椭圆测试题(含答案)

合集下载

椭圆单元测试题及答案

椭圆单元测试题及答案

椭圆单元测试题及答案一、选择题1. 椭圆的定义是什么?A. 所有点到两个固定点的距离之和等于常数的点的集合B. 所有点到一个固定点的距离等于常数的点的集合C. 所有点到两个固定点的距离之差等于常数的点的集合D. 所有点到一个固定点的距离之差等于常数的点的集合2. 椭圆的焦点到中心的距离称为什么?A. 长轴B. 短轴C. 焦距D. 半轴3. 椭圆的长轴和短轴的长度之和等于什么?A. 焦距B. 椭圆的周长C. 椭圆的面积D. 椭圆的直径4. 如果椭圆的长轴是2a,短轴是2b,那么它的面积是多少?A. πabB. π(a+b)C. π(a-b)D. π(a^2 + b^2)5. 椭圆的离心率e定义为什么?A. e = c/aB. e = a/cC. e = b/aD. e = a/b二、填空题6. 椭圆的标准方程是 \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \],其中a和b分别代表_________。

7. 当椭圆的离心率e等于0时,椭圆退化为_________。

8. 椭圆的周长是一个比较复杂的表达式,通常用近似公式来表示,其中一种近似公式是周长L = π[3(a+b) - \sqrt{(3a+b)(a+3b)}],其中a和b分别为椭圆的_________。

9. 椭圆的焦点在_________轴上。

10. 椭圆的离心率e的取值范围是_________。

三、解答题11. 已知椭圆的中心在原点,焦点在x轴上,长轴为6,短轴为4,求椭圆的标准方程。

12. 已知椭圆的离心率为0.6,焦点到中心的距离为2,求椭圆的长轴和短轴的长度。

答案:一、选择题1. A2. C3. A4. A5. A二、填空题6. 椭圆的长半轴和短半轴7. 圆8. 长半轴和短半轴9. 主10. (0, 1)三、解答题11. 椭圆的标准方程为 \[ \frac{x^2}{3^2} + \frac{y^2}{2^2} = 1 \]。

专题25 椭圆(解答题)(新高考地区专用)(解析版)

专题25 椭圆(解答题)(新高考地区专用)(解析版)

