序列密码序列密码

合集下载

分组密码和序列密码

分组密码和序列密码

分组密码和序列密码
分组密码和序列密码是两种常见的对称密码算法。

分组密码是将明文分成固定长度的组(通常为64位或128位),然后对每一组进行加密操作,最终得到密文。

其中最常见的分组密码算法是DES和AES。

序列密码是按照明文或密文的顺序逐个加密或解密。

序列密码算法没有固定的分组长度,而是
根据算法规定的步骤对每个字符或比特进行处理。

最常见的序列密码算法是RC4和Salsa20。

分组密码和序列密码的主要区别在于加密的方式。

分组密码将明文分组加密,而序列密码是逐
个字符或比特加密。

这导致了两者在速度和安全性方面的差异。

分组密码通常比序列密码更安全,因为每个分组的长度固定,使得密码算法能更好地控制和混
淆数据。

而序列密码由于处理的单位是逐个字符或比特,容易受到统计分析等攻击。

然而,序列密码在某些特定的应用场景下具有优势。

由于可以逐个加密或解密,序列密码通常
具有更高的效率,适用于数据流传输和实时加密等场景。

总的来说,分组密码和序列密码都有自己的适用范围和优势,选择哪种密码算法取决于具体的应用需求和安全要求。

序列密码算法和分组密码算法的不同

序列密码算法和分组密码算法的不同

序列密码算法和分组密码算法的不同
序列密码算法和分组密码算法的主要区别在于加密的方式。

具体来说,它们的不同点如下:
1. 加密方式:
- 序列密码算法:序列密码算法是逐位或逐字符地对待加密数据进行处理,也就是说,它是按顺序对数据中的每个元素进行加密。

常见的序列密码算法有凯撒密码、仿射密码、Vigenère 密码等。

- 分组密码算法:分组密码算法将待加密的数据分成固定长度的数据块,然后对每个数据块进行加密处理。

常见的分组密码算法有DES、AES等。

2. 加密速度:
- 序列密码算法:因为序列密码算法是逐个处理数据的,所以每个字符或位都需要进行相应的加密操作,因此速度较慢。

- 分组密码算法:分组密码算法是按数据块进行加密的,对每个数据块进行加密操作的时间相对较短,速度较快。

3. 安全性:
- 序列密码算法:由于序列密码算法是逐个处理数据的,因此在一些情况下,可以通过分析其中特定的模式或规律来猜测出加密算法或破解出密钥,从而降低了安全性。

- 分组密码算法:分组密码算法通过将数据分组,并对每个数据块进行加密处理,使得攻击者很难通过分析直接猜测出加密算法或破解出密钥,提高了安全性。

4. 密钥管理:
- 序列密码算法:序列密码算法通常使用相对简单的密钥,密钥的管理相对容易。

- 分组密码算法:分组密码算法通常使用较长的密钥,密钥的管理相对复杂。

总体来说,分组密码算法在安全性和加密效率方面优于序列密码算法,因此在实际应用中更为常见和广泛使用。

序列密码——精选推荐

序列密码——精选推荐

序列密码序列密码引⾔序列密码⼜称流密码,它是将明⽂串逐位地加密成密⽂字符。

并有实现简单、速度快、错误传播少等特点。

密码按加密形式可分为:分组密码序列密码密码按密钥分为:对称密码(私钥密码)⾮对称密码(公钥密码)1. 加解密算法明⽂序列:m=m1m2……mn……密钥序列:k=k1k2……kn……加密:ci=mi+ki,i=1,2,3,……解密:mi=ci+ki,i=1,2,3,……注:+模2加,0+0=0,0+1=1,1+0=1,1+1=0例 m=101110011,c=m+k=111000110,m=c+k=101110011.1949年,Shannon证明了“⼀次⼀密”密码体制是绝对安全的。

如果序列密码使⽤的密钥是真正随机产⽣的,与消息流长度相同,则是“⼀次⼀密”体制。

但缺点是密钥长度要求与明⽂长度相同,现实情况中不可能实现,故现实中常采⽤较短的种⼦密钥,利⽤密钥序列⽣成器产⽣⼀个伪随机序列。

序列密码的原理分组密码与序列密码都属于对称密码,但两者有较⼤的不同:1. 分组密码将明⽂分组加密,序列密码处理的明⽂长度为1bit;2. 分组密码算法的关键是加密算法,序列密码算法的关键是密钥序列⽣成器。

