试卷分类汇编_分式方程
中考数学 分式与分式方程专题练习—2023中考数学真题分类汇编(共56题)(原卷版
分式与分式方程专题练习(56题)一、单选题1.(2023·甘肃兰州·统考中考真题)方程213x =+的解是()A .1x =B .=1x -C .5x =D .5x =-2.(2023·河北·统考中考真题)化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A .6xyB .5xyC .25x y D .26x y 3.(2023·湖南·统考中考真题)下列计算正确的是()A .623a a a=B .()325aa=C .22()()a ba b a b a b +=+++D .0113⎛⎫-= ⎪⎝⎭4.(2023·贵州·统考中考真题)化简11a a a+-结果正确的是()A .1B .aC .1aD .1a-5.(2023·山东东营·统考中考真题)为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程,课程开设后学校花费6000元购进第一批面粉,用完后学校又花费9600元购进了第二批面粉,第二批面粉的采购量是第一批采购量的1.5倍,但每千克面粉价格提高了0.4元.设第一批面粉采购量为x 千克,依题意所列方程正确的是()A .960060000.41.5x x -=B .960060000.41.5x x -=C .600096000.41.5x x-=D .600096000.41.5x x-=6.(2023·黑龙江牡丹江·统考中考真题)若分式方程3122a x x =-++的解为负数,则a 的取值范围是()A .1a <-且2a ≠-B .0a <且2a ≠-C .2a <-且3a ≠-D .1a <-且3a ≠-7.(2023·辽宁·统考中考真题)某校八年级学生去距离学校120km 的游览区游览,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度,设慢车的速度是km/h x ,所列方程正确的是()A .1201201 1.5x x+=B .1201201 1.5x x-=C .1201201.51x x =-D .1201201.51x x =+.三、解答题25.(2023·湖南岳阳·统考中考真题)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.26.(2023·湖南常德·统考中考真题)“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.(1)求A型玩具和B型玩具的进价分别是多少?(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?27.(2023·贵州·统考中考真题)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x 件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.28.(2023·吉林·统考中考真题)下面是一道例题及其解答过程的一部分,其中M是单项式.请写出单项式20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?42.(2023·黑龙江·统考中考真题)2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.43.(2023·江苏扬州·统考中考真题)甲、乙两名学生到离校2.4km的“人民公园”参加志愿者活动,甲同学步行,乙同学骑自行车,骑自行车速度是步行速度的4倍,甲出发30min后乙同学出发,两名同学同时到达,求乙同学骑自行车的速度.44.(2023·辽宁营口·统考中考真题)某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该元,每周的销量可增加行驶时间.48.(2023·山东泰安·统考中考真题)为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?49.(2023·山东·统考中考真题)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.50.(2023·四川德阳·统考中考真题)2022年8月27日至29日,以“新能源、新智造、新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题,着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区,规划面积4.82平方公里,计划中的某项工程,已知由甲单独施工需要1156.(2023·山东·统考中考真题)先化简2211a aaa a--⎛⎫-÷⎪⎝⎭,再从33a-<<的范围内选择一个合适的数代入求值.12。
中考数学试卷解析分类汇编(第1期)专题7-分式与分式方程
分式与分式方程一.选择题1.(2015•淄博第10题,4分)若关于x 的方程+=2的解为正数,则m 的取值范围是( )A . m <6B .m >6C . m <6且m ≠0D . m >6且m ≠8考点: 分式方程的解..分析: 先得出分式方程的解,再得出关于m 的不等式,解答即可. 解答: 解:原方程化为整式方程得:2﹣x ﹣m =2(x ﹣2), 解得:x =2﹣, 因为关于x 的方程+=2的解为正数,可得:,解得:m <6,因为x =2时原方程无解, 所以可得,解得:m ≠0. 故选C .点评: 此题考查分式方程,关键是根据分式方程的解法进行分析. 2、(2015•四川自贡,第3题4分)方程-=+2x 10x 1的解是( ) A .1或-1 B .-1 C .0 D .1 考点:解分式方程、分式方程的解.分析:解分式方程关键是去分母化为整式方程来解,但整式方程的解不一定是分式方程的解,要注意代入最简公分母验根(代入最简公分母后所得到值不能为0).略解:去分母:-=2x 10,解得:,==-12x 1x 1;把,==-12x 1x 1代入+=x 10后知=-x 1不是原分式方程的解,原分式方程的解=x 1.故选D .3. (2015•浙江金华,第2题3分)要使分式1x 2+有意义,则x 的取值应满足【 】A . x 2=-B . x 2≠-C . x 2>-D . x 2≠- 【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D .5. (2015•四川省内江市,第5题,3分)函数y =+中自变量x 的取值范围是( )A . x ≤2B .x ≤2且x ≠1 C . x <2且x ≠1 D . x ≠1考点: 函数自变量的取值范围..分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 解答: 解:根据二次根式有意义,分式有意义得:2﹣x ≥0且x ﹣1≠0, 解得:x ≤2且x ≠1. 故选:B .点评: 本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6. (2015•浙江省绍兴市,第6题,4分)化简xx x -+-1112的结果是A . 1+xB .11+x C . 1-x D . 1-x x考点:分式的加减法.. 专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x +1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(2015·南宁,第12题3分)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}xx x x Max 12,+=-的解为( ). (A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程.. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可. 解答:解:当x <﹣x ,即x <0时,所求方程变形得:﹣x =,去分母得:x 2+2x +1=0,即x =﹣1;当x >﹣x ,即x >0时,所求方程变形得:x =,即x 2﹣2x =1,解得:x =1+或x =1﹣(舍去),经检验x =﹣1与x =1+都为分式方程的解.故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8. (2015山东济宁,8,3分)解分式方程时,去分母后变形正确的为( )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D . 2-(x +2)=3(x -1) 【答案】D 【解析】试题分析: 根据分式方程的特点, 原方程化为:,去分母时,两边同乘以x -1,得:.故选D考点:分式方程的去分母9. (2015•浙江衢州,第18题6分)先化简,再求值:,其中.【答案】解:原式=,当时,原式=【考点】分式的化简求值.【分析】将被除式因式分解,除法变乘法,约分化简,最后代求值即可.10.(2015•甘肃武威,第20题4分)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.11.(2015•广东佛山,第17题6分)计算:﹣.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.(2015•广东广州,第19题10分)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.考点:分式的化简求值;一元一次不等式组的整数解.分析:(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.13、(2015·湖南省常德市,第7题3分)分式方程23122xx x+=--的解为:A 、1B 、2C 、13D 、0【解答与分析】这是分式方程的解法:答案为A14.(2015·湖南省益阳市,第6题5分)下列等式成立的是( )A .+=B .=C . =D . =﹣考点: 分式的混合运算. 专题: 计算题.分析: 原式各项计算得到结果,即可做出判断. 解答: 解:A 、原式=,错误;B 、原式不能约分,错误;C 、原式==,正确;D 、原式==﹣,错误, 故选C点评: 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015·湖南省衡阳市,第4题3分)若分式的值为0,则的值为( ).A .2或-1B .0C .2D .-1二.填空题1.(2015·湖北省孝感市,第11题3分)分式方程351+=x x 的解是 ☆ .考点:解分式方程..专题:方程思想.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得x+3=5x,解得x=.检验:把x=代入x(x+3)=≠0.∴原方程的解为:x=.故答案为:x=.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2015·湖南省衡阳市,第16题3分)方程的解为.[w*ww~.^3、(2015·湖南省常德市,第10题3分)若分式211xx-+的值为0,则x=【解答与分析】这其实就分式方程的解法:211xx-+=0,解之得答案为:x=14.(2015•江苏无锡,第12题2分)化简得.考点:约分.分析:首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.解答:解:==故答案为:.点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.5.(2015•广东梅州,第16题5分)若=+,对任意自然数n都成立,则a= ,b﹣;计算:m=+++…+= .考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(2015•广东佛山,第12题3分)分式方程的解是3 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2015•甘肃武威,第12题3分)分式方程的解是x=2 .考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.8.(2015·南宁,第14题3分)要使分式11-x 有意义,则字母x 的取值范围是 . 点:分式有意义的条件..分析:分式有意义,分母不等于零.解答:解:依题意得 x ﹣1≠0,即x ≠1时,分式有意义.故答案是:x ≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9.(2015·贵州六盘水,第14题4分)已知0654≠==ab c ,则a c b +的值为 .考点:比例的性质..分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.解答:解:由比例的性质,得 c =a ,b =A .===.故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a 表示b 、c 是解题关键,又利用了分式的性质.10. (2015·河南,第16题8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然后将除法变乘法,最后约分化简成最简分式后,将a ,b 的值代入求解.解:原式=abba b a b a -÷--)(22)(……………………………………………………(4分)=b a abb a -⋅-2 =2ab.……………………………………………………(6分)当1,1a b ==时,原式=22152)15(15=-=-+)(.…………(8分)11. (2015·黑龙江绥化,第14题 分)若代数式6265x 2-+-x x 的值等于0 ,则x =_________.考点:分式的值为零的条件..分析:根据分式的值为零的条件可以求出x 的值.解答:解:由分式的值为零的条件得x 2﹣5x +6=0,2x ﹣6≠0,由x 2﹣5x +6=0,得x =2或x =3, 由2x ﹣6≠0,得x ≠3, ∴x =2, 故答案为2.点评:本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(2015•广东省,第12题,4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x , 解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .13.(2015•广东梅州,第15题,3分)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m .考点:分式的加减法.. 专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b 的值即可;原式利用拆项法变形,计算即可确定出m 的值. 解答:解:=+=,可得2n (a +b )+a ﹣b =1,即,解得:a =,b =﹣; m =(1﹣+﹣+…+﹣)=(1﹣)=, 故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•安徽省,第14题,5分)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c ≠0,则 1 a + 1b =1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 (把所有正确结论的序号都选上). 考点:分式的混合运算;解一元一次方程..分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a +b =ab ≠0,∴+=1,此选项正确;②∵a =3,则3+b =3b ,b =,c =,∴b +c =+=6,此选项错误;③∵a =b =c ,则2a =a 2=a ,∴a =0,abc =0,此选项正确;④∵a 、b 、c 中只有两个数相等,不妨a =b ,则2a =a 2,a =0,或a =2,a =0不合题意,a =2,则b =2,c =4,∴a +b +c =8,此选项正确. 其中正确的是①④. 故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.15.(2015•甘肃兰州,第17题,4分)如果k fed c b a ===(0≠++f d b ),且)(3f d be c a ++=++,那么k =_____ 【 答 案 】3【考点解剖】本题考查比例的基本性质【解答过程】因为k f e d c b a ===,且0≠++f d b ,所以fd b ec a f ed c b a k ++++====,而)(3f d b e c a ++=++,即3=++++fd b ec a ,所以3=k 。
中考数学真题专项汇编解析—分式与分式方程
中考数学真题专项汇编解析—分式与分式方程一.选择题1.(2022·天津)计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2a a + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则. 2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fvf v -B .f vfv-C .fvv f- D .v ffv-【答案】C【分析】利用分式的基本性质,把等式()111v f f u v =+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v =+≠,∵111f u ν=+,即111u f ν=-,∵1f uf νν-=,∵f u fνν=-,故选:C . 【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 3.(2022·四川眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2a a + 【答案】B【分析】根据分式的混合运算法则计算即可.【详解】解:422a a +-+244=22-+++a a a 2=2+a a .故选:B【点睛】本题考查分式的混合运算法则,解题的关键是掌握分式的混合运算法则. 4.(2022·湖南怀化)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++,∵分式有3个,故选:B . 【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 5.(2022·四川凉山)分式13x+有意义的条件是( ) A .x =-3 B .x ≠-3 C .x ≠3 D .x ≠0【答案】B【分析】根据分式的分母不能为0即可得.【详解】解:由分式的分母不能为0得:30x +≠,解得3x ≠-, 即分式13x+有意义的条件是3x ≠-,故选:B . 【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.6.(2022·四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )AB .CD .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=a b +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∵222a ab b ab -+=,∵()2a b ab -=, ∵a>b>0,∵a b -=∵223a b ab +=,∵2225a ab b ab ++=,∵()25a b ab +=,∵a>b>0,∵a b +=,∵原式=,故选:B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵.则下列方程正确的是( ) A .40030050x x=- B .30040050x x=- C .40030050x x=+ D .30040050x x=+ 【答案】B【分析】设实际平均每天植树x 棵,则原计划每天植树(x -50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可. 【详解】解:设现在平均每天植树x 棵,则原计划每天植树(x -50)棵, 根据题意,可列方程:30040050x x=-,故选:B . 【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x1xx 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭ D .1x1x x 3+=+ 【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x 3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x 天,由题意可得,11x 221xx 3x 3-⎛⎫+⨯+= ⎪++⎝⎭, 整理得2x 1x x 3+=+,或2x 1x x 3=-+或23x x 3=+. 