专题25 椭 圆(解答题)1.已知椭圆Γ:()22211y x a a+=>与抛物线C :()220x py p =>有相同的焦点F ,抛物线C 的准线交椭圆于A ,B 两点,且1AB =. (1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,过焦点F 的直线l 交椭圆Γ于M ,N 两点,求OMN 面积的最大值.【试题来源】陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试(文)【答案】(1)Γ的方程为2214y x +=,C的方程为2x =;(2)最大值为1. 【解析】(1)因为1AB =,所以不妨设A 的坐标为1(,)22p --,B 的坐标为1(,)22p-, 所以有:2222114414p a p a ⎧+=⎪⎪⎨⎪-=⎪⎩,所以24a =,p = 所以椭圆Γ的方程为2214y x +=,抛物线C的方程为2x =;(2)由(1)可知F的坐标为,设直线l的方程为y kx =O 到MN 的距离为d ,则d ==,联立2214y kx y x ⎧=⎪⎨+=⎪⎩, 可得()22410k x ++-=,则()22414k k MN +==+,1OMNS==≤=,当且仅当22k =时取等号,故OMN 面积的最大值为1.2.在平面直角坐标系xOy 中,已知椭圆C 1: 22221(0)x y a b a b+=>>的左焦点为F 1(-2,0),且点P (0,2)在椭圆C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=8x 相切,求直线l 的方程 【试题来源】宁夏固原市隆德县2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2)y =+y x =- 【解析】(1)因为椭圆1C 的左焦点为1(2,0)F -,所以2c =, 点(0,2)P 代入椭圆22221x y a b+=,得241b =,即2b =,所以2228a b c =+=,所以椭圆1C 的方程为22184x y +=;(2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,由22184x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4280k x kmx m +++-=, 因为直线l 与椭圆1C 相切,所以△2222164(12)(28)0k m k m =-+-=整理得22840k m -+=①,由28y x y kx m⎧=⎨=+⎩,消去y 并整理得222(28)0k x km x m +-+=,因为直线l 与抛物线2C 相切,所以△222(28)40km k m =--=,整理得2km =②,综合①②,解得k m ⎧=⎪⎨⎪=⎩或k m ⎧=⎪⎨⎪=-⎩,所以直线l的方程为y =+y x =- 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.3.已知椭圆C :22221(0)x y a b a b +=>>左、右焦点分别为1F 、2F .设P是椭圆C 上一点,满足2PF ⊥x 轴,212PF =. (1)求椭圆C 的标准方程;(2)过1F 且倾斜角为45°的直线l 与椭圆C 相交于A ,B 两点,求AOB 的面积. 【试题来源】江西省贵溪市实验中学2021届高三上学期一模考试数学(三校生)试题【答案】(1)2214x y +=;(2【分析】(1)根据条件列出关于,,a b c 的方程求解;(2)设直线x y =,与椭圆方程联立,11212AOBSOF y y =⨯⨯-,代入根与系数的关系,求三角形的面积. 【解析】(1)由条件可知2222212c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =所以椭圆C 的标准方程是2214x y +=;(2)设直线:l x y =-()11,A x y ,()22,B x y ,直线l 与椭圆方程联立2214x y x y ⎧=-⎪⎨+=⎪⎩,得2510y --=,125y y +=,1215y y -=,11212AOBSOF y y =⨯⨯-==4.椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ≠)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【试题来源】四川省凉山州2020-2021学年高三第一次诊断性检测(理)【答案】(1)2213x y +=;(2)证明见解析,定值为1. 【解析】(1)由题意得1c b ==,则2223a b c =+=,∴椭圆方程为2213xy +=;(2)解法一(常规方法):设()()1122,,,A x y B x y ,联立222113y kx k x y =+-⎧⎪⎨+=⎪⎩ 化简可得()()()22316211210k x k k x k k ++-+-=,直线1)20(y kx k k =+-≠与椭圆C 交于A B 、两点,0,∴∆>即()()()221231214810k k k k ⎡⎤+-=-⎣⎦-->,解得01k <<, 由根与系数关系()121222621121,3()311k k k k x x x x k k --+=-=++, ()121221121211PA PB y y k k x y x y x x x x --∴+=+=+-+()()121212222kx x k x x x x +-+= ()()226621121211211212k k k k kk k k k-+--===--,∴直线PA PB 、得斜率和为定值1. 解法二(构造齐次式):由题直线1)20(y kx k k =+-≠恒过定点()2,1-- ①当直线AB 不过原点时,设直线AB 为()()11*mx n y +-=, 则221mx n --=,即12m n +=-有12m n =--,由2213x y +=有()()2231610y x y +-+-=,则()()()22316110x y y mx n y +-⎡⎤⎣-+-⎦+=,整理成关于,1x y -的齐次式: ()()()2236161 0n y mx y x +-+-+=,进而两边同时除以2x ,则()21366110y m x n y x -⎛⎫+-⎛⎫++= ⎪⎝⎭⎪⎝⎭,令1y k x -=, 则121216116213636PA PBn y y m k k x x n n⎛⎫-- ⎪--⎝⎭∴+=+=-==++,②当直线AB 过原点时,设直线AB 的方程为()()00001,,,,2y x A x y B x y =--, 0000001121212PA PB y y y k k x x x --∴+=+==⨯=, 综合①②直线PA 与直线PB 的斜率之和为定值1.【名师点睛】该题考查的是有关直线与椭圆的问题,解题方法如下:(1)根据题中所给的条件,确定出,b c 的值,进而求得2a 的值,得到椭圆方程; (2)将直线方程与椭圆方程联立,根与系数关系求得两根和与两根积,利用斜率公式证得结果.5.已知椭圆()2222:10x y C a b a b +=>>()2,1A .(1)求C 的方程;(2)点,M N 在C 上,且AM AN ⊥,证明:直线MN 过定点.【试题来源】河南省郑州市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22163x y +=;(2)证明见解析. 【解析】(1)由题意得222222411a b c c e a a b⎧=+⎪⎪⎪==⎨⎪⎪+=⎪⎩,解得2263a b ⎧=⎨=⎩,∴椭圆C 的方程为22163x y+=.(2)设点()11,M x y ,()22,N x y ,AM AN ⊥,()()()()121222110AM AN x x y y ∴⋅=--+--=,整理可得()()12121212124y y y y x x x x -++=-++-…①当直线MN 斜率k 不存在时,显然AM AN ⊥不成立,则可设:MN y kx m =+,联立2226y kx m x y =+⎧⎨+=⎩得()222124260k x kmx m +++-=, 由()()222216412260k m km∆=-+->得22630k m -+>,则122412km x x k +=-+,21222612m x x k -=+,()121222212m y y k x x m k ∴+=++=+, ()()22221212122612m k y y k x x km x x m k-=++++=+, 代入①式化简可得()()2481310k km m m ++-+=,即()()212310k m k m +-++=,12m k ∴=-或213k m +=- 则直线方程为()1221y kx k x k =+-=-+或2121333k y kx x k +⎛⎫=-=-- ⎪⎝⎭, ∴直线过定点()2,1或21,33⎛⎫- ⎪⎝⎭,又()2,1和A 点重合,故舍去,∴直线MN 过定点21,33⎛⎫- ⎪⎝⎭. 【名师点睛】本题考查直线与椭圆综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量之间的关系,同时得到根与系数关系的形式; ③利用根与系数关系表示出已知的等量关系,化简整理得到所求定点.6.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且过点(2,3)A ,右顶点为B .(1)求椭圆C 的标准方程;(2)过点A 作两条直线分别交椭圆于点M ,N 满足直线AM ,AN 的斜率之和为3-,求点B 到直线MN 距离的最大值.【试题来源】江苏省常州市四校联考2020-2021学年高三上学期期末【答案】(1)2211612x y +=;(2)最大值为2. 【解析】(1)由题2222212491b c a c e a a b ⎧⎪+=⎪⎪==⎨⎪⎪+=⎪⎩,解得42a b c =⎧⎪=⎨⎪=⎩C 的标准方程为2211612x y +=;(2)若直线MN 斜率不存在,设0000(,),(,)M x y N x y -,则220000001161233322x y y y x x ⎧+=⎪⎪⎨---⎪+=-⎪--⎩,解得0040x y =⎧⎨=⎩,此时,M N 重合,舍去.若直线MN 斜率存在,设直线1122(,),(,)MN y kx t M x y N x y =+:,,联立2211612x y y kx t ⎧+=⎪⎨⎪=+⎩,得222(43)84480k x ktx t +++-=,所以21212228448,4343kt t x x x x k k -+=-=++, 由题意121233322y y x x --+=---,即121233322kx t kx t x x +-+-+=--- 化简得1212(23)(29)()4240.k x x t k x x t ++--+-+=因此2224488(23)(29)()4240.4343t ktk t k t k k -++----+=++ 化简得2286860k kt t k t ++---=,即(23)(42)0k t k t +-++= 若230k t +-=,则23t k =-+,直线MN 过点(2,3)A ,舍去, 所以420k t ++=,即42t k =--,因此直线MN 过点(4,2)P -. 又点(4,0)B ,所以点B 到直线MN 距离最大值即2BP =,此时2MN y =-:,符合题意.所以点B 到直线MN 距离最大值为2【名师点睛】易错点为需讨论直线MN 斜率是否存在,解题的关键是联立直线与曲线方程,根据根与系数关系,求得1212,x x x x +⋅的表达式,再代入题干条件,化简整理,才能求得答案,考查分析理解,计算化简的能力,属中档题.7.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左顶点为A ,右焦点F ,3AF =.过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12k k λ=恒成立?若存在,请求出λ的值,若不存在,请说明理由.【试题来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试(理)【答案】(1)22143x y +=,(2)3λ= 【解析】(1)因为离心率为12,所以12c e a ==,又3AF =,所以3a c +=,解得2a =,1c =,又222c a b =-,所以23b =,所以椭圆方程为22143x y +=;(2)由(1)知()1,0F ,()2,0A -,设直线PN 的方程为1x my =+,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,M x y --,所以1112y x k =-,2222y k x =+,若存在λ,使得12k k λ=恒成立,所以121222y y x x λ=-+, 所以()()122122y x y x λ+=-,两边同乘1y 得()()21221122y x y y x λ+=-,因为()11,P x y 在椭圆上,所以2211143x y +=,所以()()2112113223144x x x y -+⎛⎫=-=⎪⎝⎭, 所以()()()()112211322224x x x y y x λ-++=-,当12x ≠时,则()()12213224x x y y λ-++=,所以()21212136124x x x x y y λ--+-=①;当12x =时,M 与A 重合,联立方程221143x my x y =+⎧⎪⎨+=⎪⎩,消元得()2234690m y my ++-=,所以212212934634y y m my y m -⎧=⎪⎪+⎨-⎪+=⎪+⎩,所以()212128234x x m y y m +=++=+, ()222121212412134m x x m y y m y y m -=+++=+, 代入①得22221236489124343434m m m m λ-+--+-=+++,整理得10836λ-=-,解得3λ=8.已知椭圆()2222:10x y E a b a b +=>>1F 、2F分别为椭圆E 的左、右焦点,M 为E 上任意一点,12F MF S △的最大值为1,椭圆右顶点为A . (1)求椭圆E 的方程;(2)若过A 的直线l 交椭圆于另一点B ,过B 作x 轴的垂线交椭圆于C (C 异于B 点),连接AC 交y 轴于点P .如果12PA PB ⋅=时,求直线l 的方程. 【试题来源】天津市滨海七校2020-2021学年高三上学期期末联考【答案】(1)2212x y +=;(2):22x l y =-或22x y =-+.【解析】(1)当M 为椭圆的短轴端点时,12F MF S △取得最大值即1212S c b =⨯⨯=,因为c a =,222a b c =+,解得a =1b =,1c =,所以椭圆方程为2212x y +=.(2))A,根据题意,直线l 斜率存在且不为0,设直线(:l y k x =,()00,B x y,联立(2212y k x x y ⎧=⎪⎨⎪+=⎩,得()222212420kxx k +-+-=,20212x k =+2204212k k -=+即)22221,1212k B k k ⎛⎫-- ⎪ ⎪++⎝⎭,由题意得)222112k C k ⎛- +⎝⎭,又直线(:AC y k x =-,故()P ,())22212,12k PA PB k ⎛⎫- ⎪⋅=⋅ ⎪+⎝⎭42241021122k k k +-==+, 即4281850k k +-=解得252k =-(舍)214k =,故12k =±,直线:2x l y =或2x y =-+. 9.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,且离心率为12.(1)求椭圆C 的方程;(2)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A B ,两点,线段AB 的垂直平分线交x 轴于点D ,判断AB DF是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.【试题来源】北京市昌平区2021届高三年级上学期期末质量抽测【答案】(1)22143x y +=;(2)是,4. 【解析】(1)依题意得22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =,故椭圆C 的方程为22143x y+=; (2)AB DF是定值.由已知得直线:(1)l y k x =-. 由22(1)34120y k x x y =-⎧⎨+-=⎩,消去y , 整理得()22224384120k x k x k +-+-=. 所以()()()2222284434121441440k k k k ∆=--+-=+>,设()()1122,,,A x y B x y ,则2122843k x x k +=+,212241243k x x k -=+, 所以()()()()222222121121214AB x x y y kx x x x ⎡⎤=-+-=++-⎣⎦()()()222222222441212181434343k k k k k k k ⎡⎤⎛⎫-+⎛⎫ ⎪⎢⎥=+-= ⎪ ⎪+++⎢⎥⎝⎭⎣⎦⎝⎭, 则()2212143k AB k +=+,因为()212122286224343k ky y k x x k k k ⎛⎫-+=+-=-= ⎪++⎝⎭,所以线段AB 的中点为22243,4343k k k k ⎛⎫- ⎪++⎝⎭. (1)当0k =时,AB 4=,1DF =.所以4AB DF=.(2)当0k ≠时,线段AB 的垂直平分线方程为2223144343k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2243k x k =+,即22,043k D k ⎛⎫ ⎪+⎝⎭,所以()22223114343k k DF k k +=-=++, 所以()()22221214343143k AB k DF k k ++==++,综上所述,AB DF 为定值4.【名师点睛】求解本题第二问的关键在于联立直线l 与椭圆方程,根据根与系数关系以及弦长公式表示出AB ,再由题中条件,求出DF ,即可得出AB DF的值.(求解时要注意讨论斜率k 的取值)10.已知椭圆C :22221x y a b+=(0a b >>)过点()2,0A -,()2,0B ,且离心率为12.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点G (E ,G 不重合),ET x ⊥轴,垂足为T ,求证:TA GA TBGB=.【试题来源】北京市东城区2021届高三上学期期末考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)由题意可得,222212a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,解得24a =,23b =,所以椭圆C 的方程为22143x y +=;(2)由题设知直线l 的斜率存在且不为零,设直线l 的方程为y kx m =+(0k ≠).由22143y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()()2223484120k x kmx m +++-=.依题意,有()()222264163430k m k m∆=-+-=,解得2234m k =+.设()1,0G x ,()00,E x y ,则1m x k =-,024434km kx k m-==-+. 因为ET x ⊥轴,所以4,0k T m ⎛⎫- ⎪⎝⎭,所以4242224242kTA k m m k m TB m k m k k m -+-+-===++⎛⎫-- ⎪⎝⎭, 因为2222mGA m k km GB m k k-+-==++,所以TA GA TB GB =.【名师点睛】求解直线与圆锥曲线相关问题时,一般需要联立直线与圆锥曲线方程,消元后得到关于x (或y )的一元二次方程,结合根与系数关系与判别式,以及题中条件,利用圆锥曲线的相关性质,即可求解.11.如图,在平面直角坐标系xoy 中,已知椭圆C :22221x ya b+=(0)a b >>的离心率1,2e =左顶点为(2,0)A -,过点A 作斜率为(0)k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的(0)k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(3)若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AEOM+的最小值.【试题来源】上海市高考压轴【答案】(1)22143x y +=;(2)存在,3(,0)2-;(3) 【解析】(1)因为椭圆C :22221x y a b+=0a b >>()的离心率1,2e =左顶点为(2,0)A -, 所以2a =,又12e =,所以1c =,可得2223b a c =-=, 所以椭圆C 的标准方程为22143x y +=;(2)直线l 的方程为(2)y k x =+,由22143(2)x y y k x ⎧+=⎪⎨⎪=+⎩,可得22(2)(43)860x k x k ⎡⎤+++-=⎣⎦,所以12x =-,2228643k x k -+=+,当 228643k x k -+=+时,2228612(2)4343k ky k k k -+=+=++, 所以2228612(,)4343k k D k k -+++,因为点P 为AD 的中点,所以P 点坐标为22286(,)4343k kk k -++, 则3(0)4OP k k k-=≠,直线l 的方程为(2)y k x =+,令0x =,得E 点坐标为(0,2)k , 假设存在定点(,)(0)Q m n m ≠使得OP EQ ⊥,则1OP EQ k k ⋅=-, 即3214n kk m -⎛⎫-⋅=- ⎪⎝⎭恒成立,所以(46)30m k n +-=, 所以46030m n +=⎧⎨-=⎩,即320m n ⎧=-⎪⎨⎪=⎩,所以定点Q 的坐标为3(,0)2-.(3)因为//OM l ,所以OM 的方程可设为y kx =,和22143x y +=联立可得M点的横坐标为x =, 由//OM l可得22D A E A D A M M x x x x x x AD AE OM x x -+--+===≥=,即2k=±时取等号,所以当2k=±时,AD AEOM+的最小值为.【名师点睛】解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y,,()22B x y,;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出根与系数关系;(4)将所求问题或题中关系转化为1212,x x x x+形式;(5)代入根与系数关系求解.12.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且椭圆C过点3,22⎛⎝⎭.(1)求椭圆C的标准方程;(2)过椭圆C右焦点的直线l与椭圆C交于,A B两点,且与圆22:2O x y+=交于E F、两点,求2||||AB EF⋅的取值范围.【试题来源】云南省曲靖市第二中学、大理新世纪中学2021届高三第一次模拟考试(理)【答案】(1)22132x y+=;(2)3⎡⎢⎣.【分析】(1)先利用离心率得到,a b的关系,再利用点在椭圆上得到,a b另一个关系,解方程即得椭圆方程;(2)先讨论斜率不存在时2||||AB EF⋅的值,再设斜率存在时的直线方程,联立椭圆方程,利用根与系数关系求弦长||AB,再利用几何法求圆中的弦||EF的长,最后计算2||||AB EF⋅的取值范围即可.【解析】(1)由已知可得ca=,所以2213c a=,故222223b ac a=-=,即2232a b=,所以椭圆的方程为2222132x ybb+=,将点32⎛⎝⎭带入方程得22b=,即23a=,所以椭圆C 的标准方程为22132x y +=;(2)由(1)知,21c =,故椭圆的右焦点为(1,0), ①若直线l 的斜率不存在,直线l 的方程为1x =,则,1,,(1,1),(1,1)A B E F ⎛⎛- ⎝⎭⎝⎭,所以22|||4,||||AB EF AB EF ==⋅=②若直线l 的斜率存在,设直线l 方程为(1)y k x =-,设()()1122,,,A x y B x y ,联立直线l 与椭圆方程()221321x y y k x ⎧+=⎪⎨⎪=-⎩,可得()2222236360k x k x k +-+-=, 则2122623k x x k+=+,21223623k x x k -=+, 所以)22123k AB k +===+, 因为圆心()0,0到直线l的距离d =所以在圆22:2O x y +=中由21||2EF ⎛⎫= ⎪⎝⎭()()222222242||44211k k EF r dk k +⎛⎫=-=-= ⎪++⎝⎭,所以)())2222222142223123k k k AB EF k k k +++⋅=⋅=+++2431233k ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭, 因为[)20k ∈+∞,,则222,33k ⎡⎫+∈+∞⎪⎢⎣⎭,230,2213k ⎛⎤∈ ⎥⎝⎦+,故(]20,22433k ∈+,(]24311,323k +∈+,故24312333k ⎫⎪⎛+∈ ⎪ ⎝ ⎪+⎝⎭,即2||3AB EF ⎛⋅∈ ⎝,综上,2||3AB EF ⎡⋅∈⎢⎣.13.