3. 序列密码分类同步序列密码密钥序列的产⽣仅由密钥源及密钥序列⽣成器决定,与明⽂消息和密⽂消息⽆关,称为同步序列密码。

缺点:如果传输过程中密⽂位被插⼊或删除,则接收⽅与放送⽅之间产⽣了失步,解密即失败。

⾃动同步序列密码密钥序列的产⽣由密钥源、密钥序列⽣成器及固定⼤⼩的以往密⽂位决定,称为⾃同步序列密码(⾮同步密码)。

优点:如果密⽂位被删除或插⼊时,可以再失去同步⼀段时间后,⾃动重新恢复正确解密,只是⼀些固定长度的密⽂⽆法解密。

4. 密钥序列⽣成器的要求(key generation)种⼦密钥k的长度⾜够⼤,⼀般128bit以上,防⽌被穷举攻击;密钥序列{ki}具有极⼤的周期性现代密码机数据率⾼达10^8 bit/s,如果10年内不使⽤周期重复的{ki},则要求{ki}的周期T>=3*106或255;良好的统计特征。

现代密码学之03序列密码

现代密码学之03序列密码
反馈移存器是序列密码设计中常用的一种初始乱源, 其目的是:
(1)以种子密钥为移存器的初态,按照确定的递推关 系,产生周期长、统计特性好的初始乱源序列。
(2)继而利用非线性函数、有记忆变换、采样变换等 手段,产生抗破译能力强的乱数序列。
在序列密码设计中,大多使用周期达到最大的那些 序列,包括:
(1)二元域GF(2)上的线性递归序列 (2)2n元域GF(2n)上的线性递归序列 (3)剩余类环Z/(2n)上的线性递归序列 (4)非线性递归序列
3.2.2 线性反馈移存器(LFSR)简介
c0=1
c1
c2 …

x1
x2
am-1
am-2
cn-2 xn-1
cn-1
cn
xn am-n
一、当ci=1时,开关闭合,否则断开;c0=1表示总有 反馈;一般cn=1,否则退化。
二、反馈逻辑函数
f(x1, x2, …, xn)=c1x1+c2x2+…+cnxn 三、线性递推式
= c0am+c1Dam+c2D2am+…+cnDnam) = (c0+c1D+c2D2+…+cnDn)am 因此反馈多项式(也称特征多项式)为:
g(x)= c0+c1x+c2x2+…+cnxn
五、状态转移矩阵
给定两个相邻状态:
则有
Sm=(am+n-1,…,am+1,am) Sm+1=(am+n,…,am+2,am+1)
管理问题!
因而人们设想使用少量的真随机数(种子密钥) 按一定的固定规则生成的“伪随机”的密钥序 列代替真正的随机序列ki,这就产生了序列密 码。

第4章(序列密码)

第4章(序列密码)

4.4 线性移位寄存器的一元多项式表示
设 n 级线性移位寄存器的输出序列满足递推 关系 an+k=c1an+k-1 c2an+k-2 … cnak (*) 对任何 k 1 成立。这种递推关系可用一个一 元高次多项式 P(x)=1+c1x+…+cn-1xn-1+cnxn 表示,称这个多项式为LFSR的联系多项式或 特征多项式。
初始状态由用户确定,当第i个移位时钟脉冲 到来时,每一级存储器ai都将其内容向下一级 ai-1传递,并根据寄存器此时的状态a1,a2,…,an 计算f(a1,a2,…,an),作为下一时刻的an。反馈函 数f(a1,a2,…,an)是n元布尔函数,即n个变元 a1,a2,…,an可以独立地取0和1这两个可能的值, 函数中的运算有逻辑与、逻辑或、逻辑补等运 算,最后的函数值也为0或1。
图4-4 GF(2)上的n级线性反馈移位寄存器
输出序列{at}满足 an+t=cnat cn-1at+1 … c1an+t-1 其中t为非负正整数。 线性反馈移位寄存器因其实现简单、速度快、 有较为成熟的理论等优点而成为构造密钥流生 成器的最重要的部件之一。
例4.2 图4-5是一个5级线性反馈移位寄存器, 其初始状态为(a1,a2,a3,a4,a5)=(1,0,0,1,1),可 求出输出序列为 1001101001000010101110110001111100110 … 周期为31。
即输出序列为101110111011…,周期为4。 如果移位寄存器的反馈函数f(a1,a2,…,an)是a1 ,a2,…,an的线性函数,则称之为线性反馈 移位寄存器LFSR(linear feedback shift register )。此时f可写为 f(a1,a2,…,an)=cna1 cn-1a2 … c1an 其中常数ci=0或1 2加法。ci=0或1可 用开关的断开和闭合来实现,如图4-4所示。

