最新2020年初三数学中考试题(带解析)

合集下载

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析) 2020年云南省中考数学试卷一、选择题(本大题共8小题,共32.0分)1.根据题意可知,科学记数法表示为1.5×106,故选C。

2.根据主视图的定义可知,主视图是几何体在某一方向上的投影,投影是一个平面图形,故主视图是长方形的几何体只有长方体和正方体,故选A。

3.根据运算法则可知,√4=2,(−3a)3=−27a3,故选B。

4.根据指数的运算法则可知,(2)−1=1/2,a6÷a3=a3(a≠0),故选BD。

5.根据平行四边形对角线的性质可知,△aaa与△aaa的面积的比等于1:3,故选C。

6.根据题意可知,第n个单项式是(−2)a−1a,故选A。

7.根据扇形面积公式可知,扇形DAE的面积为4π/3,根据圆锥的侧面展开图可知,扇形DAE的弧长为底面圆的周长,即4√2,故底面圆的半径为2√2/π,故选D。

二、填空题(本大题共6小题,共18.0分)1.根据题意可知,采用抽样调查的目的是为了解三名学生的视力情况,故填“目的”。

2.根据三角形内角和定理可知,任意画一个三角形,其内角和是180°,不是必然事件,故填“不是”。

3.根据题意可知,甲的成绩比乙的稳定,即方差小,故填“甲的成绩比乙的稳定”。

4.根据中奖概率的定义可知,中奖概率为1/20,故填“1/20”。

5.根据题意可知,整数a使关于x的不等式组{2a−a>a+1,4a−a<a+1}有且只有45个整数解,且使关于y的方程2a+a+2/(a+1)+1/a=1的解为非正数,故填“45”。

6.根据题意可知,按一定规律排列的单项式为a,−2a,4a,−8a,16a,−32a,…,故填“-64a”。

了不同的旅游线路,甲家庭选择了A、B、C三个景点,乙家庭选择了B、C、D三个景点.已知甲家庭在A、B、C三个景点的花费分别为300元、400元、500元,乙家庭在B、C、D三个景点的花费分别为350元、450元、550元.1)甲、乙两个家庭在B、C两个景点的总花费相同,求B、C两个景点的平均花费;2)若甲、乙两个家庭的总花费相同,求甲家庭和乙家庭的平均花费;3)若甲家庭和乙家庭的总花费相差不超过200元,问哪个家庭的总花费更高?20.某校初三年级有600名学生,其中男生占总数的40%,女生占总数的60%.初三(1)班有40名学生,其中男生占总数的45%.1)初三年级男生人数是多少?2)初三(1)班女生人数是多少?3)初三年级女生人数是多少?4)初三年级女生人数比初三(1)班女生人数多多少?解析】根据题意可得:begin{aligned}P(\text{甲、乙两家选择同一城市}) &= P(\text{甲家选择城市}) \times P(\text{乙家选择城市}) \\frac{1}{3} \times \frac{1}{3} \\frac{1}{9}end{aligned}因此,甲家选择到大理旅游的概率为$\dfrac{1}{3}$。

2020年中考数学试题(解析版)

2020年中考数学试题(解析版)

