统计与概率》练习题

合集下载

概率与数理统计习题及详解答案

概率与数理统计习题及详解答案

概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3. (1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P(2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为 P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9; 当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分 (Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )] =(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分 (Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅) = P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P Θ)6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P ΘΘΘ(II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ΘΘ ∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分) 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分)6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下: 图1中发生故障事件为(A 1+A 2)·A 3 ∴不发生故障概率为3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分) 说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求: (1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率. 解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1, (1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差解:(1)记甲、乙分别解出此题的事件记为A 、B. 设甲独立解出此题的概率为P 1,乙为P 2.(2分) 则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap .8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a .12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2. (1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.88分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.210分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096.12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛.比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少? 解:(I )参加单打的队员有23A 种方法.参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分 所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31.(I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分2316=⋅=∴ξE ……………………………………………………………9分34)311(316=-⋅⋅=ξD ……………………………………………………12分14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD1、 写出下列随机试验的样本空间。

中考数学专题冲刺《统计与概率》练习题含答案

中考数学专题冲刺《统计与概率》练习题含答案

专题八统计与概率【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:S甲=17,S乙=25,下列说法正确的是()A.甲同学四次数学测试成绩的平均数是89分B.甲同学四次数学测试成绩的中位数是90分C.乙同学四次数学测试成绩的众数是80分D.乙同学四次数学测试成绩较稳定答案:B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 甲 乙 丙 丁测试成绩 (百分制) 面试 86 92 90 83笔试 90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B )A .甲B .乙C .丙D .丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A .①②③B .①②C .①③D .②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是35.三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S甲,S乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

统计和概率(全)(知识点习题与答案解析

统计和概率(全)(知识点习题与答案解析

统计与概率一、统计的基础知识1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查;抽样调查:对调查对象的部分进行调查;总体:所要考察对象的全体;个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体;样本容量:样本中个体的数目(不带单位);平均数:对于n 个数12,,,n x x x L ,我们把121()n x x x n+++L 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比;会填写频数分布表,会补全频数分布直方图、频数折线图;频数 样本容量 各 基 础 统 计量频数的分布与应用 2、 3、二、概率的基础知识 必然事件:一定条件下必然会发生的事件;不可能事件:一定条件下必然不会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情A发生的可能性称为这件事情的概率,记为P(A);P(必然事件)=1,P(不可能事件)=0,0<P (不确定事件)<1;★概率计算方法:P(A)= ————————————————例如注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率; P =110②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回..,再取出一个球,求两个球都是白球的概率;P =4251、确定事件 事件A 发生的可能结果总数 所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率…………概率初步单元测评一、选择题1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A.B. C.D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B.C.D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A.B. C.D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A.B.C.D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( ) A.B.C.D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.B.C.D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A.B.C.D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A.B.C.D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A.B.C.D.二、填空题13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.;15.16.6; 17. 1818.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)一、选择题1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题图1图211.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______. 14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________. 15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么? 20.并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1 100.23.(1)P(偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图像上,所求概率是336=112,即点A在函数y=2x图像上的概率是112。

统计与概率练习题

统计与概率练习题

第10章第1节一、选择题1.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法[答案] B[解析]①因为抽取销售点及地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本都比较少,适合采用简单随机抽样法.2.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽到一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是()A.13 B.19C.20 D.51[答案] C[解析]由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号、20号、33号、46号,从而可知选C.3.(2010·山东潍坊)某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为()A.800 B.1000C.1200 D.1500[答案] C[解析]因为a、b、c成等差数列,所以2b=a+c,∴a +b +c3=b ,∴第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1200双皮靴.4.(2010·曲阜一中)学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,若想在这n 个人中抽取50个人,则在[50,60)之间应抽取的人数为( )A .10B .15C .25D .30[答案] B[解析] 根据频率分布直方图得总人数n =301-0.01+0.024+0.036×10=100,依题意知,应采取分层抽样,再根据分层抽样的特点,则在[50,60)之间应抽取的人数为50×30100=15.5.在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( ) A .等于15 B .等于310 C .等于23D .不确定[答案] A[解析] 每一个个体被抽到的概率相等,等于20100=15.6.(2010·四川文,4)一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( ) A .12,24,15,9 B .9,12,12,7 C .8,15,12,5D .8,16,10,6[答案] D[解析] 从各层中依次抽取的人数分别是40×160800=8,40×320800=16,40×200800=10,40×120800=6. 7.(文)(2010·江西抚州一中)做了一次关于“手机垃圾短信”的调查,在A 、B 、C 、D 四个单位回收的问卷依次成等差数列,再从回收的问卷中按单位分层抽取容量为100的样本,若在B 单位抽取20份问卷,则在D 单位抽取的问卷份数是( ) A .30份 B .35份 C .40份D .65份[答案] C[解析] 由条件可设从A 、B 、C 、D 四个单位回收问卷数依次为20-d,20,20+d,20+2d ,则(20-d)+20+(20+d)+(20+2d)=100,∴d =10,∴D 单位回收问卷20+2d =40份. (理)(2010·广西南宁一中模考)从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽样方法种数为( ) A .C84C42 B .C83C43 C .2C86D .A84A42[答案] A[解析]抽样比68+4=12,∴女生抽8×12=4名,男生抽4×12=2名,∴抽取方法共有C84C42种.8.(2010·湖北理,6)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9D .24,17,9[答案] B[解析] 根据系统抽样的特点可知抽取的号码间隔为60050=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.9.(2010·茂名市调研)某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚会”跑步和爬山比赛活动,每人都参加而且只参及其中一项比赛,各年级参及比赛人数情况如下表:第一级 第二级 第三级 跑步 a b c 爬山xyz其中a b c =253,全校参及爬山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三级参及跑步的学生中应抽取 ( ) A .15人 B .30人 C .40人D .45人[答案] D[解析] 由题意,全校参及爬山人数为x +y +z =2000×14=500人,故参及跑步人数为a +b +c =2000-500=1500人,又a b c =253,∴a =300,b =750,c =450,∴高三级参及跑步的学生应抽取450×2002000=45人.10.(2010·山东日照模考)某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10件,根据以上信息,可得C 产品的数量是( )产品类别 A B C 产品数量(件) 1300 样本容量(件)130A.900件B .800件C .90件D .80件[答案] B[解析] 设A ,C 产品数量分别为x 件、y 件,则由题意可得: ⎩⎪⎨⎪⎧x +y +1300=3000x -y ×1301300=10, ∴⎩⎪⎨⎪⎧ x +y =1700x -y =100,∴⎩⎪⎨⎪⎧x =900y =800,故选B. 二、填空题11.(文)(2010·瑞安中学)某校有学生1485人,教师132人,职工33人.为有效防控甲型H1N1流感,拟采用分层抽样的方法,从以上人员中抽取50人进行相关检测,则在学生中应抽取________人. [答案] 45[解析] 设在学生中抽取x 人,则 x 1485=501485+132+33,∴x =45.(理)(2010·山东潍坊质检)一个总体分为A ,B 两层,其个体数之比为41,用分层抽样法从总体中抽取一个容量为10的样本,已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数是________. [答案] 40[解析] 设x 、y 分别表示A ,B 两层的个体数,由题设易知B 层中应抽取的个体数为2, ∴C22Cy2=128,即2y y -1=128,解得y =8或y =-7(舍去),∵x y =41,∴x =32,x +y =40.12.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用下述抽样方法抽取一个容量为8的样本:即在第0组先随机抽取一个号码i ,则第k组抽取的号码为10k +j ,其中j =⎩⎪⎨⎪⎧i +k i +k<10i +k -10 i +k≥10,若先在0组抽取的号码为6,则所抽到的8个号码依次为__________________. [答案] 6,17,28,39,40,51,62,73[解析] 因为i =6,∴第1组抽取号码为10×1+(6+1)=17,第2组抽取号码为10×2+(6+2)=28,第3组抽取号码为10×3+(6+3)=39,第4组抽取号码为10×4+(6+4-10)=40,第5组抽取号码为10×5+(6+5-10)=51,第6组抽取号码为10×6+(6+6-10)=62,第7组抽取号码为10×7+(6+7-10)=73.13.(2010·安徽文)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是____________. [答案] 5.7%[解析] 拥有3套或3套以上住房的家庭所占比例普通家庭为50990,而高收入家庭为70100. ∴该地拥有3套或3套以上住房的家庭所占比例为99 000×50990+1 000×70100100 000=571 000=5.7%. 14.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:男 女能 178 278 不能2321 则该地区生活不能自理的老人中男性比女性约多______人. [答案] 60[解析] 由表可知所求人数为 (23-21)×15000500=60(人). 三、解答题15.(2010·山东滨州)某高级中学共有学生2000人,各年级男、女生人数如下表:高一 高二 高三 女生 373 x y 男生377370z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少人? (2)已知y≥245,z≥245,求高三年级女生比男生多的概率. [解析] (1)∵x2000=0.19,∴x =380.∴高三年级学生人数为y +z =2000-(373+377+380+370)=500现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为482000×500=12(人). (2)设“高三年级女生比男生多”为事件A ,高三年级女生、男生数记为(y ,z). 由(1)知,y +z =500,且y ,z ∈N*,又已知y≥245,z≥245,所有基本事件为:(245,255),(246,254),(247,253),(248,252),(249,251),(250,250),(251,249),(252,248),(253,247),(254,246),(255,245).共11个.事件A 包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245).共5个. ∴P(A)=511.答:高三年级女生比男生多的概率为511.16.(文)(2010·泰安模拟)某校举行了“环保知识竞赛”,为了了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求a 、b 、c 的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取6人参加社区志愿者活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号 分组 频数 频率 第1组 [50,60) 5 0.05 第2组 [60,70) b 0.35 第3组 [70,80] 30 c 第4组 [80,90] 20 0.20 第5组 [90,100)10 0.10 合计a1.00[解析] (1)a =100,b =35,c =0.30由频率分布表可得成绩不低于70分的概率约为: p =0.30+0.20+0.10=0.60.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:3060×6=3人, 第4组:2060×6=2人, 第5组:1060×6=1人,所以第3、4、5组分别抽取3人,2人,1人.设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能抽法如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1), 其中第4组的2位同学B1、B2至少有一位同学是负责人的概率为915=35.(理)(2010·厦门三中阶段训练)某学校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185),得到的频率分布直方图如图所示.(1)求第3、4、5组的频率;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?[解析] (1)由题设可知,第3组的频率为0.06×5=0.3, 第4组的频率为0.04×5=0.2, 第5组的频率为0.02×5=0.1. (2)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10.因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为: 第3组:3060×6=3,第4组:2060×6=2, 第5组:1060×6=1,所以第3、4、5组分别抽取3人、2人、1人.(3)设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1)共15种可能.其中第4组的2位同学B1、B2至少有一位同学入选的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(B1,B2),(A3,B2),(B1,C1),(B2,C1)共9种可能, 所以第4组至少有一名学生被甲考官面试的概率为P =915=35.17.(文)(2010·山东邹平一中模考)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率. [解析] (1)由题意,第5组抽出的号码为22. 因为2+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为 2,7,12,17,22,27,32,37,42,47. (2)因为10名职工的平均体重为x -=110(81+70+73+76+78+79+62+65+67+59) =71所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故所求概率为P(A)=410=2 5.(理)(2010·沈阳市)从某校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),……,第八组[190.195],下图是按上述分组方法得到的频率分布直方图.(1)根据已知条件填写下列表格:组别一二三四五六七八样本数(2)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;(3)在样本中,若第二组有1名男生,其余为女生,第七组有1名女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰有一男一女的概率是多少?[解析](1)由频率分布直方图得第七组频率为:1-(0.008×2+0.016×2+0.04×2+0.06)×5=0.06,∴第七组的人数为0.06×50=3.由各组频率可得以下数据:组别一二三四五六七八样本数 2 4 10 10 15 4 3 2(2)由频率分布直方图得后三组频率和为0.08+0.06+0.04=0.18,估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为800×0.18=144.统计及概率练习题11 / 11 (3)第二组中四人可记为a 、b 、c 、d ,其中a 为男生,b 、c 、d 为女生,第七组中三人可记为1、2、3,其中1、2为男生,3为女生,基本事件列表如下:a b c d 11a 1b 1c 1d 22a 2b 2c 2d 33a 3b 3c 3d所以基本事件有12个.实验小组中恰有一男一女的事件有1b,1c,1d,2b,2c,2d,3a ,共7个,因此实验小组中恰有一男一女的概率是712.。