第4讲 序列密码

第4讲 序列密码

1
0
0
1
1010 1101 0110 0011 1001
0
17
LFSR
举例
1111 0111 1011 0101 → → → → → → → → → → 1 1 1 1 0 1 0 1 1 0
0
1
0
0
1010 1101 0110 0011 1001 0100
0
18
LFSR
举例
1111 0111 1011 0101 → → → → → → → → → → → 1 1 1 1 0 1 0 1 1 0 0
LFSR的周期
上例周期为15 不同的LFSR周期不一定相同
举例:反馈函数仅引入b1,则周期最大为4
阶为n的LFSR的最大周期为2n-1 周期主要与反馈函数有关
26
LFSR的周期
已经证明:当反馈函数是本原多项式时, 周期达到最大为2n-1 本原多项式定义
若阶为n的多项式P(x)能够整除xt+1,其中t = 2n-1,且对于任何d < 2n-1且d| 2n-1 ,P(x)不能 整除xd+1,则称P(x)为本原多项式
41
序列密码的评价标准
周期 统计特性 线性复杂度(局部线性复杂度) 混淆与扩散 非线性特性
42
真随机序列
信息源
电磁辐射,热噪声,人机交互等
不能用于加密,可以用于生成密钥
43
1
1000 1100 1110
LFSR
举例
1111 0111 1011 0101 → → → → → → → → → → → → → → → 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
24
1

密码学3 序列密码

密码学3 序列密码

2019/1/25
35
随机性公设说明:
1)说明:序列中0、1出现的概率基本相同 2)说明:0、1在序列中每一位置上出现 的概率相同; 3)说明通过对序列与其平移后的序列作比 较,不能给出其它任何信息。
2019/1/25 36
从密码系统的角度看,一个伪随机序列还 应满足下面的条件: ① {ai}的周期相当大。 ② {ai}的确定在计算上是容易的。 ③ 由密文及相应的明文的部分信息,不能 确定整个{ai}。
2019/1/25 31
该移存器的周期是最长周期。 称能产生m序列的移存器为本原移存器,该 移存器对应的反馈多项式为本原多项式。 本原多项式所产生的序列是最长周期序列, 即 2n-1 ,称为m序列。
m序列在密码学中有广泛的应用。
2019/1/25 32
2、m序列特性
(一)基本定义
定义1:游程 若干个信号连续出现的现象称游程。
2019/1/25
37
(三)m序列的特性
性质1:“0、1”信号频次
r级m序列的一个周期中,1出现 2 r 1 r 1 2 1 个。 0出现
本原多项式
f ( x) x 4 x 1
个,
序列的一个周期:011110101100100
2019/1/25 38
性质2:在r级m序列的一个周期中,没有大于r的游程
2019/1/25
1
2. 单表代换密码 凯撒密码
c E3 (m) m 3(mod26),0 m 25 m D3 (c) c 3(mod26),0 c 25
移位变换
c Ek (m) m k (mod26),0 m, k 25 m Dk (c) c k (mod26),0 c, k 25

现代密码学第5章:序列密码

现代密码学第5章:序列密码
24
密钥流生成器的分解
k
k
驱动子 系统
非线性 组合子 系统
zi
25
常见的两种密钥流产生器
目前最为流行和实用的密钥流产生器如 图所示,其驱动部分是一个或多个线性反馈 移位寄存器。
LFSR
………
LFSR1
LFSR2 ……
F
zi
F
zi
LFSRn
26
KG的一般结构
通常,人们总是把KG设计得具有一定 的结构特点,从而可以分析和论证其强度, 以增加使用者的置信度。一般有以下模式:
23
同步序列密码密钥流产生器
由于具有非线性的υ的有限状态自动机理 论很不完善,相应的密钥流产生器的分析工 作受到极大的限制。相反地,当采用线性的 φ和非线性的ψ时,将能够进行深入的分析 并可以得到好的生成器。为方便讨论,可将 这类生成器分成驱动部分和非线性组合部分 (如下图)。 驱动部分控制生成器的状态转移,并为 非线性组合部分提供统计性能好的序列;而 非线性组合部分要利用这些序列组合出满足 要求的密钥流序列。
6
1.1 同步序列密码
根据加密器中记忆元件的存储状态σi是 否依赖于输入的明文字符,序列密码可进一 步分成同步和自同步两种。 σi独立于明文字符的叫做同步序列密码, 否则叫做自同步序列密码。由于自同步序列 密码的密钥流的产生与明文有关,因而较难 从理论上进行分析。目前大多数研究成果都 是关于同步序列密码的。
18
密钥序列生成器(KG)基本要求
人们就目前的想象和预见,对KG提出 了以下基本要求: 种子密钥k的变化量足够大,一般应 在2128以上; KG产生的密钥序列k具极大周期,一 般应不小于255; k具有均匀的n-元分布,即在一个周 期环上,某特定形式的n-长bit串与其求反, 两者出现的频数大抵相当(例如,均匀的游 程分布);

