x 22+a 3ln(x -a -a 2),a ∈R 且a ≠0. (1)讨论函数f (x )的单调性;(2)当a <0时,若a 2+a <x 1<x 2<a 2-a ,证明:f (x 2)-f (x 1)x 2-x 1<a 22-a .[解析] (1)由题意,f ′(x )=x +a 3x -a -a 2=x 2-(a +a 2)x +a 3x -a -a 2=(x -a )(x -a 2)x -a -a 2.令f ′(x )>0,因为x -a -a 2>0,故(x -a )(x -a 2)>0. 当a >0时,因a +a 2>a 且a +a 2>a 2, 所以上面不等式的解集为(a +a 2,+∞), 从而此时函数f (x )在(a +a 2,+∞)上单调递增.当a <0时,因a <a +a 2<a 2,所以上面不等式的解集为(a 2,+∞),从而此时函数f (x )在(a 2,+∞)上单调递增,同理此时f (x )在(a +a 2,a 2]上单调递减.(2)证法一: 要证原不等式成立,只需证明 f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.因为a 2+a <x 1<x 2<a 2-a ,所以原不等式只需证明函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x在x ∈(a 2+a ,a 2-a )内单调递减.由(1)知h ′(x )=x -⎝ ⎛⎭⎪⎫a 22-a +a 3x -a -a 2=x 2-32a 2x +a 42+a 32-a 2x -a -a 2,因为x -a -a 2>0,我们考察函数g (x )=x 2-32a 2x +a 42+a 32-a 2,x ∈(a 2+a ,a 2-a ).因a 2+a +a 2-a 2=a 2>x 对称轴=3a 24,且3a 24<a 2-a ,所以g (x )≤g (a 2-a )=0.从而知h ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立.证法二:要证原不等式成立, 只需证明f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.又a 2+a <x 1<x 2<a 2-a , 设g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x ,则欲证原不等式只需证明函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.由(1)可知g ′(x )=f ′(x )-⎝ ⎛⎭⎪⎫a 22-a=x +a 3x -a -a2-⎝ ⎛⎭⎪⎫a 22-a =x -a -a 2+a 3x -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a .因为a <0,所以y =x -a -a 2+a 3x -a -a2在(a 2+a ,a 2-a )上为增函数, 所以g ′(x )≤g ′(a 2-a )=a 2-a -a -a 2+a 3a 2-a -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a =0. 从而知g ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立. 13.已知函数f (x )=e x sin x . (1)求函数f (x )的单调区间;(2)如果对于任意的x ∈⎣⎢⎡⎦⎥⎤1,π2,f (x )≥kx 总成立,求实数k 的取值范围;(3)设函数F (x )=f (x )+e x cos x ,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2.过点M ⎝ ⎛⎭⎪⎫π-12,0作函数F (x )图象的所有切线,令各切点的横坐标构成数列{x n },求数列{x n }的所有项之和S 的值.[解析] (1)由于f (x )=e x sin x ,所以 f ′(x )=e x sin x +e x cos x =e x (sin x +cos x ) =2e x sin ⎝ ⎛⎭⎪⎫x +π4.当x +π4∈(2k π,2k π+π),即x ∈⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4时,f ′(x )>0; 当x +π4∈(2k π+π,2k π+2π),即x ∈⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4时,f ′(x )<0.所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4(k ∈Z ),单调递减区间为⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4(k ∈Z ).(2)令g (x )=f (x )-kx =e x sin x -kx ,要使f (x )≥kx 总成立,只需x ∈⎣⎢⎡⎦⎥⎤0,π2时g (x )min ≥0.g ′(x )=e x (sin x +cos x )-k ,令h (x )=e x (sin x +cos x ),则h ′(x )=2e x cos x >0,x ∈⎝ ⎛⎭⎪⎫0,π2,所以h (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数, 所以h (x )∈[1,e ]. 对k 分类讨论:①当k ≤1时,g ′(x )≥0恒成立,所以g (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,所以g (x )min=g (0)=0,即g (x )≥0恒成立;②当1<k <e 时,g ′(x )=0在[1,e ]上有实根x 0,因为h (x )在⎝ ⎛⎭⎪⎫0,π2上为增函数,所以当x ∈(0,x 0)时,g ′(x )<0,所以g (x 0)<g (0)=0,不符合题意;③当k ≥e 时,g ′(x )≤0恒成立,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上为减函数,则g (x )<g (0)=0,不符合题意;综合①②③可得,所求的实数k 的取值范围是(-∞,1]. (3)因为F (x )=f (x )+e x cos x =e x (sin x +cos x ), 所以F ′(x )=2e x cos x ,设切点坐标为(x 0,e x 0(sin x 0+cos x 0)), 则斜率为F ′(x 0)=2e x 0cos x 0,切线方程为y -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·(x -x 0),将M ⎝ ⎛⎭⎪⎫π-12,0的坐标代入切线方程,得 -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·⎝ ⎛⎭⎪⎫π-12-x 0, 整理得-tan x 0-1=-2⎝ ⎛⎭⎪⎫x 0-π-12, 即tan x 0=2⎝ ⎛⎭⎪⎫x 0-π2,令y 1=tan x ,y 2=2⎝ ⎛⎭⎪⎫x -π2,则这两个函数的图象均关于点⎝ ⎛⎭⎪⎫π2,0对称,它们交点的横坐标也关于π2对称且成对出现,方程tan x =2⎝ ⎛⎭⎪⎫x -π2,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2的根即所作的所有切线的切点横坐标构成的数列{x n }的项也关于π2对称且成对出现,在⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2内共构成1 006对,每对的和为π,因此数列{x n }的所有项的和S =1 006π.14.已知函数f (x )=ln x -px +1. (1)求函数f (x )的极值点;(2)若对任意的x >0,恒有f (x )≤0,求p 的取值范围; (3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1)(n ∈N ,n ≥2).[解析] (1)∵f (x )=ln x -px +1, ∴f (x )的定义域为(0,+∞), f ′(x )=1-pxx ,当p ≤0时,f ′(x )>0,f (x )在(0,+∞)上无极值点;当p >0时,令f ′(x )=0, ∴x =1p ∈(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:从上表可以看出:当p >0时,f (x )有唯一的极大值,当x =1p 时,f (x )=-ln p ;即函数f (x )的极值点是⎝ ⎛⎭⎪⎫-1p ,-ln p .(2)当p >0时,在x =1p 处取得极大值f ⎝ ⎛⎭⎪⎫1p =ln 1p ,此极大值也是最大值,要使f (x )≤0恒成立,只需f ⎝ ⎛⎭⎪⎫1p =ln 1p ≤0;∴p ≥1,∴p 的取值范围为[1,+∞). (3)令p =1,由(2)知,ln x -x +1≤0, ∴ln x ≤x -1,∵n ∈N ,n ≥2,ln n 2≤n 2-1,∴ln n 2n 2≤n 2-1n 2=1-1n 2,∴ln 222+ln 332+…+ln n n 2 =12⎝ ⎛⎭⎪⎫ln 2222+ln 3232+…+ln n 2n 2≤12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫1-132+…+⎝ ⎛⎭⎪⎫1-1n 2 =12⎣⎢⎡⎦⎥⎤(n -1)-⎝ ⎛⎭⎪⎫122+132+…+1n 2<12(n -1)-12⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =12(n -1)⎣⎢⎡⎦⎥⎤1-12(n +1)=2n 2-n -14(n +1)(n ∈N ,n ≥2),得证.10.(2014·银川模拟)已知函数f (x )=ax +bx 2+1在点M (1,f (1))处的切线方程为x -y -1=0.(1)求f (x )的解析式.