高频电子线路第6章振幅调制解调及混频
合集下载
高频电子线路第6章振幅调制解调及混频
Pmax Pc (1 m)2 Pmin Pc (1 m)2
(6―14)
《高频电路原理与分析》
第6章振幅调制、 解调及混频
2.
在调制过程中,将载波抑制就形成了抑制载波双边 带信号,简称双边带信号。它可用载波与调制信号相乘 得到,其表示式为
uDSB (t) kf (t)kf (t)uC 在单一正弦信号uΩ=UΩcosΩt调制时,
uAM(t)=UM(t)cosωct=UC(1+mcosΩt)cosωct (6―5)
上面的分析是在单一正弦信号作为调制信号的情
况下进行的,而一般传送的信号并非为单一频率的信号,
例如是一连续频谱信号f(t),这时,可用下式来描述调
幅波:
uAM (t) UC[1 mf (t)]cosct
(6―6 )
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
(e)
《高频电路原理与分析》
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
图6―1 AM调制过程中的信号波形
Um(t)=UC+ΔUC(t)=UC+kaUΩcosΩt
=UC(1+mcosΩt)
高频电子线路第六章振幅调制解调与混频
返回
12
13
(2)同步检波 同步检波必须采用一个与发射端载波同频同 相(或固定相位差)的本地载波,称为同步信号。 同步检波可由乘法器和低通滤波器实现,其原理如下图:
同步检波原理图
设输入普通调幅信号为 u A(t M ) (U c m k m U c o t)c so c ts
乘法器另一输入同步信号为: ur(t)Urm cocst
正弦波调制是以高频正弦波为载波,用低频调制 信号分别去控制正弦波的振幅、频率或相位三个参 量,分别称为调幅(AM)、调频(FM)和调相 (PM)。
返回
4
6.2 振幅调制与解调原理
振幅调制可分为几种不同的调幅方式: 普通调幅(AM) 双边带调幅(DSB-AM) 单边带调幅(SSB-AM) 残留边带调幅(VSB-AM) 正交调幅(QAM)
其中调幅指数 Mak•U U cm m,0Ma1, k为比例系数。 还可以得到调幅指数的表达式: M a U U m m a aU U x xm mi i n n U m U a cU x m cm U cU m cU m mi n
6
6.2.1 普通调幅方式
图6.2.1 普通调幅波形和频谱
7
6.2.1 普通调幅方式
❖ 显然, 当Ma>1时, 普通调幅波的包络变化与调制信 号不再相同, 产生了失真, 称为过调制, 如图6.2.2所 示。所以, 普通调幅要求Ma必须不大于1,即Ma≤1 。
8
式(6.2.1)又可以写成:
u A( t M ) U cc mo c t M s a 2 U c[ m cc o ) t s c(o c s ) t](
解调是在接收端将已调波信号从高频段变换到低 频段,恢复原调制信号。
返回
12
13
(2)同步检波 同步检波必须采用一个与发射端载波同频同 相(或固定相位差)的本地载波,称为同步信号。 同步检波可由乘法器和低通滤波器实现,其原理如下图:
同步检波原理图
设输入普通调幅信号为 u A(t M ) (U c m k m U c o t)c so c ts
乘法器另一输入同步信号为: ur(t)Urm cocst
正弦波调制是以高频正弦波为载波,用低频调制 信号分别去控制正弦波的振幅、频率或相位三个参 量,分别称为调幅(AM)、调频(FM)和调相 (PM)。
返回
4
6.2 振幅调制与解调原理
振幅调制可分为几种不同的调幅方式: 普通调幅(AM) 双边带调幅(DSB-AM) 单边带调幅(SSB-AM) 残留边带调幅(VSB-AM) 正交调幅(QAM)