序列密码算法

序列密码算法

序列密码算法随着互联网的飞速发展,信息安全问题越来越受到人们的关注。

在信息安全领域中,密码学是一门重要的学科,其研究的对象就是如何保护信息的机密性、完整性和可用性。

密码学中的一种重要技术就是密码算法,而序列密码算法就是其中的一种。

序列密码算法是一种基于序列的密码算法,它使用一个生成器生成一个伪随机序列,然后将该序列与明文进行异或操作,得到密文。

在解密时,使用相同的生成器生成相同的伪随机序列,再将密文与该序列进行异或操作,即可得到明文。

因此,序列密码算法的安全性主要依赖于伪随机序列的质量。

序列密码算法有很多种,其中最常见的是RC4算法。

RC4算法是一种流密码(Stream Cipher)算法,它采用变长密钥,最长可达256位,但通常使用40位或128位密钥。

RC4算法的主要流程如下:1. 初始化阶段:生成一个S盒(S-Box)和一个T盒(T-Box)。

2. 密钥调度阶段:使用密钥填充S盒和T盒。

3. 伪随机数生成阶段:使用S盒和T盒生成伪随机数序列。

4. 加密阶段:将伪随机数序列与明文进行异或操作,得到密文。

5. 解密阶段:使用相同的密钥和相同的S盒和T盒生成相同的伪随机数序列,再将密文与该序列进行异或操作,即可得到明文。

RC4算法具有以下优点:1. 加密速度快:由于RC4算法采用流密码算法,每次只需要处理一位明文,因此加密速度非常快。

2. 实现简单:RC4算法的实现非常简单,只需要一些基本的位运算和数组操作即可。

3. 可逆性强:RC4算法的加密和解密使用相同的密钥和相同的算法,因此具有强的可逆性。

但是,RC4算法也存在一些缺点:1. 密钥长度较短:RC4算法的密钥长度最长只能达到256位,这使得它的安全性受到了一定的限制。

2. 安全性不足:由于RC4算法的S盒和T盒生成方式不够随机,因此可能存在安全漏洞,容易受到攻击。

为了弥补RC4算法的不足,人们提出了很多改进的序列密码算法,如Salsa20、ChaCha20等。

序列密码 3.5 典型序列密码算法

序列密码 3.5 典型序列密码算法
记帧序号为 T0 t22t21 t1 00 00 T1 t22t21 t1 00 01 …… 帧密钥参与的目的:对不同的帧设置不同的帧会话
密钥,保证对每帧以不同的起点生成乱数,尽可能避免 密钥重用。
一 A5-1序列密码算法
3、乱数生成与加脱密 A5算法中,LFSR的不规则动作采用钟控方式。
二 RC4算法
设计者:Ron Rivest 设计时间:1987年 算法公开时间:1994 密钥:支持可变的密钥长度
二 RC4算法
S盒的初始化:
线性填充:S0=0;S1=1;S255=255; 密钥key:40~256个字节 用密钥重复填充另一个256字节的数组,不 断重复密钥直到填充到整个数组,得到:K0,K 1,…,K255 对于i=0到255 j=(j+Si+Ki)mod256 交换Si和Sj
注:A5-1算法中,LFSR的移位方式是左移方式。 各寄存器的编号从第0级编号到第n-1级。
一 A5-1序列密码算法
n级左移LFSR的结构框图
cn=1
cn-1
cn-2 c2
xn-1
xn-2
x1
c1 x0
c0=1
移存器的左移和右移方式,除移位方式不同 外,其工作原理完全相同。
一 A5-1序列密码算法
加密: Ek (M ) Ek1(M1)Ek2 (M 2 )Ek3(M3) 一次通话使用一个会话密钥,对每帧使用不同的
帧密钥。 帧会话密钥:帧序号,长度为22比特。
帧会话密钥共产生228比特乱数,实现对本帧228 比特通信数据的加脱密。
明密结合方式:逐位模2加。
一次通话量:至多222帧数据,约0.89×230比特 。
序列密码算法:第一阶段共选出了6个算法,第二阶 段选出了3个算法,最终没有选定算法作为标准。