2020年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)数1,0,−23,﹣2中最大的是( )A .1B .0C .−23D .﹣22.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为( )A .17×105B .1.7×106C .0.17×107D .1.7×1073.(4分)某物体如图所示,它的主视图是( )A .B .C .D .4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )A .47B .37C .27D .17 5.(4分)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.√2D.√38.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+150tanα)米C.(1.5+150sinα)米D.(1.5+150sinα)米9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8√3D.6√5二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2﹣25=.12.(5分)不等式组{x−3<0,x+42≥1的解为.13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为.14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.15.(5分)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.16.(5分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:√4−|﹣2|+(√6)0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=√5MN.21.(10分)已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值.(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12﹣y1,求m的值.22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AĈ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.23.(12分)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M 在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=245.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.2020年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)数1,0,−23,﹣2中最大的是()A.1B.0C.−23D.﹣2【分析】根据有理数大小比较的方法即可得出答案.【解答】解:﹣2<−23<0<1,所以最大的是1.故选:A.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:1700000=1.7×106,故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.(4分)某物体如图所示,它的主视图是()A .B .C .D .【分析】根据主视图的意义和画法进行判断即可.【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项A 所表示的图形符合题意,故选:A .【点评】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )A .47B .37C .27D .17 【分析】根据概率公式求解.【解答】解:从布袋里任意摸出1个球,是红球的概率=27.故选:C .【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.5.(4分)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°【分析】根据等腰三角形的性质可求∠C ,再根据平行四边形的性质可求∠E .【解答】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°,∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .【点评】考查了平行四边形的性质,等腰三角形的性质,关键是求出∠C的度数.6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm【分析】根据表格中的数据,可以得到这组数据的中位数,本题得以解决.【解答】解:由表格中的数据可得,这批“金心大红”花径的众数为6.7,故选:C.【点评】本题考查众数,解答本题的关键是明确众数的含义,会求一组数据的众数.7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.√2D.√3【分析】连接OB,根据菱形的性质得到OA=AB,求得∠AOB=60°,根据切线的性质得到∠DBO=90°,解直角三角形即可得到结论.【解答】解:连接OB,∵四边形OABC是菱形,∴OA=AB,∵OA=OB,∴OA=AB=OB,∴∠AOB=60°,∵BD是⊙O的切线,∴∠DBO=90°,∵OB=1,∴BD=√3OB=√3,故选:D.【点评】本题考查了切线的性质,菱形的性质,等边三角形的判定和性质,解直角三角形,熟练正确切线的性质定理是解题的关键.8.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+150tanα)米C.(1.5+150sinα)米D.(1.5+150sinα)米【分析】过点A作AE⊥BC,E为垂足,再由锐角三角函数的定义求出BE的长,由BC =CE+BE即可得出结论.【解答】解:过点A作AE⊥BC,E为垂足,如图所示:则四边形ADCE为矩形,AE=150,∴CE=AD=1.5,在△ABE中,∵tanα=BEAE=BE150,∴BE=150tanα,∴BC=CE+BE=(1.5+150tanα)(m),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=−−122×(−3)=−2,∵a=﹣3<0,∴x=﹣2时,函数值最大,又∵﹣3到﹣2的距离比1到﹣2的距离小,∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8√3D.6√5【分析】如图,连接EC,CH.设AB交CR于J.证明△ECP∽△HCQ,推出PCCQ =CECH=EP HQ =12,由PQ=15,可得PC=5,CQ=10,由EC:CH=1:2,推出AC:BC=1:2,设AC=a,BC=2a,证明四边形ABQC是平行四边形,推出AB=CQ=10,根据AC2+BC2=AB2,构建方程求出a即可解决问题.【解答】解:如图,连接EC,CH.设AB交CR于J.∵四边形ACDE,四边形BCJHD都是正方形,∴∠ACE=∠BCH=45°,∵∠ACB=90°,∠BCI=90°,∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=90°∴B,C,H共线,A,C,I共线,∵DE∥AI∥BH,∴∠CEP=∠CHQ,∵∠ECP=∠QCH,∴△ECP∽△HCQ,∴PCCQ =CECH=EPHQ=12,∵PQ=15,∴PC=5,CQ=10,∵EC:CH=1:2,∴AC:BC=1:2,设AC=a,BC=2a,∵PQ⊥CRCR⊥AB,∴CQ∥AB,∵AC∥BQ,CQ∥AB,∴四边形ABQC是平行四边形,∴AB =CQ =10,∵AC 2+BC 2=AB 2,∴5a 2=100,∴a =2√2(负根已经舍弃),∴AC =2√5,BC =4√5,∵12•AC •BC =12•AB •CJ , ∴CJ =2√5×4√510=4, ∵JR =AF =AB =10,∴CR =CJ +JR =14,故选:A .【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会踢脚线有辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m 2﹣25= (m +5)(m ﹣5) .【分析】直接利用平方差进行分解即可.【解答】解:原式=(m ﹣5)(m +5),故答案为:(m ﹣5)(m +5).【点评】此题主要考查了运用公式法分解因式,关键是掌握平方差公式:a 2﹣b 2=(a +b )(a ﹣b ).12.(5分)不等式组{x −3<0,x+42≥1的解为 ﹣2≤x <3 . 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:{x −3<0①x+42≥1②, 解①得x <3;解②得x ≥﹣2.故不等式组的解集为﹣2≤x <3.故答案为:﹣2≤x <3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为34π . 【分析】根据弧长公式l =nπr 180,代入相应数值进行计算即可. 【解答】解:根据弧长公式:l =45⋅π×3180=34π, 故答案为:34π. 【点评】此题主要考查了弧长的计算,关键是掌握弧长公式.14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生猪有 140 头.【分析】根据题意和直方图中的数据可以求得质量在77.5kg 及以上的生猪数,本题得以解决.【解答】解:由直方图可得,质量在77.5kg 及以上的生猪:90+30+20=140(头),故答案为:140.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.15.(5分)点P ,Q ,R 在反比例函数y =k x (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 275 .【分析】设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ),推出CP =3k 3a ,DQ =k 2a ,ER =k a ,推出OG =AG ,OF =2FG ,OF =23GA ,推出S 1=23S 3=2S 2,根据S 1+S 3=27,求出S 1,S 3,S 2即可.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ), ∴CP =3k 3a ,DQ =k 2a ,ER =k a ,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2,∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.16.(5分)如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE ⊥l ,BF ⊥l ,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现∠1=∠2.测得EF =15米,FM =2米,MN =8米,∠ANE =45°,则场地的边AB 为 15√2 米,BC 为 20√2 米.【分析】根据已知条件得到△ANE和△BNF是等腰直角三角形,求得AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),于是得到AB=AN﹣BN=15√2(米);过C作CH ⊥l于H,过B作PQ∥l交AE于P,交CH于Q,根据矩形的性质得到PE=BF=QH=10,PB=EF=15,BQ=FH,根据相似三角形的性质即可得到结论.