其中调幅指数 Mak•U U cm m,0Ma1, k为比例系数。 还可以得到调幅指数的表达式: M a U U m m a aU U x xm mi i n n U m U a cU x m cm U cU m cU m mi n
6
6.2.1 普通调幅方式
图6.2.1 普通调幅波形和频谱
7
6.2.1 普通调幅方式
❖ 显然, 当Ma>1时, 普通调幅波的包络变化与调制信 号不再相同, 产生了失真, 称为过调制, 如图6.2.2所 示。所以, 普通调幅要求Ma必须不大于1,即Ma≤1 。
8
式(6.2.1)又可以写成:
u A( t M ) U cc mo c t M s a 2 U c[ m cc o ) t s c(o c s ) t](
解调是在接收端将已调波信号从高频段变换到低 频段,恢复原调制信号。
返回
高频电子线路振幅解调
c o s t1 m
代入式(6―58),得出不失真条件如下:
(6―59)
RC 1 m 2 m
RC
1
m
2 m ax
m axm m ax
(6―60) (6―61)
第6章振幅调制、 解调及混频
2) 底部切削失真
底部切削失真又称为负 峰切削失真。产生这种 失真是因检波器的交直 流负载不同引起的。
I1
iDmaxa1()
gDUm
(
sin
sin)
式中,α0(θ)、α1(θ)为电流分解系数。 由式(6―43(a))和图6―35可得
Kd
Uo Um
cos
(6―46) (6―47)
(6―48)
第6章振幅调制、 解调及混频
由此可见,检波系数Kd是检波器电流iD的通角θ的函 数,求出θ后,就可得Kd。
(6―44)
i D m a x g D ( U m U o ) g D U m ( 1 c o s) (6―45)
式中,uD=ui-uo,gD=1/rD,θ为电流通角,iD是周期 性余弦脉冲,其平均分量I0为
第6章振幅调制、 解调及混频
I0
iDmaxa0()
gDUm
(sin
cos)
基频分量为
f
0
f
F
图6―31 同步解调器的框图
第6章振幅调制、 解调及混频
➢ 同步检波分为乘积型(a)和叠加型(b)两类。 ➢ 都需要用恢复的载波信号ur进行解调。
us × 低 通 滤 波 器 uo us + 包 络 检 波 器 uo
ur (a)
ur (b)
图6―32 同步检波器
第6章振幅调制、 解调及混频
第6章--振幅调制解调及混频
移相法是利用移相网络,对载波和调制信号进行适当的相移,然后相加,从而将其中的一个边带抵消掉而获得SSB信号。
2. 移相法
(1)其依据如下:
可写为:
同理有:
(2)移相法产生SSB调制信号原理框图
6.2 调幅信号的解调
振幅解调方法可分为包络检波和同步检波两大类。
一. 调幅解调的方法
(三). SSB调制电路
SSB信号是将双边带信号滤除或抵消掉一个边带形成的。主要有滤波法和移相法两种。
1.滤波法
带通滤波器
上/下边带通滤波器:中心频率为:(fc±Fmax/2) , 带宽为略大于或等于Fmax。
下边带
上边带
由于0>>min, 上、下边带间的 距离很近,要想 通过一个边带而 滤除另一个边带, 就对滤波器提出 了严格的要求。
(b) 同步检波器:主要用于双边带和单边带信号(DSB/SSB)的解调
它们都需要用同步的恢复载波信号ur进行解调。 同步检波又可以分为乘积型和叠加型两类。
2 .工作波形图
二、二极管峰值包络检波器
1.原理电路
RC电路:
二是作为检波器的负载,在其两端输出已恢复的调制信号。
(a) 集电极调幅电路
集电极调幅的原理分析:
(b) 基极调幅电路
基极调幅的波形
(1)二极管电路
(a) 单二极管调制电路
(b) 平衡二极管调制电路
(2) 利用(单)差分对电路产生普通调幅波
(3)利用模拟乘法器产生AM信号电路
2.低电平AM调制
(a) 单二极管调制电路
一是起高频滤波作用。
故必须满足:
式中:ωc为输入信号的载频,在超外差接收机中则为中频ωI Ω为调制频率。 即在理想情况下,RC网络的阻抗Z应为
2. 移相法
(1)其依据如下:
可写为:
同理有:
(2)移相法产生SSB调制信号原理框图
6.2 调幅信号的解调
振幅解调方法可分为包络检波和同步检波两大类。
一. 调幅解调的方法
(三). SSB调制电路
SSB信号是将双边带信号滤除或抵消掉一个边带形成的。主要有滤波法和移相法两种。
1.滤波法
带通滤波器
上/下边带通滤波器:中心频率为:(fc±Fmax/2) , 带宽为略大于或等于Fmax。
下边带
上边带
由于0>>min, 上、下边带间的 距离很近,要想 通过一个边带而 滤除另一个边带, 就对滤波器提出 了严格的要求。
(b) 同步检波器:主要用于双边带和单边带信号(DSB/SSB)的解调
它们都需要用同步的恢复载波信号ur进行解调。 同步检波又可以分为乘积型和叠加型两类。
2 .工作波形图
二、二极管峰值包络检波器
1.原理电路
RC电路:
二是作为检波器的负载,在其两端输出已恢复的调制信号。
(a) 集电极调幅电路
集电极调幅的原理分析:
(b) 基极调幅电路
基极调幅的波形
(1)二极管电路
(a) 单二极管调制电路
(b) 平衡二极管调制电路
(2) 利用(单)差分对电路产生普通调幅波
(3)利用模拟乘法器产生AM信号电路
2.低电平AM调制
(a) 单二极管调制电路
一是起高频滤波作用。
故必须满足:
式中:ωc为输入信号的载频,在超外差接收机中则为中频ωI Ω为调制频率。 即在理想情况下,RC网络的阻抗Z应为
第6章振幅调制解调与混频说课讲解
抑制载波的单边带调制SSB-SC Single SideBand Suppressed carrier
6.1.1振幅调制信号分析 1. AM调幅波 1)数学表达式
uC U C cos ct
调制信号为单频余弦波
载波 u C U C c o s c t
u U cos t
已调信号振幅 U m t U C U C t
U C co c t m s 2 U C co c s) t (m 2 U C co c s) t(
U
0F (a )
Uc
f 调幅过程实际是频谱搬 移过程,即将调制信号 的频谱搬移到载波附近,
成为对称排列的在载波
0
fc
f 频率两侧的上下边频,
(b ) 1
幅度等于mUC/2
m/2
m/2
0
fc- F fc fc+ F
BW 20k 2 f0 10k
高频(射频): 高频窄带信号
AM广播信号: 535 ~1605kHz,BW=20kHz
f max 3 f min
BW 20k 1 f0 100k0 50
BW f 0 Q
low
20 10k 20k
100k
频谱搬移
1000k
high
3. 调制的方式和分类
调制
调幅 连续波调制 调频
c- min
c+ min
BW
4)产生原理框图
u AtM U C 1 m c o tcs o c t s
1U ka CUcostUCcocst u
+ 常数
×
uAM
uc
(a)
U C cc o t k a U s c t o U C c sc o t s
6.1.1振幅调制信号分析 1. AM调幅波 1)数学表达式
uC U C cos ct
调制信号为单频余弦波
载波 u C U C c o s c t
u U cos t
已调信号振幅 U m t U C U C t
U C co c t m s 2 U C co c s) t (m 2 U C co c s) t(
U
0F (a )
Uc
f 调幅过程实际是频谱搬 移过程,即将调制信号 的频谱搬移到载波附近,
成为对称排列的在载波
0
fc
f 频率两侧的上下边频,
(b ) 1
幅度等于mUC/2
m/2
m/2
0
fc- F fc fc+ F
BW 20k 2 f0 10k
高频(射频): 高频窄带信号
AM广播信号: 535 ~1605kHz,BW=20kHz
f max 3 f min
BW 20k 1 f0 100k0 50
BW f 0 Q
low
20 10k 20k
100k
频谱搬移
1000k
high
3. 调制的方式和分类
调制