zuc 序列密码算法

zuc 序列密码算法

zuc 序列密码算法
ZUC序列密码算法是一种基于序列密码原理的加密算法。

这种算法将明文分成长度相等的序列,然后对这些序列进行加密。

它使用一组伪随机序列对明文进行加密,这些序列是由一系列随机数生成器生成的。

在加密过程中,每个序列都会与明文序列进行异或操作,从而得到密文。

由于每个序列都是随机生成的,因此密文具有较高的安全性和复杂性。

ZUC算法是我国学者自主设计的加密和完整性算法,属于同步序列密码。

2011年,ZUC算法被批准成为新一代宽带无线移动通信系统(LTE)国际标准,即4G的国际标准。

ZUC算法在逻辑上分为上中下三层,上层是16级线性反馈移位寄存器(LFSR),中层是比特重组(BR),下层是非线性函数F。

输出为素域GF上的m序列,具有良好的随机性。

如需更多信息,建议咨询密码学专家或查阅相关文献资料。

Lecture10_序列密码

Lecture10_序列密码
密钥k 初始向量IV 密钥流 生成器 密钥流 生成器 密 钥 流 ki 明文流mi 密文流ci 加密算法E 解密算法D 密 钥 流 ki 明文流mi
图10-3 自同步序列密码模型

特点:
– 自同步
– 有限的错误传播
4
5
序列密码和分组密码

序列密码的优点
– 转换速度快 – 低错误传播

序列密码的缺点
LFSR 1
AND 时钟 LFSR 1
LFSR 2
LFSR 2

x3 AND g(x)
密钥流

AND LFSR 3
输出
LFSR 3
图10-8 Geffe生成器
图10-9 交错停走式生成器
14
利用LFSR的序列密码反馈加密体制
明文 m
mi
ci

ki


...

AND 密文 c
(4)其结构能够应用代数方法进行很好的 分析
10
an
an-1
an-2
a2
a1
f(a1,a2,…,an)
图10-5 反馈移位寄器
11
+ an+1 AND

...

AND
AND
Cn-1
AND
c1
an
c2
an-1 ...
cn
a1 输出
a2
图10-6 长度为n的线性反馈移位寄存器
12
例子
+ a5 AND AND
18
加密与解密

加密
– 将K与下一明文字节异或

解密
– 将K与下一密文字节异或

3.2-序列密码

3.2-序列密码


提问: (1) (1) (1) (1) (1) (1) A3 A 如果上面的输入序列变为: 1 A2 A 1 A 3 A2 则上面的结果是什么,为什么?
20
同步序列密码密钥流产生器
设计关键是密钥流产生器。一般可将其看成一个参数为k的有 限状态自动机,由一个输出符号集Z、一个状态集∑、两个函 数φ和ψ以及一个初始状态σ0组成 状态转移函数φ:σi→σi+1,将当前状态σi变为一个新状态σi+1 输出函数ψ:σi→zi,当前状态σi变为输出符号集中的一个元素zi


有限状态机
范明钰 2019 年本科密码学
状态转移图 密钥序列生成器
17
有限状态自动机

有限状态自动机是具有离散输入和输出(输入集和输出 集均有限)的一种数学模型,由以下3部分组成:
范明钰 2019 年本科密码学

① 有限状态集 S {si | i 1,2,....l}
(1) A { A ② 有限输入字符集 1 j | j 1,2,..., m} 和有限输出字
(1) ( 2) (A ) 1 , A 3
(1) ( 2) ( A3 , A2 )
S2
(1) ( 2) ( A2 ,A ) 1
(1) ( 2) (A ) 1 , A 2
S3
(1) ( 2) ( A2 , A2 )
(1) ( 2) ( A3 ,A ) 1
19
例子
(1) (1) (1) S {s1 , s2 , s3 }, A1 { A1 , A2 , A3 }, ( 2) ( 2) ( 2) A2 { A1 , A2 , A3 }
范明钰 2019 年本科密码学
列密码体制的模型如下图。