则ABC 选项均正确,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 9.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 【答案】D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案. 【详解】方程左右两端同乘以最小公分母x -1,得2x+a=x -1.解得:x=-a -1且x 为正数.所以-a -1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.) 【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息. 10.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0 B .4或6 C .6 D .0或4【答案】D【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =; 当40m -≠时,0x =或210x +=,此时,24x m =-,解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义. 【详解】解:由50004000302x x=-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键. 二.填空题12.(2022·湖北黄冈)若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∵10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.13.(2022·浙江湖州)当a =1时,分式1a a+的值是______. 【答案】2【分析】直接把a 的值代入计算即可. 【详解】解:当a =1时,11121a a ++==.故答案为:2. 【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可. 14.(2022·湖南怀化)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.15.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2a a + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键. 16.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________. 【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x = 经检验,1x =是分式方程的解 把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可. 【详解】解:∵11ba b a ⊗=+,∵()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x ,∵22121x x x x x++=+,∵()()()221210x x x x x ++-+=,∵()()2210x x x x +-+=,∵()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∵210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________. 【答案】16014010xx =- 【分析】先表示乙每小时采样(x -10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x -10)人,根据题意,得16014010xx =-. 故答案为:16014010xx =-. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 19.(2022·浙江金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =- 去括号:226x =- 移项,合并同类项:28x = 系数化为1:4x =经检验,x =4是原方程的解, 故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键. 20.(2022·四川成都)分式方程31144x x x-+=--的解是_________. 【答案】3x =【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:31144x x x-+=-- 解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解, 故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【分析】适当引进未知数,合理转化条件,构造等式求解即可.【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a . ∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=,设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+,∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n ⋅-⋅-=++⋅+,故答案为:35.【点睛】本题考查未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键.22.(2022·湖南衡阳)计算:2422a a a +=++_________. 【答案】2【分析】分式分母相同,直接加减,最后约分. 【详解】解:2422a a a +++242a a +=+()222a a +=+2= 【点睛】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键. 23.(2022·浙江台州)如图的解题过程中,第∵步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-【答案】5【分析】根据题意得到方程3114xx -+=--,解方程即可求解. 【详解】解:依题意得:3114x x -+=--,即3204xx -+=-, 去分母得:3-x +2(x -4)=0, 去括号得:3-x +2x -8=0, 解得:x =5,经检验,x =5是方程的解, 故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验. 24.(2022·四川成都)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 【答案】72【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --⎛⎫-÷ ⎪⎝⎭=22211a a a a a a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷ =22(1)1a a a a -⨯-=(1)a a -=2-a a . 2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=, 两边同除以2得272a a -=, ∵原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 25.(2022·湖南常德)方程()21522x x x x +=-的解为________. 【答案】4x =【分析】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解 故答案为:4x =【点睛】本题考查了解分式方程,解分式方程一定要注意检验. 三.解答题26.(2022·江苏宿迁)解方程:21122x x x =+--. 【答案】x =﹣1【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【详解】解:21122x x x =+--, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点睛】本题考查解分式方程,得出方程的解之后一定要验根.27.(2022·四川泸州)化简:22311(1).m m m m m-+-+÷ 【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可.【详解】解:22311(1)m m m m m-+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.28.(2022·新疆)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键.29.(2022·四川乐山)先化简,再求值:211121xx x x ⎛⎫-÷ ⎪+++⎝⎭,其中x = 【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121xx x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+ 1x =+,∵x∵原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 30.(2022·湖南邵阳)先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭.【答案】11x + 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷⎪+--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +, ∵x +1≠0,x -1≠0,x ≠0,∵x ≠±1,x ≠0当x=【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.31.(2022·陕西)化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭. 【答案】1a +【分析】分式计算先通分,再计算乘除即可.【详解】解:原式211112a a a a a++--=⋅-2(1)(1)12a a a a a +-=⋅-1a =+. 【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键. 32.(2022·湖南株洲)先化简,再求值:2111144x x x x +⎛⎫+⋅ ⎪+++⎝⎭,其中4x =. 【答案】12x +,16 【分析】先将括号内式子通分,再约分化简,最后将4x =代入求值即可. 【详解】解:2221111111441114241(2)2x x x x x x x x x x x x x x +++⎛⎫+⋅=⋅=⋅= ⎪+++++++++⎝⎭+++, 将4x =代入得,原式1112426x ===++. 【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.33.(2022·江苏扬州)计算:(1)(02cos 45π︒+ (2)22221121m m m m +⎛⎫+÷⎪--+⎝⎭【答案】(1)1 (2)12m - 【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可; (2)先合并括号里的分式,再对分子和分母分别因式分解即可化简; (1)解:原式=21-1 (2)解:原式=()()21211121m m m m m --⎛⎫+⋅ ⎪--+⎝⎭=()()211121m m m m -+⋅-+=12m -. 【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.34.(2022·江西)以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎭的部分运算过程: (1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 【答案】(1)∵(2)见解析【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可. (1)第∵步出现错误,原因是分子相减时未变号,故答案为:∵; (2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+ 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 35.(2022·重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++- =()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.36.(2022·江苏连云港)化简:221311x x x x -+--. 【答案】11x x -+ 【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x xx x +-=+-- 22131x x x x ++-=-22211x x x -+=-22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.37.(2022·四川达州)化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.【答案】11a +【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+1=1a +;当31a=. 【点睛】本题考查分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.38.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的. 【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. (1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++,……∵第(n +1)个式子1111(1)n n n n =+++; (2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n++=+==+++++=左边, ∵1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.39.(2022·四川凉山)先化简,再求值:524(2)23m m m m-++⋅--,其中m 为满足-1<m <4的整数.【答案】26--m ,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定m 的值,代入计算即可得.【详解】解:原式(2)(2)52(2)223m m m m m m+--⎡⎤=+⋅⎢⎥---⎣⎦ 2452(2)()223m m m m m --=+⋅---292(2)23m m m m--=⋅--(3)(3)2(2)23m m m m m +--=⋅--2(3)m =-+26m =--, 20,30m m -≠-≠,2,3m m ∴≠≠,又m 为满足14-<<m 的整数,0m ∴=或1m =,当0m =时,原式262066m =--=-⨯-=-, 当1m =时,原式262168m =--=-⨯-=-,综上,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.40.(2022·山东滨州)先化简,再求值:2344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-【答案】22a a -+,0 【分析】先算括号内的减法,再将除法变成乘法进行计算,然后根据锐角三角函数,负指数幂和零次幂的性质求出a ,最后代入计算.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭()22213111a a a a a +⎛⎫-=-÷ ⎪---⎝⎭()222411a a a a +-=÷--()()()222112a a a a a +--=⋅-+22a a -=+; ∵101tan 45π122)2(1a -=︒+-=+-=,∵原式2220222a a --===++. 【点睛】本题考查了分式的化简求值,锐角三角函数,负指数幂和零次幂的性质,熟练掌握运算法则是解题的关键.41.(2022·重庆)计算:(1)()()224x x x ++-;(2)2212a a bb b -⎛⎫-÷ ⎪⎝⎭.【答案】(1)224x +(2)2a b+ 【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解. (1)解:原式22444x x x x =+++-224x =+ (2)解:原式2()()a b b b a b a b -=⨯+-2a b=+ 【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.42.(2022·山东泰安)(1)若单项式14m n x y -与单项式33812m n x y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111xx x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =. 【答案】(1)m =2,n =-1;(2)21x +,4-【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,∵-∵3⨯,可得:55n -=,解得:1n =-, 把1n =-代入∵,可得:(1)3m --=,解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x 时,原式21)12114=+=-+=-【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键.43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时, 依题意,得:2020101.560x x -=,解得:x =40, 经检验,x =40是所列方程的根,且符合题意, 答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套 【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; (3)解:320270>,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲、乙恰好同时到达B地列方程求解即可.(1)解:设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:0.5 1.20.52x x⨯=+,解得:20x,则1.224x=(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:301303 1.2x x-=,解得15x=,经检验15x=是分式方程的解,则1.218x=(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∵甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∵两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米 则有5403609001.2100y y +=解得90y =经检验,90y=是原方程的解,符合题意∵乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x千米/小时,则汽车速度是3x千米/小时,根据题意得:454523x x=+,解之得15x=,经检验15x=是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,。
初中数学试题分类汇编:分式方程的增根无解问题综合训练1(填空 附答案)
初中数学试题分类汇编:分式方程的增根无解问题综合训练1(填空 附答案) 1.若关于x 的分式方程32x x -=32x π+-有增根,则m 的值为_____.2.若关于x 的分式方程34x -+4x m x +-=1有增根,则m 的值是___________3.如果关于x 的方程1101mx x +-=-有增根,则m =_______________.4.若关于x 的分式方程3122m x x =+++有增根,则m=______.5.若关于x 的方程2x m 2x 22x ++=--有增根,则m 的值是 ▲6.若关于x 的分式方程7311mx x x +=--无解,则实数m =_______.7.若分式1 1x -= 21a x - 要产生增根,则a=___________。