调幅 连续波调制 调频
c- min
c+ min
BW
4)产生原理框图
u AtM U C 1 m c o tcs o c t s
1U ka CUcostUCcocst u
+ 常数
×
uAM
uc
(a)
U C cc o t k a U s c t o U C c sc o t s
第6章 振幅调制、解调及混频
在调制信号一周期内,AM信号的总平均输出功率是:
1 2 Pav PC P双 (1 ma ) PC 2
Pav PC PDSB
1 2 (1 ma ) PC 2
0
UC
ma UC 2
0
ma UC 2
0
当ma= 1时,PC=(2/3)Pav ;
当ma=0.5时,PC=(8/9)Pav ;
u AM (t ) UC (1 ma cos t )cos ot
2V 0.3V 0.3V 1000.1 f(kHz)
例6-1 已知已调幅信号的频谱图如图所示。
1) 写出已调信号电压的数学表达式:
2) 计算在单位电阻上消耗的边带功率 和总功率以及已调波的频带宽度。
999.9 103
因此uAM(t)=2(1+0.3cos2102t) cos2106t(V)。 2) 载波功率 双边带功率 总功率
1 UC2 1 2 PC 2 2(W ) 2 R 2 1 2 1 P双 ( 2 ma PC) 0.32 2 0.09(W ) 4 2
真正有用的 0.045W
1 ma U C 0.3V ma 0.3 解:1) 根据频谱图知 2 U C 2V
天线长度: 3.75 ~3750km
便于不同电台相同频段基带信号的同时接收
c1
c 2
频谱搬移
便于不同电台相同频段基带信号的同时接收
中央人民广播电台(调幅)接收频率
AM540 (除:福山、长岛、蓬莱、招远、栖霞、海阳)
AM1035(除:长岛、莱州、蓬莱、招远、栖霞、海阳) AM756 (除:长岛、龙口、莱阳、蓬莱) AM945 (仅限:龙口)
高频电路原理与分析-第6章振幅调制解调与混频课件.ppt
第6章振幅调制、 解调及混频
为了避免产生惰性失真,必须在任何一个高频周期
内,使电容C通过R放电的速度大于或等于包络的下降速
度,即
uo U (t) t t
(6―55)
如果输入信号为单音调制的AM波,在t1时刻其包络 的变化速度为
U (t) t
t t1
mUmsin t1
(6―57)
《高频电路原理与分析》
为四象限乘法器
实际典型值:vc(60mv)、 vΩ (300mv)、输出载波抑制
可达60dB。
第6章振幅调制、 解调及混频
二、开关型调幅电路 要求:Vc>>VΩ 即:vc等效为开关函数S(t) 1.双二极管平衡调幅电路
《高频电路原理与分析》
第6章振幅调制、 解调及混频
设:二极管导通电阻为RD,等效负载为2RL 对于D1、D2: vc是共模信号,在RL上相消, vΩ是差模信号,vΩS(t)在RL上相加。
0.6
0.4 0.2
0 10
RC= ∞ RC= 5
RC= 0
gDR
10 0
10 00
图6―40 滤波电路对Kd的影响
《高频电路原理与分析》
第6章振幅调制、 解调及混频
2) 输入电阻Ri
检波器的输入阻抗包括输入电阻Ri及输入电容Ci, 如图6―41所示。输入电阻是输入载波电压的振幅Um与 检波器电流的基频分量振幅I1之比值,即
三、晶体管调幅电路 基极(发射极)调幅: vΩ控制基极(发射极)电压。 集电极(漏极)调幅: vΩ控制集电极(漏极)电压。 由选频网络选出vo(已调信号)。 1.基极调幅电路(发射极调幅电路)
《高频电路原理与分析》
第6章振幅调制、 解调及混频
高频电路A讲稿(第6章 幅调制、解调和混频)
io (t )
Io 1 uuC , 4 VT2
其中 | U | 、 | U C | 26mv
5/20
高频电子线路 A 课堂讲稿
4、SSB 调制电路:有滤波法和移相法两种。 (1)滤波法:由二极管平衡调制器和边带滤波器组成。 边带滤波器是一个带通滤波器,常用边带滤波器有:机械滤波器、晶体滤波器和陶瓷滤波器。 (2)移相法:移相法可以从 SSB 信号的表达式来理解。