【安全课件】第14讲—序列密码

【安全课件】第14讲—序列密码
17
反馈多项式的含义
一个r级线性移存器的线性递推式表示为:
a n c 1 a n 1 c 2 a n 2 c r a n r( n r )
引进迟延算子D:D k a k 1 ,D ia k a k i,D 0 I 递推式可改写为:c 0 In a c 1 D n c 2 a D 2 a n c r D r a n 0 即:( c 0 c 1 D c 2 D 2 c r D r) a n 0c0 1
8
序列和周期
一般地,一个移存器序列表示为:aa0a1a2ai
• 对于序列 aa0a1a2,ai若存在整数p使得对任 意正整数k有ak akp 成立,称满足该式的最小 正整数p为序列的周期。
r级线性反馈移存器的最长周期: 2r 1 ,能达 到最长周期的线性移存器序列称为m序列。
• 在密码学中,我们希望参与变换的序列周期越 长越好,因此对线性反馈移存器我们更感兴趣 的是能达到最长周期的序列,即m序列。
特例:当q=2时,G(f)中任意两个序列之和仍然 属于G(f)。
5
(不)可约多项式
(不)可约多项式 定义:若存在g(x),h(x),使得f(x)=g(x)h(x),则
称f(x)是可约多项式;否则,称其为不可约多 项式。
6
定理2:若f(x)|h(x),则G(f) G(h).
例1:联结多项式为
将上式中的D用符号x代替,引入多项式:
f(x ) c rx r c r 1 x r 1 c 1 x 1
从而有:f(D )an0,(nr) 那么对于序列a, f (D)a0
18
14
二、m序列特性
(二)移加特性
L(t)(a)是左移变换,就是将序列 a 左移t位所得 到的序列。

【安全课件】第13讲—序列密码

【安全课件】第13讲—序列密码

1、真值表
例如 f (x) f (x1, x2 )
x
f(x)
0
0
0
0
1
1
1
0
1
1
1
0
2、小项表示 小项表示实际上是布尔代数表达方式,即逻辑表达
方式,此方法常用于布尔函数的设计实现。 上例的小项表示为 f (x) x1x2 x1 x2
3、多项式表示 因为 x 1 x ,将小项表示中的逻辑非的形式换掉 即得多项式表示。
任意正整数k有 ak ak p 成立,称满足该式的最小正 整数p为序列的周期。
r级线性反馈移存器的最长周期: 2r 1 ,能 达到最长周期的线性移存器序列称为m序列。
在密码学中,我们希望参与变换的序列周期越长越好,因 此对线性反馈移存器我们更感兴趣的是能达到最长周期的序 列,即m序列。
(五)、实例(画出下列个移存器的逻辑框图,写出相
预备知识:布 尔 函 数
一般地,我们把n元布尔函数定义为如下映射:
记为
,其中f : F2n F2
f (x)
x (x1, x2 ,, xn ) F2n , f (x) F2 , F2 0, 1
布尔函数是研究数字逻辑电路的重要数学工具, 在序列密码、分组密码和公钥密码中,布尔函数都有 重要的应用。特别在序列密码中,布尔函数是重要的 数学工具之一。
应的线性递推式,并讨论由它们所产生的序列)
1、不可约多项式 f (x) x4 x3 x2 x 1
2、可约多项式 f (x) x4 x3 x 1 (x3 1)(x 1)
3、本原多项式
f (x) x4 x 1
4、环式移存器
f (x) x4 1
答案: 1、该移存器产生三类周期相同(全为5)的序列及一 个全零序列。 2、该移存器产生五类周期分别为6、3、3、2、1的序 列及一个全零序列。 3、该移存器产生周期为15的m序列及一个全零序列。

序列密码

序列密码

旺旺:旺我旺:能我过能软过软考考主要内容序列密码的基本概念 序列密码的分类 线性移位寄存器序列 线性移位寄存器的输出序列求解旺旺:我能过软考序列密码的基本概念版权所有:我能过软考香农证明了“一次一密”不可破解。