(2)设函数g (x )=ln x ,证明:g (x )≥f (x )对x ∈[1,+∞)恒成立. [解析] (1)将x =1代入切线方程得f (1)=0, 又f (1)=a +b2,化简得a +b =0.① f ′(x )=a (x 2+1)-(ax +b )·2x(1+x 2)2,f ′(1)=2a -2(a +b )4=-2b 4=-b2, 由f ′(1)=1得-b2=1.② 由①②解得:a =2,b =-2, 所以f (x )=2x -2x 2+1.(2)要证ln x ≥2x -2x 2+1在[1,+∞)上恒成立,即证(x 2+1)ln x ≥2x -2在[1,+∞)上恒成立, 即证x 2ln x +ln x -2x +2≥0在[1,+∞)上恒成立. 设h (x )=x 2ln x +ln x -2x +2, h ′(x )=2x ln x +x +1x -2.∵x ≥1,∴2x ln x ≥0,x +1x ≥2,即h ′(x )≥0. ∴h (x )在[1,+∞)上单调递增,h (x )≥h (1)=0, ∴g (x )≥f (x )在x ∈[1,+∞)上恒成立.11.(2014·河北质检)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). [解析] (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2, g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e .∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎨⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,∴实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. (3)∵f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),∴方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2.又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2. 下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0(*),即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,设t =x 1x 2,∵0<x 1<x 2,∴0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.∵u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,∴u ′(t )>0, ∴u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故(*)式成立,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立. 12.(2014·潍坊模拟)已知函数f (x )=ax 2+x ,g (x )=ln(x +1). (1)若a =1,求F (x )=g (x )-f (x )在(-1,+∞)上的最大值.(2)利用(1)的结论证明:对任意的正整数n ,不等式2+34+49+…+n +1n 2>ln(n +1)都成立.(3)是否存在实数a (a >0),使得方程2g (x -1)x =f ′(x )-(4a -1)在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.[解析] (1)F ′(x )=1x +1-2x -1=-x (2x +3)x +1,当x ∈(-1,0)时,F ′(x )>0, x ∈(0,+∞)时,F ′(x )<0,∴x =0是F (x )在(-1,+∞)上唯一的极大值点, 从而当x =0时,F (x )取得最大值 F (0)=0. (2)由(1)知∀x ∈(0,+∞),F (x )<0, 即ln(x +1)<x 2+x , 令x =1n 得ln ⎝ ⎛⎭⎪⎫1n +1<1n 2+1n ,即ln(n +1)-ln n <n +1n 2, ∴ln 2-ln 1<2,ln 3-ln 2<34, ……ln(n +1)-ln n <n +1n 2,∴ln(n +1)-ln 1<2+34+49+…+n +1n 2, 即2+34+49+…+n +1n 2>ln(n +1).(3)把方程2g (x -1)x =f ′(x )-(4a -1)整理为ax 2+(1-2a )x -ln x =0.设H (x )=ax 2+(1-2a )x -ln x (x >0),原方程在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根,即函数H (x )在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个零点. H ′(x )=2ax +(1-2a )-1x =2ax 2+(1-2a )x -1x=(2ax +1)(x -1)x,令H ′(x )=0,因为a >0,解得x =1或x =12a (舍), 当x ∈(0,1)时,H ′(x )<0,H (x )是减函数;当x ∈(1,+∞)时,H ′(x )>0,H (x )是增函数,H (x )在⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的零点,只需⎩⎪⎨⎪⎧H ⎝ ⎛⎭⎪⎫1e >0,H (x )min<0,H (e )>0,即⎩⎪⎨⎪⎧a e 2+1-2ae +1=(1-2a )e +a +e 2e 2>0,H (1)=a +(1-2a )=1-a <0,a e 2+(1-2a )e -1=(e 2-2e )a +(e -1)>0,∴⎩⎪⎨⎪⎧a <e 2+e2e -1,a >1,a >1-e e 2-2e,解得1<a <e 2+e 2e -1,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫1,e 2+e 2e -1. 13.(14届衡水中学期中)已知函数f (x )=a ln x +1x -1(a ≠0)在⎝ ⎛⎭⎪⎫0,12内有极值.(1)求实数a 的取值范围;(2)若x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(2,+∞)且a ∈⎣⎢⎡⎦⎥⎤12,2时,求证:f (x 2)-f (x 1)≥ln 2+34.[解析] (1)由f (x )=a ln x +1x -1(a ≠0),得 f ′(x )=ax 2-(2a +1)x +ax (x -1)2,∵a ≠0,令g (x )=x 2-⎝ ⎛⎭⎪⎫2+1a x +1, ∴g (0)=1>0.令g ⎝ ⎛⎭⎪⎫12<0或⎩⎪⎨⎪⎧0<1+12a <12,Δ=(2a +1)2-4a 2>0,g ⎝ ⎛⎭⎪⎫12>0,则0<a <2.即a 的取值范围是(0,2).(2)由(1)得:f ′(x )=ax 2-(2a +1)x +ax (x -1)2,设ax 2-(2a +1)x +a =0(0<a <2)的两根为α,β,则⎩⎨⎧α+β=2+1a ,α·β=1解得0<α<12<2<β.当x ∈(0,α)和(β,+∞)时, f ′(x )=ax 2-(2a +1)x +ax (x -1)2>0,函数f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫α,12和(2,β)时,f ′(x )=ax 2-(2a +1)x +ax (x -1)2<0,函数f (x )单调递减,则f (x 1)≤f (α),f (x 2)≥f (β), 则f (x 2)-f (x 1)≥f (β)-f (α)=a ln β+1β-1-a ln α-1α-1=a ln βα+α-βαβ-(α+β)+1=a ⎝ ⎛⎭⎪⎫ln β2+β-1β⎝ ⎛⎭⎪⎫利用α+β=2+1a ,α·β=1 令h (x )=ln x 2+x -1x ,x >2则 h ′(x )=(x +1)2x 2>0,则函数h (x )单调递增,h (x )≥h (2)=2ln 2+32, ∴ln β2+β-1β≥2ln 2+32>0. ∵a ∈⎣⎢⎡⎭⎪⎫12,2,则a ⎝ ⎛⎭⎪⎫ln β2+β-1β≥ln 2+34,∴f (x 1)-f (x 2)≥ln 2+34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数 压轴题训练1.(2014 湖南). 22.(2014 湖南)..已知常数0a >,函数()()2ln 12xf x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围.【答案】(1)详见解析 【解析】解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a ≤时,()()21'0a a f x x -=⇒=±,则函数()f x 在区间()210,a a ⎛⎫- ⎪ ⎝⎭单调递减,在()21a a ⎛⎫- ⎪+∞⎪⎝⎭单调递增的.(2) 解:(1)对函数()f x 求导可得()()24'12a f x ax x =-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a <时,()()21'0a a f x x a-=⇒=±,则函数()f x 在区间()210,a a a ⎛⎫- ⎪ ⎪⎝⎭单调递减,在()21a a ⎫-⎪+∞⎪⎝⎭单调递增的.2.(20)(2014江苏)(本小题满分14分)已知函数x f x xae aR ,x R .已知函数y f x有两个零点12,x x ,且12x x .(Ⅰ)求a 的取值范围; (Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明 12x x 随着a 的减小而增大.(2014四川卷)21(2014四川卷).已知函数2()1x f x e ax bx =---,其中,a b R ∈,2.71828e =为自然对数的底数。