8.分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为__________。
9.方程:223242kx x x x -=--+无解,则k 的值为___________.10.若关于x 的分式方程33122x m x x +=+--有增根,则m =_________.11.若关于x 的分式方程3222x m x +=+有增根,则m 的值为__________.12.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________.13.若分式方程211x m x x-=--有增根,则m =________.14.若关于x 的方程32211x m x x -=+++无解,则m 的值为________. 15.当m =____________时,解分式方程533x m x x -=--会出现增根.16.解分式方程225111m x x x +=+--会产生增根,则m=___________17.若关于x 的分式方程3111m x x +=--无解,则m 的值是_____.18.若关于x 的分式方程311x a x x--=-无解,则a =________. 19.分式方程311(1)(2)x x x x -=--+的解为________. 20.若关于x 的方程42332x m x x---=m 无解,则m 的值为_____. 21.已知关于x 的方程1122ax x x -=--无解,则a =__________. 22.若关于x 的分式方程333x a x x+--=2a 无解,则a 的值为_____. 23.若分式方程1x a x -+=a 无解,则a 的值为________. 24.若关于x 的分式方程3333x m m x x++=--有增根,则实数m 的值为_______. 25.若分式方程11x m x x =--无解,则m 的值为__________. 26.若关于x 的分式方程233x m x x -=--无解,则m 的值为__________ 27.若关于x 的方程2222x m x x-+=---有增根,则增根x =___. 28.将5个完全相同的乒乓球,依次标上数字:0,1,2,3,4,并放入不透明的口袋中,现把它们摇匀,随机从中任意抽出1个,记乒乓球上的数字为m ,则数字m 使分式方程2x x +﹣1=(2)(3)x m x +-无解的概率为_____. 29.当m =____时,233x m x x =+--会产生增根. 30.若分式方程244x a x x =+--无解,则a =_____________.参考答案1.3【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.【详解】解:去分母得:3x=m+3,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:6=m+3,解得:m=3,故答案为:3【点睛】此题考查分式方程的增根,解题关键在于得到x的值.2.-1【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x-4=0,求出x的值,代入整式方程求出m的值即可.【详解】去分母得:3-x-m=x-4,由分式方程有增根,得到x-4=0,即x=4,把x=4代入整式方程得:3-4-m=0,解得:m=-1,故答案为:-1..【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x−1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘x−1得mx+1-x+1=0,∵方程有增根,∴最简公分母x−1=0,即增根是x=1,把x=1代入整式方程,得m=−1.故答案为:−1.【点睛】本题考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4.3【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根,所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值.【详解】解:分式方程为:3m=1 x+2x+2,方程左右两边同乘(x+2),得:3=x+m+2,∵方程有增根,∴最简公分母x+2=0,即x=-2,将x=-2代入3=x+m+2,得:m=3,故答案为:3.【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值,解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.5.0.方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.6.3或7.【解析】解:方程去分母得:7+3(x﹣1)=mx,整理得:(m﹣3)x=4.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7.综上所述:∴m的值为3或7.故答案为3或7.7.a=2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】去分母得:x+1=a,由分式方程有增根,得到x=1或x=-1,当x=1时,a=2;当x=-1时,a=0,检验:当a=0时,此时,分式方程,增根不是x=-1,舍去,故答案为:2.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8.3【解析】方程两边都乘以最简公分母(x-1)(x+2)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.【详解】 解:∵分式方程()()1112x m x x x -=--+有增根,∴x-1=0,x+2=0,∴x 1=1,x 2=-2.两边同时乘以(x-1)(x+2),原方程可化为x (x+2)-(x-1)(x+2)=m ,整理得,m=x+2,当x=1时,m=1+2=3,当x=-2时,m=-2+2=0,当m=0时,方程为11x x --=0, 此时1=0,即方程无解,∴m=3时,分式方程有增根,故答案为:m=3.【点睛】本题考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解题关键.9.4或6-或 1.-【解析】【分析】先把分式方程转化为整式方程,分情况讨论,即方程无解与方程有增根两种情况,从而可得答案.【详解】 解:223242kx x x x -=--+, ()()23,2222kx x x x x ∴-=-+-+()()2232,x kx x ∴+-=-()110,k x ∴+=当10k +=时,方程无解,1,k ∴=-又因为方程的增根为:2,x =±把2x =代入()110,k x +=15,k ∴+=4,k ∴=把2x =-代入()110,k x +=15,k ∴+=-6,k ∴=-综上:原方程无解时,1k =- 或4k =或6k=-. 故答案为:4或6-或 1.-【点睛】本题考查的是分式方程无解时,求字母系数的值,掌握方程无解包括两种情况是解题的关键. 10.3.【解析】【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值.【详解】解:去分母得:()332x m x =++-,整理得:21x m =+,∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=, ∴2x =,把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =,故答案为:3.【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.11.3【解析】【分析】将分式方程去分母转化为整式方程,并求出x的值,然后再令x+2=0,即可求得m的值. 【详解】解:由3222x mx+=+得:x=4-2m令x+2=0,得4-2m+2=0,解得m=3故答案为3.【点睛】本题考查了分式方程的增根,解分式方程和把增根代入整式方程求得相关字母的值是解答本题的关键.12.4.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=4,故答案为4.13.-1【解析】【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.14.5【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【详解】去分母得:3x−2=2x+2+m,由分式方程无解,得到x+1=0,即x=−1,代入整式方程得:−5=−2+2+m,解得:m=−5,故答案为-5.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则.15.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.﹣4或﹣10【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x+1)(x﹣1)=0,得到x=﹣1或1,然后代入化为整式方程的方程算出m的值.【详解】方程两边都乘(x+1)(x﹣1),得2(x﹣1)﹣5(x+1)=m∵原方程有增根,∴最简公分母(x+1)(x﹣1)=0,解得x=﹣1或1,当x=﹣1时,﹣4=m,当x=1时,m=﹣10,故m的值可能是﹣4或﹣10.故答案为﹣4或﹣10【点睛】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.3【解析】【分析】【详解】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x ﹣1=0,∴x=1,当x=1时,得m=3,即m 的值为3.故答案为3.18.-2或1【解析】【分析】分式方程无解分为两种可能,一个是分式方程有增根造成无解,另一个是去分母后的整式方程无解,而使得分式方程无解,根据两种情况分别求a 值即可.【详解】解:根据解分式方程的步骤去分母,整理得: 311x a x x--=- ,解得: ()23a x += , 当2=0a +时,即2a =-时,整式方程无解,则原分式方程无解;当20a +≠时,当x=0或x=1时,分母为零,分式方程有增根,则分式方程无解无解, 则分别代入得,()213a +⋅=,()203a +=(无解),解得a=1故答案为-2或1【点睛】本题考查了分式方程的无解的情况,讨论分式方程有增根和整式方程无解是解题关键. 19.无解;【解析】【分析】两边乘(1)(2)x x -+化为整式方程即可解决问题;【详解】解:两边乘(1)(2)x x -+得到:(2)(1)(2)3x x x x +--+=解得:=1x经检验:=1x 是分式方程的增根,故原分式方程无解.【点睛】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.20.12或38-.【解析】【分析】分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.【详解】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=1 2②当2m﹣1≠0时,x=721-mm,x=32时,原分式方程无解;即32127=-mm,解得m=38-故答案为:12或38-.【点睛】本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.21.0或1【解析】【分析】根据分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,分类讨论当a=0时与a≠0时求出答案.【详解】解:1122 axx x-=--去分母得:11ax-=,即:2ax=,分情况讨论:①当整式方程无解时,0a=,此时分式方程无解;②当分式方程无解时,即x=2,此时0a ≠,则22x a== , 解得:1a = ,故当0a =或者1a =时分式方程无解;故答案为:0或1【点睛】 本题主要考查了分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,正确掌握解分式方程的步骤是解题的关键.22.1或12【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12; 当1-2a≠0时,x=312a a--=3时,分式方程无解, 则a=1, 故关于x 的分式方程333x a x x +-+=2a 无解,则a 的值为:1或12. 故答案为1或12. 点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.23.1或-1【解析】【分析】根据分式方程无解,得到最简公分母为0求出x 的值,分式方程转化为整式方程,把x 的值代入计算即可.【详解】解:去分母:x a ax a -=+ 即:1)2a x a -=-( . 显然a=1时,方程无解.由分式方程无解,得到x+1=0,即:x=-1.把x=-1代入整式方程:-a+1=-2a .解得:a=-1.综上:a 的值为1或者-1.【点睛】本题考查了分式方程的解,需要注意在任何时候考虑分母不能够为0.24.32【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x ﹣3=0,求出x 的值,代入整式方程求出m 的值即可.【详解】解:去分母,得:x +m ﹣3m =3(x ﹣3),由分式方程有增根,得到x ﹣3=0,即x =3,把x =3代入整式方程可得:3+m ﹣3m =0,解得m =32, 故答案为:32. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.1【解析】【分析】先把分式方程化为整式方程,求出方程的解,再由分式方程无解,得到1x =,代入计算,即可得到m 的值.【详解】解:∵11x m x x =--, ∴(1)()0x x m --=,∴1x =或x m =,∵关于x 的分式方11x m x x =--无解,即是1x =, 当1x =时,1m =.故答案为:1.【点睛】本题考查了解分式方程,根据分式方程无解求参数的值,解题的关键是掌握解分式方程的方法.26.3【解析】【分析】首先将分式方程化为整式方程,表示出整式方程的解,再根据分式方程无解确定x 的值,然后再求m 的值.【详解】解:去分母得:x−2(x −3)=m ,解得:x =6−m ,由分式方程无解可得:x =3,即6−m =3,解得:m =3,故答案为:3.【点睛】本题考查了分式方程无解问题.分两种情况:一种是把分式方程化成整式方程后,整式方程无解;一种是把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根.27.2【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.确定增根的可能值,让最简公分母x-2=0即可.【详解】解:∵分式方程的最简公分母是x-2,原方程有增根,∴最简公分母x-2=0,∴增根是x=2.故答案为:2.【点睛】本题考查了分式方程的增根问题,只需让最简公分母为0即可.本题需注意,分式方程的分母是多项式又能因式分解时应先因式分解.28.1 5【解析】【分析】由分式方程,得m=x(x-3)-(x+2)(x-3),x=-2或3时,分式方程无解,x=-2时,m=10;x=3时,m=0,所以在0,1,2,3,4取一个数字m使分式方程无解的概率为15.【详解】解:由分式方程,得m=x(x﹣3)﹣(x+2)(x﹣3)x=﹣2或3时,分式方程无解,x=﹣2时,m=10,x=3时,m=0,所以在0,1,2,3,4,取一个数字m使分式方程无解的概率为15.故答案为:15.【点睛】本题考查了概率公式,熟练掌握解分式方程是解题的关键.29.3【解析】【分析】把分式方程去分母化为整式方程,由题意将3x 代入即可求出m的值.【详解】解:∵233x m x x =+--, ∴()23x m x =+-,∴6x m =-,∵方程有增根,∴增根为3x =,把3x =代入到6x m =-中得:3m =,故答案为:3.【点睛】本题考查了分式方程的增根,增根问题可以按照如下步骤进行:①化分式方程为整式方程;②让最简公分母为零求出增根;③把增根代入到整式方程中即可求得相关字母的值. 30.4【解析】【分析】先通过去分母,把分式方程化为整式方程,求出8x a =-,根据分式方程无解,可得8x a =-是分式方程有增根,进而即可求解.【详解】244x a x x =+--, 去分母得:2(4)x x a =-+,解得:8x a =-, ∵分式方程244x a x x =+--无解, ∴8x a =-是增根,即:8-a=4,∴a=4.故答案是:4.【点睛】本题主要考查分式方程的增根,学会去分母,把分式方程化为整式方程,熟练掌握分式方程的增根的意义:使分式方程的分母等于零的根,是解题的关键.。
2022~2023学年北京市八年级上期末数学试卷分类汇编——分式(原卷版)
2022~2023学年北京市八年级上期末数学试卷分类汇编——分式一.选择题(共11小题)1.(2022秋•密云区期末)若分式有意义,则实数x的取值范围是()A.x≠﹣4B.x=﹣4C.x≠4D.x=4 2.(2022秋•密云区期末)我国的泉州湾跨海大桥是世界首座跨海高铁大桥,其创新采用的“石墨烯重防腐涂装体系”,将实现30年超长防腐寿命的突破.石墨烯作为本世纪发现的最具颠覆性的新材料之一,其理论厚度仅有0.00000000034m,请将0.00000000034用科学记数法表示为()A.0.34×109B.0.34×10﹣9C.3.4×1010D.3.4×10﹣10 3.(2022秋•怀柔区期末)若分式有意义,则x的取值范围是()A.x>1B.x=1C.x<1D.x≠1 4.(2022秋•平谷区期末)下列分式中是最简分式的是()A.B.C.D.5.(2022秋•顺义区期末)如果把分式中的m,n都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍B.缩小为原来的C.扩大为原来的4倍D.不变6.(2022秋•门头沟区期末)如果分式有意义,那么x的取值范围()A.x≠0B.x≠1C.x=﹣1D.x≠﹣1 7.(2022秋•怀柔区期末)2022年11月30日神舟十五号飞船载乘3名航天员成功与神舟十四号航天员乘组上演“太空相会”.航天员的宇航服加入了气凝胶可以抵御太空的高温.气凝胶,是一种具有纳米多孔结构的新型材料,气凝胶颗粒尺寸通常小于0.00000002m,0.00000002m用科学记数法表示为()A.2×10﹣9B.2×108C.2×10﹣8D.0.2×10﹣88.(2022秋•西城区期末)地处北京怀柔科学城的“北京光源”(HEPS)是我国第一台高能同步辐射光源,在施工时严格执行“防微振动控制”的要求,控制精度级别达到纳米(nm)级.lnm=0.000000001m.将0.000000001用科学记数法表示应为()A.1×10﹣8B.1×10﹣9C.10×10﹣10D.0.1×10﹣8 9.(2022秋•西城区期末)下列各式从左到右的变形正确的是()A.B.C.D.10.(2022秋•顺义区期末)解方程,去分母后正确的是()A.3(x+1)=1﹣x(x﹣1)B.3(x+1)=(x+1)(x﹣1)﹣x(x﹣1)C.3(x+1)=(x+1)(x﹣1)﹣x(x+1)D.3(x﹣1)=1﹣x(x+1)11.(2022秋•怀柔区期末)计算的结果为()A.B.1C.﹣1D.﹣2二.填空题(共8小题)12.(2022秋•密云区期末)分式的值为0,则x的值是.13.(2022秋•西城区期末)若分式有意义,则字母x满足的条件是.14.(2022秋•顺义区期末)若分式值为0,则x的值为.15.(2022秋•顺义区期末)计算:=.16.(2022秋•门头沟区期末)若分式=0,x=.17.(2022秋•平谷区期末)若分式的值为零,则x的值为.18.(2022秋•东城区期末)若分式的值等于零,则x的值是.19.(2022秋•怀柔区期末)分式与的最简公分母是.三.解答题(共26小题)20.(2022秋•西城区期末)解方程:.21.(2022秋•平谷区期末)解分式方程:.22.(2022秋•平谷区期末)已知:,(x,y是正整数).(1)若,求M﹣N的值;(2)试比较M与N的大小.23.(2022秋•东城区期末)在化简分式时,甲同学的解法如下.阅读甲同学的解法,完成下列问题.解:原式=……①=(x+1)(x﹣1)﹣•(x+1)(x﹣1)……②=2x﹣(x+1)……③=2x﹣x﹣1……④=x﹣1.……⑤(1)甲同学从第步开始出错(填序号);(2)请你写出正确的解法.24.(2022秋•门头沟区期末)计算:.25.(2022秋•密云区期末)﹣÷.26.(2022秋•密云区期末)解分式方程:.27.(2022秋•平谷区期末)计算:.28.(2022秋•平谷区期末)先化简,再代入求值:,其中.29.(2022秋•东城区期末)先化简,再求值:()•,其中x从﹣2,2,3三个数中任取一个合适的值.30.(2022秋•东城区期末)解分式方程:1﹣=.31.(2022秋•顺义区期末)计算:(1);(2).31.(2022秋•顺义区期末)计算:.32.(2022秋•顺义区期末)先化简,再求值:,其中.34.(2022秋•门头沟区期末)列方程解应用题:甲、乙两地相距19千米某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍.求步行的速度和骑自行车的速度.35.(2022秋•怀柔区期末)填空:,变形的依据是.36.(2022秋•怀柔区期末)解分式方程:.37.(2022秋•密云区期末)交通是经济的脉络和文明的纽带.截至2020年底,我国高速铁路运营里程五年间翻了近一番,稳居世界第一,居民出行更加便捷.据悉,甲乙两城市相距800千米,乘坐高铁列车比乘坐普通列车的运行时间缩短了4小时,已知高铁列车的平均速度是普通列车平均速度的2.5倍,求高铁列车的平均速度.38.(2022秋•怀柔区期末)某种消毒液原液需加水稀释后使用,用于衣物消杀的浓度是用于环境消杀浓度的2倍.取1L原液加水稀释用于衣物消杀,再取2L原液加水稀释用于环境消杀.按相应浓度稀释后发现,用于衣物消杀加入水的体积比用于环境消杀加入水的体积少6L.求该消毒液用于环境消杀的浓度.(浓度=原液体积/加入水的体积,注意此浓度无单位)39.(2022秋•西城区期末)已知a=﹣,求代数式的值.40.(2022秋•西城区期末)阅读两位同学的探究交流活动过程:a.小明在做分式运算时发现如下一个等式,并对它进行了证明.;①b.小明尝试写出了符合这个特征的其他几个等式:;②;③;④…c.小明邀请同学小亮根据上述规律写出第⑤个等式和第n个等式(用含n的式子表示,n为正整数);d.小亮对第n个等式进行了证明.解答下列问题:(1)第⑤个等式是;(2)第n个等式是;(3)请你证明第n个等式成立.41.(2022秋•平谷区期末)阅读理解:材料1:为了研究分式与其分母x的数量变化关系,小力制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234……﹣0.25﹣0.5﹣1无意义10.50.0.25…﹣0.从表格数据观察,当x>0时,随着x的增大,的值随之减小,若x无限增大,则无限接近于0;当x<0时,随着x的增大,的值也随之减小.材料2:在分子、分母都是整式的情况下,如果分子的次数小于分母的次数,称这样的分式为真分式.如果分子的次数大于或等于分母的次数,称这样的分式为假分式.任何一个假分式都可以化为一个整式与一个真分式的和.例如:;根据上述材料完成下列问题:(1)当x>0时,随着x的增大,的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>﹣3时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0<x<1时,直接写出代数式值的取值范围是.42.(2022秋•顺义区期末)某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.43.(2022秋•门头沟区期末)化简:.44.(2022秋•门头沟区期末)先化简,再求值:,其中.45.(2022秋•门头沟区期末)解方程:﹣=1.第11页(共11页)。
