《分式方程》(第3课时)教案doc初中数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式方程》(第3课时)教案doc 初中数学
[教学目标]
1.明白分式方程的意义,会解可化为一元一次方程的分式方程.
2,了解分式方程产生增根的缘故,会判定所求得的根是否是分式方程的增根.
3.会列出方程解决简单的实际咨询题,并能依照实际咨询题的意义检验所得结果是否合理.
此外,通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程,体验解决咨询题的差不多策略,进展应用意识和解决咨询题的技能.
[教学过程(第三课时)]
1.情境创设
课本以3个实际咨询题,引导学生学习用分式方程解决实际咨询题的差不多方法,进一步感受〝实际咨询题一建立方程一求解并讲明〞的过程.
有时,所列出的分式方程尽管有解,但解却不符合实际情形,这时原实际咨询题无解,例3的设置正是为了表达这一点.
2.探究活动
采纳〝个人摸索一小组交流一汇报方案’’的方式,尝试从不同角度寻求解决咨询题的方法,并能用文字、图表等手段清晰地表达解决咨询题的过程,并会讲明结果的合理性.例如:
关于例4,有以下两种解决方案可供选择:
假设每小组有x 名学生,可得分式方程:432402240=-x
x ,解得x=10,即每小组有10名学生;
假设原先每人平均做c 面彩旗,可得分式方程:x x 3240)4(2240=+,解得x=8,从而确定每个小组有 10名学生.
例5能够仿惯例4设计解决方案,但由于例5中的数量关系较例4略为复杂,因此可用表格的方式进行分析,找出数量之间的相等关系,从而得到方程.如:
依照〝乙公司比甲公司人均多捐20元〞,得方程: 20%)201(3000030000=+-x
x 通过例6的探究和求解,让学生感受在解决实际咨询题时,存在如此的现象:所列方程以及求得的根尽管正确,但不符合咨询题的实际意义,因此原实际咨询
题仍旧无解.
解分式方程(组)的检验是不可缺少的步骤.只是要注意检验的目的有两个方面:一方面是看所得数值是不是原方程的增根,另一个方面,关于应用题来讲,还要检查所得的解是否合乎实际意义