(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围解:(1)因为2()1x f x e ax bx =--- 所以()()2x g x f x e ax b '==-- 又()2x g x e a '=-因为[0,1]x ∈,1xe e ≤≤ 所以:①若12a≤,则21a ≤,()20xg x e a '=-≥, 所以函数()g x 在区间[0,1]上单增,min ()(0)1g x g b ==-②若122ea <<,则12a e <<, 于是当0ln(2)x a <<时()20x g x e a '=-<,当ln(2)1a x <<时()20x g x e a '=->,所以函数()g x 在区间[0,ln(2)]a 上单减,在区间[ln(2),1]a 上单增,min ()[ln(2)]22ln(2)g x g a a a a b ==--③若2e a≥,则2a e ≥,()20xg x e a '=-≤ 所以函数()g x 在区间[0,1]上单减,min ()(1)2g x g e a b ==--综上:()g x 在区间[0,1]上的最小值为min 11,,21()22ln(2),,222,,2b a e g x a a a b a e e a b a ⎧-≤⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩(2)由(1)0f =⇒10e a b ---=⇒1b e a =--,又(0)0f =若函数()f x 在区间(0,1)内有零点,则函数()f x 在区间(0,1)内至少有三个单调区间由(1)知当12a ≤或2ea ≥时,函数()g x 即()f x '在区间[0,1]上单调,不可能满足“函数()f x 在区间(0,1)内至少有三个单调区间”这一要求。