中考数学试卷分类汇编 分式方程
中考全国100份试卷分类汇编分式方程1、(黄石)分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x = 答案:D解析:去分母,得:3(x -1)=2x ,即3x -3=2x ,解得:x =3,经检验x =3是原方程的根。
2、(•温州)若分式的值为0,则x 的值是( )A . x =3B . x =0C . x =﹣3D . x =﹣4考点:分式的值为零的条件. 分析:根据分式值为零的条件可得x ﹣3=0,且x+4≠0,再解即可. 解答:解:由题意得:x ﹣3=0,且x+4≠0, 解得:x=3,故选:A .点评: 此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3、(•莱芜)方程=0的解为( ) A . ﹣2 B . 2 C . ±2 D . 考点: 解分式方程.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答: 解:去分母得:x 2﹣4=0,解得:x=2或x=﹣2,经检验x=2是增根,分式方程的解为x=﹣2.故选A点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4、(•滨州)把方程变形为x=2,其依据是( ) A . 等式的性质1B . 等式的性质2C . 分式的基本性质D . 不等式的性质1考点:等式的性质.分析:根据等式的基本性质,对原式进行分析即可.解答:解:把方程变形为x=2,其依据是等式的性质2;故选:B.点评:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.5、(•益阳)分式方程的解是()A.x=3 B.x=﹣3 C.x= D.x=考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6、(山西,6,2分)解分式方程22311xx x时,去分母后变形为()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3(1- x)D.2-(x+2)=3(x-1)【答案】D【解析】原方程化为:22311xx x+-=--,去分母时,两边同乘以x-1,得:2-(x+2)=3(x-1),选D。
初中数学试题分类汇编:分式方程根据解的情况求值问题综合训练1(填空 附答案)
初中数学试题分类汇编:分式方程根据解的情况求值问题综合训练1(填空 附答案) 1.若分式方程1133a x x x -+=--有增根,则 a 的值是__________________. 2.关于x 的分式方程21+m x =-1的解是负数,则m 的取值范围是_________. 3.若关于x 的分式方程32ax x --=32x -+2有正整数解,则符合条件的非负整数a 的值为_____.4.若关于x 的方程4122a x x =+--无解,则a 的值是______. 5.关于x 的方程1242k x x x -=--的解为正数,则k 的取值范围是____. 6.关于x 的分式方程11222k x x-+=--的解为正实数,则k 的取值范围是________. 7.若关于x 的方程3x m x +-+33m x-=3的解为正数,则m 的取值范围是______. 8.若关于x 的分式方程212x m x +=-+的解是负数,则m 的取值范围是_________________.9.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是_________. 10.若关于x 的方程2222x m x x ++=--的解为正数,则m 的取值范围是_______. 11.若数a 使关于x 的分式方程2311x a x x++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________12.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 13.若关于x 的分式方程x 2322m m x x ++=--的解为正实数,则实数m 的取值范围是____.14.若关于x 的方程1222x m x x-=---的解为正数,则m 的取值范围为_____. 15.已知关于x 的方程341x m x +=-的解是正数,则m 的取值范围为__________. 16.若方程323x x k=++的根为负数,则k 的取值范围是______。
山东数学中考分类汇编--有关分式方程的应用题
有关分式方程的应用题1.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?2.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?3.(2019•泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?4.(2018年东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.4.(2018年泰安)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)(2022•菏泽)某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.(1)篮球、排球的进价分别为每个多少元?(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?5(2019•菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.6.(2018•菏泽)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?7(2019济南)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?8济南2021.24.(10分)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?9(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?10.(2019年青岛市)(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?11.(2017年青岛市)(本小题满分10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元日总收入(元)(2)今年旺季来临,豪华间的间数不变。
《分式方程》精编测试题及参考答案
《分式方程》精编测试题及参考答案一、选择题1.解分式方程1x−1−2=31−x,去分母得( )A.1-2(x-1)=-3B.1-2(x-1)=3C.1-2x-2=-3D.1-2x+2=32.分式方程xx−1−1=3(x−1)(x+2)的解为( )A.无解B.x=1C.x=-1D.x=-23.若关于x的方程x+1x−2=2a−3a+5的解为x=0,则a等于( )A.15 B.25C.35D.454.分式方程1x−3+1x+3=4x2−9的解是( )A.x=±2B.x=2C.x=-2D.无解5.若关于x的方程x−2x−3=mx−3+2无解,则m等于( )A.0B.1C.2D.36.关于x的分式方程2x+ax+1=1的解为负数,则a的取值范围为( ) A.a>1 B.a<1 C.a>1且a≠2 D.a<1且a≠-27.若m是整数,且关于x的方程3m+1x2−1+mx+1=2x−1有整数解,则m的值是( )A.3或5B.-3或5C.-1或3D.-3或-58.某市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天种植x万棵,可列方程是( )A.3020%x +5=30xB.30x−3020%x=5 C.30x−30(1+20%)x=5 D.30(1+20%)x−30x=59.某校九年级师生在清明节期间前往距离学校15km的烈士陵园扫墓.一部分师生骑自行车先走,过了30min后,其余师生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车师生速度的2倍,设骑车师生的速度为xkm/h.根据题意,下列方程正确的是( )A.15x +12=152xB.15x=152x+12C.15x+30=152xD.15x=152x+3010.若关于x的分式方程xx−1+1=m1−x的解为非负数,则m的取值范围是( )A.m≤1且m≠-1B.m≥-1且m≠1C.m<1且m≠-1D.m>-1且m≠111.若关于x的方程xx−3−2=mx−3有正数解,则( )A.m>0且m≠3B.m<6且m≠3C.m<0D.m>612.某施工队挖一条240m的渠道,开工后每天比原计划多挖20m,结果提前2天完成任务,若设原计划每天挖xm,则所列方程正确的是( )A.240x −240x+20=2 B.240x−240x+2=20 C.240x−20−240x=2 D.240x−2−240x=2013.某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为( )A.1000.5x =100x+23B.1000.5x+23=100xC.100x+23=1001.5xD.100x=1001.5x+2314.为了丰富学生的校园生活,学校购进一批篮球和排球,其中篮球的单价比排球的单价多20元。
初中数学试题分类汇编:分式方程的增根无解问题综合训练2(解答 附答案)
初中数学试题分类汇编:分式方程的增根无解问题综合训练2(解答 附答案) 1.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?2.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程3111a x x+=--的解为正数,求a 的取值范围? 经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2.由题意可得a ﹣2>0,所以a >2,问题解决.小强说:你考虑的不全面.还必须保证a≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明: .完成下列问题:(1)已知关于x 的方程212mx x -+=1的解为负数,求m 的取值范围; (2)若关于x 的分式方程32233x nx x x --+--=﹣1无解.直接写出n 的取值范围. 3.当a 为何值时,关于x 的方程223224ax x x x +=-+-无解. 4.已知关于x 的分式方程2222x m x x++=--, (1)若分式方程有增根,求m 的值;(2)若分式方程的解是正数,求m 的取值范围.5.若关于x 的分式方程223242mx x x x +=--+无解,求m 的值. 6.若关于x 的方程:234393ax x x x +=--+无解,求a 的值. 7.已知关于x 的分式方程1x a a x -=+无解,求a 的值. 8.关于x 的方程:ax 121x 11x+=+--. ()1当a 2=时,求这个方程的解;()2若这个方程无解且a 1≠,求a 的值.9.已知,关于x 的分式方程1235a b x x x --=+-. (1)当1a =,0b =时,求分式方程的解;(2)当1a =时,求b 为何值时分式方程1235a b x x x --=+-无解: (3)若3a b =,且a 、b 为正整数,当分式方程1235a b x x x --=+-的解为整数时,求b 的值.10.已知关于x 的分式方程311x a x x--=+无解,求a 的值. 11.解方程:(1)3513x x =++ (2)若分式方程:342(2)=+--a x x x x 无解,求a 的值. 12.若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值? 13.若关于x 的方程()23011x x a x x x x -+-+=--没有实数根,则a 的值是多少? 14.解分式方程: 51x + 31x -= 261x - 15.已知关于x 的分式方程2311x a a x x x x --=+--,回答下列问题: (1) 原方程去分母后,整理成关于x 的整式方程得:_______________________. (2) 若原分式方程无解,求a 的值.16.(1)解方程:2210x x --=(2)已知关于x 的方程1011m x x x --=--无解,方程260x kx ++=的一个根是m . ①求m 和k 的值;②求方程260x kx ++=的另一个根. 17.若关于x 的方程311x a x x--=-无解,求a 的值. 18.当a 为何值时,关于x 的分式方程212(1)1232a a x x x x +-=---+总无解. 19.a 为何值时,关于x 的方程213242ax x x x +=--+会产生增根?20.a 为何值时,分式方程()31011x a x x x x +-+=++无解? 21.当k 为何值时,分式方程()62511x k x x x x +=--- 有增根? 22.若关于x 的方程4233k x x x-+=--有增根,试求k 的值. 23.已知关于x 的方程4122ax x x =+--. (1)当3a =时,解这个方程;(2)若这个方程无解,求a 的值.参考答案1.(1)0x=;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x-得()5321x+-=-解得0x=经检验,0x=是原分式方程的解.(2)设?为m,方程两边同时乘以()2x-得()321m x+-=-由于2x=是原分式方程的增根,所以把2x=代入上面的等式得()3221m+-=-1m=-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2.(1):m<12且m≠﹣14;(2)n=1或n=53.【解析】【分析】考虑分式的分母不为0,即分式必须有意义;(1)表示出分式方程的解,由解为负数确定出m的范围即可;(2)分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n的范围即可.【详解】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x的分式方程得,x=321 m-,∵方程有解,且解为负数,∴21032 21mm-⎧⎪⎨≠-⎪-⎩<,解得:m<12且m≠-14;(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=53;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=53.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3.a=1,-4或6时原方程无解.【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【详解】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.【点睛】此题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键.4.(1)m=0;(2)m<6且m≠0.【解析】【分析】(1)方程两边都乘以最简公分母()2x -,把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出的x 的值,然后代入进行计算即可求出m 的值;(2)解分式方程得2x m =+,根据方程的解为正数得出20m +>,且22m +≠,解不等式即可得出答案.【详解】(1)方程两边都乘以()2x -得,()222x m x --=-分式方程有增根20x ∴-=解得2x =()22222m ∴--=-解得0m =(2)方程两边都乘以()2x -得,()222x m x --=- 解得63m x -= 方程的根为正数603m -∴>,且0m ≠ 6m ∴<,且0m ≠【点睛】本题考查了分式方程无解的情况,将分式方程化为整式方程是解题的关键.5.m =4-或1或6【解析】【分析】先把原方程去掉分母转化为整式方程()110m x -=,然后根据原方程无解可得x =2或﹣2或1-m =0,进一步即可求出m 的值.【详解】 解:原方程即为:()()222322x x mx x x +=+--+, 方程两边同乘以()()22x x +-,约去分母,得()()2232x mx x ++=-,整理,得()110m x -=,当x =2时,原方程无解,此时()2110m -=,解得:m =4-;当x =﹣2时,原方程无解,此时()2110m --=,解得:m =6;当1-m =0时,原方程无解,解得:m =1;综上,m =4-或1或6.【点睛】本题考查了分式方程的解法和分式方程的增根及无解问题,属于常考题型,正确理解题意、熟练掌握分式方程的解法是解题关键.6.a =1或8或﹣6.【解析】【分析】分式的无解分两种情况来解:(1)是分式有增根,即分母为零;(2)是分式方程转化成整式方程后,整数方程无解,即未知数系数为0.【详解】解:分式方程去分母得:3x +9+ax =4x ﹣12,(1)由分式方程有增根,得到(x +3)(x ﹣3)=0,即x =3或x =﹣3,把x =3代入整式方程得:18+3a =0,即a =﹣6;把x =﹣3代入整式方程得:﹣3a =﹣24,即a =8,综上,a 的值为﹣6或8.(2)整式方程整理得:(a ﹣1)x =﹣21,由方程无解,得到a ﹣1=0,即a =1或8或﹣6.【点睛】注意区分分式方程无解和有增根两种情况.分式方程无解包括有增根和化成整数方程后无解的情况,而有增根仅仅是分式分母为0一种情形.7.1a =或-1【解析】【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】方程去分母得:x-a=a(x+1),理得,(1-a )x=2a ,当整式方程无解时,1-a =0,a=1,当分式方程无解时:x=-1,a=-1,所以1a =或-1时,原方程无解.【点睛】本题考查了分式方程,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.8.