【解答】解:∵AE⊥l,BF⊥l,∵∠ANE=45°,∴△ANE和△BNF是等腰直角三角形,∴AE=EN,BF=FN,∴EF=15米,FM=2米,MN=8米,∴AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),∴AN=25√2,BN=10√2,∴AB=AN﹣BN=15√2(米);过C作CH⊥l于H,过B作PQ∥l交AE于P,交CH于Q,∴AE∥CH,∴四边形PEHQ和四边形PEFB是矩形,∴PE=BF=QH=10,PB=EF=15,BQ=FH,∵∠1=∠2,∠AEF=∠CHM=90°,∴△AEF∽△CHM,∴CHHM =AEEF=2515=53,∴设MH=3x,CH=5x,∴CQ=5x﹣10,BQ=FH=3x+2,∵∠APB=∠ABC=∠CQB=90°,∴∠ABP+∠P AB=∠ABP+∠CBQ=90°,∴∠P AB=∠CBQ,∴△APB∽△BQC,∴APBQ =PBCQ,∴153x+2=155x−10,∴x=6,∴BQ=CQ=20,∴BC=20√2,故答案为:15√2,20√2.【点评】本题考查了相似三角形的应用,矩形的性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:√4−|﹣2|+(√6)0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).【分析】(1)直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2﹣2+1+1=2;(2)(x﹣1)2﹣x(x+7)=x2﹣2x+1﹣x2﹣7x=﹣9x+1.【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.【分析】(1)由“AAS”可证△ABC≌△DCE;(2)由全等三角形的性质可得CE=BC=5,由勾股定理可求解.【解答】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE=√AC2+CE2=√25+144=13.【点评】本题考查了全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定方法是本题的关键.19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.【分析】(1)由要评价两家酒店月盈利的平均水平,即可得选择两家酒店月盈利的平均值,然后利用求平均数的方法求解即可求得答案;(2)平均数,盈利的方差反映酒店的经营业绩,A酒店的经营状况较好.【解答】解:(1)选择两家酒店月盈利的平均值;=2.5,x A=1+1.6+2.2+2.7+3.5+46=2.3;x B=2+3+1.7+1.8+1.7+3.66(2)平均数,方差反映酒店的经营业绩,A酒店的经营状况较好.理由:A酒店盈利的平均数为2.5,B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073,B酒店盈利的方差为0.54,无论是盈利的平均数还是盈利的方差,都是A酒店比较大,故A酒店的经营状况较好.【点评】此题考查了折线统计图的知识.此题难度适中,注意掌握折线统计图表达的实际意义是解此题的关键.20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=√5MN.【分析】(1)根据题意画出线段即可;(2)根据题意画出线段即可.【解答】解:(1)如图1,线段EF 和线段GH 即为所求;(2)如图2,线段MN 和线段PQ 即为所求.【点评】本题考查了作图﹣应用与设计作图,熟练掌握勾股定理是解题的关键.21.(10分)已知抛物线y =ax 2+bx +1经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值.(2)若(5,y 1),(m ,y 2)是抛物线上不同的两点,且y 2=12﹣y 1,求m 的值.【分析】(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2﹣4x +1得到y 1=6,于是得到y 1=y 2,即可得到结论.【解答】解:(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1, 解得:{a =1b =−4; (2)由(1)得函数解析式为y =x 2﹣4x +1,把x =5代入y =x 2﹣4x +1得,y 1=6,∴y 2=12﹣y 1=6,∵y 1=y 2,∴对称轴为x =2,∴m =4﹣5=﹣1.【点评】本题考查了二次函数图象上点的坐标特征,解方程组,正确的理解题意是解题的关键.22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AĈ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.【分析】(1)根据圆周角定理和AB为⊙O的直径,即可证明∠1=∠2;(2)连接DF,根据垂径定理可得FD=FC=10,再根据对称性可得DC=DF,进而可得DE的长,再根据锐角三角函数即可求出⊙O的半径.【解答】解:(1)∵∠ADC=∠G,∴AĈ=AD̂,∵AB为⊙O的直径,∴BĈ=BD̂,∴∠1=∠2;(2)如图,连接DF,∵AĈ=AD̂,AB是⊙O的直径,∴AB⊥CD,CE=DE,∴FD=FC=10,∵点C,F关于DG对称,∴DC=DF=10,∴DE=5,∵tan ∠1=25,∴EB =DE •tan ∠1=2,∵∠1=∠2,∴tan ∠2=25,∴AE =DE tan∠2=252,∴AB =AE +EB =292,∴⊙O 的半径为294.【点评】本题考查了圆周角定理、轴对称的性质、解直角三角形,解决本题的关键是掌握轴对称的性质.23.(12分)某经销商3月份用18000元购进一批T 恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T 恤衫多少件?(2)4月份,经销商将这批T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a 件,然后将b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同. ①用含a 的代数式表示b .②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T 恤衫多少件;(2)①根据甲乙两店的利润相同,可以得到关于a 、b 的方程,然后化简,即可用含a 的代数式表示b ;②根据题意,可以得到利润与a 的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a 的取值范围,从而可以求得乙店利润的最大值.【解答】解:(1)设3月份购进x 件T 恤衫,18000x +10=390002x ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元),(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简,得b=150−a2;②设乙店的利润为w元,w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150−a2−600=36a+2100,∵乙店按标价售出的数量不超过九折售出的数量,∴a≤b,即a≤150−a2,解得,a≤50,∴当a=50时,w取得最大值,此时w=3900,答:乙店利润的最大值是3900元.【点评】本题考查一次函数的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答,注意分式方程要检验.24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M 在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=245.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.【分析】(1)推出∠AED=∠ABF,即可得出DE∥BF;(2)求出DE=12,MN=10,把y=245代入y=−65x+12,解得x=6,即NQ=6,得出QM=4,由FQ=QB,BM=2FN,得出FN=2,BM=4,即可得出结果;(3)连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE =30°,得出∠EHB=90°,DF=EM=BM=4,MH=2,EH=6,由勾股定理得HB=2√3,BE=4√3,当DP=DF时,求出BQ=223,即可得出BQ>BE;②(Ⅰ)当PQ经过点D时,y=0,则x=10;(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则FQDP =CFCD,即可求出x=10 3;(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则PEBQ =AEAB,求出AE=6√3,AB=10√3,即可得出x=143,由图可知,PQ不可能过点B.【解答】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=12∠ABC,∴∠ADE+∠ABF=12×180°=90°,∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=12,∴DE=12,令y=0,得x=10,∴MN=10,把y=245代入y=−65x+12,解得:x=6,即NQ=6,∴QM=10﹣6=4,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+6=4+2FN,解得:FN=2,∴BM=4,∴BF=FN+MN+MB=16;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=2+10=12=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,∵AD=6,DE=12,∠A=90°,∴∠DEA=30°,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°﹣120°﹣30°=30°,∴∠MEB=∠FBE=30°,∴∠EHB=180°﹣30°﹣30°﹣30°=90°,DF=EM=BM=4,∴MH=12BM=2,∴EH=4+2=6,由勾股定理得:HB =√BM 2−MH 2=√42−22=2√3,∴BE =√EH 2−HB 2=√62+(2√3)2=4√3,当DP =DF 时,−65x +12=4,解得:x =203,∴BQ =14﹣x =14−203=223, ∵223>4√3,∴BQ >BE ;②(Ⅰ)当PQ 经过点D 时,如图3所示:y =0,则x =10;(Ⅱ)当PQ 经过点C 时,如图4所示:∵BF =16,∠FCB =90°,∠CBF =30°,∴CF =12BF =8,∴CD =8+4=12,∵FQ ∥DP ,∴△CFQ ∽△CDP ,∴FQ DP =CF CD , ∴2+x−65x+12=812,解得:x =103;(Ⅲ)当PQ 经过点A 时,如图5所示:∵PE ∥BQ ,∴△APE ∽△AQB ,∴PE BQ =AE AB ,由勾股定理得:AE =√DE 2−AD 2=√122−62=6√3,∴AB =6√3+4√3=10√3,∴12−(−65x+12)14−x=√310√3, 解得:x =143,由图可知,PQ 不可能过点B ;综上所述,当x =10或x =103或x =143时,PQ 所在的直线经过四边形ABCD 的一个顶点.【点评】本题是四边形综合题,主要考查了平行四边形的的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键.。