用序列密码模仿“一次一密”密码。

为了安全,序列密码应使用尽可能长的密钥,但是,长密钥的存储、分配存在困难。

设计一个好的密钥序列产生算法,利用较短的种子密钥,产生长的密钥序列。

作为核心密码的主流密码3 旺旺:我能过软考序列密码的分类 同步序列密码自同步序列密码 1)同步序列密码  密钥序列产生算法与明密文无关  产生的密钥序列和明密文无关 在通信中,通信双方必须保持精确的同步  不存在错误传播版权所有:我能过软考输出反馈模式OFB4 旺旺:我能过软考同步序列密码的失步分析版权所有:我能过软考设密c=c1, c2, c4, c5…., cn-1, cn文⊕ k=k1, k2, k3, k4…., cn-1, cn失 步m=m1,m2, X,X…., X, X 可以检测插入、删除、重播等主动攻击(c3 丢失) (密钥正确)5 旺旺:我能过软考同步序列密码错误传播分析版权所有:我能过软考c=c1, c2, c3, c4…., cn-1, cn ⊕ k=k1, k2, k3,k4…., cn-1, cnm=m1,m2,X,m4 …,mn-1 ,mn-1  不存在错误传播(c3 错误) (密钥正确)6 旺旺:我能过软考自同步序列密码错误传播分析版权所有:我能过软考 ci错误只影响n个密钥,导致n位错误,有限的错误传播 同步丢失,会影响n位解密,然后重新建立同步, 如: 电视信号、手机通信 难于检测出主动攻击7 旺旺:我能过软考线性移位寄存器序列 1、移位寄存器如果反馈函数f(S0、 S1 、 … 、 Sn-1)是线性函数,则 称移位寄存器为线性移位寄存器;否则,称为非线性 移位寄存器。

同步序列密码和自同步序列密码

同步序列密码和自同步序列密码

同步序列密码和自同步序列密码
同步序列密码和自同步序列密码是两种常见的序列密码加密算法。

同步序列密码是一种基于位流的加密算法,其加密和解密过程都是基于一个密钥流生成的。

密钥流是由一个伪随机数生成器生成的,该生成器使用一个与密钥相关的算法生成伪随机数。

在加密过程中,密钥流中的每个位都被用来加密明文中的对应位。

解密过程则是通过使用相同的密钥流和相同的算法来还原原始明文。

自同步序列密码是一种基于字节的加密算法,其加密和解密过程也是基于一个密钥流生成的。

与同步序列密码不同的是,自同步序列密码的密钥流是由一个可预测的算法生成的,而不是完全随机的。

在加密过程中,每个明文字节被分成多个位,然后根据密钥流中的位进行加密。

解密过程则是通过使用相同的密钥流和相同的算法来还原原始明文字节。

总的来说,同步序列密码和自同步序列密码都是基于密钥流的加密算法,但它们的生成方式和应用场景略有不同。

同步序列密码更适合于对大量数据进行加密,而自同步序列密码则更适合于对少量数据进行加密。

序列密码(讲用)

序列密码(讲用)
分组密码使用的是一个不随时间变化的固定变换,具有 扩散性好、插入敏感等优点;其缺点是:加密处理速度慢。
9
序列密码
序列密码为一六元组(P,C,K,L,E,D)和函数g,并满足 以下条件:
1. P是由所有可能明文构成的有限集。 2. C是由所有可能密文构成的有限集。 3. K是由所有可能密钥构成的有限集。
因为确定性算法产生的序列是周期的或准 周期的,为了使序列密码达到要求的安全保密 性,密钥经其扩展成的密钥流序列应该具有如 下性质:极大的周期、良好的统计特性、抗线 性分析、抗统计分析。
我们仅对实用中最感兴趣的二元情形即 GF(2)上的序列密码原理进行介绍,但其理论 是可以在任何有限域GF(q)中进行研究的。
5
由此可见, 序列密码的安全性主要依赖于密钥序列k0k1…=A(k), 当k0k1…是离散无记忆的随机序列时,则该系统就是一次一密密 码, 它是不可破的. 但通常A(k)是一个由k通过确定性算法产生的 伪随机序列, 因而此时, 该系统就不再是完全保密的. 设计序列密 码的关键是设计密钥序列A(k),密钥序列A(k)的设计应考虑如 下几个因素:
(2)无错误传输。在传输期间,一个密文字符被改变只 影响该字符的恢复,不会对后继字符产生影响。
12
自同步序列密码
自同步序列密码的密钥流的产生和已经产生的固定数量 的密文字符有关,即是一种有记忆变换的序列密码。如图所 示。
密钥流 生成器
密钥流 生成器
密 钥 流
ki 明文流mi 加密算法E
密文流ci
密 钥 流
《应用密码学》
序列密码
1
1 概述
按照对明文消息加密方式的不同,对称密码体制一般可以分为两类:分组密 码(block cipher)和流密码(stream cipher) 。