统计与概率练习题六年级

统计与概率练习题六年级

统计与概率练习题六年级一、选择题(每题5分,共15分)1. 某班级有40名学生,其中有15名男生,则女生人数是多少?A. 15B. 20C. 25D. 302. 在一次抽奖活动中,参与者购买了200张彩票,其中5张中奖,中奖率是多少?A. 2.5%B. 5%C. 7.5%D. 10%3. 如果一个骰子掷出6个面中的1、2、3、4、5,每个面的概率相等,则掷到1的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3二、计算题(每题10分,共30分)1. 篮球队在一个赛季中进行了40场比赛,其中赢了30场,输了8场,平局2场。

请计算篮球队的胜率和输率各是多少?2. 一共有5个苹果,其中有2个是绿色的,其余是红色的。

现从这些苹果中随机选择一个,问选择的是红色苹果的概率是多少?3. 一副扑克牌有52张牌,其中有4张A(Ace),如果从中随机抽取一张牌,请计算抽取到A的概率是多少?三、应用题(每题20分,共40分)1. 甲、乙两个班级的学生人数之比是3:5,其中甲班人数比乙班少10人。

请计算甲班和乙班的学生人数各是多少?2. 某球队共有30个人,其中有10个队员会射门,20个队员不会射门。

现从这些队员中随机抽取一人,请计算抽取到会射门的概率是多少?3. 根据一份问卷调查结果,某商店的顾客购买商品的原因分为三类:价格因素、品质因素、服务因素。

问卷中显示,价格因素对购买的影响比例为55%,品质因素为30%,服务因素为15%。

如果有一位顾客购买了该商店的商品,那么他选择购买的主要因素是什么?四、拓展题(每题15分,共30分)1. 小明家有4个孩子,其中一个是小花。

请问有几种可能的情况?2. 某市一天的天气预报可以分为晴天、多云、阴天和雨天四种情况。

根据气象数据,该市的晴天概率为40%,多云为30%,阴天为20%,则该市下雨的概率是多少?3. 某次抽奖活动有100个奖品,共有2000人参与。

每个人只能中1次奖,请计算一个人中奖的概率是多少?总分:115分以上是统计与概率练习题六年级的内容,希望对于你的练习有所帮助。

数的概率与统计练习题

数的概率与统计练习题

数的概率与统计练习题一、选择题1. 在一副扑克牌中,红桃的数量是黑桃的两倍,方块的数量是梅花的三倍,那么在这副扑克牌中,梅花的数量是黑桃的几倍?A. 1倍B. 2倍C. 3倍D. 4倍2. 如图所示,一个骰子的每个面上都标有1至6的数字。

若一个人掷这个骰子两次,那么两次掷骰子赢的概率是多少?A. 1/12B. 1/6C. 1/4D. 1/23. 甲、乙、丙、丁四名学生依次从一堆石子中取球,每次可以取1个、2个或3个。

最后一颗石子由谁取到就算谁赢。

如果甲先取球,那么乙获胜的概率是多少?A. 3/8B. 1/4C. 3/16D. 1/84. 一张卡片标有字母A、B、C、D、E,从中随机抽取一张卡片。

抽到辅音字母的概率是多少?A. 1/5B. 1/2C. 2/5D. 4/55. 某班有35个学生,其中15个学生喜欢唱歌,20个学生喜欢跳舞,并且5个学生既喜欢唱歌又喜欢跳舞。

现从这班学生中随机抽取一个学生,抽到既喜欢唱歌又喜欢跳舞的概率是多少?A. 1/7B. 1/5C. 1/6D. 1/4二、填空题1. 一袋中有8个红球和4个蓝球,现从袋中连续取球3次,取到的都是红球的概率是多少?答案:7/332. 一种水果篮中有5个苹果、3个橙子和2个香蕉,现从篮子中随机取出3个水果,取出的水果中至少有1个橙子的概率是多少?答案:13/183. 有3个红桃、4个黑桃和5个方块,现从中随机取出2个扑克牌,取到两者都是红桃的概率是多少?答案:1/224. 一组数据中,35%的数小于12,40%的数大于16,那么这组数据中小于12或大于16的概率是多少?答案:75%5. 一副扑克牌中有52张牌,其中4张是红桃A和4张是黑桃A。

现从中随机抽取2张牌,抽到两张A的概率是多少?答案:1/221三、解答题1. 班级有40个学生,其中25个学生擅长语文,30个学生擅长数学。

假设每个学生只擅长其中一门学科,那么至少有多少个学生既擅长语文又擅长数学?答案:15个学生2. 一个正方形瓷砖被分成了9个小正方形,并且每个小正方形中都标有一个数字(1至9)。