湖北省武汉市2020年中考数学试题(解析版)

湖北省武汉市2020年中考数学试题(解析版)

湖北省武汉市2020年中考数学真题一、选择题1.2-的相反数是( ) A. 2- B. 2C.12D. 12-【答案】B 【解析】 分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.x 的取值范围是( ) A. 0x ≥ B. 2x ≥-C. 2x ≤D. 2x ≥【答案】D 【解析】 【分析】由二次根式有意义的条件列不等式可得答案.20,x ∴-≥2.x ∴≥故选D .【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键. 3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( ) A. 两个小球的标号之和等于1 B. 两个小球的标号之和等于6 C. 两个小球的标号之和大于1 D. 两个小球的标号之和大于6【答案】B 【解析】 【分析】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.【详解】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A:“两个小球的标号之和等于1”为不可能事件,故选项A错误;选项B:“两个小球的标号之和等于6”为随机事件,故选项B正确;选项C:“两个小球的标号之和大于1”为必然事件,故选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故选项D错误.故选:B.【点睛】本题考查了随机事件、不可能事件、必然事件的概念,熟练掌握各事件的定义是解决本题的关键.4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义“在平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形”逐项判断即可得.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、是轴对称图形,此项符合题意D、不是轴对称图形,此项不符题意故选:C.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.5.下图是由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.【答案】A【解析】分析】根据左视图的定义即可求解. 【详解】根据图形可知左视图为故选A .【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手概率是( ) A.13B.14C.16D.18【答案】C 【解析】 【分析】画出树状图展示所有12种等可能的结果数,再根据概率公式即可求解. 【详解】画树状图为:∴P (选中甲、乙两位)=21126= 故选C .【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率. 7.若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是( ) A. 1a <- B. 11a -<<C. 1a >D. 1a <-或1a >【答案】B 【解析】 【分析】 由反比例函数(0)ky k x=<,可知图象经过第二、四象限,在每个象限内,y 随x 的增大而增大,由此分三种情况①若点A 、点B 在同在第二或第四象限;②若点A 在第二象限且点B 在第四象限;③若点A在第四象限且点B 在第二象限讨论即可. 【详解】解:∵反比例函数(0)ky k x=<, ∴图象经过第二、四象限,在每个象限内,y 随x 的增大而增大, ①若点A 、点B 同在第二或第四象限, ∵12y y >, ∴a-1>a+1, 此不等式无解;②若点A 在第二象限且点B 在第四象限, ∵12y y >, ∴1010a a -⎧⎨+⎩<>,解得:11a -<<;③由y 1>y 2,可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上,a 的取值范围是11a -<<. 故选:B .【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键,注意要分情况讨论,不要遗漏.8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )A. 32B. 34C. 36D. 38【答案】C 【解析】 【分析】设每分钟的进水量为bL ,出水量为cL ,先根据函数图象分别求出b 、c 的值,再求出24x =时,y 的值,然后根据每分钟的出水量列出等式求解即可.【详解】设每分钟的进水量为bL ,出水量为cL 由第一段函数图象可知,205()4b L == 由第二段函数图象可知,20(164)(164)35b c +---= 即201251235c +⨯-= 解得15()4c L =则当24x =时,1520(244)5(244)454y =+-⨯--⨯= 因此,45452412154a c-=== 解得36(min)a = 故选:C .【点睛】本题考查了函数图象的应用,理解题意,从函数图象中正确获取信息,从而求出每分钟的进水量和出水量是解题关键.9.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )B.C.D.【答案】D 【解析】 【分析】连接DO 、DA 、DC ,设DO 与AC 交于点H ,证明△DHE ≌△BCE ,得到DH=CB ,同时OH 是三角形ABC 中位线,设OH=x ,则BC=2x=DH ,故半径DO=3x ,解出x ,最后在Rt △ACB 中由勾股定理即可求解.【详解】解:连接DO 、DA 、DC 、OC ,设DO 与AC 交于点H ,如下图所示,∵D是AC的中点,∴DA=DC,∴D在线段AC的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∴DO⊥AC,∠DHC=90°,∵AB是圆的直径,∴∠BCA=90°,∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,∴△DHE≌△BCE(AAS),∴DH=BC,又O是AB中点,H是AC中点,∴HO是△ABC的中位线,设OH=x,则BC=DH=2x,∴OD=3x=3,∴x=1,即BC=2x=2,在Rt△ABC中,==AC故选:D.【点睛】本题考查了圆周角定理、三角形全等、勾股定理等,属于综合题,熟练掌握其性质和定理是解决此题的关键10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张⨯方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方由6个小正方形组成的32⨯方格纸片,将“L”形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 48【答案】A【解析】【分析】先计算出66⨯方格纸片中共含有多少个32⨯方格纸片,再乘以4即可得.【详解】由图可知,在66⨯方格纸片中,32⨯方格纸片个数为54240⨯⨯=(个)则404160n=⨯=故选:A.【点睛】本题考查了图形类规律探索,正确得出在66⨯方格纸片中,32⨯方格纸片的个数是解题关键.二、填空题11._______.【答案】3【解析】【分析】根据二次根式的性质进行求解即可.=3-=3,故答案为3.a=是解题的关键.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.【答案】4.5【解析】【分析】根据中位数的定义即可得.【详解】将这组数据按从小到大进行排序为3,3,4,5,5,6 则这组数据的中位数是454.52+= 故答案为:4.5.【点睛】本题考查了中位数的定义,熟记定义是解题关键.13.计算2223m nm n m n --+-的结果是________. 【答案】1m n- 【解析】 【分析】根据分式的减法法则进行计算即可. 【详解】原式2()3()()()()m n m nm n m n m n m n ---+=+--223()()m n m nm n m n --=++-()()m nm n m n =++-1m n=- 故答案为:1m n-. 【点睛】本题考查了分式的减法运算,熟记运算法则是解题关键.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是平行四边形ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D ︒∠=,则BAC ∠的大小是________.【答案】26°. 【解析】 【分析】设∠BAC=x ,然后结合平行四边形的性质和已知条件用x 表示出∠EBA 、∠BEC 、 ∠BCE 、 ∠BEC 、 ∠DCA 、∠DCB ,最后根据两直线平行同旁内角互补,列方程求出x 即可.【详解】解:设∠BAC=x ∵平行四边形ABCD 的对角线 ∴DC//AB,AD=BC,AD//BC ∴∠DCA=∠BAC=x ∵AE=BE∴∠EBA =∠BAC=x ∴∠BEC =2x ∵AD AE BE == ∴BE=BC∴∠BCE=∠BEC =2x ∴∠DCB=∠BCE+∠DCA=3x ∵AD//BC ,102D ︒∠=∴∠D+∠DCB=180°,即102°+3x=180°,解得x=26°. 故答案为26°.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定和性质,运用平行四边形结合已知条件判定等腰三角形和掌握方程思想是解答本题的关键.15.抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过(2,0)A ,(4,0)B -两点,下列四个结论: ①一元二次方程20ax bx c ++=的根为12x =,24x =-; ②若点()15,C y -,()2,D y π在该抛物线上,则12y y <; ③对于任意实数t ,总有2at bt a b +≤-;④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是________(填写序号). 