(1) x 4=-;(2)a=-3【解析】【分析】(1)把a=2代入方程,解分式方程即可;(2)根据增根的概念解答.【详解】()1当a 2=时,原方程为2x 121x 11x+=+--,方程两边同时乘以()x 1-得:2x 12x 1+=-+-,解这个整式方程得:x 4=-,检验:当x 4=-时,x 14150-=--=-≠,x 4∴=-是原方程的解;()2方程两边同时乘以()x 1-得:ax 12x 1+=-+-,即(a-1)x=-4,若原方程无解且a 1≠,则x 10-=,解得:x 1=,将x 1=代入整式方程得:a 14-=-,解得:a 3=-.【点睛】本题考查的是分式方程的解法,掌握解分式方程的一般步骤是解题的关键.9.(1)1011x =-;(2)5b =或112;(3)3,29,55,185b = 【解析】【分析】(1)将a ,b 的值代入方程得11235x x x +=+-,解出这个方程,最后进行检验即可; (2)把1a =代入方程得11235b x x x --=+-,分式方程去分母转化为整式方程为(112)310b x b -=-,由分式方程有增根,得11-2b=0,或230x +=(不存在),或50x -=求出b 的值即可;(3)把3a b =代入原方程得31235b b x x x --=+-,将分式方程化为整式方程求出x 的表达式,再根据x 是正整数求出b ,然后进行检验即可.【详解】(1)当1a =,0b =时,分式方程为:11235x x x +=+-解得:1011x =- 经检验:1011x =-时是原方程的解 (2)解:当1a =时,分式方程为:11235b x x x --=+- (112)310b x b -=-①若1120b -=,即112b =时,有:1302x •=,此方程无解 ②若1120b -≠,即112b ≠时,则 若230x +=,即310230112b b-⨯+=-,663320b b -=-,不成立 若50x -=,即31050112b b--=-,解得5b = ∴综上所述,5b =或112时,原方程无解 (3)解:当3a b =时,分式方程为:31235b b x x x --=+- 即(10)1815b x b +=-∵,a b 是正整数∴100b +≠ ∴181510b x b-=+ 即1951810x b =-+ 又∵,a b 是正整数,x 是整数.∴3,5,29,55,185b =经检验,当5b =时,5x =(不符合题意,舍去)∴3,29,55,185b =【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.a 的值是-4或-1【解析】【分析】分式方程无解有两种情况:①去分母后所得整式方程无解,②解这个整式方程得到的解使原方程的分母等于0.【详解】311x a x x--=+, 两边乘以x(x+1),得x(x-a)-3(x+1)=x(x+1),整理,得(a+4)x=-3,显然当a=-4时,方程无解; ∵分式方程311x a x x--=+无解, ∴x(x+1)=0,∴x=0或x=-1,当x=0时,(a+4) ×0≠-3,此时a 无解;当x=-1时,(a+4) ×(-1)=-3,解得a=-1.综上可知,当分式方程无解时,a 的值是-4或-1.【点睛】本题考查了根据分式方程的无解求参数的值,是需要识记的内容.分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0. 11.(1)x=2;(2)a=2或3.【解析】【分析】(1)通过取分母,去括号,移项,合并同类项,未知数系数化为1,即可求解;(2)先去分母,整理得(3-a )x=4-2a ,分两种情况:① 当分式有增根时,② 当方程(3-a )x=4-2a 无解时,分别求出a 的值,即可.【详解】(1)去分母得:3(3)5(1)x x +=+,去括号,移项,合并同类项得:2x=4,解得:x=2,经检验:x=2是方程的根;(2)去分母得:3x=a(x-2)+4,即:(3-a )x=4-2a ,分两种情况讨论:① 当分式有增根时,即x(x-2)=0,得x=0或2,当x=0时,a=2;当x=2时得6=4,不成立,② 当方程(3-a )x=4-2a 无解时,即3-a=0,a=3;∴原方程无解时,a=2或3.【点睛】本题主要考查分式方程的解法以及根据分式方程根的情况求参数,掌握解分式方程的步骤,把分式方程化为整式方程是解题的关键.12.5a =-或12-或2-. 【解析】【分析】 方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,利用方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值. 【详解】 解:方程1221(1)(2)x x ax x x x x ++-=+--+ 可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+, ∴−1−2x=ax+2,把1代入可得a=−5,2代入可得a=12-,此时方程无解; 又a=−2时方程无解,∴a=−5或12-,或−2, 【点睛】 本题考查分式方程,解题的关键是熟练掌握分式方程的化简.13.a=2或-3【解析】【分析】通过去分母,去括号,合并同类项,对分式方程进行化简,得(3)50a x --+=,结合方程没有实数根,即可求解.【详解】()23011x x a x x x x -+-+=--, 方程两边同乘以x(x-1),得:(2)(1)()30x x x x a ---++=,去括号,合并同类项,得:(3)50a x --+=,把增根x=1代入(3)50a x --+=,得350a --+=,解得:a=2,当-3-a=0时,050+≠,∴当a=-3时,方程()23011x x a x x x x -+-+=--没有实数根, 综上所述:a=2或-3.【点睛】本题主要考查根据方程的解的情况求参数的值,掌握分式方程的解法和分式方程的增根的意义,是解题的关键.14.无解【解析】【分析】分式方程去分母化为整式方程,求出整式方程的解得到x 的值,再检验是否为方程的解.【详解】解: 51x + 31x -= 261x -方程两边乘(x ﹣1)(x +1),得5(x ﹣1)+3(x +1)=6.解得x =1.检验:当x =1时,x 2﹣1=0.因此x =1不是原分式方程的解.所以原分式方程无解.【点睛】本题考查了解分式方程的步骤的知识,即去分母:在方程两边都乘以最简公分母,约去分母,化为整式方程、解方程、验根:把整式方程的根代入最简公分母,若结果是零,则这个根是原方程的增根,必须舍去;若结果不为零,则是原方程的根、得出结论,掌握解分式方程的步骤是解题的关键.15.(1)(2)3a x a +=-;(2)-2、3或12. 【解析】【分析】(1)先确定最简公分母是()1x x -,方程两边同时乘以最简公分母约去分母,移项整理即可求解;(2)根据分式方程无解,分两种情况讨论,第一种,整式方程无解,第二种原分式方程有增根.【详解】(1)解:方程两边同时乘以()1x x -可得: ()()()311x x a x x x a ---=-+,整理可得: ()23a x a --=-,即(2)3a x a +=-.(2)当20a +=时,(2)3a x a +=-无解;解得:a =-2. 因为2311x a a x x x x--=+--增根是x =0和x =1, 所以当x =0时, 03a =-,解得3a =,当x =1时, 23a a +=-,解得a =12. 【点睛】本题主要考查分式方程解法和分式方程无解问题,解决本题的关键是要熟练掌握分式方程无解问题的方法.16.(1)112x =-,21x =;(2)①2m =,5k =-,②另一个根是3. 【解析】【分析】 (1)用因式分解法解方程即可;(2)①根据分式方程无解,先求出m 的值 ,然后将m 代入一元二次方程中求出k 的值即可;②根据根与系数的关系可求出另一个根.【详解】(1)原方程可化为()()2110x x +-=210x +=或10x -= 解得:112x =-,21x = (2)①解:将分式方程两边同时(1)x ⨯- ,得到10m x --= ,解得1x m =- ∵分式方程无解,11x m ∴=-=2m ∴=,把2m =代入方程260x kx ++=,得22260k ++=求得5k =-②根据一元二次方程根与系数的关系可得126x x =∵2m =∴另外一个根是3【点睛】本题主要考查解一元二次方程及一元二次方程根与系数的关系,分式方程无解问题,掌握分式方程无解问题的方法及一元二次方程根与系数的关系是解题的关键.17.1-2a =或分析:该分式方程311x a x x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x (x-a )-3(x-1)=x (x-1),去括号得:x 2-ax-3x+3=x 2-x ,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a 无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x 无解 即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形. 18.a=-1或32-或-2 【解析】【分析】先把原分式方程的两边乘以()()12x x --,然后化简,根据分式无意义的条件得出x 的取值范围即可.【详解】解:两边乘以()()12x x --得()212(1)x a x a -+-=+整理得()134a x a +=+∵方程无解∴10a +=或3411a a +=+或3421a a +=+ 解得a=-1或32-或-2.本题考查了分式方程的解,熟练掌握分式方程无解的条件是解本题的关键.19.a=﹣2或a=6【解析】【分析】先去分母化为整式方程,整理得:(a -2)x +8=0,由于关于x 的方程213242ax x x x +=--+会产生增根,则(x +2)(x -2)=0,解得x =-2或x =2,然后把x =-2或x =2分别代入(a -2)x +8=0,即可求得a 的值.【详解】解:方程两边都乘(x ﹣2)(x +2),得x +2+ax=3(x ﹣2)∵原方程有增根,∴最简公分母(x ﹣2)(x +2)=0,解得x=2或﹣2,x=2时,a=﹣2,当x=﹣2,a=6,当a=﹣2或a=6时,关于x 的方程213242ax x x x +=--+会产生增根. 【点睛】本题考查了分式方程的增根;先把分式方程转化为整式方程,解整式方程,若整式方程的解使分式方程的分母为0,则这个整式方程的解就是分式方程的增根.20.当3a =-或0a =时原分式方程无解【解析】 【试题分析】方程()31011x a x x x x +-+=++的两边同乘以()1x x +,去分母,得: ()()310x x x a +-++=,整理,得330x a ++=. 即()133x a =-+,把()133x a =-+代入最简公分母()1x x +,使其值为零,说明整式方程的根是增根. 当 ()1303x a =-+=时,3a =-;当 ()1313x a =-+=-时,0a =,于是当3a =-或0a =时原分式方程无解.【试题解析】 方程()31011x a x x x x +-+=++的两边同乘以()1x x +,去分母,得 ()()310.x x x a +-++=整理,得330x a ++=。
初中数学试题分类汇编:分式方程根据解的情况求值问题综合训练2(选择 附答案)
初中数学试题分类汇编:分式方程根据解的情况求值问题综合训练2(选择 附答案) 1.已知关于x 的方程232x m x -=+的解是负数,那么m 的取值范围是( ) A .6m >-且2m ≠- B .6m <-C .6m >-且4m ≠-D .6m <-且2m ≠-2.若关于y 的不等式组122y-k 46y k k -⎧≥⎪⎨⎪≤+⎩有解,且关于x 的分式方程32222kx x x x +=---有非负整数解,则符合条件的所有整数k 的和为( )A .-5B .-9C .-10D .-163.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠ 4.若数a 使关于x 的分式方程1133x a x x++=--有非负整数解,且使关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5B .﹣3C .0D .2 5.若关于x 的方程3344x m m x x ++=--的解为正数,则m 的取值范围是( ). A .92m <B .94m >-且34m ≠-C .6m <D .6m <且2m ≠6.已知关于x 的分式方程6111m x x +=--的解是非负数,则m 的取值范圈是( ) A .5m > B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 7.若关于 x 的分式方程3111m x x -=-- 的解是非负数,则 m 的取值范围是( ) A .m ≥-4B .m ≥-4 且 m ≠-3C .m ≥2 且 m ≠3D .m ≥2 8.关于x 的方程2211x m m x x -+=--的解为正数,则m 的取值范围是( ) A .23m < B .23m > C .23m <且13m ≠ D .23m <且0m ≠ 9.若关于x 的方程232x m x +=-的解是正数,则m 的取值范围是( ) A .6m >- B .6m >-且2m ≠C .6m >-且4m ≠-D .6m <-且4m ≠-10.已知关于x 的分式方程11m x ---1=21x -的解是正数,则m 的取值范围是( ) A .m <4 且m ≠3B .m <4C .m ≤3且m ≠3D .m >5且m ≠611.已知二次函数y =(a+2)x 2+2ax+a ﹣1的图象与x 轴有交点,且关于x 的分式方程1ax x ++1=71x +的解为整数,则所有满足条件的整数a 之和为( ) A .﹣4 B .﹣6 C .﹣8 D .312.若关于x 的分式方程121m x +=-的解为非负数,则m 的取值范围是( ) A .3m >- B .3m ≥-C .3m >-且1m ≠-D .3m ≥-且1m ≠-13.对于二次函数y =2x 2﹣(a ﹣2)x +1,当x >1时,y 随x 的增大而增大;且关于x 的分式方程22x -﹣3=2ax x --有整数解,则满足条件的整数a 的和为( ) A .5B .6C .10D .17 14.关于x 的方程2334ax a x +=-的解为1x =,则a =( ) A .1 B .3 C .-1 D .-315.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1 B .2 C .3 D .416.若关于x 的分式方程1322m x x x ++=--有增根,则m 的值是( ) A .m =-1 B .m =2C .m =3D .m =0或m =3 17.已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( ) A .1a >B .1a ≥C .1a ≥且9a ≠D .1a ≤ 18.已知分式方程312(1)(2)x k x x x +=++-+的解为非负数,求k 的取值范围( ) A .5k ≥ B .1k ≥- C .5k ≥且6k ≠ D .1k ≥-且0k ≠19.已知关于x 的一次函数()210y a x a =--+的图象过一、三、四象限,且关于y 的分式方程93322ay a y y--=--有整数解,求所有满足条件的整数a 的和为( ) A .11 B .15 C .21 D .2420.若关于x 的方程3133x ax x x ++=--有正整数解,且关于y 的不等式组252510y a y -⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a 有( )个A .0B .1C .2D .321.若关于x 的分式方程11m x --=2的解为非负数,则m 的取值范围是( ) A .m >﹣1B .m ≥1C .m >﹣1且m ≠1D .m ≥﹣1且m ≠1 22.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 23.若x=4是分式方程213a x x -=-的根,则a 的值为( ) A .6 B .-6C .4D .-4 24.已知关于x 的分式方程1322ax x x -+---1=0有整数解,且关于x 的不等式组()431122x x x x a ⎧≥-⎪⎨--⎪⎩<有且只有3个负整数解,则符合条件的所有整数a 的个数为( ) A .1 B .2 C .3 D .425.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25参考答案1.C【解析】【分析】先解分式方程,再根据解是负数,列出不等式,求得m 的范围,但要注意检验方程的根.【详解】解:去分母:236-=+x m x解得:6=--x m∵解是负数∴60--<m∴6m >-又分母不为0,∴2x ≠-即4m ≠-∴m 的取值范围是:6m >-且4m ≠-.故答案为:C.【点睛】本题考查了解分式方程和解一元一次不等式,能根据题意求出关于m 的不等式是解此题的关键,最后要记得检验方程的根.2.A【解析】【分析】先解关于y 的不等式组,根据不等式组有解,确定k 的范围.整理分式方程,用含k 的代数式表示出x ,根据x 有非负整数解,确定k 的值,并得结论.【详解】不等式组整理得:4156y k y k ≥+≤+⎧⎨⎩, 由不等式组有解,得到5k+6≥4k+1,即k≥-5,分式方程去分母得:kx=2x-4-3x-2,整理,得kx+x=-6即(k+1)x=-6,解得:x=-61k +, 由方程有非负整数解,∴k+1=-6或-3或-2或-1所以k=-7或-4或-3或-2又因为k≥-5,且-61k +≠2, 所以k=-3,-2∵-3-2=-5.故选:A .【点睛】本题考查了求不等式组、求分式方程的解等知识点,题目难度较大,求分式方程非负数解的过程中,容易忘记分式方程的分母不等于0条件.3.B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x -=--, 21x k x +∴=-, 2x k ∴=+,该分式方程有解,21k ∴+≠, 1k ∴≠-,0x ,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.4.D【解析】【分析】解出分式方程,根据题意确定a 的范围,解不等式组,根据题意确定a 的范围,根据分式不为0的条件得到a ≠﹣2,根据题意计算即可.【详解】 解:()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩①②由①得y >﹣8,由②得y ≤a ,∴不等式组的解集为:﹣8<y ≤a ,∵关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,∴a ≥﹣5, 解分式方程1133x a x x++=--,得x =42a - , ∵关于x 的分式方程1133x a x x ++=--有非负整数解,且42a -≠3, ∴a ≤4且a ≠﹣2且a 为偶数;∴﹣5≤a ≤4且a ≠﹣2且a 为偶数,∴满足条件的整数a 为﹣4,0,2,4,∴所有整数a 的和=﹣4+0+2+4=2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.D【解析】【分析】把分式方程化为整式方程,根据解为正数,得出m 的取值范围.【详解】解:去分母得:x+m-3m=3x ﹣12,整理得:2x=﹣2m+12,解得:x=2122-+m , 已知关于x 的方程3344x m m x x++=--的解为正数, 所以﹣2m+12>0,解得m <6,当x=4时,x=2122-+m =4,解得:m=2, 所以m 的取值范围是:6m <且2m ≠.故答案选:D .【点睛】本题考查了分式方程的解,以及一元一次不等式,掌握方程和不等式的解法是解题的关键,注意要排除产生增根时m 的值.6.C【解析】【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键. 7.B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可.【详解】解:分式方程去分母得:m+3=x-1,解得:x=m+4,由方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m ≥-4且m ≠-3.故选:B .【点睛】此题考查了解分式方程,分式方程的解,时刻注意分母不为0这个条件.解题的关键是熟练掌握运算法则进行解题.8.A【解析】【分析】将分式方程化为整式方程解得x=2-3m ,根据方程的解是正数列得2-3m>0,即可求出m 的取值范围.【详解】2211x m m x x-+=--, x-m-2m=2(x-1),x-3m=2x-2,∴x=2-3m , ∵方程2211x m m x x-+=--的解为正数, ∴2-3m>0, ∴23m <, 故选:A.