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题含答案一、单选题1.下表是小明星期一至星期五每天下午练习投篮的命中率统计表,下列说法正确的一项是()A.可以看出每天投中的次数B.五天的命中率越来越高C.可以用扇形统计图统计表中的数据D.可以用折线统计图分析小明的投篮命中率2.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.3.下列采用的调查方式中,不合适的是()A.了解一批灯泡的使用寿命,采用普查B.了解黄河的水质,采用抽样调查C.了解河北省中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用普查4.下列问题中,不适合用全面调查的是()A.了解全省七年级学生的平均身高B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全班同学每周体育锻炼的时间5.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分)规定笔试成绩占40%,面试成绩占60%,应聘者蕾蕾的笔试成绩和面试成绩分别是90分和85分,她最终得分是()A.87.5分B.87分C.88分D.88.5分6.在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.127.某班级有20个女同学,22个男同学,班上每个同学的名字都写在一张小纸条上放入一个盒子搅匀如果老师随机地从盒子中取出1张纸条,则下列命题中正确的是()A.抽到男同学名字的可能性是50%B.抽到女同学名字的可能性是50% C.抽到男同学名字的可能性小于抽到女同学名字的可能性D.抽到男同学名字的可能性大于抽到女同学名字的可能性8.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如右表所示:关于这组数据,下列说法正确的是()A.众数是2B.中位数是2C.极差是2D.方差是2 9.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是()A.众数B.中位数C.平均数D.都可以10.布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是()A.5个B.10个C.15个D.20个11.学生甲手中有4,6,8三张扑克牌,学生乙手中有3,5,10三张扑克牌,现每人从各自手中随机取出一张牌进行比较,数字大者胜,在该游戏中()A.甲获胜的概率大B.乙获胜的概率大C.两人获胜概率一样大D.不能确定12.某校男子篮球队20名队员的身高如表所示:则此男子排球队20名队员身高的中位数是()身高(cm)170176178182198人数(个)46532A .176cmB .177cmC .178cmD .180cm13.为了解本校学生周末玩手机所花时间的情况,七、八、九年级中各抽取50名学生(男女各25名)进行调查,此次调查所抽取的样本容量是( ) A .150B .75C .50D .2514.数据2,3,1,1,3的方差是:( ) A .1B .3C .2D .0.815.袋中有形状、大小、质地完全一样的3个红球和2个白球,下列说法正确的是( )A .从中随机抽出一个球,一定是红球B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率一样大C .从袋中随机抽出2个球,出现都是红球的概率为35D .从袋中抽出2个球,出现颜色不同的球的概率是3516.已知一组数据2,l ,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ). A .2B .2.5C .3D .517.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,则成绩最稳定的是( ).A .甲B .乙C .丙D .丁18.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( ) A .2B .3C .4D .619.响应国家体育总局提出的“全民战疫居家健身”,学校组织了趣味横生的线上活动.某校组织了“一分钟跳绳”活动,根据10名学生上报的跳绳成绩,将数据整理制成如下统计表:则关于这组数据的结论正确的是( )A .平均数是144 B .众数是141C .中位数是144.5D .方差是5.4二、填空题20.一组数据3,4,5,4,6的中位数是________.21.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_________________.22.甲、乙人进行射击,每人10次射击成绩的平均数都是8.8环,方差分别为2s 甲=0.65, 2s 乙=0.52,则成绩比较稳定的是__.(填“甲”或“乙”) .23.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.24.若一组数据12345x x x x x ,,,,的平均数是a ,另一组数据1234523521x x x x x ++--+,,,,的平均数是b ,则a ______b (填写“>”、“<”或“=”).25.数据0,-1,3,2,4的极差是__________________.26.已知一组数据3、a 、4、6的平均数为4,则这组数据的中位数是______. 27.某学校300名学生参加植树活动,要求每人植树2~5棵,活动结束后随机抽查了20名学生,调查他们每人的植树情况,并绘制成如图所示的折线统计图,则这20名学生每人平均植树________棵.28.某组数据分五组,第一、二组的频率之和为0.25,第三组的频率为0.35,第四、五组的频率相等,则第五组的频率是_______.29.数据1,2,x ,-1,-2的平均数是0,则这组数据的方差是____.30.为了帮助残疾人,某地举办“即开型"福利彩票销售活动,规定每10万张为一组,其中有10名一等奖,100名二等奖.1 000名三等奖,5 000名爱心奖,小明买了10张彩票,则他中奖的概率为__.31.某食堂午餐供应8元/盒、10元/盒、12元/盒三种价格的盒饭,如图为食堂某月销售午餐盒饭的统计图,由统计图可计算出该月食堂午餐盒饭的平均价格是__________元/盒.32.淮北到上海的431N次列车,沿途停靠宿州、滁州、南京、镇江、常州、无锡、苏州,需要准备_____________ 种不同的车票33.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___34.数据80,82,85,89,100的标准差为__________(小数点后保留一位).35.有许多事情我们事先无法肯定它会不会发生,这些事情称为__,也称为__,一般地,不确定事件发生的可能性是有大有小的.36.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_____.37.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是___,众数是___,中位数是___.38.数据1,2,3,5,5的众数是___________.39.从小到大排列的一组数据:-2,0,4,4,x,6,6,9的中位数是5,那么这组数据的众数是_______.三、解答题40.为进一步加强学生对“垃圾分类知识”的重视程度,某中学初一、初二年级组织了“垃圾分类知识”比赛,现从初一、初二年级各抽取10名同学的成绩进行统计分析(成绩得分用x 表示,共分成四组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤),绘制了如下的图表,请根据图中的信息解答下列问题.初一年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86 初二年级10名学生的成绩在C 组中的数据是:86,87,87初一、初二年级抽取学生比赛成绩统计表(1)b c +的值为______.(2)根据以上数据,你认为该校初一、初二年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可)(3)若两个年级共有400人参加了此次比赛,估计参加此次比赛成绩优秀()90100x ≤≤的学生共有多少人?41.为了有效控制新型冠状病毒的传播,目前,国家正全面推进新冠疫苗的免费接种工作.某社区为了解其辖区内居民的接种情况,随机抽查了部分民进行问卷调查,把调查结果分为A (准备接种)、B (不接种)、C (已经接种)、D (观望中)四种类别.并绘制了两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)此次抽查的居民人数为______人;(2)请补全条形统计图,同时求出C 类别所在扇形的圆心角度数;(3)若该社区共有居民14000人,请你估计该社区已接种新冠疫苗的居民约有多少人? 42.为了让全校学生牢固树立爱国爱党的崇高信念,某校举行了一次党史知识竞赛(百分制).现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤,对成绩进行整理分析,得到了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩为:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.(1)a = ,b = ; (2)请补全条形统计图;(3)若初一有400名学生,请估计此次测试成绩初一达到90分及以上的学生有多少人?43.为了了解某小区今年6月份家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计表和统计图:根据以上信息,解答下列问题:(1)本次抽样调查的样本容量是,m的值为,n的值为;(2)若该小区共有500户家庭,请估计该月有多少户家庭用水量不超过...9.0吨?44.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?45.某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,将下面的过程补全.收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下:77838064869075928381858688626586979682738684898692735777878291818671537290766878整理、描述数据:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据:(1)写出表中的a、b的值;(2)分析上面的统计图、表,你认为学生的体重健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条).(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?46.党的教育方针“培养德智体美劳全面发展的社会主义建设者和接班人”把劳动教育列入教育目标之一,学校更要重视开展劳动教育,某校为了解九年级学生一学期参加课外劳动时间(单位:h)的情况,从该校九年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.010t < 1020t < 2030t < 3040t <4050t <解答下列问题:(1)求频数分布表中a ,m 的值,并将频数分布直方图补充完整;(2)若九年级共有学生300人,试估计该校九年级学生一学期课外劳动时间不少于20h 的人数;(3)已知课外劳动时间在30h 40h t ≤<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.47.为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.48.给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰子的质量.49.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.参考答案:1.D【分析】根据表格中给出的信息进行解答即可.【详解】解:根据折线统计图表示的是事物的变化情况,故小明星期一至星期五每天下午练习投篮的命中率可以用折线统计图分析小明的投篮命中率.故选:D.【点睛】本题主要考查了数据的整理和应用,解题的关键是理解题意,熟练掌握扇形统计图、折线统计图和条形统计图的特点.2.A【详解】试题分析:一共有4种等可能的结果:小明打扫社区卫生,小华打扫社区卫生;小明打扫社区卫生,小华参加社会调查;小明参加社会调查,小华打扫社区卫生;小明参加社会调查,小华参加社会调查.其中两人同时选择参加社会调查只有1种.所以两人同时选择参加社会调查的概率.故此题选A.考点:概率.3.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解一批灯泡的使用寿命,数量较多,应采用抽样调查,故此选项符合题意;B.了解黄河的水质,量较大,适宜用抽样调查,故此选项不合题意;C.了解河北省中学生睡眠时间,人数较多,适宜用抽样调查,故此选项不合题意;D.了解某班同学的数学成绩,适宜用全面调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.A【分析】由普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析即可.【详解】A 、了解全省七年级学生的平均身高,调查范围广,费时费力,适合抽样调查,不适合用全面调查,故该项符合题意;B 、旅客上飞机前的安检,涉及到安全问题,需要一一检查,适合全面调查,故该项不符合题意;C 、学校招聘教师,对应聘人员面试,需要依次进行面试,适合全面调查,故该项不符合题意;D 、了解全班同学每周体育锻炼的时间,好调查,适合全面调查,故该项不符合题意; 故选:A .【点睛】本题考查了全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小,理解全面调查与抽样调查的适用范围是解题的关键. 5.B【分析】根据加权平均数公式计算即可. 【详解】解:应聘者蕾蕾的最终得分是9040%8560%8740%60%⨯+⨯=+分,故选:B .【点睛】此题考查了加权平均数的计算,正确掌握加权平均数的计算公式是解题的关键. 6.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】解:设盒子中有白球x 个, 由题意可得:0.425x=, 解得:10x =, 故选C .【点睛】本题考查了利用频率估计概率.解题的关键在于明确大量试验得到的频率可以估计事件的概率. 7.D【分析】运用概率公式对各项进行逐一判断即可.【详解】解:A 、错误,抽到男同学名字的可能性是22÷(22+20)≈52%; B 、错误,抽到女同学名字的可能性是48%;C、错误,由于抽到男同学的概率大,所以抽到男同学名字的可能性大于抽到女同学名字的可能性;D、正确,由AB可知抽到男同学名字的可能性大于抽到女同学名字的可能性.故选:D.【点睛】本题考查概率的有关知识,需注意可能性的求法.8.B【分析】根据极差、方差、众数、中位数及平均数的算法,依次计算各选项即可作出判断.【详解】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,S2≠2,故D不符合题意.故选:B.【点睛】考查平均数、中位数、众数的意义和求法,掌握计算方法是解决问题的关键.9.B【详解】因为6位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选B.10.B【分析】由共摸了300次球,发现有61次摸到白球,知摸到白球的概率为61300,设布袋中白球有x个,可得x6150300=,,解之即可.【详解】由共摸了300次球,发现有61次摸到白球,①摸到白球的概率为61 300,设布袋中白球有x个,可得x61 50300=,解得:x=1016,①布袋中白球的个数最有可能是10个故选B.【点睛】:此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.A【分析】列举出甲获胜的所有可能,求出甲获胜的概率,然后求出乙获胜的概率,比较大小即可得到结果.【详解】解:由题意知,甲取出4时,乙有3,5,10共三种可能,其中甲获胜有1种可能;甲取出6时,乙有3,5,10共三种可能,其中甲获胜有2种可能;甲取出8时,乙有3,5,10共三种可能,其中甲获胜有2种可能;①甲获胜的概率为122599++=,则乙获胜的概率为54199-=①54 99 >①甲获胜的概率大故选A.【点睛】本题考查了列举法求概率.解题的关键在于正确列举事件.12.B【分析】根据中位数的定义即可求解.【详解】表格中第10,11位队员的身高分别为176cm、178cm,故中位数为1761781772+=cm,故选B.【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义. 13.A【分析】根据样本容量的定义解答即可.【详解】①从七、八、九年级中各抽取50名学生进行调查,①一共抽了150名学生,①样本容量是150.故选A.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 14.D【详解】X =(2+3+1+1+3)÷5=2,S 2="1/5" [(2-2)2+(3-2)2+(1-2)2+(1-2)2+(3-2)2]=0.8 故选D . 15.D【分析】先求出随机事件所有情况数,再求出对应的事件发生的情况数,根据概率=所求情况数与总情况数之比进行依次解答.【详解】解:A .从中随机抽出一个球,不一定是红球,故此选项不合题意;B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率不相同,故此选项不合题意;C .从袋中随机抽出2个球,出现都是红球的概率为310,故此选项不合题意; D .从袋中抽出2个球,出现颜色不同的球的概率是35,故此选项符合题意;故选:D .【点睛】本题主要考查概率的定义,熟练掌握概念的定义和概率计算公式是解决本题的关键. 16.B【详解】数据2,1,x ,7,3,5,3,2的众数是2,说明2出现的次数最多,所以当x =2时,2出现3次,次数最多,是众数;再把这组数据从小到大排列:1,2,2,2,3,3,5,7,处于中间位置的数是2和3,所以中位数是:(2+3)÷2=2.5. 故选B. 17.D【详解】试题分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.①2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,①2S 丁<2S 丙<2S 甲<2S 乙,①成绩最稳定的是丁.故选D .考点:方差;算术平均数. 18.A【分析】该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【详解】①a 、b 、c 的中位数与众数都是5, ①a 、b 、c 三个数中有两个数是5, 设不是5的那个数为x , ①a 、b 、c 的平均数是4, ①5543x ++=⨯, 解得,2x =,即a 可能是2,也可能是5. 故选:A .【点睛】用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 19.B【分析】根据平均数、众数、中位数、方差的定义分别计算出结果,然后判断即可. 【详解】根据题目给出的数据,可得: 平均数为:14151442145114621435212x ⨯+⨯+⨯+⨯+++==,故A 选项错误;众数是:141,故B 选项正确;中位数是:141144142.52+=,故C 选项错误; 方差是:()()()()2222211411435144143214514311461432 4.40[]1s -⨯+-⨯+-⨯+-⨯==,故D 选项错误; 故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的定义和计算,熟悉相关定义是解题的关键. 20.4【分析】根据中位数的定义求解可得.【详解】解:把这些数从小大排列为3,4,4,5,6,则中位数是4.故答案为:4.【点睛】本题主要考查了中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21.3 10【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可.【详解】①共有23510++=个小球,3个黄球,①第10次摸出黄球的概率是3 10.故答案为3 10.【点睛】本题是一道关于概率的题目,解答本题的关键是熟练掌握概率的计算公式.22.乙【分析】根据方差的性质可知,方差越小,数据波动越小,数据情况越趋于稳定,据此进行分析即可.【详解】解:由题干可得甲、乙的方差分别为2s甲=0.65,2s乙=0.52,有2s甲=0.65>2s乙=0.52,故乙的成绩比较稳定.【点睛】本题考查方差所反映的数据稳定情况,掌握方差越小,数据波动越小,数据情况越趋于稳定即可.23.8.【分析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、8、8、10、10,所以这组数据的中位数为882+=8.故答案为8.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.24.>【分析】根据12345x x x x x ,,,,的平均数是a ,可得123455x x x x x a ++++=,再根据1234523521x x x x x ++--+,,,,的平均数是b ,可得15a b -=进而即可得到解答. 【详解】解:①12345x x x x x ,,,,的平均数是a , ①123455x x x x x a ++++=,①12345235215x x x x x ++++-+-++12345155x x x x x ++++=-15a =-b =,①a b >, 故答案为:>.【点睛】本题考查了算术平均数的的定义(是指在一组数据中所有数据之和再除以数据的个数),灵活运用所学知识求解是解决本题的关键. 25.5【详解】试题解析:极差=4-(-1)=5. 考点:极差. 26.3.5【分析】先根据平均数的计算公式求出x 的值,再根据中位数的定义即可得出答案. 【详解】①数据3、a 、4、6的平均数是4, ①(3+a+4+6)÷4=4, ①x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5, 则中位数是3.5; 故答案为3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a 的值. 27.3.3【分析】根据折线统计图中的数据和算术平均数的求法,可以解答本题. 【详解】解:243846523.320⨯+⨯+⨯+⨯=(棵),故答案为:3.3.【点睛】本题考查折线统计图,平均数,熟练掌握平均数计算公式是解题的关键. 28.0.2.【详解】分析:根据各组的频率的和是1即可求解. 详解:第五组的频率是:12×(1﹣0.35﹣0.25)=0.2.故答案为0.2.点睛:本题考查了频率的意义,利用各组的频率的和为1分析是解题的关键. 29.2【分析】先根据平均数的公式求出x 的值,再根据方差公式即可得. 【详解】解:由题意得:()()121205x +++-+-=,解得0x =,则方差为()()()()()222221102000102025⎡⎤⨯-+-+-+--+--=⎣⎦, 故答案为:2.【点睛】本题考查了平均数和方差,熟记平均数和方差的计算公式是解题关键. 30.0.611【详解】买一张中奖的概率为:P =1010010005000100000+++=0.0611,则买10张中奖的概率为0.0611×10=0.611. 故答案为0.611.点睛:本题关键在于先算出买一张获奖的概率,再计算买10张获奖的概率. 31.10.2【分析】根据加权平均数公式计算即可. 【详解】解:815%1225%1060%10.215%25%60%⨯+⨯+⨯=++(元/盒),故答案为:10.2.【点睛】此题考查了求加权平均数,正确理解题意及加权平均数的计算公式是解题的关键. 32.36【分析】根据概率公式求解所有种类出现的情况即可. 【详解】共有9个车站,且属于单向车程。