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,右顶点、上顶点分别为A 、B ,原点O 到直线AB. (1)求椭圆C 的方程;(2)若P ,Q 为椭圆C 上两不同点,线段PQ 的中点为M . ①当M 的坐标为()1,1时,求直线PQ 的直线方程 ②当三角形OPQOM 的取值范围.【试题来源】江苏省连云港市新海高级中学2020-2021学年高三上学期期末【答案】(1)22142x y +=(2)①230x y +-=,②OM ⎡∈⎣. 【解析】(1)设直线:1x yAB a b+=,即0bx ay ab +-=, 所以O 到直线AB==,所以226a b +=,因为2222226c e a a b c a b ⎧==⎪⎪⎪=+⎨⎪+=⎪⎪⎩,所以2242a b ⎧=⎨=⎩,所以椭圆C 的方程为22142x y +=;(2)①因为PQ 的中点为()1,1M ,且PQ 的斜率存在,设()()1122,,,P x y Q x y ,所以221122222424x y x y ⎧+=⎨+=⎩,所以()()222212122x x y y -=--,所以121212122x x y y y y x x +-=-+-, 因为12122,2x x y y +=+=,所以121212PQ y y k x x -==--,所以PQ 的直线方程为()1112y x -=--,即230x y +-=; ②若直线PQ 垂直于x轴,则2221222222p p p p p x x y x x ⎛⎫⨯=-=⇒= ⎪ ⎪⎝⎭ 22M x ⇒=,0M y =,所以OM =若直线PQ 不垂直于x 轴,设直线PQ 方程:()0y kx m m =+≠,()()1122,,,P x y Q x y ,()22222124240142y kx mk x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 所以122412km x x k +=-+,21222412-⋅=+m x x k,()()()2224412240km k m∆=-+->,即2242k m +>,因为O 到PQ的距离为d =所以12OPQS===,()()()2222222222241212012m k m k k m k m ⎡⎤⇒+-=+⇒+-=⇒+=⎣⎦, 且此时2242k m +>,即0∆>满足,而12222212M x x km k x k m+-===-+, 1M M y kx m m =+=,所以OM ===,因为2212k m +=,所以21m ≥,所以21122m ≤-<,所以1OM ≤<综上可知OM ⎡∈⎣.14.已知椭圆2222:1(0)x y C a b a b +=>>的离心率2e =,且经过点(0,1)D .(1)求椭圆C 的方程;(2)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于,M N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由. 【试题来源】北京市石景山区2021届高三上学期数学期末试题【答案】(1)2214x y +=;(2)BAM ∠=OAN ∠,理由见解析. 【解析】(1)由已知1b =,c e a ==, 又222a b c =+,解得2,1a b ==. 所以椭圆C 的方程为2214x y +=.(2)依题意设直线l 的方程为(4)y k x =+,设1122(,),(,)M x y N x y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则216(112)0k ∆=->,解得k <<. (*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =k =±与(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为1212121212(4)(4)332111111AM AN y y k x k x k k k k k x x x x x x +++=+=+=++++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++22222222323(2)3(242)142206443236311414k k k k k k k k k k k k -+-++=+=+=---++++,所以AM AN k k =-.所以BAM ∠=OAN ∠.15.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(.(1)求椭圆C 的方程;(2)若直线y x m =+与椭圆C 交于不同的两点,A B ,且线段的中点M 在圆221x y +=上,求m 的值.【试题来源】宁夏平罗中学2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2). 【解析】(1)因为椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(,所以222421a b=⎨+=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩,因此椭圆C 的方程为22184x y +=; (2)设()11,A x y ,()22,B x y ,由22184y x m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得2234280x mx m ++-=,由()221612280m m ∆=-->解得212m <, 又1243mx x +=-,则1212422233m m y y x x m m +=++=-+=,所以AB 的中点坐标为2,33m m M ⎛⎫-⎪⎝⎭, 又点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得295m =满足212m <,所以m =. 【名师点睛】求解本题的关键在于用m 表示出点M 的坐标;利用题中条件,联立直线与椭圆方程,消去x (y )得到关于y (或x )的一元二次方程,根据根与系数关系及中点坐标公式,求出M 坐标,即可求解.16.已知椭圆22:142x y C +=.(1)求椭圆C 的离心率和长轴长;(2)已知直线2y kx =+与椭圆C 有两个不同的交点,A B ,P 为x 轴上一点. 是否存在实数k ,使得PAB △是以点P 为直角顶点的等腰直角三角形?若存在,求出k 的值及点P 的坐标;若不存在,说明理由.【试题来源】北京市西城区2021届高三上学期数学期末试题 【答案】(1)2,4;(2)存在,当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-.【解析】(1)由题意:24a =,22b =,所以2a =. 因为222a b c =+,所以22c =,c =c e a ==. 所以椭圆C,长轴长为4. (2)联立222,142y kx x y =+⎧⎪⎨+=⎪⎩ 消y 整理得22(21)840k x kx +++=. 因为直线与椭圆交于,A B 两点,故0>,解得212k >. 设()()1122,,,A x y B x y ,则122821k x x k -+=+,122421x x k =+. 设AB 中点00(,)G x y ,则12024221x x k x k +-==+,0022221y kx k =+=+,故2242(,)2121k G k k -++. 假设存在k 和点(,0)P m ,使得PAB △是以P 为直角顶点的等腰直角三角形,则PG AB ⊥,故1PG AB k k ⋅=-,所以222211421k k k m k +⨯=--+,解得2221k m k -=+,故22(0)2+1kP k -,.因为2APB π∠=,所以0PA PB ⋅=. 所以1122(,)(,)0x m y x m y -⋅-=,即1112()()0x m x m y y --+=.整理得 221212(1)(2)()40k x x k m x x m ++-+++=.所以222248(1)(2)402121k k k m m k k +⋅--⋅++=++, 代入2221km k -=+,整理得41k =,即21k =. 当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-. 此时,PAB △是以P 为直角顶点的等腰直角三角形. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.17.已知椭圆()2222:10x y C a b a b +=>>过点⎛ ⎝⎭,且C的离心率为2. (1)求椭圆C 的方程;(2)过点()1,0P 的直线l 交椭圆C 于A 、B 两点,求PA PB ⋅的取值范围. 【试题来源】北京市朝阳区2021届高三上学期期末数学质量检测试题【答案】(1)2214x y +=;(2)3,34⎡⎤⎢⎥⎣⎦. 【解析】(1)由题意得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得21a b =⎧⎨=⎩.所以椭圆C 的方程为2214xy +=;(2)分以下两种情况讨论:①若直线l 与x 轴重合,则()()21113PA PB a a a ⋅=-⋅+=-=;②若直线l 不与x 轴重合,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,联立22114x my x y =+⎧⎪⎨+=⎪⎩,消去x 可得()224230m y my ++-=,则()()22241241630m m m ∆=++=+>恒成立, 由根与系数关系可得12224m y y m +=-+,12234y y m =-+, 由弦长公式可得()()22121223114m PA PB y y m y y m +⋅==+⋅=+()2223499344m m m +-==-++,244m +≥,则299044m <≤+,所以,2393344m ≤-<+. 综上所述,PA PB ⋅的取值范围是3,34⎡⎤⎢⎥⎣⎦.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【试题来源】北京通州区2021届高三上学期数学摸底(期末)考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩ 消去y ,整理得()2223484120kx kx k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k -⋅=+. 所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+yy x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.【名师点睛】本题第二问解题的关键在于分类讨论直线斜率不存在和存在两种情况,当直线斜率存在时,设()11,M x y ,()22,N x y ,写出直线AM 的方程是()1122y y x x =++和直线BN 的方程是()2222y y x x =--,进而计算得4x =时的纵坐标相等即可.考查运算求解能力,是中档题.19.椭圆C :22221x y a b +=(0)a b >>的左、右焦点分别为F 1、2F ,过1F 向圆2F :22(2)1x y -+=引切线F 1T (T 为切点),切线F 1T23, (1)求椭圆C 的方程;(2)设(,)M x y 为圆2F 上的动点,O 为坐标原点,过F 2作OM 的平行线,交椭圆C 于G ,H 两点,求MGH 的面积的最大值.【试题来源】江西省新余市2021届高三上学期期末统考(理)【答案】(1)22195x y +=;(2)52. 【解析】(1)连接2F T ,则F 1T ⊥2F T,由题意得12||4F F =,所以c =2. 因为23c e a ==,则a =3,b ==C 的方程为22195x y+=;(2)设1122(,),,()G x y H x y ,直线GH 的方程为x =my +2,由222,1,95x my x y =+⎧⎪⎨+=⎪⎩可得22(902)5250m y my ++-=,222(20)4(59)(25)900(1)0m m m ∆=-+-=+>则1222059m y y m +=-+,1222559y y m =-+.所以12||y y -===所以12||GH y y ===-2223030(1)5959m m m +==++. 因为//GH OM ,所以点M 到直线GH 的距离等于原点O 到直线GH的距离,距离为△MGH的面积为22130(1)259m S m +==+ 因为//GH OM ,所以直线OM :x my =,即0x my -=, 因为点(,)M x y 为圆2F 上的动点,所以点2F 到直线OM的距离1d =≤,解得23m ≥t =,则221(2)m t t =-≥,所以2230303045(1)9545t t S t t t t===-+++,因为4()5f t t t=+在[2,)+∞上单调递增,所以当t =2时,()f t 取得最小值,其值为12,所以△MGH 的面积的最大值为52.20.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =直线10x +-=被以椭圆C(1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.【试题来源】吉林省长春外国语学校2021届高三上学期期末考试(文)【答案】(1)2214x y +=;(2)2]3.【解析】(1)因为原点到直线10x -=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =.又22222314c b e a a ==-=,得2a = 所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=, 所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >, 所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y +==+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<.综上可得2133λ<≤,即2(]133. 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.如图,点()0,1P -是椭圆1C :22221x y a b+=(0a b >>)的一个顶点,1C 的长轴是圆2C :224x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交椭圆1C 于另一点D ,2l 交圆2C 于A ,B 两点.(1)求椭圆1C 的方程;(2)当ABD △的面积取得最大值时,求直线1l 的方程.【试题来源】上学期江西省新余市2021届高三上学期期末质量检测(文)【答案】(1)2214x y +=;(2)1012y x =±- 【解析】(1)由题意可得1b =,24a =,即2a =.∴椭圆1C 的方程为2214xy +=;(2)设1(A x ,1)y ,2(B x ,2)y ,0(D x ,0)y .由题意可知直线1l 的斜率存在,设为k ,则直线1l 的方程为1y kx =-.又圆222:4C x y +=的圆心(0,0)O 到直线1l 的距离21d k =+.22243||2421k AB d k +∴=-+21l l ⊥,故直线2l 的方程为0x ky k ++=, 联立22044x ky k x y ++=⎧⎨+=⎩,消去y 得到22(4)80k x kx ++=,解得0284k x k =-+, 281||k PD +∴=.∴三角形ABD 的面积21843||||2ABDk S AB PD +==令244k t +=>,则24k t =-,224(4)34131244()13()131313t t f t t t -+-===--+,16S ∴=,当且仅132t =,即252k=,当k = 故所求直线1l 的方程为12y x =±-. 22.已知椭圆2222:1(0)x y C a b a b+=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为 (1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ 的交点为T ,求证:点T 横坐标为定值.【试题来源】陕西省西安市2020-2021学年高三上学期第一次质量检测(文)【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【解析】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩32a b c =⎧⎪=⎨⎪=⎩故C 的标准方程为22195x y +=.(2)由(1)知()30A -,,()3,0B ,()2,0F ,设00,,()T x y ,11(,)P x y ,()22,Q x y , 由010133TA PA y y k k x x =⇒=++'①,020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++,又2211195x y +=,故2211195x y -=-, 所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+. 所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点,所以设直线PQ 的方程为2x my =+,代入22195x y +=,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅,所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=,解得092x =. 所以点T 横坐标为定值92. 【名师点睛】解题的关键是根据A 、P 、T 和B 、Q 、T 共线得到TA PA k k =,TB QB k k =,化简整理,结合根与系数关系求解,直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率,考查分析理解,计算化简的能力,属中档题.23.已知椭圆2222:1(0)x y C a b a b+=>>倍,且过点.(1)求椭圆C 的标准方程;(2)点P 是圆心在原点OO 上的一个动点,过点P 作椭圆的两条切线,且分别交其圆O 于点E 、F ,求动弦EF 长的取值范围.【试题来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22184x y +=;(2). 【解析】(1)由22a c =得a =,把点代入椭圆方程得22421a b +=, 又222a b c =+,所以228,4a b ==,椭圆的标准方程为22184x y +=.(2)设过点P 作椭圆的两条切线分别为12,l l .①当12,l l 中有一条斜率不存在时,不妨设1l 斜率不存在,因为1l与椭圆只有一个公共点,则其方程为x =x =-, 当1l方程为x =1l 与圆O交于点和2)-,此时经过点,2)-且与椭圆只有一个公共点的直线是2y =或2y =-, 即2l 为2y =或122,y l l =-⊥,由题目知,圆O 的方程为2212x y +=, 所以线段EF 应为圆O的直径,所以||EF =.②当12,l l 斜率都存在时,设点()00,P x y ,其中220012x y +=,且22008,4x y ≠≠,设经过点()00,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+,则()0022184y t x x y x y ⎧=-+⎪⎨+=⎪⎩,消去y 得到()()()2220000124280t x t y tx x y tx ++-+--=, 所以()2220000648163280x t x y t y ∆=-++-=,()2200122200328123281648648x y t t x x ---===---, 所以121t t =-,满足条件的两直线12,l l 垂直. 所以线段EF 应为圆O的直径,所以||EF =,综合①②知因为12,l l 经过点()00,P x y ,又分别交圆于点E ,F ,且12,l l 垂直,所以线段EF 为圆220012x y +=的直径,所以||EF =为定值.故EF的取值范围.24.椭圆()2222:10x y C a b a b+=>>的右焦点为F ,离心率为12,过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =. (1)求C 的方程;(2)若直线:4m x =与x 轴交于M 点,AD ⊥直线m ,垂足为D (不与M 重合),求证:直线BD 平分线段FM .【试题来源】贵州省贵阳市普通中学2021届高三上学期期末监测考试(文)【答案】(1)22143x y +=;(2)证明见详解. 【解析】(1)记椭圆()2222:10x y C a b a b+=>>的右焦点为(),0F c ,因为椭圆的离心率为12,即12caa ==,所以2234b a =;又过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =,将x c =代入22221x y a b +=可得2422221c b y b a a ⎛⎫=-= ⎪⎝⎭,则2b y a =±,所以223b a =,由2223423b a b a==解得2243a b ⎧=⎨=⎩,即椭圆C 的方程为22143x y +=;(2)因为直线:4m x =与x 轴交于M 点,则()4,0M ;又AD ⊥直线m ,垂足为D (不与M 重合),所以直线AB 斜率不为0, 不妨设直线AB 的方程为1x my =+,设()11,A x y ,()22,B x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩消去x 可得()22314120my y ++-=,整理得()2234690m y my ++-=,则122122634934m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩,2334234m y m m -±==++, 不妨令1y=,2y =, 因为AD ⊥直线m ,垂足为D ,所以()14,D y , 因此直线BD 的方程为()211244y y y x y x -=-+-, 令0y =,则()()1212121212121433444y x y my my y y x y y y y y y ---=-=-=----293544422m-===-=;即直线BD与x轴的交点为5,02⎛⎫⎪⎝⎭,因为()1,0F,()4,0M,所以5,02⎛⎫⎪⎝⎭是FM中点,即直线BD平分线段FM.【名师点睛】求解本题第二问的关键在于求出直线BD与x轴交点的横坐标;解题时,需要先设AB的方程,联立直线与椭圆方程,结合根与系数关系,以及题中条件,表示出直线BD 的方程,即可求出与x轴交点的横坐标.25.椭圆()2222:10x yC a ba b+=>>过点()2,3M,其上、下顶点分别为点A,B,且直线AM,MB的斜率之积为34AM BMk k⋅=-.(1)求椭圆C的方程;(2)过椭圆C的左顶点(),0Q a-作两条直线,分别交椭圆C于另一点S,T.若2QS QTk k+=,求证:直线ST过定点.【试题来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考(理)【答案】(1)2211612x y+=;(2)证明见解析.【解析】(1)因为()0,A b,()0,B b-,所以333224MA MBb bk k-+⋅=⋅=-,解得212b=,将212b=,()2,3M都代入椭圆方程,得216a=,所以椭圆方程为2211612x y+=;(2)证明:设()11,S x y,()22,T x y,直线ST的方程为y kx t=+.将y kx t=+代入椭圆方程,整理得()2223484480k x ktx t+++-=,122843ktx xk+=-+,212244843tx xk-=+,由1212244y yx x+=++,得1212244kx t kx tx x+++=++.。