【点睛】此题考查根据分式方程的解的情况求参数,将方程化为整式方程求出整式方程的解,列出不等式是解答此类问题的关键.9.C【解析】【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【详解】232x m x +=-, 方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x 的方程的解是正数,得:m+6>0,解得:m>−6,∴m 的取值范围是:m>−6且m≠−4,故选:C .【点睛】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键. 10.A【解析】【分析】方程两边同乘以1x -,化为整式方程,求得x ,再列不等式得出m 的取值范围.【详解】 解:12111m x x--=-- 12111m x x --=--- 方程两边同时乘以1x -()112m x ---=-4x m =-+∵已知关于x 的分式方程12111m x x--=--的解是正数,10x -≠∴4041m m -+>⎧⎨-+≠⎩∴4m <且3m ≠.故选:A【点睛】本题考查了分式方程的解的概念、解分式方程、数的分类、解不等式组等知识点,要注意分式的分母不为0的条件,此题是一道易错题,有一定的难度.11.A【解析】【分析】根据二次函数的定义和判别式的意义得到a+2≠0且△=4a 2﹣4×(a+2)(a ﹣1)≥0,则a≤2且a≠﹣2,再解分式方程得到x =61a +且x≠﹣1,利用分式方程的解为整数可求出解得a =0,﹣2,1,﹣3,2,﹣4,5,加上a 的范围可确定满足条件的a 的值,然后计算它们的和.【详解】解:根据题意得a+2≠0且△=4a 2﹣4×(a+2)(a ﹣1)≥0,解得a≤2且a≠﹣2,去分母得ax+x+1=7,解得x =61a +且x≠﹣1, 因为分式方程的解为整数,所以a+1=±1,±2,±3,±6,且a≠﹣7, 解得a =0,﹣2,1,﹣3,2,﹣4,5,所以满足条件的a 的值为﹣4,﹣3,0,2,1.所以所有满足条件的整数a 之和为﹣4+(﹣3)+0+2+1=﹣4.故选:A .【点睛】本题考查的是二次函数与x 轴的交点问题,分式方程的解为整数,注意分式方程有意义的条件,掌握以上知识是解题的关键.12.D【解析】【分析】先将m 视为常数,求解出分式方程的解(包含m),然后根据解的条件判断m 的取值范围.【详解】121m x +=- m+1=2x-2解得:x=32m + ∵分式方程的解为非负数 ∴302m +≥ 解得:m≥-3 ∵方程是分式方程,∴312m +≠ 解得:m≠-1综上得:m≥-3且m≠-1故选:D .【点睛】本题考查解含有字母的分式方程,注意最后得到的结果,一定要考虑增根的情况. 13.C【解析】【分析】先解分式方程得x =4-3a -,根据分式方程22x -﹣3=2ax x --有整数解,可推出a 可以取的值,再根据二次函数的性质可推出a 的取值范围,即可求解.【详解】 解分式方程22x -﹣3=2ax x --, 可得x =4-3a -, ∵分式方程22x -﹣3=2ax x --有整数解, ∴a =﹣1,2,4,5,7,∵y =2x 2﹣(a ﹣2)x +1,∴抛物线开口向上,对称轴为x =24a -, ∴当x >24a -时,y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大, ∴24a -≤1,解得a ≤6, ∴a 能取的整数为﹣1,2,4,5;∴所有整数a 值的和为10,故选:C .【点睛】本题考查了分式方程和二次函数的性质,掌握知识点是解题关键.14.D【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a 的新方程,解此新方程可以求得a 的值.【详解】解:把x=1代入原方程得:23314a a +=-, 去分母得,8a+12=3a-3,解得a=-3,故选:D .【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.15.B【解析】【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2.【详解】解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数,∴1a +>0,即a>-1,又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解, ∴a-1<y ≤8-2a ,即a-1<8-2a ,解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1,则符合题意的整数a 的值有0、2,有2个,故选:B .【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.16.C【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x ﹣2=0,求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:13(2)m x x --=-,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m ﹣3=0,解得:m =3,故选:C【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17.C【解析】【分析】【详解】解:略18.D【解析】【分析】先把分式方程转化为整式方程求出用含有k 的代数式表示的x ,根据x 的取值求k 的范围.【详解】解:分式方程转化为整式方程得,(3)(1)k (1)(2)x x x x +-=+-+解得:k 1x =+解为非负数,则k+10≥,∴k -1≥又∵x≠1且x≠-2,∴k+11k+1-2≠≠,∴k -1≥ ,且k 0≠故选D【点睛】本题考查了分式方程的解,解答本题的关键是先把分式方程转化为整式方程,求出方程的解,再按要求列不等式,解不等式.19.B【解析】【分析】先根据一次函数图像过一、三、四象限求出a 的取值范围,再解分式方程,进而确定其整数【详解】解:∵一次函数()210y a x a =--+过一、三、四象限∴20100->⎧⎨-+<⎩a a ,求得a 的取值范围为:210a << 解分式方程:93322ay a y y--=-- 得:3(2)39--=-ay y a 整理得:3153(3)663333---===----a a y a a a ∵解为整数∴3a -能被6整除,且3a ≠∴31,2,3,6-=±±±±a解得4,2,5,1,6,0,9,3=-a又2y ≠,∴6323-≠-a ,∴9a ≠ 又210a <<∴4,5,6.=a∴所有满足条件的整数a 的和为4+5+6=15.故答案为:B.【点睛】本题考查了一次函数图像问题和分式方程解的整数个数问题,熟练掌握一次函数的图像及分式方程的解法是解决此类题的关键.20.D【解析】【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a 的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a 的值,求出之和即可.【详解】 解:3133x ax x x++=--解得:6 xa =∴方程有正整数解且63a≠即2a≠∴136 a=、、解不等式组252510ya y-⎧<⎪⎨⎪--≤⎩解得1521yy a⎧<⎪⎨⎪≥-⎩关于y的不等式组至少有两个奇数解∴15a-≤∴6a≤∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.21.D【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程22.A【解析】【详解】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=4-m.∵x为正数,∴4-m>0,解得m<4.∵x≠1,∴4-m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.23.A【解析】【分析】把x=4代入方程进行求解即可. 【详解】由题意得:24a-=143-,解得:a=6,故选A.【点睛】本题考查了分式方程的解,熟练掌握分式方程解的意义是解题的关键.24.A【解析】【分析】表示出不等式的解集,由不等式组有且只有3个负整数解,确定a的范围,分式方程去分母转化为整式方程,表示出x,由x为整数确定出a的值即可.【详解】分式方程去分母得:1﹣ax﹣3﹣2+x=0,即(1﹣a)x=4,由分式方程有整数解,得到1﹣a≠0,解得:x41a =-,不等式组整理得:3213xax≥-⎧⎪-⎨⎪⎩<,即﹣3≤x213a-<,由不等式组有且只有3个负整数解,得到﹣1213a-≤<0,解得:﹣1<a12≤,由x为整数,且41a≠-2,得到1﹣a=±1,﹣2,±4,解得:a=0,则符合条件的所有整数a的个数为1.故选:A.【点睛】本题考查一元一次不等式的整数解、分式方程的解,熟练掌握运算法则是解题的关键.25.C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩,不等式组整理得:1 yy a>-⎧⎨⎩,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.。
中考数学试题分类汇总《分式方程》练习题及答案
中考数学试题分类汇总《分式方程》练习题及答案解分式方程1.方程的解为x=﹣6.【解答】解:去分母得:x=2(x+3),解得:x=﹣6,当x=﹣6时,x(x+3)≠0,∴原分式方程的解为x=﹣6,2.方程=的解为5.3.方程=的解为()A.x=4B.x=C.x=D.x=【分析】首先去分母,然后解一元一次方程,最后检验即可求解.【解答】解:去分母得:8(x﹣3)=2x,∴8x﹣24=2x,∴x=4,经检验x=4是分式方程的解,∴原方程的解为x=4.4.分式方程=的解为x=6.【解答】解:=,x=2(x﹣3),解得:x=6,检验:当x=6时,x(x﹣3)≠0,∴x=6是原方程的根,5.若分式的值等于1,则x=0.6.方程的解为()A.x=6B.x=2C.x=﹣2D.x=﹣67.方程的解是x=﹣2.【分析】按照解分式方程的步骤进行计算即可解答.【解答】解:,3x=2(x﹣1),解得:x=﹣2,检验:当x=﹣2时,3x(x﹣1)≠0,∴x=﹣2是原方程的根,8.分式方程的解为x=1.由根求参数9.若关于x的分式方程=有正整数解,则整数m为0.【分析】求解分式方程可得x=,由题意可得1+m=1或1+m=2,≠1,由此可求m的值.【解答】解:=,x﹣2=﹣mx,x+mx=2,(1+m)x=2,x=,∵方程有正整数解,∴1+m=1或1+m=2,∴m=0或m=1,∵x≠1,∴≠1,∴m≠1,∴m=0,10.已知不等式组.(1)解上述不等式组;(2)从(1)的结果中选择一个整数是方程的解,求m的值.【解答】解:(1),解不等式①得:x>,解不等式②得:x≤2,∴不等式组的解集为<x≤2;(2)∵<x≤2;∴x的整数值为1和2,∵x﹣2≠0,即x≠2,∴把x=1代入方程得:m﹣2=0,解得:m=2.11.若关于x的方程=的解为负数,则点(m,m+2)在第三象限.【分析】解方程得出x=m+2,根据解为负数得出m<﹣2,从而得出答案.【解答】解:解关于x的方程=,得:x=m+2,根据题意知,m+2<0,解得m<﹣2,∴点(m,m+2)在第三象限,列分式方程12.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.=B.=C.=D.=【分析】设乙工人每小时搬运x件电子产品,则甲每小时搬运(x+30)件电子产品,根据300÷甲的工效=200÷乙的工效,列出方程.【解答】解:设乙工人每小时搬运x件电子产品,则甲每小时搬运(x+30)件电子产品,依题意得:=13.甲、乙两位同学去图书馆参加整理书籍的志愿活动,已知甲每小时比乙多整理5本,甲整理80本书所用的时间与乙整理70本书所用的时间相同,设乙每小时整理x本书,根据题意列方程得()A.=B.=C.=D.=14.为满足市场对新冠疫苗需求,某大型疫苗生产企业更新技术后,加快了生产速度,现在平均每天比更新技术前多生产6万份疫苗,现在生产500万份疫苗所需的时间与更新技术前生产300万份疫苗所需时间相同,设更新技术前每天生产x万份,依据题意,可得方程()A.B.C.D.【解答】解:设更新技术前每天生产x万份疫苗,则更新技术后每天生产(x+6)万份疫苗,依题意得:,15.某城市在旧城改造过程中,需要整修一段全长3000m的道路.为了尽量减少施工对城市交通造成的影响,实际工作效率比原计划提高了20%,结果提前10天完成任务,若设原计划每天整修道路x米,根据题意可得方程()A.B.C.D.【解答】解:根据题意可列方程为:,16.某书店分别用500元和700元两次购进一本小说,第二次数量比第一次多4套,且两次进价相同.若设该书店第一次购进x套,根据题意,列方程正确的是()A.B.C.D.【解答】解:设该书店第一次购进x套,根据题意可列方程:,17.八年级(3)班小王和小张两人练习跳绳,小王每分钟比小张少跳60个,小王跳120个所用的时间和小张跳180个所用的时间相等.设小王跳绳速度为x 个每分钟,则列方程正确的是()A.B.C.D.【解答】解:由题意可得,,分式方程的应用18.国家推行“节能减排,低碳经济”政策后,电动汽车非常畅销.某汽车经销商购进A、B两种型号的电动汽车,其中A型汽车的进货单价比B型汽车的进货单价多4万元,花100万元购进A型汽车的数量与花60万元购进B型汽车的数量相同,在销售中发现:每天A型号汽车的销量y A=2(台),B型号汽车的每天销量y B(台)与售价x(万元/台)满足关系式y B=﹣x+10.(1)求A、B两种型号的汽车的进货单价;【分析】(1)利用花100万元购进A型汽车的数量与花60万元购进B型汽车的数量相同,进而得出方程求解即可;【解答】解:(1)设A种型号的汽车的进货单价为m万元,依题意得:,解得:m=10,检验:m=10时,m≠0,m﹣4≠0,故m=10是原分式方程的解,故m﹣4=6.答:A种型号的汽车的进货单价为10万元,B种型号的汽车的进货单价为6万元;19.北京冬奥会的吉祥物冰墩墩深受大家喜爱,出现“一墩难求”的现象.负责生产冰墩墩硅胶外壳的公司收到了一笔48万个的订单,若按原计划生产的日产量计算,则完成这笔订单的生产时间将超过一年,扩大生产规模后,日产量可提高到原来的30倍,生产时间能减少464天.(1)扩大生产规模后每天生产多少个冰墩墩硅胶外壳?【解答】解:(1)设扩大生产规模前每天生产x个冰墩墩硅胶外壳,则扩大生产规模后每天生产30x个冰墩墩硅胶外壳,依题意得:﹣=464,解得:x=1000,经检验,x=1000是原方程的解,且符合题意,∴30x=30×1000=30000.答:扩大生产规模后每天生产30000个冰墩墩硅胶外壳.20.在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?【分析】(1)可设降价后每枝玫瑰的售价是x元,根据等量关系:降价后30元可购买玫瑰的数量=原来购买玫瑰数量的1.5倍,列出方程求解即可;【解答】解:(1)设降价后每枝玫瑰的售价是x元,依题意有=×1.5,解得:x=2.经检验,x=2是原方程的解.答:降价后每枝玫瑰的售价是2元.21.为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?【分析】(1)设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意:第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,购进数量比第一次少了30盒.列出分式方程,解方程即可;【解答】解:(1)设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元;22.受新冠肺炎疫情持续影响,医用防护服和防护面罩的需求大大增加,为保障一线医护人员的健康安全,重庆一医疗器械有限公司组织甲、乙两个生产组进行防护服生产,甲生产组工人的人数比乙生产组工人人数多10人,由于乙生产组采用的新生产技术,所以乙生产组每天人均生产的防护服套数是甲生产组每天人均生产的防护服套数的倍,甲生产组每天可生产防护服2160套,乙生产组每天可生产防护服1920套.(1)求甲、乙两个生产组各有工人多少名?(2)随着天气转凉,疫情有所反弹,医用防护服的需求急增,该公司紧急组织甲、乙两个生产组加班生产一批防护服,并且在每个生产组都加派了生产工人.甲生产组的总人数比原来增加了,每天人均生产的防护服套数比来增加了a%;乙生产组的总人数比原来增加了5a%,每天人均生产的防护服套数比原来增加了24套,现在两个生产组每天共生产防护服7200套,求a的值.【解答】解:(1)设甲生产组有工人x名,则乙生产组有工人(x﹣10)名,由题意得:×=,解得:x=30,经检验,x=30是原方程的解,∴x﹣10=30﹣10=20,答:甲生产组有工人30名,乙生产组有工人20名;(2)甲生产组原每天人均生产套数为2160÷30=72(套),乙生产组原每天人均生产套数为1920÷20=96(套),由题意得:30×(1+)×72×(1+a%)+20×(1+5a%)×(96+24)=7200,解得:a=10,答:a的值为10.23.国家推行“节能减排,低碳经济”政策后,电动汽车非常畅销.某汽车经销商购进A、B两种型号的电动汽车,其中A型汽车的进货单价比B型汽车的进货单价多4万元,花100万元购进A型汽车的数量与花60万元购进B型汽车的数量相同,在销售中发现:每天A型号汽车的销量y A=2(台),B型号汽车的每天销量y B(台)与售价x(万元/台)满足关系式y B=﹣x+10.(1)求A、B两种型号的汽车的进货单价;解:(1)设A种型号的汽车的进货单价为m万元,依题意得解得:m=10,检验:m=10时,m≠0,m-4≠0,故m=10是原分式方程的解,故m-4=6.答:A种型号的汽车的进货单价为10万元,B种型号的汽车的进货单价为6万元;24.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行90km 所用时间,与以最大航速逆流航行60km所用时间相等,江水的流速为多少?【分析】根据题意可得顺水速度为(30+v)km/h,逆水速度为(30﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行90km所用时间=以最大航速逆流航行60km所用时间,根据等量关系列出方程求解即可.【解答】解:设江水的流速为vkm/h,根据题意得:=,解得:v=6.经检验,v=6是原方程的解.答:江水的流速为6km/h.25.2022年2月6日晚,中国女足在第20届亚洲杯决赛中以3:2逆转夺冠!全国各地掀起了一股学女足精神的热潮.某学校准备购买一批足球,第一次用3000元购进A类足球若干个,第二次又用3000元购进B类足球,购进数量比第一次多了20个,已知A类足球的单价是B类足球单价的1.5倍.(1)求B类足球的单价是多少元;【解答】解:(1)设B类足球的单价是x元,则A类足球的单价是1.5x元,根据题意得,﹣=20,解得,x=50,经检验,x=50是分式方程的解,且符合题意,答:B类足球的单价是50元;25.为了配合学校贯彻落实“双减”政策,开展学生课后体育活动,某体育用品商店用10000元购进了一批足球,很快销售一空;商店又用10000元购进了第二批该种足球,每个足球的进价比原来小涨了25%,结果所购进足球的数量比第一批少40个.(1)求第一批足球每个的进价是多少元?(2)若商店将第一批足球以售价70元,第二批足球以售价80元全部售出,则其盈利多少元?解:(1)设第一批足球每个的进价是x元,则第二批足球每个的进价是(1+25%)x元,根据题意得:=+40,解得x=50,经检验,x=50是原方程的解,也符合题意,∴x=50,答:第一批足球每个的进价是50元;(2)第一批足球盈利(70﹣50)×=4000(元),第二批足球盈利(80﹣50×1.25)×=2800(元),∴一共盈利4000+2800=6800(元),答:全部售出,其盈利6800元.26.2022年3月12日是第44个植树节,某街道办现计划采购樟树苗和柳树苗共600棵,已知一棵柳树苗比一棵樟树苗贵4元,用2400元所购买的樟树苗与用3200所购买的柳树苗数量相同.(1)请问一棵樟树苗的价格是多少元?【分析】(1)设一棵樟树苗的价格是x元,则一棵柳树苗的价格为(x+4)元,根据两种树苗的数量相同列分式方程,求解即可;【解答】解:(1)设一棵樟树苗的价格是x元,则一棵柳树苗的价格为(x+4)元,根据题意,得,解得x=12,经检验,x=12是原分式方程的根,∴一棵樟树苗的价格是12元.27.某手机店准备进一批华为手机,经调查,用80000元采购A型华为手机的台数和用60000元采购B型华为手机的台数一样,一台A型华为手机的进价比一台B型华为手机的进价多800元.(1)求一台A,B型华为手机的进价分别为多少元?(2)若手机店购进A,B型华为手机共60台进行销售,其中A型华为手机的台数不大于B型华为手机的台数,且不小于20台,已知A型华为手机的售价为4200元/台,B型华为手机的售价为2800元/台,且全部售出,手机店怎样安排进货,才能在销售这批华为手机时获最大利润,求出最大利润.【解答】解:(1)设一台A型华为手机的进价为x元,则一台B型华为手机的进价为(x﹣800)元,由题意可得:,解得x=3200,经检验,x=3200是原分式方程的解,∴x﹣800=2400,答:一台A型华为手机的进价为3200元,一台B型华为手机的进价为2400元;28.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?【解答】解:(1)设A种学习用品每件x元钱,则B种学习用品每件(x﹣20)元钱,由题意得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,则x﹣20=5,答:A种学习用品每件25元钱,则B种学习用品每件5元钱;29.某超市计划购进甲、乙两种水果进行销售,经了解,甲种水果和乙种水果的进价与售价如表所示:甲乙进价(元/千克)x x+4售价(元/千克)2025已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求甲、乙两种水果的进价;【解答】解:(1)由题意得,,解得x=16,经检验,x=16是原方程的解,答:甲的进价是16元/千克,乙的进价是20元/千克;30.北京冬奥会吉祥物“冰墩墩”深受欢迎,佳佳购进一批“冰墩墩”玩偶,简装版共3840元,礼盒版共8000元,礼盒版进价比简装版多8元,礼盒版进数是简装版进数的2倍.(1)求单个“冰墩墩”简装版和礼盒版的进价;【解答】解:(1)设“冰墩墩”简装版的进价为x元,则礼盒版的进价为(x+8)元,根据题意得:2×=,解得:x=192,经检验得,x=192是原方程的解,且符合实际意义,x+8=192+8=200,答:“冰墩墩”简装版的进价为192元,则礼盒版的进价为200元;。