高三数学练习题:概率与统计

高三数学练习题:概率与统计

高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。

现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。

问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。

现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。

问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。

而星期一和星期二都下雨的概率是0.15。

现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。

问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。

现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。

问题5:
某打印店收到100份订单,其中有20份订单有错误。

现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。

小学四年级概率与统计练习题

小学四年级概率与统计练习题

小学四年级概率与统计练习题题目:小学四年级概率与统计练习题第一部分:概率计算1. 某班级有30个学生,其中20个是男生,10个是女生。

请问从班级中随机选择一个学生,他是女生的概率是多少?2. 一副标准扑克牌共有52张牌,其中红心和黑桃各有13张,梅花和方块各有13张。

请问从一副扑克牌中随机抽取一张牌,它是红心的概率是多少?3. 一枚公平的硬币抛掷一次,正面朝上的概率是多少?4. 甲、乙、丙三个学生参加一场考试,其考试成绩如下:甲:60分乙:80分丙:90分请问从他们中随机选择一个人,他的考试成绩大于70分的概率是多少?第二部分:数据统计与图表1. 下图是小明家的月度用水量统计表,请根据图表回答问题。

![image](image_link)a. 小明家一月份的用水量是多少?b. 二月份的用水量比一月份多还是少?c. 三月份的用水量是多少?d. 四月份的用水量比三月份多还是少?2. 下表是某小学四年级学生的身高统计表,请根据表格回答问题。

| 班级 | 身高范围(cm) | 学生数量 ||------|---------------|----------|| 1班 | 120 - 130 | 5 || 1班 | 131 - 140 | 8 || 1班 | 141 - 150 | 6 || 2班 | 120 - 130 | 4 || 2班 | 131 - 140 | 6 || 2班 | 141 - 150 | 7 |a. 1班的学生数量是多少?b. 2班身高在131cm以上的学生数量是多少?c. 班级1和班级2的学生数量总共是多少?d. 身高在141cm以上的学生数量是多少?第三部分:数据分析1. 某班级12个学生参加一场语文测试,他们的得分如下: 78, 86, 92, 73, 64, 80, 89, 77, 85, 91, 68, 79a. 这组数据的平均分是多少?b. 这组数据的中位数是多少?c. 这组数据的众数是多少?d. 这组数据的范围是多少?2. 某小区住户的家庭成员数统计如下:| 家庭成员数 | 家庭数量 ||------------|----------|| 1人 | 10 || 2人 | 15 || 3人 | 20 || 4人 | 25 || 5人以上 | 30 |a. 该小区共有多少个家庭?b. 平均每个家庭有几人?c. 家庭成员数最多的家庭有多少人?请按照题号完成相应的题目。

总复习统计与概率练习题(同步练习)北师大版数学五年级下册

总复习统计与概率练习题(同步练习)北师大版数学五年级下册

北师大版数学五年级下册总复习统计与概率练习题一、选择题1.下面信息中适合用复式条形统计图的是()。

A.某超市一周的销售额B.5名同学的身高C.四年级4个班男生人数和女生人数2.下图中能表示蓝蓝某一周每天30秒跳绳平均成绩的虚线是()。

A.①B.②C.③3.如图,针对小明制的复式条形图不足之出,小华提出了几点建议,则他提出的建议正确的是()。

A.缺少图例B.不知道每个月的销量C.不能够正确反映出销量情况4.“庆六一校园小歌手”比赛中,五位评委老师给4号选手打出的分数分别是:8.9分,9.3分,9分,8.5分,9.1分,7分,下列说法中错误的是()。