若122ea <<,则min ()22ln(2)32ln(2)1g x a a ab a a a e =--=--- 令3()ln 12h x x x x e =---(1x e <<) 则1()ln 2h x x '=-。

由1()ln 02h x x x '=->⇒< 所以()h x在区间上单增,在区间)e 上单减max ()110h x h e e ==--=--<即min ()0g x <恒成立 于是,函数()f x 在区间(0,1)内至少有三个单调区间⇔(0)20(1)10g e a g a =-+>⎧⎨=-+>⎩21a e a >-⎧⇒⎨<⎩又122ea << 所以21e a -<< 综上,a 的取值范围为(2,1)e -3.(2014陕西卷).(本小题满分14分)设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.21.4.【2014年重庆卷(理20)】已知函数22()(,,)xx f x aebe cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -. (1)确定,a b 的值;(2)若3c =,判断()f x 的单调性;(3)若()f x 有极值,求c的取值范围.解:(1)22'()22xx f x aebe c -=+-,由'()'()f x f x -=恒成立知:222242222(22)(22)0x x x x x ae be c ae be c a b e b a --+-=+-⇒-+-≡,故a b =另外'(0)2242f a b c c a b =+-=-⇒+= 联立解出1a b ==(2)此时222'()2232()10xx x x f x ee e e --=+-=-+>,故()f x 单调递增。