中职数学 椭圆、双曲线、抛物线测试卷(含答案)

中职数学 椭圆、双曲线、抛物线测试卷(含答案)

数学拓展模块第二章椭圆、双曲线、抛物线(试卷A )一、选择题:(本大题有15个小题,每小题3分,共45分。

在每小题所给出的选项中只有一个符合题目要求)1.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ). A .3 B .4 C .5 D .62.椭圆2211625+=x y 的焦距是( ). A .6 B .4 C .10 D .93.已知椭圆方程是224520+=x y ,则它的离心率是( ).A .2B .C .D . 124.长轴是短轴的2倍,且经过点P (-2.0)的椭圆方程是( ).A . 2214+=x yB . 221416+=x yC . 221164+=x y 或2214+=x y D . 221416+=x y 或2214+=x y 5.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A .2211612+=x y B . 2211612-=x y C . 2211216+=x y D . 2211216-=x y6.与椭圆2211625+=x y 有共同的焦点且过点(-的双曲线的方程是( ). A .22154-=y x B . 22153-=y x C . 22154-=x y D . 22153-=x y 7.双曲线的两个焦点坐标是1F (0,-5), 2F (0,5),且2a =8.则双曲线的方程为( ).A .221169-=y x B . 2211625-=y x C . 2211625-=x y D . 2216425-=x y 8.若双曲线焦点在x 轴上,且它的一条渐进线方程为34=y x ,则离心率是( ).A .54B . 4C . 7D . 79.双曲线221169-=x y ,若过右焦点2F ,且在双曲线右半支上的弦AB 长为5,另一焦点为1F 则△AB 1F 的周长为( ).A .16B .11C . 26D .610.设()0,απ∈,方程221sin cos αα+=x y 表示中心在坐标原点,焦点在x 轴上的双曲线,则α的取值范围是( ).A . ()0,π В. [)0,π C . ,2ππ⎛⎫⎪⎝⎭D .,2ππ⎡⎫⎪⎢⎣⎭11.抛物线250-=x y 的准线方程是( ).A . 54=-x B . 52=x C . 54=y D . 54=-y 12.顶点在原点,准线方程为y =4的抛物线标准方程为( ). A . 216=y x B . 216=-y x C . 216=x y D . 216=-x y13.顶点在原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是( ). A . 24=±x y B . 24=±y x C . 28=±x y D . 28=±y x 14.顶点在原点,以坐标轴为对称轴且过点(2,-3)的抛物线方程是( ). A . 292=y x 或243=-x y B . 292=-y x C . 292=-y x 或243=x y D . 243=-x y 15.顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ). A . 24=x y B . 24=-x y C . 24=-y x D . 24=y x 二、填空题(本在题有15个小空,每空2分,共30分) 16.已知椭圆221625400+=x y ,其离心率为___________.17.已知椭圆的右焦点F (3,0),F 到右顶点距离为3,则椭圆的方程为___________.18.已知曲线的方程22194+=--x y k k为椭圆的标准方程,则k 的取值范围为___________.19.椭圆各22214+=x y a 与双曲线器22212-=x y a 有相同的焦点,则2a =___________. 20如果方程222+=x ky 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是___________.21.已知1F ,2F 是椭圆221259+=x y 的两个焦点,过1F 的直线与椭圆交于M .N 两点,则△MN 2F 的周长是___________.22.双曲线222516400-=x y 的两条渐近线方程是___________.23.双曲线的实轴长为6,离心率2=e ,焦点在x 轴上,则双曲线的标准方程为___________. 24.双曲线2288-=kx ky 的一个焦点是(0,3),那么k =___________.25.与双曲线221916-=x y 有相同的渐近线,且过点(3,-C 的双曲线方程是___________. 26.方程22125-=--x y k k表示双曲线,则k 的取值范围是___________. 27.抛物线214=-y x 的焦点坐标是___________.28.抛物线上24=-y x 上一点M 到焦点的距离是6,则M 到准线的距离是___________. 29.若抛物线22=y px 上到焦点距离为3的点的横坐标为2.则p =___________.30.抛物线218=-y x 的准线方程是___________.三、解答题:(本大题共45分)31.已知椭圆的短轴长是2,中心与抛物线24=y x 的顶点重合,椭圆的一个焦点是此抛物线的焦点,求该椭圆的方程及离心率.32.椭圆的长轴是短轴的3倍,过点P (3,0),求椭圆的标准方程.33.一椭圆的中心在坐标原点,焦点在x 轴上,焦距为 的焦点,且双曲线的实半轴比椭圆的长半轴小4,且双曲线的离心率与椭圆的离心率之比为73,求此椭圆和双曲线的方程。

椭圆测试题

椭圆测试题

:r~ if—+ -- 8、椭圆•的右焦点到直线站=V 总的距离是()椭圆的定义及几何性质 测试题考试时间:100分钟 满分:120分、选择题(满分 50分,每题5分,共10小题)点在*边上,则A. ; ■:的周长是()迹是()二+丄=13、椭圆—, ' 上点;’到右焦点的4、椭圆- * --的长轴长、短轴长、离心率依次是()A.2 代 B .MC .M D. M6、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(43 21A. 'B. ■-C. :D. '1、■JE J*1已知■的顶点 L 在椭圆: 上,顶点「是椭圆的一个焦点,且椭圆的另外一个焦A.吩旳B.D.12g2、设定点二',动点:满足条件°■';,",则点,的轨A.椭圆B. 线段C.不存在 D.椭圆或线段A.最大值为5,最小值为4B. 最大值为 10,最小值为8C.最大值为10,最小值为6D.最大值为 9,最小值为1A.5,3,0.8B.10,6,0.8C.5,3,0.6D.10,6,0.65、若椭圆■'过点则其焦距为()7、已知两椭圆+『=呂与2十巫"=的焦距相等,则口的值(9A/或1B.3 33 9 3-或- C. '或- D. 丨或-10、如图所示,一圆形纸片的圆心为「,•是圆内一定点是圆周上一动点,把纸片 折叠使与,,重合,然后抹平纸片,折痕为■,设「与「交于点:, 则点,的轨迹是()A.椭圆B. 双曲线C. 抛物线D. 圆 二、填空题(满分 25分,每题5分,共5小题)方程亍汀卜「空「二-■'?的两个实数根分别是’和•.,则点'- 到原点的距离为椭圆”,,’,•分别是它的左焦点和右顶点,「是它短轴的一个端点(1)两个焦点的坐标分别为(-4,0 )和(4,0 ),且椭圆经过点(5,0) (2)经过点 A ( .3,-2 )和点 B ( -23,1)2 2xf T017、已知椭圆mx 5y5m m 0)的离心率为,求m 的值.A*B./ ,则实数斤的取值范围是((0,3) UC.11、 12、已知焦点在x 轴上的椭圆,长轴长为4,右焦点到右顶点的距离为 1,则椭圆的标准方程为10 一 FJ1已知椭圆■ 的长轴在•’轴上,焦距为,则:等于13、 椭圆…-=1 的离心率为14、=1 (a > ^ > 0)e 1的离心率V5- 115、我们把离心率为黄金比 的椭圆称为“优美椭圆” •设+ ^2 = l(a > A > 0)为“优美三、解答题(写出必要的解答过程或步骤)16、求适合下列条件的椭圆的标准方程C.9、设•是椭圆.e e的离心率,且A 」' B.笊沪 J、 .—+ T7T = l(u > 6 > 0)18、已知椭圆的离心率的距离为一.求椭圆的方程.19、闵为何值时,直线农厂亠和曲线' U 有两个公共点?有一个公共点?没有公共点?数学12月份月考试题答案抽酗定乂牖EL-点乘篙血藕2和等就帐2诃得A 朋C 的周长为M = 4省藏超 1、C 2、D/6 3T2, 2把欄13的方程写成标准方程— 1.知门=B、b — 3,广=4925.2a =L (k 2A = 6,- = »tffii2b = a + c.Xi 2 = fl 2 _^4(a 2 -?) -o® + 2ac+/北爵同馴制/+ 2—3 = 0龈£ = g 或椭诙焦却 忌的酸如-£ -兽分焦点在』轴与瞬由两种情;兄讨论.当4 >上时卡=- a曰 口 ] d 4 — & 2 2!)池> 0“+ ->6o3fl + -=6=网冯陆由点朋跌frlPFil + \PF 2\ = a+-=血尸揣点P a AaqQ削+ - > 6二|FH 时抽点X 靛条件PF — PF 2\ = a + -> f 】力得点P 鶴曲埶H F 诙黠的繩.a 综上直P 的嗽畦鵝HF?或帼放齟 考焦本颈主甦酬圃陆辺:涯讯甌乐fl 斛淋现了*类讹褪洋思熟 淞褴垓艇動+a3、a =存、亡=4,门十口=9血c =1分Wi 橢圆上一点到右焦点的最大、最小距离4、5、6将点的坐标代人■求b 进而求出C,再求出焦距2C 。

椭圆的参数方程和极坐标方程单元测试

椭圆的参数方程和极坐标方程单元测试

椭圆的参数方程和极坐标方程单元测试
椭圆是一种非常常见且重要的几何形状,掌握椭圆的参数方程和极坐标方程对于理解椭圆的性质和特点非常重要。

在本单元测试中,我们将考察学生对椭圆参数方程和极坐标方程的理解和应用能力。

请认真阅读以下问题,并结合所学知识,回答下列问题。

一、选择题
1. 下列关于椭圆参数方程的说法正确的是:
A. 参数方程为x=a*cos(t),y=b*sin(t),其中a为椭圆长轴的一半,b 为短轴的一半
B. 参数方程为x=a*sin(t),y=b*cos(t),其中a为椭圆长轴的一半,b 为短轴的一半
C. 参数方程为x=a*t,y=b*t^2,其中a为椭圆长轴的一半,b为短轴的一半
D. 参数方程为x=a*t^2,y=b*t,其中a为椭圆长轴的一半,b为短轴的一半
2. 椭圆的极坐标方程为r = a(1 - e*cosθ),其中e为椭圆的离心率,若椭圆的长轴为4,短轴为2,则椭圆的离心率e为:
A. 1
B. 1/2
C. 1/3
D. 2/3
二、填空题
3. 椭圆的参数方程为x=2cos(t),y=3sin(t),则椭圆的长轴为____,短轴为____。

4. 椭圆的极坐标方程为r=5(1-1/2cosθ),则椭圆的离心率为____。

三、计算题
5. 椭圆的参数方程为x=3cos(t),y=2sin(t),求出通过椭圆的一条切线方程。

6. 已知椭圆的参数方程为x=4cos(t),y=5sin(t),求出椭圆上一点
P(2,3)处的切线方程。

以上就是本次椭圆的参数方程和极坐标方程单元测试的内容,请同学们认真完成后提交答题结果。

祝你们好运!。

椭圆单元测试题(含答案)

椭圆单元测试题(含答案)

椭圆单元测试题(含答案)一. 选择题1. 下列哪个不是椭圆的性质?A. 任何椭圆都有两个焦点B. 椭圆的离心率小于1C. 椭圆是一条闭合曲线D. 直径是椭圆上任意两点的距离的最大值答案:D2. 下列哪个公式可以用来计算椭圆面积?A. $S = \frac{\pi}{2}ab$B. $S = \pi ab$C. $S = \frac{4}{3}\pi ab$D. $S = 2\pi ab$答案:B3. 一个椭圆的长轴长度是6,短轴长度是4,则该椭圆的离心率是多少?A. $\frac{3}{4}$B. $\frac{\sqrt{2}}{2}$C. $\frac{4}{5}$D. $\frac{5}{6}$答案:C二. 填空题1. 椭圆的离心率等于$\rule{1.5cm}{.15mm}$除以$\rule{1.5cm}{.15mm}$。

答案:焦距差,长轴长度2. 设椭圆的长轴长度为$a$,短轴长度为$b$,则其离心率的计算公式为$\rule{5cm}{.15mm}$。

答案:$\epsilon = \frac{\sqrt{a^2 - b^2}}{a}$三. 计算题1. 已知一个椭圆的长轴长度是10,短轴长度是8,求它的面积。

解:由公式$S = \pi ab$可得,该椭圆的面积为$S = \pi \times 10 \times 8 = 80\pi$。

答案:$80\pi$2. 已知一个椭圆的长轴长度是12,离心率是$\frac{1}{2}$,求它的短轴长度。

解:由公式$\epsilon = \frac{\sqrt{a^2 - b^2}}{a}$可得,$b =a\sqrt{1-\epsilon^2}$。

代入数据,可得$b = 6\sqrt{3}$。

答案:$6\sqrt{3}$。

2020年【通用版】高考数学(艺术生)考前冲刺专题《椭圆》测试题(含答案)

2020年【通用版】高考数学(艺术生)考前冲刺专题《椭圆》测试题(含答案)

专题12椭圆测试题【高频考点】本知识涉及椭圆的定义,标准方程以及简单的几何性质的应用,直线与椭圆的位置关系。

【考情分析】本阶段是高考考查重点内容之一,涉及客观题和解答题,客观题主要考查椭圆方程的求解,椭圆的几何性质等,难度中等,在解答题中多以椭圆为载体,考查直线与椭圆的位置关系,定值定点,以及最值问题,常常以探索性问题形式出现,难度较大。