A.在五个分数中,相对于其他分数,7分属于极端数据B.用五个分数的平均分作为4号选手的参赛得分是合理的C.去掉一个最低分和一个最高分,再算出剩余3个分数的平均分作为4号选手的参赛得分更合理些5.对于数据3、3、2、3、6、3、10、3、6、3、2,中位数是()。

A.3 B.6 C.4.56.五年级(1)班第二小组同学数学期末考试成绩情况如下表:分数段100分95-99分90-94分85-89分人数 2 3 5 4有四位同学根据表中数据对第二小组的平均分数做出估计,你认为估计正确的是()。

A.平均分高于95分B.平均分高于90分,但低于95分C.平均分是90分二、填空题1.五(1)班有29名同学,平均身高是150厘米;再加上老师的身高165厘米,平均身高会( )(填增加、减少或不变),现在师生的平均身高是( )厘米。

2.在42、44、46、44、48、50、48、48、51、51这组数据中,中位数是( ),众数是( ).3.六(1)班某组同学的身高分别是160厘米、150厘米、140厘米、145厘米、142厘米、157厘米,这组数据的中位数是( ),这组同学的平均身高是( ).4.小明、小东、小磊三人跳绳的平均成绩是172个,小明跳了165个,小东跳了173个,小磊跳了( )个。

统计与概率初三练习题

统计与概率初三练习题

统计与概率初三练习题在初三学习统计与概率时,练习题是非常重要的一部分。

通过做题,我们可以巩固所学知识,提高解决问题的能力。

本文将提供一些统计与概率的初三练习题,并给出详细解析,希望对同学们的学习有所帮助。

一、统计题1. 某班有60名学生,他们的身高数据如下(单位:cm):155, 165, 160, 165, 155, 170, 160, 155, 170, 165, 160, 155, 155, 165, 160, 160, 155, 165, 160, 165, 170, 155, 165, 170, 165, 160, 155, 160, 170, 160, 155, 155, 165, 160, 160, 165, 155, 160, 170, 165, 160, 155, 155, 165, 160, 165, 160, 170, 155, 165, 160, 155, 160, 155, 170, 165, 155, 165, 160, 165请计算这60名学生的平均身高和中位数。

解析:要计算平均身高,只需要将所有学生的身高加起来,然后除以学生人数。

平均身高 = (155 + 165 + 160 + 165 + 155 + 170 + 160 + 155 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 160 + 155 + 165 + 160 + 165 + 170 + 155 + 165 + 170 + 165 + 160 + 155 + 160 + 170 + 160 + 155 + 155 + 165 + 160 + 160 + 165 + 155 + 160 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 165 + 160 + 170 + 155 + 165 + 160 + 155 + 160 + 155 + 170 + 165 + 155 + 165 + 160 + 165) / 60中位数是指将所有数据按照大小顺序排列,取中间的数。

(完整版)《概率与数理统计》练习册及答案

(完整版)《概率与数理统计》练习册及答案

第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)}B 。

{(反,正),(正,反),(正,正),(反,反)}C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2。

设A,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A 。

P (AB )=P (A)P (B) B 。

P(A —B)=P (A )-P (B) C.)()(B A P B A P -= D.P(A+B)=P(A )+P(B )4。

设A ,B 为随机事件,则下列各式中不能恒成立的是( )。

A 。

P(A -B)=P(A)-P (AB ) B 。

P (AB )=P(B )P (A|B ),其中P (B)〉0C 。

P(A+B)=P(A)+P (B) D.P(A )+P(A )=1 5。

若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B 。

1)(≤AB PC 。

P(A+B)=P(A)+P (B )D 。

P (A-B)≤P(A) 6.若φ≠AB ,则( ).A. A ,B 为对立事件B.B A =C.φ=B A D 。

P(A-B )≤P (A ) 7。

若,B A ⊂则下面答案错误的是( )。

A. ()B P A P ≤)( B 。

()0A -B P ≥C.B 未发生A 可能发生 D 。

B 发生A 可能不发生 8。

下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B 。

.1)(,<Ω≠A P A 则若 C 。

1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( )。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

小学五年级数学单元练习题(统计与概率)

小学五年级数学单元练习题(统计与概率)

小学五年级数学单元练习题(统计与概率)学校:___________姓名:___________班级:___________考号:___________一、选择题1.一个抽奖箱里放了1个一等奖,8个二等奖,30个三等奖,100个鼓励奖,那么摸到()的可能性最大。

A.一等奖B.二等奖C.三等奖D.鼓励奖二、解答题2.看图回答问题。

(1)从图上可以看出()年全国牛奶产量最高,()年全国牛奶产量最低。

(2)对比牛奶产量和奶类产量的变化趋势,你还有什么发现。

3.守护“蓝天白云”就是造就“绿水青山”。

甲、乙两市近年来持续开展守护“蓝天白云”行动。

下表是乙市蓝天数的统计结果。

请根据表中数据在下面折线统计图中画出乙市蓝天数变化情况并填空。

(1)甲市蓝天数如上图,甲市()年的蓝天数比上一年增加得最多,增加()天。

(2)()年甲、乙两市的蓝天数差距最大。

4.下面是我市2017~2021年空气质量优良天数情况统计表。

(1)请你根据表中的数据,把折线统计图补充完整。

我市2017~2021年空气质量优良天数情况统计图(2)()年到()年,我市空气质量优良天数增加的最快,增加了()天。

(3)2021年我市空气质量优良天数占本年总天数的() ()。

(4)请你为提高我市的空气质量优良天数提出一条建议。

5.下面是两架模型飞机在一次飞行中飞行时间和高度的记录。

(1)这两架飞机各飞行了多少秒?哪一架飞机飞行的时间长一些?(2)从图上看,起飞后第10秒甲飞机的高度是多少米?乙飞机的高度呢?第几秒两架飞机处于同一高度?6.先把下面的折线统计图补充完整,然后根据折线统计图回答问题。