【答案】①③ 【解析】 【分析】①根据二次函数与一元二次方程的联系即可得;②先点(2,0)A ,(4,0)B -得出二次函数的对称轴,再根据二次函数的对称性与增减性即可得;③先求出二次函数的顶点坐标,再根据二次函数图象的平移规律即可得;④先将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++-,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2y ax bx c =++经过(2,0)A ,(4,0)B -两点∴一元二次方程20ax bx c ++=的根为12x =,24x =-,则结论①正确抛物线的对称轴为4212x -+==- ∴3x =时的函数值与5x =-时的函数值相等,即为1y 0a <∴当1x ≥-时,y 随x 的增大而减小又13π-<<12y y ∴>,则结论②错误当1x =-时,y a b c =-+则抛物线的顶点的纵坐标为a b c -+,且0a b c -+>将抛物线2y ax bx c =++向下平移a b c -+个单位长度得到的二次函数解析式为22()y ax bx c a b c ax bx a b =++--+=+-+由二次函数图象特征可知,2y ax bx a b =+-+的图象位于x 轴的下方,顶点恰好在x 轴上 即0y ≤恒成立则对于任意实数t ,总有20at bt a b +-+≤,即2at bt a b +≤-,结论③正确将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++- 函数2y ax bx c p =++-对应的一元二次方程为20ax bx c p ++-=,即2ax bx c p ++=因此,若一元二次方程2ax bx c p ++=的根为整数,则其根只能是121,3x x ==-或120,2x x ==-或121x x ==-对应的p 的值只有三个,则结论④错误 综上,结论正确的是①③ 故答案为:①③.【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、二次函数图象的平移问题、二次函数与一元二次方程的联系等知识点,熟练掌握并灵活运用二次函数的图象与性质是解题关键.16.如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是________.【答案】211144t t -+ 【解析】 【分析】首先根据题意可以设DE =EM =x ,在三角形AEM 中用勾股定理进一步可以用t 表示出x ,再可以设CF =y ,连接MF ,所以BF =2−y ,在三角形MFN 与三角形MFB 中利用共用斜边,根据勾股定理可求出用t 表示出y ,进而根据四边形的面积公式可以求出答案. 【详解】设DE =EM =x , ∴222(2)x x t =-+,∴x =244t + ,设CF =y ,连接FM ,∴BF =2−y , 又∵FN = y ,NM =1,∴22221(2)(1)y y t +=-+-,∴y =2244t t -+,∴四边形CDEF 的面积为:1()2x y CD +=221424()244t t t +-++∙1,故答案为:211144t t -+. 【点睛】本题主要考查了勾股定理的综合运用,熟练掌握技巧性就可得出答案.三、解答题17.计算:()235423a a a a ⎡⎤⋅+÷⎢⎥⎣⎦.【答案】610a 【解析】 【分析】根据同底数幂相乘、乘积的幂、幂的乘方、同底数幂相除运算法则逐步求解即可. 【详解】解:原式35829()+÷+=a a a8829)(+÷=a a a8210=÷a a 610=a .【点睛】本题考查了整式的乘除中幂的运算法则,熟练掌握公式及其运算法则是解决此类题的关键. 18.如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM ∥FN .求证:AB ∥CD .【答案】证明见解析. 【解析】 【分析】先根据角平分线的定义可得11,22MEF BEF N CF FE E ∠=∠∠∠=,再根据平行线的性质可得MEF NFE ∠=∠,从而可得BEF CFE ∠=∠,然后根据平行线的判定即可得证.【详解】EM 平分BEF ∠,FN 平分CFE ∠11,22MEF BEF NF CFE E ∠=∠∠∠=∴ EM //FN MEF NFE ∠=∠∴1122BEF CFE ∴∠=∠,即BEF CFE ∠=∠ //AB CD ∴.【点睛】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键.19.为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B 表示“支持”,C 表示“不关心”,D 表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是________;(2)将条形统计图补充完整;(2)该社区共有2000名居民,估计该社区表示“支持”的B 类居民大约有多少人?【答案】(1)60,18︒;(2)图见解析;(3)该社区表示“支持”的B 类居民大约有1200人. 【解析】 【分析】(1)根据C 类的条形统计图和扇形统计图的信息可得出总共抽取的人数,再求出D 类居民人数的占比,然后乘以360︒即可得;(2)根据(1)的结论,先求出A 类居民的人数,再补全条形统计图即可; (3)先求出表示“支持”的B 类居民的占比,再乘以2000即可得. 【详解】(1)总共抽取的居民人数为915%60÷=(名) D 类居民人数的占比为3100%5%60⨯= 则D 类所对应的扇形圆心角的大小是3605%18⨯︒=︒ 故答案为:60,18︒;(2)A 类居民的人数为60369312---=(名) 补全条形统计图如下所示:(3)表示“支持”的B 类居民的占比为36100%60%60⨯= 则200060%1200⨯=(名)答:该社区表示“支持”的B 类居民大约有1200人.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.20.在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ; (2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法. 【答案】(1)见解析;(2)见解析;(3)见解析 【解析】 【分析】(1)根据题意,将线段CD 是将线段CB 绕点C 逆时针旋转90︒即可; (2)连接BD ,并连接(4,2),(5,5)点,两线段的交点即为所求的点E. (3)连接(5,0)和(0,5)点,与AC 的交点为F,且F 为所求.【详解】解:(1)如图示,线段CD 是将线段CB 绕点C 逆时针旋转90︒得到的;(2)∠BCE 为所求的角,点E 为所求的点.(3)连接(5,0)和(0,5)点,与AC 的交点为F,且F 为所求.【点睛】本题考查了作图-旋转变换,正方形的性质,全等三角形的性质和轴对称的性质,熟悉相关性质是解题的关键.21.如图,在Rt ABC 中,90ABC ∠=︒,以AB 为直径的⊙O 交AC 于点D ,AE 与过点D 的切线互相垂直,垂足为E .(1)求证:AD 平分BAE ∠; (2)若CD DE =,求sin BAC ∠的值.【答案】(1)证明见解析;(2)sin BAC ∠. 【解析】【分析】(1)如图(见解析),先根据圆的切线的性质可得OD DE ⊥,再根据平行线的判定与性质可得DAE ADO ∠=∠,然后根据等腰三角形的性质可得DAO ADO ∠=∠,最后根据角平分线的定义即可得证;(2)如图(见解析),先根据角的和差、等量代换可得ADE C ∠=∠,再根据三角形全等的判定定理与性质可得AD BC =,设,AD BC a CD x ===,然后根据相似三角形的判定与性质可得AC BCBC CD=,从而可求出x 的值,最后根据正弦三角函数的定义即可得. 【详解】(1)如图,连接OD 由圆的切线的性质得:OD DE ⊥AE DE ⊥//OD AE ∴ DAE ADO ∴∠=∠又OA OD =DAO ADO ∴∠=∠ DAE DAO ∴∠=∠则AD 平分BAE ∠; (2)如图,连接BD由圆周角定理得:90ADB ∠=︒90BDC ∴∠=︒90ABC ∠=︒ 90DAO C ∴∠+∠=︒ 90DAE ADE ∠+∠=︒ADE C ∴∠=∠在ADE 和BCD 中,90E BDC DE CDADE C ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ADE BCD ASA ∴≅AD BC ∴=设,AD BC a CD x ===,则AC AD CD a x =+=+,且0,0a x >>在ACB △和BCD 中,90C CABC BDC ∠=∠⎧⎨∠=∠=︒⎩ACB BCD ∴~AC BC BC CD ∴=,即a x aa x+=解得x =0x =<(不符题意,舍去)经检验,x =是所列分式方程的解AC a ∴=+=则在Rt ABC中,sin BC BAC AC ∠===故sin BAC ∠.【点睛】本题考查了圆周角定理、圆的切线的性质、正弦三角函数、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形和相似三角形是解题关键.22.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx c =++,当10x =时,400y =;当20x 时,1000y =.B 城生产产品的每件成本为70万元. (1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件,C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示). 