【重点推荐】基础卷第11题,数学文化题,第22题考察与不等式的交汇,考察综合解决问题的能力。

一.选择题1.方程表示焦点在x轴上的椭圆,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1] C.(0,1)D.(﹣1,0)二.【答案】C三.【解析】:方程表示焦点在x轴上的椭圆,可得m∈(0,1).故选:C.四. 2. 设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()五.A.2 B.2 C.2 D.4六.【答案】:C七.【解析】椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.八.故选:C.九. 3. 设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,|PF1|+|PF2|=10,则椭圆的短轴长为()十.A.6 B.8 C.9 D.10十一.【答案】:A十二.【解析】设F1、F2是椭圆的两个焦点,点P为椭圆上的点,且|F1F2|=8,可得c=4,十三.|PF1|+|PF2|=10,可得a=5,则椭圆的短轴长为:2b=2=6.故选:A.十四.十五. 4. (2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()十六.A.2 B.C.4 D.十七.【答案】:C十八.【解析】如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.十九.二十.二十一.5若点F1,F2为椭圆的焦点,P为椭圆上的点,满足∠F1PF2=90°,则△F1PF2的面积为()二十二.A.1 B.2 C.D.4二十三.【答案】:A二十四.6. (2018•齐齐哈尔二模)已知椭圆+=1(a>b>0)的离心率为,短轴长大于2,则该椭圆的长轴长的取值范围是()二十五.A.(2,+∞)B.(4,+∞)C.(2,4)D.(4,8)二十六.【答案】:B二十七.【解析】根据题意,椭圆+=1(a>b>0)的离心率为,即e==,则c=a,又由椭圆短轴长大于2,即2b>2,则b>1,则有a2﹣c2=b2>1,即>1,解可得a>2,则该椭圆的长轴长2a>4,即该椭圆的长轴长的范围为(4,+∞);故选:B.二十八.7. (2018•大连二模)设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C 交于A,B两点,则△AFB周长的取值范围是()二十九.A.(2,4)B.C.(6,8)D.(8,12)三十.【答案】:C三十一.【解析】∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx (k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2),则△AFB周长的取值范围是(6,8).故选:C.三十二.15. 设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,线段AQ 的垂直平分线与CQ的连线交于点M,则M的轨迹方程为.三十三.三十四.【答案】:三十五.【解析】由圆的方程可知,圆心C(﹣1,0),半径等于5,设点M的坐标为(x,y ),三十六.∵AQ的垂直平分线交CQ于M,∴|MA|=|MQ|.又|MQ|+|MC|=半径5,∴|MC|+|MA|=5>|AC|.三十七.依据椭圆的定义可得,点M的轨迹是以 A、C 为焦点的椭圆,且2a=5,c=1,∴b=,三十八.故椭圆方程为+=1,即+=1.故答案为:三十九.16(2018•西宁二模)已知椭圆C:=1,F1,F2是该椭圆的左右焦点,点A(4,1),P是椭圆上的一个动点,当△APF1的周长取最大值时,△APF1的面积为.四十.【答案】:四十一.【解析】:如图所示,由椭圆C=1可得a=5,右焦点F2(4,0).|F1F2|=8四十二.∵|PF1|+|PF2|=2a=10,∴|PF1|+|PA|=10﹣|PF2|+|PA|≤10+|AF2|.四十三.△APF1的周长取最大值时,三点P、A、F2共线,且点P在第四象限,四十四.此时F1F2⊥AP,|PF2|==,△APF1的面积S=|F1F2|×|PA|=.四十五.故答案为:.四十六.四十七.四十八.三.解答题四十九.17. 已知椭圆的离心率为22,其中左焦点F(-2,0).五十.(1)求椭圆C的方程;五十一.(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m 的值.五十二. 【解析】:(1) 由题意,得五十三. 解得22,2.a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=.…………5分五十四.(2) 设点A 、B 的坐标分别为(x1,y1),(x2,y2),线段AB 的中点为M(x0,y0),五十五. 由消y 得,3x2+4mx+2m2-8=0,五十六.Δ=96-8m2>0,∴-23<m <23.…………8分五十七. .五十八.∵点M(x0,y0)在圆x2+y2=1上,五十九.,355m ∴=±.……10分六十. 18. (2018•广陵区校级四模)已知椭圆C :(a >b >0)的左焦点为F ,上顶点为A ,直线AF 与直线x+y ﹣3垂直,垂足为B ,且点A 是线段BF 的中点.六十一. (1)求椭圆C 的方程;六十二.(2)若M ,N 分别为椭圆C 的左,右顶点,P 是椭圆C 上位于第一象限的一点,直线MP 与直线x=4交于点Q ,且=9,求点P 的坐标.六十三.六十四.【分析】(1)由直线AF 与直线x+y ﹣3垂直,可得:=1,则直线AF 的方程为:y=x+c .与椭圆方程联立可得B(,),于是﹣c=0,解得c,即可得出椭圆方程.六十五.(2)设P(x0,y0),则直线MP的方程为y=(x+2),可得Q.9==2(x0+2)+,由点P在椭圆上可得:=2﹣,代入解出即可得出.六十六.六十七.(2)设P(x0,y0),则直线MP的方程为y=(x+2),∴Q.六十八.∴9==2(x0+2)+,………7分六十九.由点P在椭圆上可得:=2﹣,代入可得:9=2(x0+2)+,七十.化为:+x0﹣2=0,解得x0=1或﹣2.(舍),七十一.∴P.…………12分七十二.19. (2018•江苏一模)已知椭圆C:(a>b>0)经过点,,点A是椭圆的下顶点.七十三.(1)求椭圆C的标准方程;七十四.(2)过点A且互相垂直的两直线l1,l2与直线y=x分别相交于E,F两点,已知OE=OF,求直线l1的斜率.七十五.【分析】(1)根据题意,将两点的坐标代入椭圆的方程有,解可得、的值,即可得椭圆的方程;七十六.(2)设直线l1:y=k1x﹣1,与直线y=x联立方程有,可得E的坐标,设直线l2:,同理可得F的坐标,又由OE=OF,所以,解可得k的值,即可得答案.七十七.【解析】:(1)根据题意,椭圆C:(a>b>0)经过点,,七十八.则有,解得,…………3分七十九.所以椭圆C的标准方程为;…………5分八十.(2)由题意知A(0,﹣1),直线l1,l2的斜率存在且不为零,八十一.设直线l1:y=k1x﹣1,与直线y=x联立方程有,得,八十二.设直线l2:,同理,…………7分八十三.因为OE=OF,所以,八十四.①,无实数解;八十五.②,,,解得,八十六.综上可得,直线l1的斜率为.……12分八十七.20 (2018•辽宁模拟)已知M()是椭圆C:(a>b>0)上的一点,F1F2是该椭圆的左右焦点,且|F1F2|=2.八十八.(1)求椭圆C的方程;八十九.(2)设点A,B是椭圆C上与坐标原点O不共线的两点,直线OA,OB,AB的斜率分别为k1,k2,k3,且k1k2=k2.试探究|OA|2+|OB|2是否为定值,若是,求出定值,若不是,说明理由.九十.【分析】(1)根据椭圆的定义及椭圆的性质,即可求得a和b的值,即可求得椭圆方程;九十一.(2)设直线AB的方程,代入椭圆方程,利用韦达定理及直线的斜率公式,求得k2=,即可求得|OA|2+|OB|2=5为定值.九十二.【解析】:(1)由题意,F1(﹣,0),F2(,0),根据椭圆定义|PF1|+|PF2|=2a,九十三.所以2a=+=4,九十四.所以a2=4,b2=a2﹣c2=1九十五.椭圆C的方程;…………5分九十六.(2)设直线AB:y=kx+m,(km≠0),A(x1,y1),B(x2,y2),九十七.由,消去y得(1+4k2)x2+8kmx+4m2﹣4=0,九十八.△=(8km)2﹣4(1+4k2)(4m2﹣4)>0,x1+x2=﹣,x1x2=,九十九.因为k1k2=k2,所以•=k2,百.即km(x1+x2)+m2=0(m≠0),解得k2=,…………8分百一.|OA|2+|OB|2=x12+x22+y12+y22=[(x1+x2)2﹣2x1x2]+2=5,百二.所以|OA|2+|OB|2=5为定值.…………12分百三.21. (2018•南充模拟)已知椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.百四.(1)求椭圆C的方程;百五.(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点,若∠AOB为钝角,求直线l在y轴上的截距m的取值范围.百六.【分析】(1)由椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.百七.(2)设l的方程为y=x+m,再与椭圆方程联立,将∠AOB 为钝角,转化为<0,且m≠0,利用韦达定理,即可求出直线l在y轴上的截距m的取值范围.百八.【解析】:(1)∵椭圆C :+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.百九.∴,解得a=2,b=,c=,…………3分百十.∴椭圆C 的方程为=1.………………5分百十一.(2)由直线l平行于OM,得直线l的斜率k=kOM=,百十二.又l在y轴上的截距为m,∴l的方程为y=12x m.百十三.由,得x2+2mx+2m2﹣4=0.…………8分百十四.又直线l与椭圆交于A、B两个不同点,△=(2m)2﹣4(2m2﹣4)>0,于是﹣2<m<2.百十五.∠AOB为钝角等价于<0,且m≠0,百十六.设A(x1,y1),B(x2,y2),百十七.则=x1x2+y1y2==,百十八.由韦达定理x1+x2=﹣2m,x1x2=2m2﹣4,代入上式,百十九.化简整理得m2<2,即,故所求范围是(﹣)∪(0,). (12)分百二十.22. (2018•聊城一模)已知圆x2+y2=4经过椭圆C:的两个焦点和两个顶点,点A(0,4),M,N是椭圆C上的两点,它们在y轴两侧,且∠MAN的平分线在y轴上,|AM|≠|AN|.百二十一.(Ⅰ)求椭圆C的方程;百二十二.(Ⅱ)证明:直线MN过定点.百二十三.【分析】(Ⅰ)根据题意,由圆的方程分析可得椭圆的焦点和顶点坐标,即可得c、b的值,由椭圆的几何性质计算可得a的值,即可得椭圆的标准方程;百二十四.(Ⅱ)设直线MN的方程为y=kx+m,与椭圆的方程联立,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.设M(x1,y1),N(x2,y2),由根与系数的关系分析直线AM、AN的斜率,进而分析可得k1+k2==0,解可得m的值,由直线的斜截式方程即可得答案.百二十五.百二十六.(Ⅱ)证明:设直线MN的方程为y=kx+m.百二十七.由,消去y得(2k2+1)x2+4kmx+2m2﹣8=0.百二十八.设M(x1,y1),N(x2,y2),则,.百二十九.直线AM的斜率=;百三十.直线AN的斜率=.百三十一.k1+k2===.…………8分百三十二.由∠MAN的平分线在y轴上,得k1+k2=0.百三十三.即=0,百三十四.又因为|AM|≠|AN|,所以k≠0,百三十五.所以m=1.百三十六.因此,直线MN过定点(0,1).……12分。

椭圆的几何性质测试题

椭圆的几何性质测试题

椭圆的几何性质 2017/9/221.椭圆x 2+4y 2=1的离心率为 ( )A.32B.34C.22D.232.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是 ( )A.x 23+y 24=1B.x 24+y 23=1C.x 24+y 22=1D.x 24+y 23=1 3.若椭圆经过原点,且焦点分别为1(1,0)F ,2(3,0)F ,则其离心率为 ( ) A .34 B .23 C .12 D .144.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为 ( )A .x 2144+y 2128=1或x 2128+y 2144=1B .x 26+y 24=1C .x 236+y 232=1或x 232+y 236=1D .x 24+y 26=1或x 26+y 24=15.椭圆+=1与+=1(0<k<9)的关系为 ( )A.有相等的长、短轴B.有相等的焦距C.有相同的焦点D.有相等的离心率 6.已知F 1,F 2为椭圆+=1(a>b>0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率e=,则椭圆的方程是 ( )A.+=1B.+=1C.+=1D.+=17.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为 ( )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1D .x 212+y 24=18.过椭圆+=1(a>b>0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.B.C.D.9.设F 1,F 2是椭圆E :+=1(a>b>0)的左、右焦点,P 为直线x=上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为 ( )A. B. C. D.10.设e 是椭圆+=1的离心率,且e ∈,则实数k 的取值范围是 ( )A.(0,3)B.C.(0,3)∪D.(0,2)二、填空题:11.求适合下列条件的椭圆的标准方程:(1)长轴长是10,离心率是45的椭圆的标准方程: .(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6的椭圆的标准方程: .(3)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3的椭圆的标准方程: . 12.已知椭圆+=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的 面积是 .13.若直线022=+-y x 过椭圆)0(12222>>=+b a by a x 的左焦点F 和一个顶点B ,则该椭圆的离心率为_______。

人教版高中数学选择性必修第一册-3.1 椭圆 习题课测试卷(含解析)

人教版高中数学选择性必修第一册-3.1 椭圆 习题课测试卷(含解析)