(1)普通电视平均每个季度销售多少台?(2)液晶电视平均每个季度销售多少台?(3)根据你获得的信息,预测明年两种电视的销售情况。

7.李老师设计了一个转盘,上面画出了和两种图案。

聪聪转了40次,结果如图表所示:根据表中的数据,王浩认为,李老师设计的转盘最有可能的是转盘④,不可能的是转盘④和④,你同意他的看法吗?写出理由。

统计概率专项练习

统计概率专项练习

统计概率专项练习一、单选题1.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取7位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,4,则这组数据的第75百分位数是( ) A .7 B .7.5 C .8 D .92.若样本数据123x +,223x +,,823x +的方差为32,则数据128,,,x x x 的方差为( ) A .16 B .8 C .13 D .53.盒子中装有红色,黄色和黑色小球各2个,一次取出2个小球,下列事件中,与事件“2个小球都是红色”对立的事件是( )A .2个小球都是黑色B .2个小球恰有1个是红色C .2个小球都不是红色D .2个小球至多有1个是红色4.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中正确的是( )A .估计该地农户家庭年收入的平均值超过7.5万元B .估计该地有一半以上的农户,其家庭年收入不低于8.5万元C .该地农户家庭年收入低于4.5万元的农户比率估计为4%D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至7.5万元之间5.为迎接北京2022年冬奥会,小王选择以跑步的方式响应社区开展的“喜迎冬奥爱上运动”(如图)健身活动.依据小王2021年1月至2021年11月期间每月跑步的里程(单位:十公里)数据,整理并绘制的折线图(如图),根据该折线图,下列结论正确的是( )A .月跑步里程逐月增加B .月跑步里程的极差小于15C .月跑步里程的中位数为5月份对应的里程数D .1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更大 6.寒假来临,秀秀将从《西游记》、《童年》、《巴黎圣母院》、《战争与和平》、《三国演义》、《水浒传》这六部著作中选四部(其中国外两部、国内两部),每周看一部,连续四周看完,则《三国演义》与《水浒传》被选中且在相邻两周看完的概率为( )A .112B .16C .13D .237.为了研究某种病毒与血型之间的关系,决定从被感染的人群中抽取样本进行调查,这些感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,现用比例分配的分层随机抽样方法抽取一个样本量为n 的样本,已知样本中O 型血的人数比AB 型血的人数多20,则n =( ) A .100 B .120 C .200 D .2408.某商场推出抽奖活动,在甲抽奖箱中有四张有奖奖票.六张无奖奖票;乙抽奖箱中有三张有奖奖票,七张无奖奖票.每人能在甲乙两箱中各抽一次,以A 表示在甲抽奖箱中中奖的事件,B 表示在乙抽奖箱中中奖的事件,C 表示两次抽奖均末中奖的事件.下列结论中不正确的是( )A .()2150P C = B .事件A 与事件B 相互独立 C .()P AB 与()P C 和为54% D .事件A 与事件B 互斥二、多选题9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场的进球数是3.2,全年进球数的标准差为3;乙队平均每场的进球数是1.8,全年进球数的标准差为0.3.下列说法中正确的是 ( )A .乙队的技术比甲队好B .乙队发挥比甲队稳定C .乙队几乎每场都进球D .甲队的表现时好时坏10.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号车站开始,在每个车站下车是等可能的,则( )A .甲、乙两人下车的所有可能的结果有9种B .甲、乙两人同时在第2号车站下车的概率为19C .甲、乙两人同时在第4号车站下车的概率为13 D .甲、乙两人在不同的车站下车的概率为2311.某校为做好疫情防控,每天早中晩都要对学生进行体温检测.某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则( )A .甲同学体温的极差为0.4℃B .乙同学体温的众数为36.4℃,中位数与平均数相等C .乙同学的体温比甲同学的体温稳定D .甲同学体温的第60百分位数为36.4℃12.从高一某班抽三名学生(抽到男女同学的可能性相同)参加数学竞赛,记事件A 为“三名学生都是女生”,事件B 为“三名学生都是男生”,事件C 为“三名学生至少有一名是男生”,事件D 为“三名学生不都是女生”,则以下正确的是( )A .()18P A = B .事件A 与事件B 互斥 C .()()P C P D ≠ D .事件A 与事件C 对立三、填空题13.某人有3把钥匙,其中2把能打开门,如果随机地取一把钥匙试着开门,把不能打开门的钥匙扔掉,那么第二次才能打开门的概率为__________.14.一个总体分为,A B 两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知B 层中每个个体被抽到的概率都是112,则总体中的个体数为________.15.由于夏季炎热某小区用电量过大,据统计一般一天停电的概率为0.3,现在用数据0、1、2表示停电;用3、4、5、6、7、8、9表示当天不停电,现以两个随机数为一组,表示连续两天停电情况,经随机模拟得到以下30组数据, 28 21 79 14 56 74 06 89 53 90 14 57 62 30 93 78 63 44 71 28 67 03 53 82 47 23 10 94 02 43根据以上模拟数据估计连续两天中恰好有一天停电的概率为________.16.一所初级中学为了估计全体学生的平均身高和方差,通过抽样的方法从初一年级随机抽取了30人,计算得这30人的平均身高为154cm ,方差为30;从初二年级随机抽取了40人,计算得这40人的平均身高为167cm ,方差为20;从初三年级随机抽取了30人,计算得这30人的平均身高为170cm ,方差为10.依据以上数据,若用样本的方差估计全校学生身高的方差,则全校学生身高方差的估计值为_________. 四、解答题17.为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[)40,100上,将这些成绩分成六段[)40,50,[)50,60,…,[)90,100,后得到如图所示部分频率分布直方图.(1)求抽出的60名学生中分数在[)70,80内的人数;(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数; (3)根据频率分布直方图算出样本数据的中位数.18.为普及抗疫知识,弘扬抗疫精神,某学校组织防疫知识竞赛,比赛分两轮进行,每位选手都必须参加两轮比赛,若选手在两轮比赛中都胜出,则视为该选手赢得比赛,现已知甲、乙两位选手,在第一轮胜出的概率分别为11,23,在第二轮胜出的概率分别为23,34,甲、乙两位选手在一轮二轮比赛中是否胜出互不影响.(1)在甲、乙二人中选派一人参加比赛,谁赢得比赛的概率更大? (2)若甲、乙两人都参加比赛,求至少一人赢得比赛的概率.19.某教育集团为了办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(满意度最高分120分,最低分0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的结果(单位:分)如下甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数; (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差;20.在某校2022年春季的高一学生期末体育成绩中随机抽取50个,并将这些成绩共分成五组:[)[)[)[)[]50,60,60,70,70,80,80,90,90,100,得到如图所示的频率分布直方图.在[)50,70的成绩为不达标,在[]70,100的成绩为达标.(1)根据样本频率分布直方图求a的值,并估计样本的众数和中位数(中位数精确到个位);(2)以体育成绩是否达标为依据,用分层抽样的方法在该校2022年春季的高一学生中选出5人,再从这5人中随机选2人,那么这两人中至少有一人体育成绩达标的概率是多少?21.每年的11月9日是我国的全国消防日.119为我国规定的统一火灾报警电话,但119台不仅仅是一部电话,也是一套先进的通讯系统.它可以同中国国土上任何一个地方互通重大灾害情报,还可以通过卫星调集防灾救援力量,向消防最高指挥提供火情信息.佛山某中学为了加强学生的消防安全意识,防范安全风险,特在11月9日组织消防安全系列活动.甲、乙两人组队参加消防安全知识竞答活动,每轮竞答活动由甲、乙各答一题.在每轮竞答中,甲和乙答对与否互不影响,各轮结果也互不影响.已知甲每轮答对的概率为23,乙每轮答对的概率为p,且甲、乙两人在两轮竞答活动中答对3题的概率为5 12.(1)求p的值;(2)求甲、乙两人在三轮竞答活动中答对4题的概率.22.在一个文艺比赛中,由10名专业评审、10名媒体评审和10名大众评审各组成一个评委小组,给参赛选手打分.小组A 85 91 87 93 88 84 97 94 95 86小组B 84 87 92 96 89 95 92 91 94 90小组C 95 89 95 96 97 93 92 90 89 94(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值;(2)你能依据(1)的度量值判断小组A,B与C中哪一个更象是由专业人士组成的吗?(3)已知选手小华专业评审得分的平均数和方差分别为195x=,218s=,媒体评审得分的平均数和方差分别为293x=,2212s=,大众评审得分的平均数和方差分别为391x=,2320s=,将这30名评审的平均分作为最终得分,求该选手最终的得分和方差.参考答案:1.C【分析】把该组数据从小到大排列,计算775%⨯,从而找出对应的第75百分位数; 【详解】解:依题意可得这组数据从小到大排列为4、5、5、6、7、8、9, 且775% 5.25⨯=,所以这组数据的第75百分位数为8. 故选:C 2.B【分析】根据方差的性质进行求解即可.【详解】因为样本数据12823,23,,23x x x +++的方差为32,所以数据128,,,x x x 的方差为 23282=. 故选:B 3.D【分析】根据互斥事件与对立事件的概念逐个分析可得答案.【详解】对于A ,“2个小球都是黑色”与“2个小球都是红色”是只互斥不对立事件,故A 不正确;对于B ,“2个小球恰有1个是红色” 与“2个小球都是红色”是只互斥不对立事件,故B 不正确;对于C ,“2个小球都不是红色” 与“2个小球都是红色”是只互斥不对立事件,故C 不正确; 对于D ,“2个小球至多有1个是红色” 与“2个小球都是红色”是对立事件,故D 正确. 故选:D 4.A【分析】根据频率分布直方图,即可结合选项逐一计算平均值以及所占的比重. 【详解】对于A ,估计该地农户家庭年收入的平均值为30.0240.0450.160.1470.280.290.1100.1110.04120.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+ 130.02140.027.687.5⨯+⨯=>,故A 正确,对于B ,家庭年收入不低于8.5万元所占的比例为0.10.10.040.020.020.020.3+++++=,故B 错误,对于C ,该地农户家庭年收入低于4.5万元的农户比率估计为(0.020.04)16%+⨯=,故C 错误,家庭年收入介于4.5万元至7.5万元之间的频率为0.10.140.20.440.5++=<,故D 错误. 故选:A 5.C【分析】根据折线分布图中数据的变化趋势可判断A 选项;利用极差的定义可判断B 选项;利用中位数的定义可判断C 选项;利用数据的波动幅度可判断D 选项.【详解】对于A 选项,1月至2月、6月至8月、10月至11月月跑步里程逐月减少,A 错; 对于B 选项,月跑步里程的极差约为2552015-=>,B 错;对于C 选项,月跑步里程由小到大对应的月份分别为:2月、8月、3月、4月、 1月、5月、7月、6月、11月、9月、10月,所以,月跑步里程的中位数为5月份对应的里程数,C 对;对于D 选项,1月至5月的月跑步里程的波动幅度比6月至11月的月跑步里程的波动幅度小,故1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更小,D 错. 故选:C. 6.B【分析】首先计算出没有任何限制条件的所有可能,再计算《三国演义》与《水浒传》被选中且在相邻则用捆绑法,再从三部国外著作中选两部然后再分配到每周即可得到结果.【详解】三部国内三部国外各选两部再全排列共有224334C C A ;由于要选《三国演义》与《水浒传》被选中且在相邻两周看完,则将两本书看成一个整体,有22A 种;从三部国外著作中选出两部有23C 种,此时将四本书分布在四周转化为三整体分布在三空中,先从中选一个为《三国演义》与《水浒传》有13C ,剩下两本书再排列有22A 种.综上:22122332224334A C C A 1C C A 6P ==故选:B 7.B【分析】由题知422043324332n n -=++++++,再解方程即可得答案. 【详解】解:因为感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,所以,抽取样本量为n 的样本中,O 型血的人数为44332n +++, AB 型血的人数为24332n +++,所以,422043324332n n -=++++++,解得120n = 故选:B 8.D【分析】分别求出()P A ,()P B ,进一步求出()P C 与()P AB ,从而判断AC 选项,在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,判断BD 选项.