i i1 i2 g D K (ct )(uc u ) g D K (ct )( uc u ) g D uc g D K (ct )u
显然不能实现 DSB 调制。
6/20
高频电子线路 A 课堂讲稿
(d)由电路图可得:
u D1 u c u u D2 uc u
i1 g D K (c t )u D1 i2 g D K (c t )u D 2
i i1 i2 2 g D K (c t )uc
显然不可能实现 DSB 调制。 三、调幅信号的解调 概念:从高频已调信号中恢复出调制信号的过程称为解调,又称为检波。解调是调制的逆过程。 原理:属于频谱的线性搬移,可以使用第 5 章介绍的方法。 1 调幅解调方法:包络检波和同步检波两大类。 (1) 包络检波:解调器输出电压与输入已调波的包络成正比。 包络检波器分类:峰值包络检波器和平均包络检波器。主要讲峰值包络检波器。 电路组成:非线性电路+低通滤波器。 用途:只能用于 AM 信号解调。 (2)同步检波:要在接收端产生一个与发送端同频同相的参考载波。 分类:包括乘积型和叠加型两类。
iL 2 g D K (C t )u
g DU cos t 2 g DU cos(C )t 2 g DU cos(C )t ......
6振幅调制、解调及混频 高频电子线路 曾兴雯 课件
因此调制信号的幅度、频率消息只包含
在边频分量中。
图6-4 单音调制时已调波的频谱 (a)调制信号频谱(b)载波信号频谱 (c)AM信号频谱 《高频电子线路》
15
第6章振幅调制、 解调及混频
振 幅
在多频调制的情况下,各个低频频率分量所引起的 边频对组成了已调波的上下两个边带。
0
3 00 振 幅
3 4 00 (a)
单边带信号的波形如图6-7所示,由于它们为单一频率
成分的信号,因此,单纯从该信号中是无法知道原来调制 信号,也无法看出实际该信号的特征。
u S SB(t) U 0 t fc+F
图6-7 单音调制的SSB信号波形
《高频电子线路》
26
第6章振幅调制、 解调及混频
0 F
f (a)
0 (b)
fc
f
0 (c)
m m U C cos(c )t U C cos(c )t 2 2
《高频电子线路》
14
第6章振幅调制、 解调及混频
uAM ( t ) U C cos c t
U
m m U C cos(c )t U C cos(c )t 2 2
显然:
0 F Uc f (a)
《高频电子线路》
23
第6章振幅调制、 解调及混频
3. 双边带调幅波频谱
BW = 2F
1 1 kUcU kUcU 2 2
DSB波频谱
《高频电子线路》
24
第6章振幅调制、 解调及混频
(三)单边带信号(SSB)
1、单边带信号的概念:单边带(SSB)信号是由DSB 信号经边带滤波器滤除一个边带或在调制过程中,直 接将一个边带抵消而成。 2、单频信号调制时的单边带信号 单频调制时,uDSB(t)=kuΩuC。 当取上边带时:
《高频电子线路》第二版 教学课件 第6章振幅调制与解调电路
本章教学内容 6.1 概述 6.2 低电平调幅电路 6.3 高电平调幅电路 6.4 单边带信号的产生 6.5 包络检波器 6.6 同步检波器 6.7 数字信号调幅与解调
首页 上页 下页 退出
哈尔滨工程大学
高频电子线路
首页 上页 下页 退出
概述
引言:1.调制的基本概念
(1)调制与解调是通信系统中的重要的环节。
首页 上页 下页 退出
4.普通调幅波的频谱
u (t) U c( m 1 m acΩ o)c sto c ts
Ucmcosct12maUcmcos(c Ω)t 12maUcmcos(c Ω)t
它表明单频调制的普通调幅波由
三个频率分量组成,即载波分量 c 、图 单音调制的调幅波频谱 上边频分量c Ω 和下边频分量
设调制信号电压为 u Ω ( t) U Ω m cΩ o U s Ω t m c2 o π F st