【答案】(1)1a =,30b =;(2)A 城生产20件,B 城生产80件;(3)当02m <≤时,A ,B 两城总运费的和的最小值为(2090)m +万元;当2m >时,A ,B 两城总运费的和的最小值为(10110)m +万元. 【解析】 【分析】(1)先根据题意得出产品数量为0时,总成本y 也为0,再利用待定系数法即可求出a 、b 的值; (2)先根据(1)的结论得出y 与x 的函数关系式,从而可得出A ,B 两城生产这批产品的总成本的和,再根据二次函数的性质即可得;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,先列出从A 城运往D 地的产品数量、从B 城运往C 地的产品数量、从B 城运往D 地的产品数量,再求出n 的取值范围,然后根据题干运费信息列出P 与n 的函数关系式,最后根据一次函数的性质求解即可得. 【详解】(1)由题意得:当产品数量为0时,总成本也为0,即0x =时,0y =则010010400400201000c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得1300a b c =⎧⎪=⎨⎪=⎩故1a =,30b =;(2)由(1)得:230y x x =+设A ,B 两城生产这批产品的总成本的和为W 则223070(100)700400x x x x x W ++-+==- 整理得:220)60(60x W -+= 由二次函数的性质可知,当20x 时,W 取得最小值,最小值为6600万元此时1001002080x -=-=答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20)n -件,从B 城运往C 地的产品数量为(90)n -件,从B 城运往D 地的产品数量为(1020)n -+件由题意得:20010200n n -≥⎧⎨-+≥⎩,解得1020n ≤≤3(20)(90)2(1020)P mn n n n =+-+-+-+整理得:(2)130P m n =-+根据一次函数的性质分以下两种情况:①当02m <≤时,在1020n ≤≤内,P 随n 的增大而减小 则20n =时,P 取得最小值,最小值为20(2)1302090m m -+=+ ②当2m >时,在1020n ≤≤内,P 随n 的增大而增大则10n =时,P 取得最小值,最小值为10(2)13010110m m -+=+答:当02m <≤时,A ,B 两城总运费的和的最小值为(2090)m +万元;当2m >时,A ,B 两城总运费的和的最小值为(10110)m +万元.【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数与一次函数的实际应用等知识点,较难的是题(3),正确设立未知数,建立函数关系式是解题关键.23.问题背景:如图(1),已知A ABC DE ∽△△,求证:ABD ACE ∽;尝试应用:如图(2),在ABC 和ADE 中,90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,AC与DE 相交于点F .点D 在BC 边上,AD BD=,求DFCF 的值;拓展创新:如图(3),D 是ABC 内一点,30BAD CBD ︒∠=∠=,90BDC ︒∠=,4AB =,AC =AD 的长.【答案】问题背景:见详解;尝试应用:3;拓展创新:AD =【解析】 【分析】问题背景:通过A ABC DE ∽△△得到AB AC AD AE =,AB ACAD AE=,再找到相等的角,从而可证ABD ACE ∽;尝试应用:连接CE ,通过BAC DAE ∽可以证得ABD ACE ∽,得到BD ADCE AE=,然后去证AFE DFC ∽△△,ADF ECF ∽△△,通过对应边成比例即可得到答案;拓展创新:在AD 的右侧作∠DAE=∠BAC ,AE 交BD 延长线于E ,连接CE ,通过BAC DAE ∽,BAD CAE ∽,然后利用对应边成比例即可得到答案.【详解】问题背景:∵A ABC DE ∽△△, ∴∠BAC=∠DAE ,AB ACAD AE=, ∴∠BAD+∠DAC=CAE+∠DAC , ∴∠BAD=∠CAE , ∴ABD ACE ∽;尝试应用:连接CE ,∵90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=, ∴BAC DAE ∽,∴AB ADAC AE=, ∵∠BAD+∠DAC=CAE+∠DAC , ∴∠BAD=∠CAE , ∴ABD ACE ∽,∴BD ADCE AE=, 由于30ADE ︒∠=,90DAE ︒∠=,∴30AE tan AD ︒==即BD AD CE AE ==,∵ADBD =, ∴3ADCE=,∵90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,∴60C E ︒∠=∠=,又∵AFE DFC ∠=∠,∴AFE DFC ∽△△, ∴AF EF DF CF =,即AF DF EF CF=, 又∵AFD EFC ∠=∠∴ADF ECF ∽△△, ∴3DF AD CF CE==;拓展创新:AD =如图,在AD 的右侧作∠DAE=∠BAC ,AE 交BD 延长线于E ,连接CE ,∵∠ADE=∠BAD+∠ABD ,∠ABC=∠ABD+∠CBD ,30BAD CBD ︒∠=∠=,∴∠ADE=∠ABC ,又∵∠DAE=∠BAC ,∴BAC DAE ∽, ∴AB AC BC AD AE DE==, 又∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,∴BAD CAE ∽,∴=BD AB AD CE AC AE ===, 设CD=x ,在直角三角形BCD 中,由于∠CBD=30°, ∴BD =,2BC x =, ∴32CE x =,∴DE =, ∵AB BC AD DE=,∴4AD =,∴AD =【点睛】本题考查了相似三角形的综合问题,熟练掌握相似三角形的判定和性质是解题的关键. 24.将抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C .(1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB 是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点. 【答案】(1)抛物线1C 的解析式为: y=x 2-4x-2;抛物线2C 的解析式为:y=x 2-6;(2)点A 的坐标为(5,3)或(4,-2);(3)直线MN 经过定点(0,2)【解析】【分析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可; (2)先判断出点A 、B 、O 、D 四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出DAC △是等腰直角三角形.设点A 的坐标为(x ,x 2-4x-2),把DC 和AC 用含x 的代数式表示出来,利用DC=AC 列方程求解即可,注意有两种情况;(3)根据直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,联立两个解析式,得到关于x 的一元二次方程,根据根与系数的关系求出点M 的横坐标,进而求出纵坐标,同理求出点N 的坐标,再用待定系数法求出直线MN 的解析式,从而判断直线MN 经过的定点即可.【详解】解:(1)∵抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C ,∴抛物线1C 的解析式为:y=(x-2)2-6,即y=x 2-4x-2,抛物线2C 的解析式为:y=(x-2+2)2-6,即y=x 2-6.(2)如下图,过点A 作AC ⊥x 轴于点C ,连接AD ,∵OAB 是等腰直角三角形,∴∠BOA =45°,又∵∠BDO=∠BAO=90°,∴点A 、B 、O 、D 四点共圆,∴∠BDA=∠BOA=45°,∴∠ADC=90°-∠BDA=45°,∴DAC △是等腰直角三角形,∴DC=AC .∵点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,∴抛物线1C 的对称轴为x=2,设点A 的坐标为(x ,x 2-4x-2),∴DC=x-2,AC= x 2-4x-2,∴x-2= x 2-4x-2,解得:x=5或x=0(舍去),∴点A 的坐标为(5,3);同理,当点B 、点A 在x 轴的下方时,x-2= -(x 2-4x-2),x=4或x=-1(舍去),∴点A 的坐标为(4,-2),综上,点A 的坐标为(5,3)或(4,-2).(3)∵直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,∴26y kx y x =⎧⎨=-⎩, ∴x 2-kx-6=0,设点E 的横坐标为x E ,点F 的横坐标为x F ,∴x E +x F =k ,∴中点M 的横坐标x M =2E F x x +=2k , 中点M 的纵坐标y M =kx=22k , ∴点M 的坐标为(2k ,22k ); 同理可得:点N 的坐标为(2k -,28k), 设直线MN 的解析式为y=ax+b (a ≠0),将M (2k ,22k )、N (2k -,28k )代入得: 222282k k a b a b k k ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得:242k a k b ⎧-=⎪⎨⎪=⎩,∴直线MN 的解析式为y= 24k k-·x+2(0k ≠), 不论k 取何值时(0k ≠),当x=0时,y=2,∴直线MN 经过定点(0,2).【点睛】本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A 、B 、O 、D 四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.。