3.1椭圆测试卷(原卷版)1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是()A.x 23+y 24=1 B.x 24+y 23=1C.x 24+y 22=1 D.x 24+y 23=12.若椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab的值为()A.32B.233C.932D.23273.(2018·课标全国Ⅱ,文)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1-32B .2-3C.3-12D.3-14.如图,圆柱形玻璃杯中水的液面呈椭圆形状,则该椭圆的离心率为()A.33B.12C.22D.325.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1),12D.22,6.【多选题】设椭圆的方程为x 22+y 24=1,斜率为k 的直线l 不经过原点O ,且与椭圆相交于A ,B 两点,M 为线段AB 的中点,则下列结论正确的是()A .k AB ·k OM =-1B .若点M 坐标为(1,1),则直线l 的方程为2x +y -3=0C .若直线l 的方程为y =x +1,则点M 的坐标为(13,43)D .若直线l 的方程为y =x +2,则|AB |=4237.与椭圆4x 2+9y 2=36有相同的焦点,且过点(-3,2)的椭圆方程为________.8.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.9.椭圆C :x 28+y 24=1的弦AB 的中点为点Q (2,1),则弦AB 所在直线的方程为________,若点P 为椭圆上的任意一点,F 为左焦点,O 为原点,则OP →·FP →的取值范围为________.10.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△PAB 的面积.11.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为()A .2B .-2C.12D .-1212.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,下顶点为B ,离心率为32,且△BF 1F 2的面积为3.则椭圆C 的标准方程为________,若点P 在椭圆C 上,且以AP 为直径的圆过B 点,则直线AP 的斜率为________.13.已知中心为坐标原点O ,焦点在y 轴上的椭圆M 的焦距为4,且椭圆M 过点(1,3).(1)求椭圆M 的方程;(2)若过点C (0,1)的直线l 与椭圆M 交于A ,B 两点,且AC →=2CB →,求直线l 的方程.1.设a >0,则椭圆x 2+2y 2=2a 的离心率是()A.12B.22C.13D .与a 的取值有关2.已知点P 是椭圆x 216+y 24=1上一点,其左、右焦点分别为F 1,F 2,若△F 1PF 2外接圆的半径为4,则△F 1PF 2的面积是()A.433B .43C .4D.433或433.已知A ,B 是椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2(k 1k 2≠0).若椭圆的离心率为32,则|k 1|+|k 2|的最小值为()A .1 B.2C.32D.34.已知直线x 4+y 3=1与椭圆x 216+y 29=1相交于A ,B 两点,若椭圆上存在点P 使△ABP 的面积等于12,则这样的点P 共有()A .1个B .2个C .3个D .4个5.若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上的最短距离为3,则这个椭圆的方程为________.6.2013年我国载人航天飞船神舟十号飞行获得圆满成功.已知神舟十号飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200km ,350km.设地球半径为R km ,则此时飞船轨道的离心率为________(结果用含R 的式子表示).7.椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线l :y =bc x 的对称点Q 在椭圆上,则椭圆的离心率是________.8.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)4,F 1,F 2是椭圆的两个焦点.(1)求椭圆C 的方程;(2)⊙O (O 为坐标原点)是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并与椭圆C 交于不同的两点A ,B ,若OA →·OB →=-32,求k 的值.10.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(3,0)1M 是x 轴上的一点,过M 点的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方).(1)求椭圆C的方程;(2)若AM→=2MB→,且直线l与圆O(O为坐标原点):x2+y2=47相切于点N,求MN的长.11.已知椭圆C过点(-1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.3.1椭圆测试卷(解析版)1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是()A.x 23+y 24=1 B.x 24+y 23=1C.x 24+y 22=1 D.x 24+y 23=1答案D2.若椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab的值为()A.32B.233C.932D.2327答案A 3.(2018·课标全国Ⅱ,文)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1-32B .2-3C.3-12 D.3-1答案D解析在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,|PF 1|+|PF 2|=2a ,所以2a =1+3,2c =2,得a =1+32,c =1.所以离心率e =ca =21+3=3-1.故选D.4.如图,圆柱形玻璃杯中水的液面呈椭圆形状,则该椭圆的离心率为()A.33B.12C.22D.32答案B解析设圆柱的底面半径为1,则椭圆的短半轴长为1,长轴长为2sin 60°=433,即长半轴长为233,所以半焦距为33,故离心率为12.5.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1),12D.22,答案C解析依题意,以F 1,F 2为直径且过点M 的圆在椭圆内,得c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2.故-22<e =c a <22,又0<e <1,所以0<e <22.6.【多选题】设椭圆的方程为x 22+y 24=1,斜率为k 的直线l 不经过原点O ,且与椭圆相交于A ,B 两点,M 为线段AB 的中点,则下列结论正确的是()A .k AB ·k OM =-1B .若点M 坐标为(1,1),则直线l 的方程为2x +y -3=0C .若直线l 的方程为y =x +1,则点M 的坐标为(13,43)D .若直线l 的方程为y =x +2,则|AB |=423答案BD解析设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)+y 124=1,+y 224=1,两式相减,得x 12-x 222+y 12-y 224=0,即y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-2,即k AB ·k OM =-2,所以A 不正确;对于B ,由k AB ·k OM =-2,M (1,1),得k AB =-2,所以直线l 的方程为y -1=-2(x -1),即2x +y -3=0,所以B 正确;对于C ,若直线l 的方程为y =x +1,k AB ·k OM =1×4=4≠-2,所以C 不正确;对于D ,由x +2,+y 24=1,得3x 2+4x =0,解得x =0或x =-43,所以|AB |=1+12|-43-0|=423,所以D 正确.故选BD.7.与椭圆4x 2+9y 2=36有相同的焦点,且过点(-3,2)的椭圆方程为________.答案x 215+y 210=18.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.答案35解析2+4y 2=16,=12x +1,消去y 并化简得x 2+2x -6=0,Δ>0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-212所以弦长|MN |x 1-x 2|=54[(x 1+x 2)2-4x 1x 2]=54×(4+24)=35.9.椭圆C :x 28+y 24=1的弦AB 的中点为点Q (2,1),则弦AB 所在直线的方程为________,若点P 为椭圆上的任意一点,F 为左焦点,O 为原点,则OP →·FP →的取值范围为________.答案x +y -3=0[2,8+42]解析设A (x 1,y 1),B (x 2,y 2)+y 124=1,+y 224=1,即x 12-x 22+2(y 12-y 22)=0,变形为y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.又AB 的中点为点Q (2,1),则有x 1+x 22=2,y 1+y 22=1,所以y 1-y 2x 1-x 2=-1,即直线AB 的斜率为-1,所以弦AB 所在直线的方程为y =-(x -2)+1,即x +y -3=0.设P (x 0,y 0),又F (-2,0),所以OP →=(x 0,y 0),FP →=(x 0+2,y 0),所以OP →·FP →=2x 0+x 02+y 02=2x 0+x 02+4-x 022=12(x 0+2)2+2.又-22≤x 0≤22,所以当x 0=-2时,OP →·FP →有最小值2;当x 0=22时,OP →·FP →有最大值8+42,所以OP →·FP →∈[2,8+42].10.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△PAB 的面积.解析(1)由已知得c =22,c a =63,解得a =2 3.则b 2=a 2-c 2=4,所以椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,x +m ,+y 24=1,得4x 2+6mx +3m 2-12=0.①由Δ=(6m )2-4×4×(3m 2-12)>0,得m 2<16.设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x1+x2=-3m2,则x0=x1+x22=-3m4,y0=x0+m=m4.因为AB是等腰△PAB的底边,所以PE⊥AB.所以PE的斜率k=2-m4-3+3m4=-1,解得m=2,满足Δ>0.此时方程①为4x2+12x=0,解得x1=-3,x2=0.所以y1=-1,y2=2.所以|AB|=32.此时,点P(-3,2)到直线AB:x-y+2=0的距离d=|-3-2+2|2=322.所以△PAB的面积S=12|AB|·d=92.11.过点M(-2,0)的直线m与椭圆x22+y2=1交于P1,P2,线段P1P2的中点为P,设直线m的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2的值为()A.2B.-2C.12D.-12答案D解析设P1(x1,y1),P2(x2,y2),P(x,y)y12=1,①y22=1.①-②,得(x1+x2)(x1-x2)2+(y1+y2)(y1-y2)=0.即2x·(x1-x2)2+2y(y1-y2)=0.∴k1=y1-y2x1-x2=-x2y.又k2=yx,∴k1·k2=-12.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,左顶点为A,下顶点为B,离心率为32,且△BF1F2的面积为3.则椭圆C的标准方程为________,若点P在椭圆C上,且以AP为直径的圆过B点,则直线AP的斜率为________.答案x24+y2=1310解析由题意可知ca=32,S△BF1F2=bc=3.又a2-b2=c2,所以b=1,c=3,a=2,所以椭圆C的标准方程为x24+y2=1.以AP为直径的圆过B点,即AB⊥BP.因为k AB=-ba=-12,所以k BP=2.所以直线BP的方程为y=2x-1.2x-1,y2=1,=0,=-1=1617,=1517,所以点PAP的斜率k AP=1517-01617+2=310.13.已知中心为坐标原点O,焦点在y轴上的椭圆M的焦距为4,且椭圆M过点(1,3).(1)求椭圆M的方程;(2)若过点C(0,1)的直线l与椭圆M交于A,B两点,且AC→=2CB→,求直线l的方程.解析(1)设椭圆M的方程为y2a2+x2b2=1(a>b>0).∵2c=4,∴c=2,∴a2-b2=c2=4.又椭圆M过点(1,3),∴3a2+1b2=1.b2=4,+1b2=1,解得a2=6,b2=2.∴椭圆M的方程为y26+x22=1.(2)当直线l的斜率不存在时,直线l的方程为x=0.设此时点A,B的坐标为(0,-6)和(0,6),不满足AC→=2CB→,∴直线l的斜率一定存在.设直线l的方程为y=kx+1,kx+1,+x22=1,消去y并整理,得(3+k2)x2+2kx-5=0.则Δ=4k2+20(3+k2)=24k2+60>0.设A(x1,y1),B(x2,y2),则x1+x2=-2k3+k2,x1x2=-53+k2.又∵AC→=2CB→,∴(-x 1,1-y 1)=2(x 2,y 2-1),∴x 1=-2x 2,∴x 1+x 2=-x 2=-2k3+k 2,x 1x 2=-2x 22=-53+k 2,∴8k 2(3+k 2)2=53+k 2,即8k 23+k 2=5,解得k 2=5,∴k =± 5.故直线l 的方程为y =±5x +1.1.设a >0,则椭圆x 2+2y 2=2a 的离心率是()A.12B.22C.13D .与a 的取值有关答案B2.已知点P 是椭圆x 216+y 24=1上一点,其左、右焦点分别为F 1,F 2,若△F 1PF 2外接圆的半径为4,则△F 1PF 2的面积是()A.433B .43C .4 D.433或43答案D解析由正弦定理得|F 1F 2|sin ∠F 1PF 2=2×4=8,∴sin ∠F 1PF 2=32.∴cos ∠F 1PF 2=±12,符合题意.由余弦定理得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2.又|PF 1|+|PF 2|=8,∴|PF 1||PF 2|=16或163.∴S △F 1PF 2=12PF 1||PF 2|sin ∠F 1PF 2=433或4 3.3.已知A ,B 是椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2(k 1k 2≠0).若椭圆的离心率为32,则|k 1|+|k 2|的最小值为()A .1 B.2C.32D.3答案A 解析不妨令A (-a ,0),B (a ,0).设M (x ,y ),N (x ,-y )(-a <x <a ),则k 1=y x +a ,k 2=y a -x.又椭圆的离心率为32,所以b a =1-e 2=12,所以|k 1|+|k 2|=|y |x +a +|y |a -x≥2y 2a 2-x 2=2b a =1(当且仅当|y |x +a =|y |a -x,即x =0时等号成立).故选A.4.已知直线x 4+y 3=1与椭圆x 216+y 29=1相交于A ,B 两点,若椭圆上存在点P 使△ABP 的面积等于12,则这样的点P 共有()A .1个B .2个C .3个D .4个答案B解析可求出|AB |=5,设P (4cos θ,3sin θ),θ∈[0,2π),则P 点到AB 的距离为d =|12(cos θ+sin θ)-12|5=245.∴θ=π或3π2,∴这样的点P 有2个.5.若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上的最短距离为3,则这个椭圆的方程为________.答案x 212+y 29=1或y 212+x 29=1解析依题意可得a =2c ,a -c =3,∴c = 3.∴a =23,b 2=9.故椭圆的方程为x 212+y 29=1或y 212+x 29=1.6.2013年我国载人航天飞船神舟十号飞行获得圆满成功.已知神舟十号飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200km ,350km.设地球半径为R km ,则此时飞船轨道的离心率为________(结果用含R 的式子表示).答案75275+R解析由题意得a -c =200+R ,a +c =350+R ,求得a =275+R ,c =75.所以离心率e =c a =75275+R.7.椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线l :y =b cx 的对称点Q 在椭圆上,则椭圆的离心率是________.答案22解析设椭圆的左焦点为F 1,O 为坐标原点,连接OQ ,QF 1,QF ,由F 关于直线l :y =b c x 的对称点Q 在椭圆上,得|OQ |=|OF |.又|OF 1|=|OF |,所以F 1Q ⊥QF .所以F 1Q ∥l .不妨设|QF 1|=ck (k >0),则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a =ck +bk ,由以上二式可得2c a =k =2a b +c,即c a =a b +c ,即a 2=c 2+bc ,所以b =c ,e =22.8.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.答案33解析利用直线与直线、直线与椭圆的位置关系求交点坐标,再利用两直线垂直时斜率的关系列式以确定离心率.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a.不妨令∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c=-b 22ac .∴直线BF 1:y -0=-b 22ac(x +c ).令x =0,则y =-b 22a.∴k AD =b 2a +b 22a c=3b 22ac .∵AD ⊥BF 1,∴-b 22ac ·3b 22ac=-1.∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac .∴3e 2+2e -3=0.∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=33.9.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)4,F 1,F 2是椭圆的两个焦点.(1)求椭圆C 的方程;(2)⊙O (O 为坐标原点)是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并与椭圆C 交于不同的两点A ,B ,若OA →·OB →=-32,求k 的值.解析(1)∵2a =4,∴a =2.∴椭圆C 的方程为x 24+y 2b2=1.∵椭圆C,∴14+94b2=1.∴b 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)设O 到l 的距离为d ,⊙O 的半径为r ,则d =r =1.即|m |1+k2=1,∴m 2=1+k 2.①+y 23=1,kx +m ,得(3+4k 2)x 2+8kmx +4m 2-12=0.则Δ=(8km )2-4(3+4k 2)(4m 2-12)=192k 2-48m 2+144=144k 2+96>0.设A ,B 坐标分别为A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=-8km 3+4k 2,x 1·x 2=4m 2-123+4k2.∴y 1·y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3m 2-12k 23+4k 2.∴x 1x 2+y 1y 2=7m 2-12k 2-123+4k 2.②将①代入②,得x 1x 2+y 1y 2=-5-5k 23+4k 2.∵OA →·OB →=x 1x 2+y 1y 2=-32,∴-5-5k 23+4k 2=-32,∴k =±22.10.如图,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为(3,0)1M 是x 轴上的一点,过M 点的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方).(1)求椭圆C 的方程;(2)若AM →=2MB →,且直线l 与圆O (O 为坐标原点):x 2+y 2=47相切于点N ,求MN 的长.解析(1)2=3,1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)设M (m ,0),直线l :x =ty +m ,A (x 1,y 1),B (x 2,y 2).∵直线l 与圆O :x 2+y 2=47相切,∴原点O 到直线l 的距离d =|m |1+t 2=47,即t 2=74m 2-1.由AM →=2MB →,得y 1=-2y 2.y 2=1,ty +m ,得(t 2+4)y 2+2tmy +m 2-4=0,则Δ=16(t 2-m 2+4)=12m 2+48>0.∴y 1+y 2=-2tm t 2+4,y 1y 2=m 2-4t 2+4.∵y 1y 2=-2y 22,y 1+y 2=-2y 2+y 2=-y 2,∴y 1y 2=-2[-(y 1+y 2)]2=-2(y 1+y 2)2,即m 2-4t 2+4=-,化简得(m 2-4)(t 2+4)=-8t 2m 2.m 2-4)(t 2+4)=-8t 2m 2,=74m 2-1,消去t 2,得21m 4-16m 2-16=0,即(3m 2-4)(7m 2+4)=0,解得m 2=43,此时t 2=43,∴±233,连接ON ,在Rt △OMN 中,|MN |=43-47=42121,∴MN 的长为42121.11.已知椭圆C 过点(-1,0),(1,0).(1)求椭圆C 的方程;(2)E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解析(1)由题意,得c =1,可设椭圆方程为x 21+b 2+y 2b 2=1(b >0).因为点A 在椭圆上,所以11+b 2+94b 2=1,解得b 2=3或b 2=-34(舍去).所以椭圆C 的方程为x 24+y 23=1.(2)设直线AE 的方程为y =k (x -1)+32,代入x 24+y 23=1得(3+4k 2)x 2+4k (3-2k )x +-12=0.由Δ=36(2k +1)2>0,得k ≠-12.设E (x E ,y E ),F (x F ,y F ).因为点A所以x E y E =kx E +32-k .又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代替k ,可得k ≠12,且x F y F =-kx F +32+k .所以直线EF 的斜率k EF =y F -y E x F -x E =-k (x F +x E )+2k x F -x E=12.即直线EF 的斜率为定值,其值为12.。