通常c Ω,根据调幅波的定义
u (t) ( U c m k a U Ω m cΩ o )c sto c t s U cm (1 m aco Ω )c stocts
哈尔滨工程大学
高频电子线路
上式是单频调制时普通调幅波的表示式。
高电平调幅电路是直接产生满足发射机输出功率要求的已调
波。它的优点是整机效率高。设计时必须兼顾输出功率、效率和
调制线性的要求。通常高电平调幅只能产生普通调幅波。
哈尔滨工程大学
高频电子线路
3.振幅调制电路基本组成
首页 上页 下页 退出
一般来说振幅调制电路是由输入回路,非线性器件和带通滤 波器三部分组成。
PoT
1 Uc2m 2R
(2)每个边频功率 P cΩP cΩ1 2 m aU 2c m 2R 11 4m a 2P oT (3)调制一周内的平均总功率
首页 上页 下页 退出
哈尔滨工程大学
高频电子线路
首页 上页 下页 退出
概述
引言:1.调制的基本概念
(1)调制与解调是通信系统中的重要的环节。
首页 上页 下页 退出
4.普通调幅波的频谱
u (t) U c( m 1 m acΩ o)c sto c ts
Ucmcosct12maUcmcos(c Ω)t 12maUcmcos(c Ω)t
它表明单频调制的普通调幅波由
三个频率分量组成,即载波分量 c 、图 单音调制的调幅波频谱 上边频分量c Ω 和下边频分量
设调制信号电压为 u Ω ( t) U Ω m cΩ o U s Ω t m c2 o π F st
通常c Ω,根据调幅波的定义
u (t) ( U c m k a U Ω m cΩ o )c sto c t s U cm (1 m aco Ω )c stocts
哈尔滨工程大学
高频电子线路
上式是单频调制时普通调幅波的表示式。
高电平调幅电路是直接产生满足发射机输出功率要求的已调
波。它的优点是整机效率高。设计时必须兼顾输出功率、效率和
调制线性的要求。通常高电平调幅只能产生普通调幅波。
哈尔滨工程大学
高频电子线路
3.振幅调制电路基本组成
首页 上页 下页 退出
一般来说振幅调制电路是由输入回路,非线性器件和带通滤 波器三部分组成。
PoT
1 Uc2m 2R
(2)每个边频功率 P cΩP cΩ1 2 m aU 2c m 2R 11 4m a 2P oT (3)调制一周内的平均总功率
高频电子线路 第六章 2
m 1
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
已调波信号的幅度随调制信号而变化。因此,调幅信 号幅度的包络线近似为调制信号的波形。只要能取出这 个包络信号就可实现解调。
U
高频电子线路
第6章
振幅调制、解调及混频
第一节
(2)普通调幅波的频谱与带宽 (a)
Uc
0 F
振幅调制 f
uAM (t ) U m (t ) cos c t U C [1 m cos t ]cos c t
R Ri 2
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
根据能量守恒
θ 很小时,
Uo Kd cos 1 Um
2 2 Um Uo 2 Ri R
R Ri 2
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
3.检波器的失真 二极管峰值包络检波器存在两种失真。 (1) 惰性失真
(3)
的导通角 很小,所以工 作在输入信号的峰值附近
i
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
(4)输出电压接近于高频正弦
波的峰值, Uo≈Um (5)二极管电流iD包含平均 分量Iav及高频分量。
高频电子线路
第6章
振幅调制、解调及混频
第一节
振幅调制
2、输入AM波
ui (t ) Um (1 m cos t ) cos c t
3
3 gD R
高频电子线路
第6章