中考数学试题分类汇编专题十_分式方程.docx
中考数学试题分类汇编专题十 _分式方程一、选择题1 .( 201031)重庆市潼南县)方程2=的解为(x x1A.x =4B .x = -1C.x= -2 D .无解52【答案】 B2 .( 20102x40的根是() .福建晋江)分式方程x2A. x2B.x0C. x2D. 无实根【答案】 C3 .( 2010福建福州)分式方程3=1 的解是 () x -2A.x= 5 B .x=1C.x=- 1 D .x= 2【答案】 A4 .( 2010湖北省咸宁)分式方程x x1的解为3 x1xA .x 1B .x1C .x 3D .x3【答案】 D5 .( 2010山东东营)分式方程123的解是()x x(A)- 3(B) 2(C)3(D) -2【答案】 C,6 .( 2010湖北咸宁)分式方程x x1x3x 的解为1A .x 1B .x1C .x 3D .x3【答案】 D7 .( 2010广西南宁)将分式方程 15x23去分母整理后得:x( x1)x1( A )8x 1 0( B )8x 3 0( C)x27x 2 0( D )x27x 2 0【答案】 D8 .( 2010云南曲靖)分式方程x313()x22的解是xA . 2B . 1C.-1 D .-29.( 2010内蒙赤峰)分式方程110 的解是()x1x1 A .x = 1 B .x = -1 C .x = 01 D .x2【答案】 C 二、填空题1.( 2010浙江金华)分式方程11的解是▲ . x2【答案】 x=32.( 2010重庆綦江县)分式方程31x2x x2的解 x =________.x【答案】 23.( 2010山东临沂)方程112的解是.x x 【答案】 24.( 20101=2四川宜宾)方程x–2x的解是【答案】 x45.( 2010山东省德州)方程231的解为 x =___________.x x 【答案】 -36.( 2010山东滨州)方程 143的解为. x1【答案】 x=37.( 2010山东潍坊)分式方程x x4的解是.x5x6【答案】 x=438.( 2010 黑龙江哈尔滨)方程5x30的解是。
中考试题分类汇编――分式方程
2006年中考试题分类汇编――分式方程1.(2006·湖州市)分式方程121x x =+的解是x=_________.x=1 2.(2006·攀枝花市) 分式方程11112-=-x x 的解是: x = 0 . 3.(2006·日照市)已知,关于x 的方程22112()1x x x x +++=,那么11x x++的值为. -1 4.(2006·南通市)用换元法解方程4112=-+-x x x x ,若设y x x =-1,则可得关于y 的整式方程_______.2y 2-4y+1=05.(2006·河北省)用换元法解分式方程2221x x x x++=+时,如果设2y x x =+,那么方程可化为关于y 的一元二次方程的一般形式是.022=-+y y ;6. (2006·益阳市)解分式方程4223=-+-xx x 时,去分母后得( )A A. )2(43-=-x x B. )2(43-=+x xC. 4)2()2(3=-+-x x xD. 43=-x7.(2006·嘉兴市)有两块面积相同的小麦试验田,分别收获小麦9000kg 和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,若设第一块试验田每公顷的产量为xkg ,根据题意,可得方程( C ) A.x x 1500030009000=+ B.3000150009000-=x x C.3000150009000+=x x D.xx 1500030009000=- 8.(2006·深圳市)解方程:21133x x x -=--- 解:原方程变形,得32--x x =1+31-x ,去分母,得2-x=x-3+1,得x=2. 9.解方程:3215122=-+-xx x . 解:去分母得2x-5=3(2x-1)即2x-5=6x-3,∴4x=-2,x=12-. 当x=12-时,2x-1≠0,所以x=12-是原方程的解 10.(2006·青岛市)解分式方程:xx x -+--3132=1。
初中数学试题分类汇编:分式方程根据解的情况求值问题综合训练2(填空 附答案)
初中数学试题分类汇编:分式方程根据解的情况求值问题综合训练2(填空 附答案)1.若关于x 的分式方程21111x m x x +-=--的解是负数,则m 的取值范围是_____. 2.关于t 的分式方程m 5t 22t+--=1的解为负数,则m 的取值范围是______. 3.若关于x 的方程22x m x +=-的解是正数,则m 的取值范围为______________. 4.关于x 的分式方程3111m x x +=--的解为负数,则m 的取值范围是_____. 5.若关于x 的方程x 3x 2+=+()()k 1x-1x 2++的解不大于4的正数,则k 的取值范围是___6.若关于x 的分式方程k 12x 1-=+的解为负数,则k 的取值范围为__. 7.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 8.若解关于x 的分式方程233x m m x x-+--=3会产生增根,则m =_____. 9.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 10.若关于x 的方程333x m m x x ++--=2的解为正数,则m 的取值范围是_____. 11.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 12.若关于x 的方程22222x a a x x-+=--的解为非负数,则a 的取值范围是__________ 13.若关于x 的分式方程 k-1x 1+=2的解为非正数,则k 的取值范围为_______. 14.关于x 的方程12x a x +=--的解是正数,则a 的取值范围是__________. 15.关于x 的方程231x a x +=-的解是正数,则a 的取值范围是___________. 16.若关于x 的分式方程3122x a x -=-的解是非负数,则a 的取值范围是__________. 17.关于x 的方程2233++=--x m x x有增根,则m 的值为_____ 18.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 19.如果关于x 的分式方程m 2x 1x 22x -=--有增根,那么m 的值为______. 20.若关于x 的方程111x m x x =---的解为正数,则m 的取值范围是________.21.如果a 是从2,0,2,4-四个数中任取的一个数,那么关于x 的方程2122a x x -=++的根是负数的概率是________. 22.若关于x 的分式方程1101ax x +-=-的解为正数,则a 的取值范围_______. 23.关于x 的方程1322m x x x -+=--有增根,则m =______. 24.关于x 的方程22x m x +-=1的解是正数,则m 的取值范围是________ . 25.若关于x 的分式方程12111a x x x x --=---有增根,则a =__________. 26.若关于x 的分式方程111x xm +--=2有增根,则m =_____. 27.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 28.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有两个整数解,且使关于y 的分式方程132211y a y y--=---的解为正数,则所有满足条件的整数a 的值之和是_______. 29.我们知道方程2312x x x ++=-的解是45x =.现给出另一个方程(1)2311(1)2y y y +++=++-,它的解是__________. 30.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩,有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所有满足条件的整数a 的值之和是________________.参考答案1.2m <且0m ≠【解析】【分析】解该分式方程,根据方程的解为负数且不能使分母为0,可得关于m 的不等式,解不等式可得.【详解】去分母,得:(x+1)2-m=x 2-1,去括号,得:x 2+2x+1-m=x 2-1,移项、合并,得:2x=m-2,系数化为1,得:x= 22m -,∵方程的解为负数,且x≠-1, ∴22m -<0,且22m -≠-1,解得:m <2且m≠0,故答案为:m <2且m≠0.【点睛】本题主要考查解分式方程及分式方程的解、解不等式的基本技能,根据方程的解得出不等式是解题的关键,易忽略分式方程的增根的情况,要注意.2.m <3【解析】【分析】分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m 的范围即可.【详解】去分母得:m-5=t-2,解得:t=m-3,由分式方程的解为负数,得到m-3<0,且m-3≠2,解得:m <3,故答案为:m <3.【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 3.m >-4且m≠-2【解析】【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:x+m=2x-4,解得:x=m+4,由方程的解为正数,得到m+4>0,且m+4≠2,解得:m >-4且m≠-2,故答案为:m >-4且m≠-2【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 4.m <2【解析】【分析】先将分式方程化为整式方程求出解x=m-2,根据原方程的解是负数得到20m -<,求出m 的取值范围,再由10x -≠得到3m ≠,即可得到答案.【详解】3111m x x+=--, 去分母得m-3=x-1,解得x=m-2,∵该分式方程的解是负数,∴20m -<,解得m<2,∵10x -≠,∴210m --≠,解得3m ≠,故答案为:m<2.【点睛】此题考查分式方程的解的情况求方程中未知数的取值范围,正确理解题意列得不等式求出未知数的取值范围是解此题的关键.5.-1<k≤3且k ≠0.【解析】【分析】先解出关于x 的分式方程,然后再令x 小于等于4,最后解关于k 的不等式即可.【详解】解:解关于x 的方程x 3x 2+=+()()k 1x-1x 2++ 得:x=k+1根据题意:0<k+1≤4且k+1≠-2,k+1≠1,即-1<k≤3其k≠0.所以,当-1<k≤3且k≠0时,方程的解不大于4的正数.故答案为k≤3且k≠0.【点睛】本题考查了解分式方程和解不等式,根据题意列出不等式是解答本题的关键.6.k <3且k≠1.【解析】【分析】【详解】解:去分母得:122k x -=+,解得:32k x -=, 由分式方程的解为负数,得到203k -<且10x +≠, 即3 1.2k -≠- 解得:3k <且 1.k ≠故答案为:3k <且 1.k ≠7.12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析8.1【解析】【分析】 先去分母得整式方程,解整式方程得到932m x -=,然后利用方程的增根只能为3得到9332m -=,再解关于m 的方程即可. 【详解】解:去分母得()233x m m x --=-, 解得932m x -=, 因为分式方程2333x m m x x-+=--会产生增根,而增根只能为3, 所以9332m -=,解得1m =, 即当1m =时,分式方程2333x m m x x -+=--会产生增根. 故答案为:1.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.9.0【解析】【分析】根据题意先解出方程的根为x=4-2m ,由题意可知x=2,即可得4-2m=2,解出m 即可.解:方程两边同时乘以x-2,得22(2)x m x -++=-,解得:2x m =+,∵分式方程有增根,∴x=2,∴22m +=,∴0m =.故答案为:0.【点睛】本题考查分式方程的解法,熟练掌握分式方程的解法,理解增根的意义是解题的关键. 10.m <3且m ≠32【解析】【分析】分式方程去分母转化为整式方程求解,由分式方程的解为正数,满足6﹣2m >0,且6﹣2m ≠3,确定出m 的范围即可.【详解】解:去分母得:x +m ﹣3m =2x ﹣6,解得:x =6﹣2m ,由分式方程的解为正数,得到6﹣2m >0,且6﹣2m ≠3, 解得:m <3且m ≠32, 故答案为:m <3且m ≠32. 【点睛】此题考查了分式方程的解,以及解一元一次不等式,注意分式方程的解为正数包含两个含义,①所得整式方程的解不是增根,即使分式分母不为0,②解为正数.11.5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0, ∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.12.a≤1且1a 2≠【解析】【分析】先求出分式方程的解,然后结合方程的解为非负数,即可求出a 的取值范围.【详解】 解:∵22222x a a x x-+=--, ∴222(2)x a a x --=-,∴424x a x -=-,∴44x a =-;∵0x ≥,20x -≠,∴440a -≥,442a -≠,∴1a ≤,12a ≠, 故答案为:1a ≤且12a ≠; 【点睛】本题考查了解分式方程,由分式方程的解求参数的取值范围,解题的关键是正确求出分式方程的解.13.k≤3且k≠1【解析】【分析】先解出这个分式方程的解,然后再考虑分式方程的解为非正数,还要注意分母≠0得到不等式进行求解即可.【详解】解:去分母,得k-1=2x+2,解得x=k-32. 由分式方程的解为非正数, 得k-32≤0,且x+1≠0,即k-32≠-1, 解得k≤3且k≠1.【点睛】本题考查了分式方程的增根问题,分母≠0是本题的易错点,解这类题的步骤是:(1)解出分式方程的解;(2)考虑题目给的条件,注意分母≠0;(3)解不等式.14.a <2且a ≠-2【解析】【分析】先求得分式方程的解,再根据x >0和分式方程有解分母不能为0,即可求出a 的取值范围.【详解】解:去分母得:2x a x +=-+,移项得:2x x a +=-,合并同类项得:22x a =-,系数化为1得:22a x -=. ∵方程的解是正数, ∴202a ->,且222a -≠, 解得:a<2且a≠-2,故答案为:a<2且a≠-2.【点睛】本题考查根据分式方程解得情况求参数的取值范围.注意在解分式方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,所以可能产生增根,增根是令分母等于0的值,不是原分式方程的解.故要排除分母为0这种情况.15.a >-3且a≠-2【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求a 的取值范围.【详解】去分母得,2x+a=3x-3解得x=a+3∵分母x-1≠0即x≠1∴a+3≠1解得,a≠-2又∵x >0∴a+3>0解得,a >-3则a 的取值范围是a >-3且a≠-2.故答案为a >-3且a≠-2.【点睛】本题考查了分式方程无解的条件,是需要识记的内容.并且在解方程去分母的过程中,一定要注意分数线起到括号的作用,并且要注意没有分母的项不要漏乘.16.1a ≥且6a ≠【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解是非负数,确定出a 的范围即可.【详解】去分母得:622x a x -=-,即225a x -=,由分式方程的解为非负数,得到225a -≥0,且225a -≠2, 解得:1a ≥且6a ≠,故答案为:1a ≥且6a ≠.【点睛】 此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 17.-1【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x−3),得2−x−m =2(x−3)∵原方程增根为x =3,∴把x =3代入整式方程,得2−3−m =0,解得m =−1.故答案为:−1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.18.4m ≤且2m ≠【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.19.-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x 20-=,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】 解:m 2x 1x 22x-=--, 去分母,方程两边同时乘以x 2-,得:m 2x x 2+=-,由分母可知,分式方程的增根可能是2,当x 2=时,m 422+=-,m 4=-.故答案为4-.【点睛】考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.m >-1【解析】【分析】先解分式方程,再根据解的特点得到不等式,再解不等式.【详解】方程两边乘以(x-1)得得x=12+m 因为111x m x x =---的解为正数 所以12+m >0 解得:m>-1故答案为:m>-1【点睛】考核知识点:解分式方程.去分母,把分式方程转化为整式方程是关键.21.12【解析】【分析】解分式方程得4x a =-,由方程的根为负数得出40a -<且42a -≠-,即a 的取值范围,再从所列4个数中找到符合条件的结果数,从而利用概率公式计算可得.【详解】 解:2122a x x -=++ 将方程两边都乘以2x +,得:()22a x -+=,解得4x a =-,方程的解为负数,40a ∴-<且42a -≠-,则4a <且2a ≠,所以在所列的4个数中,能使此方程的解为负数的有0、-2这2个数,则关于x 的方程2122a x x -=++的根为负数的概率为2142=, 故答案为:12. 【点睛】本题主要考查了分式方程的解法和概率公式,解题的关键是掌握解分式方程的能力及随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.22.a <1且a ≠−1.【解析】【分析】先解分式方程,根据分式方程的解为正数得出关于a 的不等式,求出a 的取值范围,然后再根据有增根的情况进一步求解即可.【详解】解:分式方程去分母得:110ax x +-+=, 解得:21x a=-, ∵关于x 的方程1101ax x +-=-的解为正数, ∴x >0,即201a >-, 解得:a <1,当x−1=0时,x =1是增根, ∴211a≠-,即a≠−1, ∴a <1且a≠−1,故答案为:a <1且a≠−1.【点睛】本题主要考查了解分式方程及解不等式,注意不要忘记有增根的情况.23.1【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m 的值.【详解】方程两边都乘(x-2),得m+3(x-2)=x-1∵原方程有增根,∴最简公分母(x-2)=0,解得x=2,当x=2时,m=1.故答案为:1.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.24.m<﹣2且m≠﹣4【解析】【分析】首先根据2x mx2+-=1,可得x=-m-2;然后根据关于x的方程2x mx2+-=1的解是正数,求出m的取值范围即可.【详解】∵2x mx2+-=1,∴x=-m-2,∵关于x的方程2x mx2+-=1的解是正数,∴-m-2>0,解得m<-2,又∵x=-m-2≠2,∴m≠-4,∴m的取值范围是:m<-2且m≠-4.故答案为:m<-2且m≠-4.