【详解】()42105P A ==,()310P B = 在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,B 项正确()321(1)(1)510502C P =--=,故A 正确()()()325P AB P A P B ==()P AB ()2754%50P C +==,故C 正确 事件A 与事件B 相互独立而非互斥,故D 错误. 故选:D. 9.BCD【分析】根据平均数、方差的知识,对四个说法逐一分析,由此得出正确选项 【详解】因为甲队每场进球数为3.2,乙队平均每场进球数为1.8, 甲队平均数大于乙队较多,所以甲队技术比乙队好,所以A 不正确;因为甲队全年比赛进球个数的标准差为3,乙队全年进球数的标准差为0.3, 乙队的标准差小于甲队,所以乙队比甲队稳定,所以B 正确; 因为乙队的标准差为0.3,说明每次进球数接近平均值, 乙队几乎每场都进球,甲队标准差为3, 说明甲队表现时好时坏,所以C ,D 正确, 故选:BCD. 10.ABD【分析】由题意,根据分步乘法计数原理,可得A 的答案;根据古典概型的概率计算公式,可得B 、C 、D 的答案.【详解】对于A ,甲下车的情况有第2号站、第3号站,第4号站,共3种,同理可得,乙下车的情况数也是3,由题意,甲乙两人下车互不影响,则总情况数为339⨯=,故A 正确;对于B ,甲、乙两人同时在第2号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故B 正确; 对于C ,甲、乙两人同时在第4号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故C 错误;对于D ,甲、乙两人在相同车站下车的情况数为3,则在不同车站下车的情况数为936-=,即概率为62=93,故D 正确.故选:ABD. 11.ABC【分析】根据图中数据,依次分析各选项即可得答案.【详解】解:对于A 选项,甲同学体温的极差为36.636.20.4-=℃,故A 选项正确; 对于B 选项,乙同学体温为36.4,36.3,36.5,36.4,36.4,36.3,36.5,其众数为36.4℃,中位数、平均数均为36.4℃,故B 选项正确;对于C 选项,根据图中数据,甲同学的体温平均数为36.4℃,与乙同学的体温平均数相同,但甲同学的体温极差为0.4℃,大于乙同学的体温极差0.2℃,而且从图中容易看出乙同学的数据更集中,故乙同学的体温比甲同学的体温稳定,C 选项正确;对于D 选项,甲同学的体温从小到大排序为36.2,36.2,36.4,36.4,36.5,36.5,36.6,760% 4.2⨯=,故甲同学体温的第60百分位数为36.5℃,故D 选项错误. 故选:ABC 12.ABD【分析】由独立乘法公式求()P A ,根据事件的描述,结合互斥、对立事件的概念判断B 、C 、D 即可.【详解】由所抽学生为女生的概率均为12,则311()()28P A ==,A 正确;,A B 两事件不可能同时发生,为互斥事件,B 正确;C 事件包含:三名学生有一名男生、三名学生有两名男生、三名学生都是男生,其对立事件为A ,D 正确;D 事件包含:三名学生都是男生、三名学生有一名男生、三名学生有两名男生,与C 事件含义相同,故()()P C P D =,C 错误; 故选:ABD13.13【分析】分析试验过程,利用概率的乘法公式即可求出概率. 【详解】记事件A :第二次才能打开门.因为3把钥匙中有2把能打开门,而第一次没有打开,第二次必然能打开.所以()121323P A =⨯=.故答案为:13.14.240【分析】根据分层抽样每个个体抽到的概率相等,即可求出结论 【详解】因为用分层抽样方法从总体中抽取一个容量为20的样本.由B 层中每个个体被抽到的概率都为112 ,知道在抽样过程中每个个体被抽到的概率是112,所以总体中的个体数为12024012÷=.故答案为:240.15.25##0.4【分析】根据题意从30个数据中找出恰有一天停电的情况,再利用古典概型的概率公式可求得结果.【详解】由题意可知恰有一天停电的情况有:28,14,06,90,14,62,30,71,28,03,82,23,共12种,所以连续两天中恰好有一天停电的概率为122305=,故答案为:2516.64.4【分析】利用方差及平均数公式可得()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑, 进而即得.【详解】初一学生的样本记为1x ,2x ,…,30x ,方差记为21s ,初二学生的样本记为1y ,2y ,…,40y ,方差记为22s ,初三学生的样本记为1z ,2z ,…,30z ,方差记为23s .设样本的平均数为ω,则301544016730170164100ω⨯+⨯+⨯==,设样本的方差为2s .则()()()30403022221111100i i i i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑ ()()()3040302221111100i i i i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑ 又()303011300i i i i x x x x ==-=-=∑∑,故()()()()303011220i ii i x x x x x x ωω==--=--=∑∑,同理()()40120i i y yy ω=--=∑,()()30120ii z z z ω=--=∑,因此,()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑ ()()()2222221231303040403030100s x s y s z ωωω⎡⎤=+-++-++-⎢⎥⎣⎦()()(){}222130301541644020167164301017016464.4100⎡⎤⎡⎤⎡⎤=⨯⨯+-+⨯+-+⨯+-=⎣⎦⎣⎦⎣⎦.故答案为:64.4. 17.(1)15人 (2)135人 (3)76【分析】(1)根据频率的和等于1求出成绩在[)70,80内的频率,计算对应的频数即可.(2)计算小于85分的频数即可.(3)根据中位数平分频率直方图的面积,求出即可. 【详解】(1)解:由题意得:在频率分布直方图中,小矩形的面积等于这一组的频率,频率的和等于1, 成绩在[)70,80内的频率()10.0050.010.020.0350.005100.25-++++⨯= 人数为0.256015⨯=人;(2)估计该校的优秀人数为不小于85分的频率再乘以样本总量600,即0.0356000.005101352⎛⎫⨯+⨯=⎪⎝⎭人; (3)分数在[)70,80内的频率为0.25,∵分数在[)40,70内的频率为()0.0050.0100.020100.350.5++⨯=<, ∴中位数在[)70,80内,∵中位数要平分方图的面积,∴中位数为0.50.3570760.025-+= 18.(1)甲赢得比赛的概率更大 (2)12【分析】(1)根据独立事件概率乘法公式可分别计算甲、乙赢得比赛的概率,对比即可得到结论;(2)首先求得二人都没有赢得比赛的概率,根据对立事件概率公式可求得结果.【详解】(1)甲赢得比赛的概率为121233⨯=,乙赢得比赛的概率为131344⨯=,1134>,∴甲赢得比赛的概率更大. (2)若二人都没有赢得比赛,则概率为112311134342⎛⎫⎛⎫-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,∴甲、乙至少一人赢得比赛的概率为11122-=.19.(1)平均数为100;100;中位数99;99 (2)55.25;29.5【分析】(1)利用平均数、中位数定义及公式直接求即可; (2)利用方差公式直接求即可 【详解】(1)甲学校人民满意度的平均数为:()1961129710810010386981008x =+++++++=甲,甲校:86,96,97,98,100,103,108,112甲学校人民满意度的中位数为10098992+=; 乙学校人民满意度的平均数为:1(10810194105969897106)1008x =+++++++=乙,乙校:93,94,96,97,101,105,106,108乙学校人民满意度的中位数为10197992+=. (2)甲学校人民满意度的方差:()2222222221412380314255.258S =+++++++=甲,乙学校人民满意度的方差:()222222222181********.58S =+++++++=乙.20.(1)0.020a =,众数为65,中位数为73;(2)910.【分析】(1)根据各组频率和为1可求出a 的值,然后根据众数和中位数的定义求解即可;(2)根据分层抽样的概念可知不达标的学生有2人,达标的学生有3人,然后利用列举法,根据古典概型概率公式即得. 【详解】(1)由题知()0.0040.0080.0320.036101a ++++⨯=, 得0.020a =,由直方图可知众数为65;因为()0.0040.036100.4+⨯=,()0.0040.0320.036100.72++⨯=,设中位数为x ,则()0.004100.03610700.0320.5x ⨯+⨯+-⨯=,得73.12573x =≈, 所以中位数为73;(2)分层抽样的方法从不达标和达标的学生中共选出5人,则不达标的学生有2人记为,A B ,达标的学生有3人记为,,a b c ,从这5人中选2人的情况有,,,,,,,AB Aa Ab Ac Ba Bb Bc ab ,,ac bc 共10种,这两人中至少有一人是“达标”的情况有,,Aa Ab Ac ,,,,,,Ba Bb Bc ab ac bc 共9种,设M =“这两人中至少有一人达标”,则()910P M =,所以,这两人中至少有一人达标的概率是910.21.(1)34(2)3196【分析】(1)利用相互独立事件概率的乘法公式列方程求解;(2)分甲有两题没有答对,乙有两题没有答对,甲乙各有一题没有答对三种情况,利用相互独立事件的概率以及独立重复事件的概率的乘法公式求出概率. 【详解】(1)设事件A =“甲第一轮猜对” ,事件B =“乙第一轮猜对” ,事件C =“甲第二轮猜对” ,事件D “乙第二轮猜对 ,∴甲、乙两人在两轮竞答活动中答对3题的概率为 ()P ABCD ABCD ABCD ABCD +++()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P C P D =+++()2533331212221p p p p ⎡⎤=⨯⨯⨯+⨯-⨯⨯=⎢⎥⎣⎦解得34p =或54p =(舍去)34p ∴=; (2)三轮竞答活动中甲乙一共答6题,甲、乙两人在三轮竞答活动中答对4题,即总共有2题没有答对,可能甲有两题没有答对,可能乙有两题没有答对,可能甲乙各有一题没有答对. 甲、乙两人在三轮竞答活动中答对4题的概率32322211223333231321213131C C +C C 344433334496P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 22.(1)答案见解析 (2)C 组(3)90分;160【分析】(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.根据方差公式计算出各组的方差即可.(2)根据第(1)问的结果,方差最小的即为结果.(3)根据题意每一组各有10人,所以选手的最终得分为123101010303030x x x x =++,同理方差为()()(){}2222222112233*********s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,代入计算即可得到结果.【详解】(1)(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.小组A 的平均数1(85918793888497949586)9010A x =+++++++++=,答案第7页,共7页 小组A 的方差2222221[(8590)(9190)(8790)(9390)(8890)10A s =-+-+-+-+- 22222(8490)(9790)(9490)(9590])19(8690)+-+-+-+-=-+,小组B 的平均数1(84879296899592919490)9110B x =+++++++++=, 小组B 的方差2222221[(8491)(8791)(9291)(9691)(8991)10B s =-+-+-+-+- 22222(9591)(9291)(9191)(9491)(90]12.91)2+-+-+-+-+-=,小组C 的平均数1(95899596979392908994)9310C x =+++++++++=, 小组C 的方差2222221[(9593)(8993)(9593)(9693)(9793)10C s =-+-+-+-+- 22222(9393)(9293)(9093)(8993)]7(9493).6+-+-+-+-+=-.(2)由于专业评委给分更符合专业规则,相似程度应该高,即方差小,因而C 组评委更像是专业人士组成的.(3)小华的得分12310101010101095939193303030303030x x x x =++=⨯+⨯+⨯=分. 方差()()(){}2222222112233110101030s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, {}22221108(9593)1012(9393)1020(9193)30s ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎣⎦⎣⎦⎣⎦, 2160s =.。