振幅调制、解调及混频
第一节
Kd 1 .0 0 .8 0 .6 0 .4 0 .2 0 gDR 20 40 60 80 1 00
第6章振幅调制与解调与混频PPT教案
下边频功 率:
P0
1 2R
maV0 2
2
1 4
ma2 P0T
上边频功 率:
P0
1 2R
maV0 2
2
1 4
ma2 P0T
总功率:
Po
P0T
P0
P0
1
ma2 2
P0T
结论:调 幅波的 功率利 用率很 低
第4页/共40页
浙江海洋学院 陈庭勋
§6.1 双边带信号DSB
高频电子线路
vo a0 0.5a2 V02 V2 a1V0 cos0t a1V cost a1V2 cost
a2V0Vcos0 t cos0 t
0.5a2V02 cos20 t 0.5a2V2 cos2t v i控制在mV级。
v
实际产生上、下边频的是
i2这一项。
第15页/共40页
浙江海洋学院 陈庭勋
第6章 振幅调制与解调与混频
从频谱上理解双边带信号
uDSB t kUcU cost cosct
0
ω0 -Ωω0ω0 +Ω ω
第5页/共40页
高频电子线路
第6章 振幅调制与解调与混频
§6.1 单边带信号SSB
单边带信号的特点
单边带信号:只发送ω0+Ω或ω0-Ω成 份。
1、节省 调幅发 射机的 功率。
网络 SSB输出
v`=cosω1t
vo` =Vocosω2t
v2=vΩ v` 低通
BM2
滤波器
BM4 v6 vo v4 cos2t sin1 t
v2 sin t cos1t
v4=sin(ω1-Ω) t
或
SSB输出:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/22
12
(3) DSB实质上是一个调 幅调相信号;
uDSB(t)=|f(t)|cos(ωct+φ) 其中当f(t) >0时,φ=0; 当f(t) <0时,φ=180°;
(3) 带宽: B=2Fmax,其 中Fmax为f(t)的最高频率。
2020/11/22
13
4、单边带信号(SSB)
PC
m2 2
举例:100%调制(m=1),两个边频功率为载波功率的1/2,两个 边频功率只占AM调幅波总功率的1/3。当m值减小时,两者的 比值将显著减小,边频功率所占比重更小。
说明:AM信号中虽然载波频率分量不携带信息,却占有2/3 以上的功率,效率较低。但由于其设备简单,占的频带窄(相 对于调频),因此仍然得到广泛的应用。
调幅度的要求:
m≤1为正常调制;
m>1为过调制,导致信号产生失真,不能正确解调,应当避
免出现。
2020/11/22
3
AM调制过程中的信号波形:调制信号为余弦波
注意:图(e)发生严重失真,无法通过解调恢复出调制信号!
2020/11/22
4
连续谱信号的AM调制:uAM= Uc[1+m f(t)]cosωct,其中f(t)为归 一化调制信号,而且|f(t)|max=1。
2020/11/22
8
AM信号的功率:通常指AM波的平均功率(总功率),包括载波
功率和两个边带的平均功率。有时涉及AM波的最大功率和最
小功率。
假设负载阻抗为RL。以单频AM波为例讨论。
uAM
(t)
UC
cos ct
m 2
UC
cos(c
)t
m 2
UC
cos(c
)t
(1).载波功率
:PC
1
2
UC2
cos2 RL
三种已调波信号称为:调幅波信号、双边带信号和单边带信号。
2020/11/22
2
2、调幅波(AM)
载波电压:uc=Uccosωct 调制电压:uΩ=UΩcosΩt (ωc>>Ω) 调幅波的瞬时振幅:Um(t) =Uc+ΔUc(t)= Uc+kaUΩcosΩt
= Uc(1+m cosΩt) ΔUc(t):调制电压uΩ成正比; ka:比例系数或调制灵敏度,由调制电路决定; m=kaUΩ/Uc :调幅度(调制度)。 AM信号表达式: uAM = Um(t)cosωct =Uc(1+m cosΩt)cosωct