(完整版)椭圆综合测试题(含答案)

(完整版)椭圆综合测试题(含答案)

椭圆测试题一、选择题:(本大题共12小题,每小题5分,共60分) 1、离心率为32,长轴长为6的椭圆的标准方程是( ) (A )22195x y += (B )22195x y +=或22159x y += (C )2213620x y += (D )2213620x y +=或2212036x y += 2、动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为( )A.椭圆B.线段12F FC.直线12F F D .不能确定3、已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为( )A.(B.(0,C.(0,3)±D.(3,0)±4、已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是( )A.3B.2C.3D.6 5、如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为( ) A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R6、关于曲线的对称性的论述正确的是( )A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称 D.方程338x y -=的曲线关于原点对称7、方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率B.有共同的焦点C.有等长的短轴.长轴D.有相同的顶点.8、已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )29、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.54 B.53 C. 52 D. 51 10、若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( )A .2B .3C .6D .811、椭圆()222210x y a a b+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )(A )(0,2] (B )(0,12] (C )1,1) (D )[12,1)12 若直线y x b =+与曲线3y =b 的取值范围是( )A.[1-1+B.[1C.[-1,1+D.[1-二、填空题:(本大题共5小题,共20分.)13 若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是14 椭圆2214924x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,则Rt △PF 1F 2的面积为 . 15 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且D F F B 2=,则C 的离心率为 .16 已知椭圆22:12x c y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值范围为三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂足为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程.18.(12分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率e =O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF 的面积是20,求:(1)m 的值(2)直线AB 的方程19(12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.20(12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率; (II) 如果|AB|=154,求椭圆C 的方程.21(12分)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。

2020高考数学(文数)考点测试刷题本47 椭圆(含答案解析)

2020高考数学(文数)考点测试刷题本47 椭圆(含答案解析)

2020高考数学(文数)考点测试刷题本47椭圆一、选择题1.已知动点M(x ,y)满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( )A .椭圆B .直线C .圆D .线段2.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22D .2233.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1 C .x 24+y 23=1 D .x 24+y 2=14.已知椭圆C :x 2a 2+y2b2=1(a>b>0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A .x 236+y 232=1B .x 29+y 28=1C .x 29+y 25=1D .x 216+y 212=15.椭圆的焦点在x 轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )A.x 22+y 22=1 B.x 22+y 2=1 C.x 24+y 22=1 D.y 24+x 22=16.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A .514B .513C .49D .597.已知点A(-1,0)和B(1,0),动点P(x ,y)在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55B .105C .255D .21058.设P 为椭圆C :x 249+y224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6二、填空题9.若椭圆的方程为x 210-a +y2a -2=1,且此椭圆的焦距为4,则实数a =________.10.已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.11.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.12.设F 1,F 2是椭圆x 249+y224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为________.三、解答题13.设O 为坐标原点,动点M 在椭圆C :x 2a2+y 2=1(a >1,a ∈R)上,过O 的直线交椭圆C 于A ,B 两点,F 为椭圆C 的左焦点.(1)若△FAB 的面积的最大值为1,求a 的值;(2)若直线MA ,MB 的斜率乘积等于-13,求椭圆C 的离心率.14.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.15.已知椭圆C :x 2a 2+y24=1(a>2),直线l :y =kx +1(k≠0)与椭圆C 相交于A ,B 两点,点D 为AB的中点.(1)若直线l 与直线OD(O 为坐标原点)的斜率之积为-12,求椭圆C 的方程;(2)在(1)的条件下,y 轴上是否存在定点M ,使得当k 变化时,总有∠AMO =∠BMO(O 为坐标原点)?若存在,求出定点M 的坐标;若不存在,请说明理由.16.已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率e =63,原点到过点A(0,-b)和B(a ,0)的直线的距离为32. (1)求椭圆的方程;(2)设F 1,F 2为椭圆的左、右焦点,过F 2作直线交椭圆于P ,Q 两点,求△PQF 1内切圆半径r 的最大值.答案解析1.答案为:D ;解析:设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|, 故动点M 的轨迹是线段F 1F 2.故选D .2.答案为:C ;解析:根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C .3.答案为:C ;解析:依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y23=1,故选C .4.答案为:B ;解析:椭圆长轴长为6,即2a =6,得a =3,∵两焦点恰好将长轴三等分,∴2c =13·2a =2,得c =1,因此,b 2=a 2-c 2=9-1=8,∴此椭圆的标准方程为x 29+y28=1.故选B .5.答案为:C ;由条件可知b=c=2,a=2,所以椭圆的标准方程为x 24+y22=1.故选C.6.答案为:B ;解析:由题意知a =3,b =5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线的性质可推得PF 2⊥x 轴,所以由x =c 时可得|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513,故选B .7.答案为:A ;解析:A(-1,0)关于直线l :y =x +3的对称点为A′(-3,2),连接A′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A′B|=25,所以椭圆C 的离心率的最大值为15=55.故选A .8.答案为:C ;解析:∵P 为椭圆C :x 249+y224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a =14,∴|PF 1|=6,|PF 2|=8,又∵|F 1F 2|=2c =249-24=10,∴易知△PF 1F 2是直角三角形,S △PF1F2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为点G ,∴S △PF1F2=3S △GPF1,∴△GPF 1的面积为8,故选C .9.答案为:4或8;解析:对椭圆的焦点位置进行讨论.由椭圆的焦距为4得c =2,当2<a<6时,椭圆的焦点在x 轴上,则10-a -(a -2)=4,解得a =4;当6<a<10时,椭圆的焦点在y 轴上,则a -2-(10-a)=4,解得a =8.故a =4或a =8.10.答案为:⎝⎛⎭⎫0,12;解析:∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+ca<0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝⎛⎭⎫0,12.11.答案为:63; 解析:由已知条件易得B ⎝⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F(c ,0), ∴BF →=c +32a ,-b 2,CF →=c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0,所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.12.答案为:24;解析:因为|PF 1|+|PF 2|=14,又|PF 1|∶|PF 2|=4∶3,所以|PF 1|=8,|PF 2|=6.因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.13.解:(1)S △FAB =12|OF|·|y A -y B |≤|OF|=a 2-1=1,所以a= 2.(2)由题意可设A(x 0,y 0),B(-x 0,-y 0),M(x ,y),则x 2a 2+y 2=1,x 20a2+y 20=1,k MA ·k MB =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=1-x 2a 2-⎝⎛⎭⎫1-x 20a 2x 2-x 20=-1a 2x 2-x 20x 2-x 20=-1a 2=-13, 所以a 2=3,所以a=3,所以c=a 2-b 2=2,所以椭圆的离心率e=c a =23=63.14.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x2b2=1(a >b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32,解得a=4,c=2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x212=1.15.解:(1)由⎩⎪⎨⎪⎧x 2a 2+y 24=1,y =kx +1(k≠0),得(4+a 2k 2)x 2+2a 2kx -3a 2=0,显然Δ>0,设A(x 1,y 1),B(x 2,y 2),D(x 0,y 0),则x 1+x 2=-2a 2k 4+a 2k 2,x 1x 2=-3a 24+a 2k2,∴x 0=-a 2k 4+a 2k 2,y 0=-a 2k 24+a 2k 2+1=44+a 2k 2,∴k·y 0x 0=k·-4a 2k =-12, ∴a 2=8.∴椭圆C 的方程为x 28+y 24=1.(2)假设存在定点M 符合题意,且设M(0,m), 由∠AMO =∠BMO 得k AM +k BM =0. ∴y 1-m x 1+y 2-m x 2=0.即y 1x 2+y 2x 1-m(x 1+x 2)=0,∴2kx 1x 2+x 1+x 2-m(x 1+x 2)=0.由(1)知x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k2,∴-12k 1+2k 2-4k 1+2k 2+4mk 1+2k 2=0,∴-16k +4mk 1+2k 2=0,即4k (-4+m )1+2k 2=0, ∵k≠0,∴-4+m =0,∴m =4.∴存在定点M(0,4),使得∠AMO=∠BMO . 16.解:(1)直线AB 的方程为x a +y-b=1,即bx -ay -ab =0.原点到直线AB 的距离为|-ab|(-a )2+b2=32,即3a 2+3b 2=4a 2b 2,① 由e =c a =63,得c 2=23a 2,②又a 2=b 2+c 2,③所以联立①②③可得a 2=3,b 2=1,c 2=2.故椭圆的方程为x 23+y 2=1.(2)由(1)得F 1(-2,0),F 2(2,0),设P(x 1,y 1),Q(x 2,y 2). 易知直线PQ 的斜率不为0,故设其方程为x =ky +2,联立直线与椭圆的方程得⎩⎪⎨⎪⎧x =ky +2,x 23+y 2=1,消去x 得(k 2+3)y 2+22ky -1=0.故⎩⎪⎨⎪⎧y 1+y 2=-22kk 2+3,y 1y 2=-1k 2+3.④而S △PQF1=S △F1F2P +S △F1F2Q =12|F 1F 2||y 1-y 2|=2(y 1+y 2)2-4y 1y 2,⑤将④代入⑤,得S △PQF1=2-22k k 2+32+4k 2+3=2 6 k 2+1k 2+3. 又S △PQF1=12(|PF 1|+|F 1Q|+|PQ|)·r =2a·r =23r ,所以2 6 k 2+1k 2+3=23r , 故r = 2 k 2+1k 2+3=2k 2+1+2k 2+1≤12,当且仅当k 2+1=2k 2+1,即k =±1时取等号. 故△PQF 1内切圆半径r 的最大值为12.。