2020年中考数学试卷(含答案及试题解析)

2020年中考数学试卷(含答案及试题解析)

2020年中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.(3分)(2020•咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.(3分)(2020•咸宁)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.(3分)(2020•咸宁)下列计算正确的是()A.3a﹣a=2B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4 4.(3分)(2020•咸宁)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.(3分)(2020•咸宁)如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A .乙的最好成绩比甲高B .乙的成绩的平均数比甲小C .乙的成绩的中位数比甲小D .乙的成绩比甲稳定6.(3分)(2020•咸宁)如图,在⊙O 中,OA =2,∠C =45°,则图中阴影部分的面积为( )A .π2−√2B .π−√2C .π2−2D .π﹣27.(3分)(2020•咸宁)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =﹣xB .y =x +2C .y =2xD .y =x 2﹣2x8.(3分)(2020•咸宁)如图,在矩形ABCD 中,AB =2,BC =2√5,E 是BC 的中点,将△ABE 沿直线AE 翻折,点B 落在点F 处,连结CF ,则cos ∠ECF 的值为( )A .23B .√104C .√53D .2√55二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.(3分)(2020•咸宁)点A 在数轴上的位置如图所示,则点A 表示的数的相反数是 .10.(3分)(2020•咸宁)因式分解:mx 2﹣2mx +m = .11.(3分)(2020•咸宁)如图,请填写一个条件,使结论成立:∵ ,∴a ∥b .12.(3分)(2020•咸宁)若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.(3分)(2020•咸宁)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.(3分)(2020•咸宁)如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,√3≈1.73)15.(3分)(2020•咸宁)按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.(3分)(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)(2020•咸宁)(1)计算:|1−√2|﹣2sin45°+(﹣2020)0;(2)解不等式组:{−(x−1)>3,2x+9>3.18.(7分)(2020•咸宁)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC 于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)(2020•咸宁)如图,已知一次函数y1=kx+b与反比例函数y2=mx的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.20.(8分)(2020•咸宁)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.(9分)(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.(10分)(2020•咸宁)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.(10分)(2020•咸宁)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)(2020•咸宁)如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠P AO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?2020年中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.(3分)(2020•咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【解答】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.2.(3分)(2020•咸宁)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108【解答】解:305000000=3.05×108,故选:B.3.(3分)(2020•咸宁)下列计算正确的是()A.3a﹣a=2B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4【解答】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.4.(3分)(2020•咸宁)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【解答】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.5.(3分)(2020•咸宁)如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定【解答】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵x甲=15(6+7+10+8+9)=8,x乙=15(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵s 甲2=15[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,s 乙2=15[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4, 2>0.4,∴乙的成绩比甲稳定,故选项D 正确,符合题意.故选:D .6.(3分)(2020•咸宁)如图,在⊙O 中,OA =2,∠C =45°,则图中阴影部分的面积为( )A .π2−√2B .π−√2C .π2−2D .π﹣2【解答】解:∵∠C =45°,∴∠AOB =90°,∴S 阴影=S 扇形AOB ﹣S △AOB=90⋅π×22360−12×2×2 =π﹣2.故选:D .7.(3分)(2020•咸宁)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =﹣xB .y =x +2C .y =2xD .y =x 2﹣2x【解答】解:∵横、纵坐标相等的点称为“好点”,∴当x =y 时,A .x =﹣x ,解得x =0;不符合题意;B .x =x +2,此方程无解,符合题意;C .x 2=2,解得x =±√2,不符合题意;D .x =x 2﹣2x ,解得x 1=0,x 2=3,不符合题意.故选:B .8.(3分)(2020•咸宁)如图,在矩形ABCD 中,AB =2,BC =2√5,E 是BC 的中点,将△ABE 沿直线AE 翻折,点B 落在点F 处,连结CF ,则cos ∠ECF 的值为( )A .23B .√104C .√53D .2√55【解答】解:如图,∵四边形ABCD 是矩形,∴∠B =90°,∵E 是BC 的中点,BC =2√5,∴BE =CE =12BC =√5,∴AE =√AB 2+BE 2=√22+(√5)2=3,由翻折变换的性质得:△AFE ≌△ABE ,∴∠AEF =∠AEB ,EF =BE =√5,∴EF =CE ,∴∠EFC =∠ECF ,∵∠BEF =∠EFC +∠ECF ,∴∠AEB =∠ECF ,∴cos ∠ECF =cos ∠AEB =BE AE =√53.故选:C .二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.(3分)(2020•咸宁)点A 在数轴上的位置如图所示,则点A 表示的数的相反数是 ﹣3 .【解答】解:∵点A 在数轴上表示的数是3,∴点A 表示的数的相反数是﹣3.故答案为:﹣3.10.(3分)(2020•咸宁)因式分解:mx 2﹣2mx +m = m (x ﹣1)2 .【解答】解:mx 2﹣2mx +m =m (x 2﹣2x +1)=m (x ﹣1)2,11.(3分)(2020•咸宁)如图,请填写一个条件,使结论成立:∵ ∠1=∠4或∠2=∠4或∠3+∠4=180° ,∴a ∥b .【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a ∥b .故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.12.(3分)(2020•咸宁)若关于x 的一元二次方程(x +2)2=n 有实数根,则n 的取值范围是 n ≥0 .【解答】解:原方程可变形为x 2+4x +4﹣n =0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n )≥0,解得:n ≥0.故答案为:n ≥0.13.(3分)(2020•咸宁)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是 16 .【解答】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P (小聪和小慧)=16,故答案为:16. 14.(3分)(2020•咸宁)如图,海上有一灯塔P ,位于小岛A 北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是20.8nmile.(结果保留一位小数,√3≈1.73)【解答】解:过P作PD⊥AB于D.∵∠P AB=30°,∠PBD=60°,∴∠P AB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×√32=12√3≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.15.(3分)(2020•咸宁)按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是a÷b=c.【解答】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a÷b=c.故答案为:a÷b=c.16.(3分)(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)【解答】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF =135°,∵∠AEF =90°,∴∠AEB +∠FEC =90°,而∠AEB +∠BAE =90°,∴∠BAE =∠FEC ,在△AME 和△ECF 中{∠MAE =∠CEFAM =EC ∠AME =∠ECF,∴△AME ≌△ECF ,∴AE =EF ,故②正确;③∵AE =EF ,∠AEF =90°,∴∠EAF =45°,∴∠BAE +∠DAF =45°,∵∠BAE +∠CFE =∠CEF +∠CFE =45°,∴∠DAF =∠CFE ,故③正确;④设BE =x ,则BM =x ,AM =AB ﹣BM =4﹣x ,S △ECF =S △AME =12•x •(2﹣x )=−12(x ﹣1)2+12,当x =1时,S △ECF 有最大值12, 故④错误.故答案为:①②③.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)(2020•咸宁)(1)计算:|1−√2|﹣2sin45°+(﹣2020)0;(2)解不等式组:{−(x −1)>3,2x +9>3.【解答】解:(1)原式=√2−1﹣2×√22+1=√2−1−√2+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.18.(7分)(2020•咸宁)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC 于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)【解答】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:19.(8分)(2020•咸宁)如图,已知一次函数y1=kx+b与反比例函数y2=mx的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为8;(3)直接写出y1>y2时x的取值范围.【解答】解:(1)把A (6,1)代入y 2=m x 中,解得:m =6,故反比例函数的解析式为y 2=6x ;把B (a ,﹣3)代入y 2=6x ,解得a =﹣2,故B (﹣2,﹣3),把A (6,1),B (﹣2,﹣3)代入y 1=kx +b ,得{6k +b =1−2k +b =−3,解得:{k =12b =−2, 故一次函数解析式为y 1=12x ﹣2;(2)如图,设一次函数y 1=12x ﹣2与x 轴交于点C ,令y =0,得x =4.∴点C 的坐标是(4,0),∴S △AOB =S △AOC +S △BOC =12×4×1+12×4×3=8. 故答案为8;(3)由图象可知,当﹣2<x <0或x >6时,直线y 1=kx +b 落在双曲线y 2=m x 上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是﹣2<x <0或x >6.20.(8分)(2020•咸宁)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有50人,a=20,m=8;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?【解答】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%=450=8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×1650=115.2°;(3)950×50−4−850=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.21.(9分)(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【解答】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF ,OD ,如图2,设圆的半径为r ,则OD =OE =r ,∵AC =4,BC =3,CF =1,∴OC =4﹣r ,DF =BF =3﹣1=2,∵OD 2+DF 2=OF 2=OC 2+CF 2,∴r 2+22=(4﹣r )2+12,∴r =138.故圆的半径为138.22.(10分)(2020•咸宁)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【解答】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得1200 x =300x−150,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m﹣1800)×0.8=360m+360,综上所述:w={450m(m≤4)360m+360(m>4).若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.23.(10分)(2020•咸宁)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为90°或270°;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.【解答】(1)解:∵四边形ABCD是对余四边形,∴∠A+∠C=90°或∠A+∠C=360°﹣90°=270°,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.24.(12分)(2020•咸宁)如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠P AO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?【解答】解:(1)直线y =−12x +2与x 轴交于点A ,与y 轴交于点B ,则点A 、B 的坐标分别为(4,0)、(0,2),将点B 、C 的坐标代入抛物线表达式得{−23×(52)2+52b +c =34c =2,解得{b =76c =2, 故抛物线的表达式为:y =−23x 2+76x +2①;(2)如图1,作点B 关于x 轴的对称点B ′(0,﹣2),连接AB ′交抛物线于点P (P ′),则∠P AO =∠BAO ,由点A 、B ′的坐标得,直线AB ′的表达式为:y =12x ﹣2②,联立①②并解得:x =3或﹣2,故点P 的坐标为(3,−12)或(﹣2,﹣3);(3)①过点C 作CH ⊥x 轴于点H ,∵∠MNC =90°,∴∠MNO +∠CNH =90°, ∠CNH +∠NCH =90°, ∴∠MNO =∠NCH ,∴tan ∠MNO =tan ∠NCH ,即OM ON =NH CH ,即m n =52−n 34, 解得:m =−43n 2+103n ;②m =−43n 2+103n ,∵−43<0,故m 有最大值,当n =54时,m 的最大值为2512,而m >0,故0<m <2512时,符合条件的N 点的个数有2个.。

最新 2020年中考数学试卷(含答案和解析)

最新 2020年中考数学试卷(含答案和解析)

中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x 3=x6B.x6÷x 5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC 边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=_________.10.(3分)分解因式:(2a+1)2﹣a2=_________.11.(3分)计算:﹣=_________.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=_________度.13.(3分)当x=﹣1时,代数式÷+x的值是_________.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=_________.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_________ cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有_________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(_________,_________),B(_________, _________),D(_________,_________).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=_________(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S 与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x ﹣)2+,∴S与x的关系式为S=﹣(x ﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B 坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形, ∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:。

2020年江西省中考数学试题及参考答案(word解析版)

2020年江西省中考数学试题及参考答案(word解析版)