(2). DSB信号的产生原理:仅需要一个模拟乘法器即可。
f(t)
×
uDSB
2020/11/22
uC
11
DSB和AM信号比较:
(1) 包络不同:AM信号的 包络正比于调制信号f(t), 而DSB信号的包络则正比 于|f(t)|; (2) DSB信号的高频载波相 位在f(t)的零交点处(正负电 压交替处)出现180°的相 位跃变;
拟信号(数字的或模拟的),用uΩ或f(t)表示; 载波:未受调制的高频振荡信号,常用正弦波,用uc或ic表示; 已调波:受调制后的高频振荡信号。 振幅调制方式:分为三种方式。 (1) 普通调幅方式:AM; (2) 抑制载波的双边带调制(简称双边带调制):DSB-SC(简称DSB); (3) 拟制载波的单边带调制(简称单边带调制):SSB-SC(简称SSB)。
第6章 振幅调制、解调及混频
➢ 振幅调制信号分析 ➢ 振幅调制电路 ➢ 调幅 ➢ 混频电路 ➢ 混频器的干扰
2020/11/22
1
一、振幅调制信号分析
1. 振幅调制的概念 振幅调制:用调制信号去控制高频载波的振幅,使其按调制信号的
规律变化,而其它参数(相位、频率)不变。 调制信号:由原始信号(声音、数据和图象)转换成的低频或视频模
2020/11/22
7
(2) 多频AM波:包含载频、上边带和下边带。 带宽 :B=2Fmax,其中Fmax为f(t)的最高频率。 下图中给出语音调制信号频谱及其已调信号频谱.
振 幅
0 300 3400
振
(a)
幅
f / Hz
f / Hz 0
fc−3400 fc fc+3400 (b)
说明:AM调制是把调制信号的频谱搬移到载频两端,但频谱 结构未变,因此这种调制方式属于频谱的线性搬移。
uΩ
×
+
u AM
uc (b )
2020/11/22
6
AM信号的频谱:
(1) 单频AM波:单频AM波可以用三角函数展开为
uAM
(t)
UC
cos ct
m 2
UC
cos(c
)t
m 2
UC
cos(c
)t
三个频率分量:c ,c c 载频分量 c 上边频 c 下边频
AM波带宽:B 2F,
F / 2
9
重写瞬时功率
:P(t)
Uc (1 m cost)2
2RL
PC (1 m cos t)2
(5).
AM 信号的最大最小功率
:Pmax Pmin
PC (1 PC (1
m)2 m)2
Pmax决定了高频谐振功放管的额定输出功率PH,PH≥Pmax。
(6).
功率效率:
两个边频功率 载波功率
2 m2 4 PC
调制信号的傅里叶级数 展开:
f (t) U n cos(nt n )
n1
连续谱信号的AM已调波又 可以表示为:
uAM (t) UC 1
n1
m
n
cos(nt
n
)
cosct,mn
kaU n Uc
1
2020/11/22
5
AM信号的产生原理图:由加法器和乘法器完成。
uΩ
+
×
u AM
常数
uc
(a )
C
t
dCt
U
2 C
2RL
(2).
每个边频功率
:P边频1 2RL来自mUC 22m2 4
PC
(3).
AM 信号平均功率(总功率)
:Pav
PC
2P边频
PC 1
m2 2
(4).
AM 信号瞬时功率 :P(t) Uc (1 m cost) 2
2RL
PC (1 m cos t)2
2020/11/22
SSB信号形成原理:将DSB信号经边带滤波器滤除一个边带, 或者在调制过程中直接将一个边带抵消而成。SSB信号可以 取DSB中上边带,也可以取下边带。
单频调制SSB信号:
取上边带: uSSB(t)=Ucos(ωc +Ω )t
取下边带: uSSB(t)=Ucos(ωc–Ω)t
2020/11/22
10
2. 双边带信号
DSB信号的形成:将AM信号中的载波抑制掉就形成了抑制载 波的双边带信号(DSB-SC),简称双边带信号(DSB)。
双边带信号的表示:
说明:
uDSB(t)=k f(t) cosωct,k≠0
(1). DSB信号只有上下边带,没有载波分量,因此功率利用较 充分;