概率习题(概率与统计)

概率习题(概率与统计)

随机事件及其概率一、填空题1.假设()0.4P A =,()0.7P A B =,那么(1)若A 与B 互不相容,则()P B =_____ _;(2)若A 与B 相互独立,则()P B =_______ ___,()|P A B = ,()P AB = .2.设在一次试验中,事件A 发生的概率为p .现进行n 次 独立试验,则(1)A 一次都不发生的概率为 ; (2)A 恰好发生一次的概率为 ; (3)A 至少发生一次的概率为 ; (4)A 至多发生一次的概率为 . 3.A ,B ,C 为三个事件,试用A ,B ,C 表达事件:三件事至少有一个发生________ __ _;仅仅事件B 发生______ _____;三件事件不都发生 _____________________.4.设在一次试验中,事件A 发生的概率为p .现进行n 次独立试验, 则A 恰好发生一次的概率为___________5.设在一次试验中,事件A 发生的概率为p .现进行n 次独立试验,则A 一次都不发生的概率为___________6.三道工序的次品率分别二设第一三道工序加工某一零件共需经过、、,是、%3品率则加工出来的零件的次假设各道工序互不影响,%.5%4、为_______. 7.同时掷两个均匀骰子,则出现点数之和为3的概率___________________. 8.某人投篮两次,设事件A=“第一次投中”,B=“第二次投中”, 试问事件B A 表示 ________ .9.一批产品次品率为20%,重复抽样检查,取10件样品,列出这10件样品中恰有2件次品的概率的式子 (不需计算). 二、选择题1. 打靶4发,事件A i 表示“第i 发击中”(i=1,2,3,4), 那么事件A=A 1∪A 2∪A 3∪A 4表示A.四发全命中B.四发中至少有一发命中C.四发都没有命中D.四发不都命中2. 在两位数10~39中任取一个数,这个数能被2或3整除的概率为A. 2/3B. 1/3C.1/2D.1/4 3.设随机事件A 与B 互不相容,则A. A 与B 互相独立B. P(B A ⋃)=0C. P(AB)=1D. P(AB)=0 4.设事件A 与B 相互独立,P(A)=0.2,P(B)=0.3,则P(B A ⋃)= A. 0.5 B. 0.1 C. 0.06 D. 0.445.对某一目标依次进行三次独立射击,第一、第二、第三次射击命中率分别 为0.4,0.5,和0.7,则仅仅在第三次才命中的概率是A.0.21B. 0.14C. 0.06D. 0.09 6.设A ,B 是两个随机事件,则一定有A .()1P AB ⋃= B. ()1P A B ⋃= C. ()0P A B ⋃= D. ()1()P A B P AB ⋃=-7.每次试验的成功率为()10<<p p ,独立重复地进行n 次试验恰好有()n r r ≤≤1次成功的概率为 A.()rn rp p --1C rn B.()rn rr n p p C ----111 C.()rn rp p --1 D.()rn r r n p p C -----1111三、简答题1. 从一批6件正品,4件次品组成的产品中,任取3件,求其中至少有一件次品的概率.2. 设A 、B 为相互独立的事件,,4.0)(,6.0)(==A P B A P 求).(B P3. 袋中10个球,其中有4个白球,6个红球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《统计与概率》练习题说明:本卷练习时间120分钟,总分150分班级 座号 姓名 成绩一、填空题(每小题3分,共36分)1. 在2.0012.0022..0032.0042.0052.006的数字串中,2的频率是__________.2. 为了解某校初三年级300名学生的身高状况,从中抽查了50名学生, 所获得的样本容量是______________.3. 若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为_________.4. 一射击运动员在一次射击练习中打出的成绩(单位:环)是: 7,8,9,8,6,8,10,7,这组数据的众数是_____ ____.5. 一口袋中放有3只红球和4只黄球,这两种球除颜色外没有任何区别. 随机从口袋中任取一只球,取到黄球的概率是________.6. 如果一组数据3,x ,1,7的平均数是4,则x=__________.7. 某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图).转盘可以自由转动。

参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为____________.8. 下表给出了某市2005年5月28日至6月3日的最高气温,9. 掷一枚各面分别标有1,2,3,4,5,6的普通的正方体骰子,掷出的数字为偶数的概率是_______________.10. 某学生在一次考试中,语文、数学、英语三门学科的平均成绩是80分,物理、化学两门学科的平均成绩为85分,则该学生这五门学科的平均成绩是___________分.11. 对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下: 机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2S 乙=0.06, 由此可知:________(填甲或乙)机床性能好.12. 掷一枚均匀的硬币两次,两次正面都朝上的概率是__________. 二、选择题(每小题4分,共24分)13. 六个学生进行投篮比赛,投进的个数分别为2、3、10、5、13、3,这六个数的中位数为( ) (A )3 (B )4 (C )5 (D )6 14. 下列事件中,为必然事件是( ). (A )打开电视机,正在播广告.(B )从一个只装有白球的缸里摸出一个球,摸出的球是白球. (C )从一定高度落下的图钉,落地后钉尖朝上. (D )今年5月1日,泉州市的天气一定是晴天. 15. 下列调查方式合适的是( ) (A )了解炮弹的杀伤力,采用普查的方式.(B )了解全国中学生的睡眠状况,采用普查的方式. (C )了解人们保护水资源的意识,采用抽样调查的方式.(第7题)(D )对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式.16. 中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是 (A )41 (B )61 (C )51 (D )20317. 一位卖“运动鞋”的经销商到一所学校对9位学生的鞋号进行了抽样调查,其号码为: 24,22,21,24,23,20,24,23,24. 经销商最感兴趣的是这组数据中的( )(A )中位数 (B )众数 (C )平均数 (D )方差18. 如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形了. 乙:只要指针连续转六次,一定会有一次停在6号扇形.丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等. 丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大. 其中你认为正确的见解有( )(A)1个 (B)2个 (C)3个 (D)4个 三、解答题(共90分)19. (8分)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l 95 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.20. (8分)一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.21. (8分)甲、乙两位同学五次数学测验成绩如下表:请你在表中的空白处填上适当的数,用学到的统计知识对两位同学的成绩进行分析,并写出一条合理化建议.22. (8分)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图或列表的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?23.(8分)某单位对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20(1)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3,那么作为人事主管,你应该录用哪一位应聘者?为什么?(2)在(1)的条件下,你对落聘者有何建议?24. (8分)有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢.(1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.25. (8分)学习了统计知识后,小刚就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题: (1)求该班共有多少名学生?(2)在图(1)中,将表示“步行”的部分补充完整.(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数. (4)如果全年级共500名同学,请你估算全年级步行上学的学生人数.26. (8(即销售平均价)的数据,绘制了如下统计图:(1(21600元/年到2004年商品房1%)? 27. ((1);(2)若(1)中各种选购方案被选中的可能性相同,则A 型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.28. (13分)如图所示,A 、B 两个旅游点从2001年至2005年“五、一”的旅游人数变化情况分 别用实线和虚线表示,根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A 、B 两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100xy =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?1.247甲, 12. 41. 19.7(230+195+180+250+270+455+170)=250(元) ∴小亮家每年日常生活消费总赞用为:250×52=13000(元) 20.设口袋中有x 个白球,乘车 步行 骑车 上学方式 图⑴ 图⑵2001 2002 2003 2004 2005 年654 32126题)由题意,得200501010=+x , 解得x =30. 口袋中约有30个白球. 21.甲:8 5,5 3.2.乙:8 5,7 0.4.建议例如:从上述数据可以看出,乙同学的数学成绩不够稳定,波动较大,希望乙同学在学习上补缺补漏,加强能力训练. 22.(1)(2)P (积为奇数)=61 23.(1)甲得分:14×1020+17×720+12×320=29520 乙得分:18×1020+15×720+11×320=31820丙得分:16×1020+15×720+14×320=30720∴应录用乙(2)建议例如:对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力,重点在专业知识和工作经验 .24.(1)∵P(出现两个正面)=41,P(出现一正一反)=21两者概率不同, ∴这个游戏不公平.(2)略. (2)∵P(和大于7)=125 < P(和小于或等于7)=127∴这个游戏对双方不公平25.(1)40人 (2)见右图 (3)圆心角度数=︒⨯36010030=108º(4)估计该年级步行人数=500×20%=100 26.(1)中位数是2534(元/平方米);极差是3515-2056=1459(元/平方米). (2)设A 城市2003年到2005年的年平均增长率为x ,由题意,得: 1600(1+x )2=2119. (1+x )2=1.324375, ∵x >0,∴1+ x >0, ∴1+x ≈1.151 x ≈0.15即平均增长率约为15%27.(1)树状图或列表法: (2)A 型号电脑被选中的概率是13(3)购买的A 型号电脑有7台.(设购买A 型号电脑x 台,可列出6000x+5000(36-x)=100000,解得x=-80(不合舍去);或6000x +2000(36-x)=100000,解得x=7) 28.(1)B 旅游点的旅游人数相对上一年增长最快的是2004年. (2)A X =554321++++=3(万元) B X =534233++++=3(万元)1234123412341234第一次第二次2A S =51[(-2)2+(-1)2+02+12+22]=2 2B S =51[02+02+(-1)2+12+02]=52从2001至2005年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大. (3)由题意,得 5-100x≤4 解得x ≥100 100-80=20 则A 旅游点的门票至少要提高20元.。

相关文档
最新文档