(3)等价于22'()220x xf x e ec -=+-=有非最值解,设20x t e =>,则等价于 方程22t c t+=在0t >时有非最值解,由双钩函数知:22[4,)t t +∈+∞所以4c >,故c 的取值范围为(4,)+∞5.(2014山东).( 本小题满分13分)设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =是自然对数的底数) (I )当0k≤时,求函数()f x 的单调区间;(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围。

()()())。

的取值范围为(综上则)令(单调递增。

时,当单调递减;时,当则令时,当)解:(2,:1ln 0ln ln 2022,0)2(01)0(,01)0(ln ,)(2)(),2()()2,0(2,0)(0e 0,kx 0k )0())(2()12(2)(12ln 222''''x 3242'e e e ek k k k e k g e k k e g k e g g k g kx k e k e x g kx e x g x f x x f x x x f kx x xkx e x xx k x xe x e x f k x x x xx x >∴>∴<-=<∴>-=>-=>=<-===∴-=-=+∞∈∈∴==>-∴≤≤>--=+---⋅=6..( 2014年课标I ) (本小题满分12分)设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f )处的切线为(1)2y e x =-+. (I )求,a b ; (Ⅱ)证明:()1f x >.请考生从第(22)、(23)、(24)三题中任选一题作答。

注意:只能做所选定的题目。

如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。

.【解析】(Ⅰ) 设(),0Fc ,由条件知2233c =,得3c = 又3c a =,所以a=2,2221b a c =-= ,故E 的方程2214x y +=. ……….6分(Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,21,22824314k k x k ±-=+ 从而2221224143114k k PQ k x x k +-=+-=+又点O 到直线PQ 的距离21d k =+,所以∆OPQ 的面积214432OPQk S d PQ ∆-== ,243k t -=,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t=,7k =±0∆>,所以当∆OPQ 的面积最大时,l 的方程为:72y x =- 或72y x =-. …………………………12分.。

相关文档
最新文档