椭圆试题(含答案)

椭圆试题(含答案)

椭圆测试题(含详解)姓名:_______________班级:_______________考号:_______________一、选择题(每题5分,共65分)1、是方程为的曲线表示椭圆时的 ( )(A )充分条件 (B )必要条件 (C )充分必要条件 (D) 非充分非必要条件2、如果椭圆上两点间的最大距离是8,那么等于( )(A )32 (B )16 (C )8 (D) 43、椭圆的焦点为和,且椭圆过点,则椭圆的方程是 ( )(A ) (B )(C ) (D)4、设椭圆的两个焦点为、,过做椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是 ( )(A ) (B ) (C ) (D)5、直线x -2y +2=0经过椭圆12222=+by a x (a >b >0)的一个焦点和一个顶点,则该椭圆的离心率为( )A. B. C. D.6、若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为( )(A )2 (B )3 (C )6 (D )87、若AB 是过椭圆12222=+by a x (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM ,k BM 分别表示直线AM ,BM 的斜率,则BM AM K K ⋅=( ).A .-22a cB .-22a bC .-22b cD .-22ba8、若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( ).A .圆B .椭圆C .双曲线D .抛物线9、设F 1,F 2分别是椭圆11625x 22=+y 的左、右焦点,P 为椭 圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ).A .4B .3C .2D .510、已知A 、B 为椭圆C :12+m x +m y 2=1的长轴的两个端点,P 是椭圆C 上的动点,且∠APB 的最大值是π32,则实数m 的值是( )A. B. C. D.11、若直线y= -x+m 与曲线只有一个公共点,则m 的取值范围是( )(A )-2≤m <2 (B )-52≤m ≤52(C )-2≤m <2或m=5 (D )-52≤m <52或m=512、已知命题p :∃m ∈R ,m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∨q 为假命题,则实数m 的取值范围是( )A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤213、已知(4,2)是直线l 被椭圆193622=+y x 所截得的线段的中点,则l 的方程是( ) A .x -2y =0 B .x +2y -4=0 C .2x +3y +4=0 D .x +2y -8=0 题号 12345678910111213答案二、填空题(每空5分,共25分)14、若C (-,0),D (,0),M 是椭圆42x +y 2=1上的动点,则的最小值为________.15、已知椭圆+=1的两个焦点是F1、F2,点P 在该椭圆上,若|PF1|-|PF2|=2,则△21F PF 的面积是 .16、已知椭圆C :12222=+by a x (a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =,则C 的离心率e =________.17、已知椭圆C :12222=+by a x (a >b >0),F (,0)为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2,则椭圆C 的方程为________.18、若命题“”是真命题,则实数的取值范围为 .三、简答题(每题15分,共60分)19、已知命题p :存在实数m ,使方程x 2+mx +1=0有两个不等的负根;命题q :存在实数m ,使方程4x 2+4(m -2)x +1=0无实根.若“p ∨q ”为真,“p ∧q ”为假,求m 的取值范围.20、已知点P是椭圆上一点,,为两焦点,且,若点P到两焦点的距离分别为6和8,求椭圆的方程.21、已知,是椭圆的两个焦点,P是椭圆上任一点(1)若,求的面积;(2)求的最大值;22、已知直线l:(m R)和椭圆C:, 椭圆C的离心率为,连接椭圆的四个顶点形成四边形的面积为2.⑴求椭圆C的方程;⑵直线l/与椭圆C有两个不同的交点,求实数的取值范围;⑶当时,设直线l与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值。

2023年新高考数学一轮复习9-3 椭圆(真题测试)含详解

2023年新高考数学一轮复习9-3 椭圆(真题测试)含详解

专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3B .6C .8D .125.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 17.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12 C .13 D .148.(2021·全国·高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( ) A .12B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( ) A .△ABF 2的周长为定值 B .AB 的长度最小值为1 C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠= 三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.20.(2019·江苏·高考真题)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=c e a ==22b ∴=,所以方程为4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3 B .6 C .8 D .12【答案】B【分析】根据椭圆中,,a b c 的关系即可求解. 【详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B.5.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 1290,PF ∠1,||PF =故选D.7.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.148.(2021·全国·高考真题(理))设B是椭圆2222:1(0)x yC a ba b+=>>的上顶点,若C上的任意一点P都满足||2PB b≤,则C的离心率的取值范围是()A.⎫⎪⎪⎣⎭B.1,12⎡⎫⎪⎢⎣⎭C.⎛⎝⎦D.10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( )A .12 B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( )A .△ABF 2的周长为定值B .AB 的长度最小值为1C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]【详解】因为11AF F B λ=,则A 三点共线,2ABF 周长21=≠,B 错.,则12AF AF ⊥,A 在上、下顶点处,不妨设A解得0x =⎧⎪⎨或,422,-12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤ ⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠=三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m+--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解 【详解】由于22670x my m +--=是圆,1m ∴= 即:圆22670x y x +--= 其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 称性将ADE 的周长转化为【详解】∵椭圆的离心率为2213y c =,即2a OF c =,两点,DE 为线段∴ADE 的周长等于24a a a +=四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.【答案】23由2AF FB =可得x 的坐标代入椭圆方程中化简可求出离心率 【详解】因为2AF FB =,设A 4⋅⋅⋅⋅⋅⋅①②①-②得:,1220y y +=,18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 【答案】(Ⅰ)32;(Ⅱ)221123x y +=.19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4 (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.5520.(2019·江苏·高考真题)如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.43因为BF2=2a,EF1+EF2=2a,所以EF1=EB,21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.的面积是BPQ 面积的23,x y y kx +=⎧⎨=⎩所以,k 的值为12-.。

椭圆、双曲线测试题(含答案)

椭圆、双曲线测试题(含答案)

椭圆、双曲线测试题(含答案)章末综合测评(二):圆锥曲线与方程本次测评共分为一、二两大题,时间为120分钟,满分150分。

一、选择题1.椭圆 $x^2+my^2=1$ 的焦点在 $y$ 轴上,长轴长是短轴长的两倍,则 $m$ 的值是()A。

1.B。

2.C。

4.D。

11/4解析:由题意可得 $2=2\times2$,解得 $m=11/4$。

故选D。

2.下列双曲线中,渐近线方程为 $y=\pm2x$ 的是()A。

$x^2-4y=1$。

B。

$4x^2-y=1$。

C。

$x^2-2y=1$。

D。

$2x^2-y=1$解析:由渐近线方程为 $y=\pm2x$,可得 $2=\pm x$,所以双曲线的标准方程可以为 $x^2/4-y^2/1=1$ 或 $-x^2/4+y^2/1=1$,舍去 C。

故选 A。

3.若双曲线 $a^2-b^2=1$ 的一条渐近线经过点 $(3,-4)$,则此双曲线的离心率为()A。

$\sqrt{3}/5$。

B。

$4/3$。

C。

$\sqrt{5}/3$。

D。

$3/2\sqrt{2}$解析:由双曲线的渐近线过点 $(3,-4)$,知 $a=3$,又$b^2=c^2-a^2=16-9=7$,故$e=\sqrt{1+b^2/a^2}=\sqrt{16/9+7/9}=\sqrt{23}/3$,故选 D。

4.平面内有定点 $A$、$B$ 及动点 $P$,设命题甲是“$|PA|+|PB|$ 是定值”,命题乙是“点 $P$ 的轨迹是以 $A$、$B$ 为焦点的椭圆”,那么甲是乙的()A。

充分不必要条件。

B。

必要不充分条件。

C。

充要条件。

D。

既不充分也不必要条件解析:点 $P$ 在线段 $AB$ 上时,$|PA|+|PB|$ 是定值,但点 $P$ 的轨迹不一定是椭圆,反之成立,故选 B。

5.已知动圆 $E$ 与圆 $A$:$(x+4)^2+y^2=2$ 外切,与圆$B$:$(x-4)^2+y^2=2$ 内切,则动圆圆心 $E$ 的轨迹方程是()A。

椭圆测试题及答案

椭圆测试题及答案

圆的离心率是(

2
A.
2
2 1
B.
2
C. 2 2
D. 2 1
【答案】D
【解析】设点
P

x
轴上方,则坐标为
c,
b2 a
,因为△
F1PF2
为等腰直角三角形,所以
PF2
F1F2
b2 ,即 a
2c ,
等式两边同除以 a ,化简得1 e2 2e ,解得 e 2 1,故选 D.
6.已知直线
y
x 1与椭圆
b2 36 16 20, 方程为 x2 y2 1 .因为三点 A, B,C 构成三角形,三点不能共线,所以 x 0 ,故轨迹方程 20 36
为 x2 y2 1 x 0 .
20 36
9.椭圆
x2 4
y2
1的两个焦点为 F1、F2
,过 F1作垂直于
x 轴的直线与椭圆相交,P 为一个交点,则
10.在等腰梯形 ABCD 中, AB / /CD ,且 AB 2, AD 1, CD 2x ,其中 x 0,1 ,以 A, B 为焦点且过点 D
的双曲线的离心率为 e1 ,以 C, D 为焦点且过点 A 的椭圆的离心率为 e2 ,若对任意 x 0,1 ,不等式 t e1 e2 恒
成立,则 t 的最大值是( )
A. 3
B. 5
C.2
D. 2
【答案】B
【 解 析 】 由 平 几 知 识 可 得 BD
1 4x 1 , 所 以 e1
2 1 4x
1 ,e2
2x 1 4x
1 e1e2
1



e1
e2
Байду номын сангаас
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的定义及几何性质
测试题
考试时间:100分钟满分:120分
一、选择题(满分50分,每题5分,共10小题)
1、已知的顶点在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦
点在边上,则的周长是( )
A. B. C. D.
2、设定点、,动点满足条件,则点的轨
迹是( )
A.椭圆
B.线段
C. 不存在
D. 椭圆或线段
3、椭圆上点到右焦点的( )
A.最大值为5,最小值为4
B.最大值为10,最小值为8
C.最大值为10,最小值为6
D.最大值为9,最小值为1
4、椭圆的长轴长、短轴长、离心率依次是( )
,3, ,6, ,3, ,6,
5、若椭圆过点则其焦距为( )
A. B. C. D.
6、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A. B. C. D.
7、已知两椭圆与的焦距相等,则的值( )
A.或
B.或
C.或
D.或
8、椭圆的右焦点到直线的距离是( )
A. B. C. D.
9、设是椭圆的离心率,且,则实数的取值范围是( )
A. B. C. D.
10、如图所示,一圆形纸片的圆心为,是圆内一定点,
是圆周上一动点,把纸片 折叠使
与重合,然后抹平纸片,折痕为
,设

交于点,
则点的轨迹是( )
A.椭圆
B.双曲线
C.抛物线
D.圆 二、填空题(满分25分,每题5分,共5小题)
11、已知焦点在x 轴上的椭圆,长轴长为4,右焦点到右顶点的距离为1,则椭圆的标准方程为
12、已知椭圆的长轴在轴上,焦距为,则等于
13、椭圆=1的离心率为________.
14、若椭圆
的离心率
,右焦点为,
方程
的两个实数根分别是

,则点
到原点的距离为
15、我们把离心率为黄金比的椭圆称为“优美椭圆”.设为“优
美椭圆”,,分别是它的左焦点和右顶点,是它短轴的一个端点,则的度数为
三、解答题(写出必要的解答过程或步骤)16、求适合下列条件的椭圆的标准方程 (1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0) (2)经过点A (3,-2)和点B (-23,1)
17、已知椭圆)0(5522
>=+m m y mx 的离心率为e =
10
5
,求m 的值.
18、已知椭圆的离心率,过点和的直线与原
点的距离为.求椭圆的方程.
19、为何值时,直线和曲线
有两个公共点?有一个公共点?没有公共点?
数学12月份月考试题答案
1、C
2、D A
o
B
y
x
3、D
4、B
5、C 进而求出C ,再求出焦距2C 。

6、B
7、A
8、B 9、C
综上所述,选C
10、A 11、13
4
2
2
=+
y x
由题意得2a=4,a-c=1所以3,1c ,4222
===b a ,又因为焦点在X 轴上,故得方程
12、8 13、
2
3
23
431641122222
=
∴=-=-==e a
b a
c e 14、2
15、90
16、解:(1)由题意设,椭圆的标准方程为122
22=+b
y a x (a>b>0)
由已知条件可得c=4,a=5,从而91625222=-=-=c a b 所以椭圆的标准方程为
19
25
2
2
=+
y x
(2)设椭圆的方程为122
=+ny mx
(m>0,n>0,m ≠n )
因为点A (3,-2)和点B (-23,1)在椭圆上,带入得12m+n=1 ○
1 3m+4n=1 ○
2 由○
1○2解得5
1,151==n m 。

故所求椭圆的标准方程为15152
2=+y x 17、解:由题意得椭圆的方程为152
2
=+m
y x , 当椭圆的焦点在x 轴上,即0<m<5时,
3,52
)510(511,m ,5222222
2
2
=∴==-=-====m m a
b a
c e b a
当椭圆的焦点在y 轴上,即m>5时,
325
,52)510(511,5,222222
2
2
=
∴==-=-====m m a
b a
c e b m a 综上所述,m 的值为3或
3
25
18、解:
19、解:。

相关文档
最新文档