【密码学】序列密码

【密码学】序列密码

【密码学】序列密码序列密码就是对密⽂进⾏逐⼀的加密或者解密和分组密码⽐起来,分组密码是⼀组⼀组加密,序列密码就是逐个加密序列密码的安全性能主要取决于密钥流或者密钥流产⽣器的特性。

优点:实现简单、加密和解密速度快、安全性能较好、没有或少有差错传播序列密码的基本结构1.同步序列密码 同步序列密码的原理: 种⼦密钥k经过由安全信道传送给收、发双⽅后,由密钥流产⽣器⽣成加密和解密所需要的密钥流,⽽加、解密本⾝就是简单的模2加法运算。

同步序列密码的特点: ①密钥流仅仅依赖于种⼦密钥和密钥流产⽣器的结构,⽽与明⽂流(或密⽂流)⽆关。

②如果密钥流完全随机产⽣且长度⾄少和明⽂流⼀样长,则可实现绝对安全的“⼀次⼀密”。

但实际上,这很难做到。

③⽆差错传播。

因为密钥流独⽴于密⽂流,所以⼀个密⽂的传输错误不会影响下⼀个密⽂的解密。

④为了保障接收端能够正确解密,要求收、发双⽅必须严格同步。

2.⾃同步序列密码 ⾃同步序列密码的简介: 与同步序列密码需要收、发双⽅严格同步不同,⾃同步序列密码能够依靠⾃⾝的能⼒“⾃动地”实现收、发双⽅的同步,因⽽是⼀种不需要外部同步的序列密码系统。

⾃同步序列密码的特点: ①密钥流不仅依赖于种⼦密钥和密钥流产⽣器的结构,还与密⽂流(或明⽂流)有关。

初始向量IV在这⾥相当于初始密⽂的作⽤,要求收、发双⽅必须相同。

②⾃同步。

解密只取决于先前特定数量的密⽂字符,因此,即使出现删除、插⼊等⾮法攻击,收⽅最终都能够⾃动重建同步解密,因⽽收、发双⽅不再需要外部同步。

③有差错传播。

因为密钥流与密⽂流有关,所以⼀个密⽂的传输错误会影响下⾯有限个密⽂的解密。

密钥流产⽣器密钥流产⽣器是决定序列密码安全性能的主要因素,因⽽线性反馈寄存器是密钥流产⽣器最基本也是最重要的部件。

1.线性反馈移位寄存器定义:如果将移位寄存器的某些级的输出通过异或(模2加)运算函数运算后反馈回它的第⼀级输⼊端,便构成了线性反馈移位寄存器。

上海交大密码学课件--第二讲:序列密码

上海交大密码学课件--第二讲:序列密码

例4. 如图为一种4级LFSR,其联接多项 式为 x4 x3 x2 x 1
如取初始状态为(a1, a2, a3, a4)=(1,1,1,1)其状态转移图为:
输出序列为10001 10001……,周期为5。
如取初始状态为(a1, a2, a3, a4)=(0,0,0,1),其状态转移图为:
k j f (a1 j,a2 j ,...., anj )
钟控生成器
基本思想是:用一种或多种移位寄存器来控制另一种或多种移位寄存器 旳时钟,这么旳序列生成器叫做钟控生成器(clock-controlled generator), 也叫停走生成器(stop and go generator),最终旳输出被称为钟控序列, 基本模型如图所示。
反馈移位寄存器
线性反馈移位寄存器 假如反馈函数形如 :
f (a1, a2 ,..., an ) cna1 cn1a2 ... c1an
ci 0,1
这里旳加法运算为模2加,乘法运算为一般乘法, 则称该反馈函数是a1, a2,…,an旳线性函数, 相应旳反馈移位寄存器称为线性反馈移位寄存器,用LFSR表达。
流密码完整构造
安全性:
流密码旳安全性完全取决于密钥旳安全等级.
实用旳流密码以少许旳、一定长度旳种子密钥经过逻 辑运算产生周期较长、可用于加解密运算旳伪随机序 列。
2.1.2同步流密码与自同步流密码
同步流密码:密钥流旳产生与明文消息流相互独立
密钥流与明文串无关,所以同步流密码中旳每个密文ci 不依赖于之 前旳明文mi-1,……,m1。从而,同步流密码旳一种主要优点就 是无错误传播:在传播期间一种密文字符被变化只影响该符号旳恢 复,不会对后继旳符号产生影响。
2.1.1 流密码简朴构造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档