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.25.-2【解析】【分析】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【详解】∵分式方程12111a xx x x--=---有增根,∴x-1=0,∴x=1.把12111a xx x x--=---两边都乘以x-1,得a+1=x-2,∴a+1=1-2,∴a=-2.故答案为:-2.【点睛】本题考查了分式方程的增根,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.26.1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m的值.【详解】解:去分母得:m﹣1=2x﹣2,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入得:m﹣1=0,解得:m=1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.27.a <-2且a ≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a 的范围即可.【详解】 解:方程22x a x -+=1, 去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a <-2且a≠-4,故答案为:a <-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.28.5【解析】【分析】先解不等式得出解集x ≤2且x ≥25a +,根据其有两个整数解得出0<25a +≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2−a 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩①②解不等式①得:x ≤2解不等式②得:x ≥25a + ∵不等式组恰有两个整数解,∴0<25a +≤1 解得32a -≤<, 解分式方程132211y a y y--=---得:21y a =-, 由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠ 则满足32a -≤<,12a >且1a ≠的所有整数a 的值是2和3; 它们之和是2+3=5故答案为:5【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.29.15y =-【解析】【分析】设1y a +=,则利用换元法解分式方程,即可得到答案.【详解】 解:∵(1)2311(1)2y y y +++=++-, 设1y a +=,则方程可化为:2312a a a ++=-, 根据题意可知,此时45a =, 经检验,45a =是原方程的解; ∴415y a +==, ∴15y =-;故答案为:15y =-. 【点睛】 本题考查了利用换元法解分式方程,熟练掌握运算法则是解本题的关键,解分式方程注意要检验.30.1【解析】【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出−4<a ≤3,再解分式方程2222a y y+=--,根据分式方程有非负数解,得到a ≥−2且a ≠2,进而得到满足条件的整数a 的值之和.【详解】 解不等式组2122274x x x a -⎧≤-+⎪⎨⎪+>-⎩①②, 由①得,x ≤3;由②得,x >47a +-; ∵不等式组有且仅有四个整数解,∴−1≤47a +-<0, ∴−4<a ≤3, 解分式方程2222a y y +=--,可得y =12(a +2), 又∵分式方程有非负数解,∴y ≥0,且y ≠2, 即12(a +2)≥0,12(a +2)≠2, 解得a ≥−2且a ≠2,∴−2≤a ≤3,且a ≠2,∴满足条件的整数a 的值为−2,−1,0,1,3,∴满足条件的整数a 的值之和是1.故答案为:1.【点睛】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.。
2022年中考数学真题分类汇编:分式方程(含答案)
2022年年年年年年年年年年年年年一、选择题1.(2022·江苏省无锡市)分式方程2x−3=1x的解是( )A. x=1B. x=−1C. x=3D. x=−32.(2022·海南省)分式方程2x−1−1=0的解是( )A. x=1B. x=−2C. x=3D. x=−33.(2022·黑龙江省哈尔滨市)方程2x−3=3x的解为( )A. x=3B. x=−9C. x=9D. x=−34.(2022·贵州省毕节市)小明解分式方程1x+1=2x3x+3−1的过程如下.5.解:去分母,得3=2x−(3x+3).①6.去括号,得3=2x−3x+3.②7.移项、合并同类项,得−x=6.③8.化系数为1,得x=−6.④9.以上步骤中,开始出错的一步是( )A. ①B. ②C. ③D. ④10.(2022·四川省德阳市)如果关于x的方程2x+mx−1=1的解是正数,那么m的取值范围是( )A. m>−1B. m>−1且m≠0C. m<−1D. m<−1且m≠−211.(2022·重庆市)关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A. 13B. 15C. 18D. 2012.(2022·黑龙江省鹤岗市)已知关于x的分式方程2x−mx−1−31−x=1的解是正数,则m的取值范围是( )A. m>4B. m<4C. m>4且m≠5D. m<4且m≠113.(2022·浙江省丽水市)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x =4000x−30,则方程中x表示( )A. 足球的单价B. 篮球的单价C. 足球的数量D. 篮球的数量14.(2022·重庆市)若关于x的一元一次不等式组{x−1≥4x−1 3,5x−1<a的解集为x≤−2,且关于y的分式方程y−1y+1=ay+1−2的解是负整数,则所有满足条件的整数a的值之和是( )A. −26B. −24C. −15D. −1315.(2022·辽宁省铁岭市)小明和小强两人在公路上匀速骑行,小强骑行28km所用时间与小明骑行24km所用时间相等,已知小强每小时比小明多骑行2km,小强每小时骑行多少千米?设小强每小时骑行xkm,所列方程正确的是( )A. 28x =24x+2B. 28x+2=24xC. 28x−2=24xD. 28x=24x−216.(2022·云南省)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是( )A. 400x−50=300xB. 300x−50=400xC. 400x+50=300xD. 300x+50=400x17.(2022·湖北省恩施土家族苗族自治州)一艘轮船在静水中的速度为30km/ℎ,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/ℎ,则符合题意的方程是( )A. 14430+v =9630−vB. 14430−v=96vC. 14430−v =9630+vD. 144v=9630+v18.(2022·四川省宜宾市)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B. 540x+2−540x=3B.C. 540x −540x+2=3 D. 540x−540x−2=319.(2022·四川省广元市)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是( )A. 9600x−10=1600xB. 9600x+10=1600xC. 9600x =1600x−10D. 9600x=1600x+1020.(2022·黑龙江省绥化市)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是( )A. 12x +124x=30 B. 15x+154x=24 C. 30x+302x=24 D. 12x+122x=30二、填空题21.(2022·湖南省永州市)解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是______.22.(2022·湖南省常德市)方程2x +1x(x−2)=52x的解为______.23.(2022·湖南省岳阳市)分式方程3xx+1=2的解为x=______.24.(2022·浙江省宁波市)定义一种新运算:对于任意的非零实数a,b,a⊗b=1a +1b.若(x+1)⊗x=2x+1x,则x的值为______.25.(2022·四川省内江市)对于非零实数a,b,规定a⊕b=1a −1b.若(2x−1)⊕2=1,则x的值为______.26.(2022·浙江省金华市)若分式2x−3的值为2,则x的值是______.27.(2022·四川省成都市)分式方程3−xx−4+14−x=1的解为______.28.(2022·江西省)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为______.三、解答题29.(2022·湖北省随州市)解分式方程:1x =4x+3.30.(2022·江苏省苏州市)解方程:xx+1+3x=1.31.(2022·广西壮族自治区梧州市)解方程:1−23−x =4x−3.32.(2022·广西壮族自治区柳州市)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.33.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?34.(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?35.(2022·吉林省长春市)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?36.(2022·山东省烟台市)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?37.(2022·山东省聊城市)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.38.(1)求实际施工时,每天改造管网的长度;39.(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?40.(2022·贵州省贵阳市)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?41.(2022·贵州省铜仁市)科学规范戴口罩是阻断遵守病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?42.(2022·吉林省)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.43.(2022·黑龙江省大庆市)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?44.(2022·内蒙古自治区呼和浩特市)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.45.(1)问去年每吨土豆的平均价格是多少元?46.(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的2,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?3参考答案1.D2.C3.C4.B5.D6.D7.C8.D9.D10.D11.B12.A13.C14.B15.A16.x(x+1)17.x=418.219.−1220.5621.422.x=323.160x =140x−1024.解:1x =4x+3左右两边同时乘以(x+3)x得x+3=4x,3=3x,x=1.检验:把x=1代入原方程得11=41+3,等式成立,所以x=1是原方程的解.故答案为:x=1.25.解:方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−32,经检验,x=−32是原方程的解,∴原方程的解为x=−32.26.解:去分母得:x−3+2=4,解得:x=5,当x=5时,x−3≠0,∴x=5是分式方程的根.27.解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:15x+1=10x,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20−m)件乙种农机具,依题意得:3m+2(20−m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.28.解:设乙班平均每小时挖x千克土豆,根据题意,得1500x+100=1200x,解得x=400,经检验,x=400是原方程的根,且符合题意;答:乙班平均每小时挖400千克土豆.29.解:设每个A型扫地机器人的进价为x元,则每个B型扫地机器人的进价为(2x−400)元,依题意得:96000x =1680002x−400,解得:x=1600,经检验,x=1600是原方程的解,且符合题意,∴2x −400=2×1600−400=2800.答:每个A 型扫地机器人的进价为1600元,每个B 型扫地机器人的进价为2800元.30.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x 米,由题意得:3600x−3600(1+20%)x =10,解得:x =60,经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加m 米,由题意得:(40−20)(72+m)≥3600−72×20, 解得:m ≥36.答:以后每天改造管网至少还要增加36米.31.解:设每辆小货车的货运量是x 吨,则每辆大货车的货运量是(x +4)吨,依题意得:80x+4=60x,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.32.解:设该厂家更换设备前每天生产口罩x 万个,则该厂家更换设备后每天生产口罩(1+40%)x 万个, 依题意得:280x−280(1+40%)x =2,解得:x =40,经检验,x =40是原方程的解,且符合题意, ∴(1+40%)x =(1+40%)×40=56.答:该厂家更换设备前每天生产口罩40万个,更换设备后每天生产口罩56万个.33.解:设李婷每分钟跳绳x 个,则刘芳每分钟跳绳x +20个,根据题意列方程,得135x+20=120x,即135x =120(x +20), 解得x =160,经检验x =160是原方程的解,答:李婷每分钟跳绳160个.34.解:设现在平均每天生产x 个零件,根据题意得:800x=600x−20,解得x =80,经检验,x =80是原方程的解,且符合题意, ∴x =80,答:现在平均每天生产80个零件.35.解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −200)元, 由题意得:300000x+200×2=500000x−200,解得:x =2200,经检验,x =2200是原分式方程的解,且符合题意, 答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:3000002200+200×3=375(吨), 设应将m 吨土豆加工成薯片,则应将(375−m)吨加工成淀粉, 由题意得:{m ≥23(375−m)m 5+375−m 8≤60,解得:150≤m ≤175, 设总利润为y 元,则y =700m +400(375−m)=300m +150000, ∵300>0,∴y 随m 的增大而增大,∴当m =175时,y 的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程
1、(2013年黄石)分式方程
31
21
x x =
-的解为 A.1x = B. 2x = C. 4x = D. 3x =
答案:D
解析:去分母,得:3(x -1)=2x ,即3x -3=2x ,解得:x =3,经检验x =3是原方程的根。
2、(2013•温州)若分式
的值为0,则x 的值是( )
3、(2013•莱芜)方程=0的解为( )
4、(2013•滨州)把方程
变形为x=2,其依据是( )
解:把方程
5、(2013•益阳)分式方程的解是()
6、(2013山西,6,2分)解分式方程
22
3
11
x
x x
+
+=
--
时,去分母后变形为()
A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3(1- x)D.2-(x+2)=3(x-1)【答案】D
【解析】原方程化为:
22
3
11
x
x x
+
-=
--
,去分母时,两边同乘以x-1,得:2-(x+2)
=3(x-1),选D。
7、(2013•白银)分式方程的解是()
8、(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是
A .120
x =100
x -10 B .120x =100
x +10 C .120
x -10=100
x
D .120
x +10=100
x
答案:A
解析:甲队每天修路x m ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所
以,120x =100x -10,选A 。
9、(2013•毕节地区)分式方程的解是( )
10、(2013•玉林)方程的解是( )
11、(德阳市2013年)已知关于x 的方程
22
x m
x +-=3的解是正数,则m 的取值范围是____
答案:m >-6且m ≠-4
解析:去分母,得:2x +m =3x -6,解得:x =m +6,因为解为正数,所以,m +6>0,即m >-6,
又x ≠2,所以,m ≠-4,因此,m 的取值范围为:m >-6且m ≠-4
12、(2013年潍坊市)方程01
2=++x x
x 的根是_________________.
答案:x =0
考点:分式方程与一元二次方程的解法.
点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
13、(2013四川宜宾)分式方程的解为 x =1 .
考点:解分式方程. 专题:计算题.
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.
解答:解:去分母得:2x +1=3x , 解得:x =1,
经检验x =1是分式方程的解. 故答案为:x =1
点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
14、(2013•绍兴)分式方程
=3的解是 x=3 .
15、(2013年临沂)分式方程
21
3
11
x
x x
+=
--
的解是.
答案:2
x=
解析:去分母,得:2x-1=3x-3,解得:x=2,经检验x=2是原方程的解。
16、(2013•淮安)方程的解集是x=﹣2.
17、(2013•苏州)方程=的解为x=2.
18、(2013•广安)解方程:﹣1=,则方程的解是x=﹣.
,
﹣
19、(2013•常德)分式方程=的解为x=2.
20、(2013•白银)若代数式的值为零,则x=3.
由题意得
=0
21、(2013•绥化)若关于x的方程=+1无解,则a的值是2.
22、(2013•牡丹江)若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2.
意是解本题的关键.注意分式方程分母不等于23、(2013•泰州)解方程:.
﹣=,
24、(2013•宁夏)解方程:.
12x=
x=
25、(2013•资阳)解方程:.
26、解方程:=﹣5.
27、(2013年武汉)解方程:
x
x 3
32=-. 解析:方程两边同乘以()3-x x ,得()332-=x x 解得9=x .
经检验, 9=x 是原方程的解.
28、(2013年南京)解方程 2x x -2 =1- 1
2-x。
解析:方程两边同乘x -2,得2x =x -2+1。
解这个方程,得x = -1。
检验:x = -1时,x -2≠0,x = -1是原方程的解。
(6分)
29、(2013•曲靖)化简:
,并解答:
(1)当x=1+时,求原代数式的值. (2)原代数式的值能等于﹣1吗?为什么? =[﹣
﹣,时,原式=1+,即
30、(2013陕西)解分式方程:
12
422
=-+-x x
x . 考点:解分式方程,解题步骤是(1)对分子分母分解因式,(2)去分母化分式方程为整式方程,(3)检验;(此题陕西命题的规律一般是分式化简与分式方程轮流考。
)。
解析:去分母得:4)2(22
-=++x x x 整理得:4222
2
-=++x x x 解得:3-=x
经检验得,3-=x 是原分式方程的根.
31、(绵阳市2013年)解方程:
2
3
112x x x x -=-+-
解:1x-1 = 3
(x+2) (x-1)
x+2 = 3 x = 1
经检验,x = 1是原方程的增根,原方程无解。