江西省2020年中等学校招生考试数学试题卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC =49°,则∠BAE的度数为.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:14.先化简,再求值:(﹣)÷,其中x=.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …m 0 ﹣3 n ﹣3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE =2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.【知识考点】倒数.【思路分析】根据倒数的定义即可得出答案.【解答过程】解:﹣3的倒数是﹣.故选:C.【总结归纳】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答过程】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.【总结归纳】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:50175亿=5017500000000=5.0175×1012.故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【知识考点】平行线的判定;三角形的外角性质.【思路分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答过程】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.【总结归纳】本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.如图所示,正方体的展开图为()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答过程】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【总结归纳】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2【知识考点】待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点;坐标与图形变化﹣平移.【思路分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答过程】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴A(3,0),B(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.【总结归纳】本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.【知识考点】完全平方公式.【思路分析】直接利用完全平方公式计算即可解答.【解答过程】解:(a﹣1)2=a2﹣2a+1.【总结归纳】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【知识考点】一元二次方程的解;根与系数的关系.【思路分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答过程】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.【总结归纳】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.【知识考点】用数字表示事件.【思路分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答过程】解:由题意可得,表示25.故答案为:25.【总结归纳】本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.【知识考点】近似数和有效数字;数学常识;频数(率)分布表;众数.【思路分析】直接根据众数的定义可得答案.【解答过程】解:圆周率的小数点后100位数字的众数为9,故答案为:9.【总结归纳】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.【知识考点】全等三角形的判定与性质.【思路分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答过程】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.【总结归纳】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB =30°时或当∠ABA′=30°时求AE的长.【解答过程】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.【总结归纳】本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:【知识考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【思路分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=[﹣]÷=•=,当x=时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答过程】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【知识考点】作图﹣旋转变换.【思路分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答过程】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.【总结归纳】本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答过程】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;直角三角形斜边上的中线.【思路分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答过程】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.【总结归纳】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;频数(率)分布折线图.【思路分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答过程】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.【总结归纳】本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【知识考点】解直角三角形的应用.【思路分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答过程】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.【总结归纳】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【知识考点】圆的综合题.【思路分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答过程】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级中考模拟考试数学试题一.选择题(共12小题,满分36分)1.如果零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.3.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A.4.995×1011B.49.95×1010C.0.4995×1011D.4.995×10104.下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)35.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.B.C.6πD.以上答案都不对7.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和8.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)9.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°10.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<211.如图,将函数y=(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(﹣4,m),B(﹣1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x+3)2﹣2B.y=(x+3)2+7C.y=(x+3)2﹣5D.y=(x+3)2+412.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDE=45°;④DG=DE在以上4个结论中,正确的共有()个A.1个B.2 个C.3 个D.4个二.填空题(共6小题,满分18分,每小题3分)13.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.14.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=°.15.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为.16.如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角α是45•,旗杆底端D到大楼前梯坎低端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为米.17.使得关于x的分式方程﹣=1的解为负整数,且使得关于x的不等式组有5个整数解的所有k的和为.18.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,2),⊙O的半径为1,点C 为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为cm.三.解答题(共7小题,满分86分)19.(16分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+()﹣1.(2)先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.20.(11分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、52.(1)请你完成如下的统计表;AQI0~5051~100101~150151~200201~250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.21.(11分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.22.(11分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求证:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的长.23.(11分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?24.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求的长.25.(14分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.参考答案与试题解析一.选择题(共12小题,满分30分)1.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故选:D.2.【解答】解:从左边看竖直叠放2个正方形.故选:C.3.【解答】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.4.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.5.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.6.【解答】解:阴影面积==π.故选:D.7.【解答】解:A、错误.应该是在同圆或等圆中,相等的圆心角所对的两条弦相等;B、正确;C、错误.此弦非直径时,平分弦的直径一定垂直于这条弦;D、错误.应该是外切两圆的圆心距等于这两圆的半径之和;故选:B.8.【解答】解:如图,点P的坐标为(﹣4,﹣3).故选:A.9.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°.故选:D.10.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c 是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.11.【解答】解:∵函数y=(x+3)2+1的图象过点A(﹣4,m),B(﹣1,n),∴m=(﹣4+3)2+1=1,n=(﹣1+3)2+1=3,∴A(﹣4,1),B(﹣1,3),过A作AC∥x轴,交B′B于点C,则C(﹣1,1),∴BC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x+3)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x+3)2+4.故选:D.12.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,∴BG=2AG,②正确;∵△ADG≌△FDG,∴∠ADG=∠FDG,由折叠可得,∠CDE=∠FDE,∴∠GDE=∠GDF+∠EDF=∠ADC=45°,故③正确;∵AG=4,AD=12,CE=6,CD=12,∴DG==,DE==,∴DG<DE,故④错误;故选:C.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:令x+y=a,xy=b,则(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=(b﹣1)2﹣(a﹣2b)(2﹣a)=b2﹣2b+1+a2﹣2a﹣2ab+4b=(a2﹣2ab+b2)+2b﹣2a+1=(b﹣a)2+2(b﹣a)+1=(b﹣a+1)2;即原式=(xy﹣x﹣y+1)2=[x(y﹣1)﹣(y﹣1)]2=[(y﹣1)(x﹣1)]2=(y﹣1)2(x ﹣1)2.故答案为:(y﹣1)2(x﹣1)2.14.【解答】解:如图所示:由折叠可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∴∠1=62°,故答案为:6215.【解答】解:树状图如图所示,∴一共有9种等可能的结果;根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,∴选择同一种交通工具前往观看演出的概率:=,故答案为:.16.【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:2.4,∴BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴BH=5米,CH=12米,∴BG=GH﹣BH=15﹣5=10(米),EG=DH=CH+CD=12+20=32(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=32(米),∴AB=AG+BG=32+10=42(米);故答案为:4217.【解答】解:解分式方程﹣=1,可得x=1﹣2k,∵分式方程﹣=1的解为负整数,∴1﹣2k<0,∴k>,又∵x≠﹣1,∴1﹣2k≠﹣1,∴k≠1,解不等式组,可得,∵不等式组有5个整数解,∴1≤<2,解得0≤k<4,∴<k<4且k≠1,∴k的值为1.5或2或2.5或3或3.5,∴符合题意的所有k的和为12.5,故答案为:12.5.18.【解答】解:当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y 轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2﹣)=1﹣,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=﹣,而MN=OD=,∴PM=PN+MN=1﹣+=,即P点纵坐标的最大值为.故答案为.三.解答题(共7小题,满分86分)19.【解答】解:(1)原式=3+1﹣2×+3=6(2)由题意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x﹣1)÷=﹣(x+1)当x=﹣1时,原式=0当x=﹣2时,原式=120.【解答】解:(1)补全统计表如下:AQI0~5051~100101~150151~200201~250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数6207331(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×≈29天.21.【解答】解:(1)作CN⊥x轴于点N,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),………(1分)∴AN=BO=1,CN=AO=2,NO=NA+AO=3,………………(2分)又∵点C在第二象限,∴C(﹣3,2);………………(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1)……(4分)设这个反比例函数的解析式为:y1=又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣6+2c=c……(5分)解得c=6,即反比例函数解析式为y1=,………………(6分)此时C′(3,2),B′(6,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3;………………(7分)(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(6,1),∴若y1<y2时,则3<x<6.………………(8分)22.【解答】证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,∵∠PCA=∠PDB,∴△PAC∽△BPD;(2)∵=,PC=PD,AC=3,BD=1∴PC=PD=,∴CD==.23.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当s1=s2时,﹣1.5t+330=t,解得t=132.即行驶132分钟,A、B两车相遇.24.【解答】证明:(1)连接AD,OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的长度=.25.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。

相关文档
最新文档