同济大学(高等数学)-第八章-向量代数与解析几何

合集下载

高等数学下册第八章 向量代数与空间解析几何

高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程

同济大学 高数 第八章

同济大学 高数 第八章



1 1 2 解. AB 1,1, 2 , AB 2 , cos , cos , cos ,故 2 2 2 3 2 , , . 4 3 3 例.在第一卦限求点 A ,使得 OA 与 x , y 轴的夹角分别为 , ,且 OA 6 . 3 4 1 2 1 2 1 1 解. cos , cos cos , OA 6 2, 2 ,2 3,3 2,3 ,故 2 2 2 来自A 3,3 2,3 .


小兵整理
3
老姚高数笔记
第八章 空间解析几何与向量代数 第 8.1 节 向量及其线性运算 一.基本概念
1.向量:既有大小,又有方向的量,一般记为 a , b , .
我们的向量均为自由向量.
2.模:向量的长度也称为模,记为 a . 4.零向量:模为 0 的向量,记为 0 ,规定它的方向是任意的. 5.共线:若向量 a , b 的方向相同或相反,则称它们平行,记为 a // b ,也称为共线.
互相垂直的数轴,分别称为 x 轴,y 轴,z 轴,这样就构成了 Oxyz 坐标系,也可称为 O, i , j , k 坐标系;习惯上,我们采用右手系,即 i , j , k 的方向满足右手法则.
x 轴与 y 轴确定的平面称为 xOy 面,类似地,有 yOz 面, xOz 面,统称为坐标平面,
x, y, z 为点 M 的空间直角坐标,记 M x, y, z .
定理. M x, y, z OM xi yj zk .
3.向量的坐标 设 r 为空间向量,记 x r cos Prji r , y r cos Prj j r , z r cos Prjk r , 则称有序数组 x, y, z 为向量 r 的坐标,记 r x, y, z . 定理.设 r AB ,若 A x1 , y1 , z1 , B x2 , y2 , z2 ,则 r x2 x1 , y2 y1 , z2 z1 . 定理. r x, y, z r xi yj zk ,称为 r 的坐标分解式. 注. xi , yj , zk 分别称为 r 沿三根坐标轴方向的分向量. 四.坐标的应用 定理.设 a ax , a y , az , b bx , by , bz , ,则 (1) a b ax bx , a y by , az bz ;(2) a a x , a y , az .

高等数学(同济第七版)第八章课后答案

高等数学(同济第七版)第八章课后答案

a -c.
l)3 A = -(1IH + Ill)一;)= - 卡 - c.
4
一、《高等数学》{第七版)下00习�全解
言。 .
D4r1 =
?’ … -
(
,18
+
b
BD4)
=

a
- c.
a,i 4.已知l网点M 1 (0.l.2)利l M2 (1. -l. 0).试用卢I生 f,T; .-t< ,1�式表不,:., :,, .11 , 叫戊
nt Fi,, 14.试iif.nJJ以气!!X A(4. I.9). R( 10. - I.的.r.(2.4.3)为顶点的 · ((1 ff�{(: :Y 1'1 <r1
?角:/巳.
iiF. 111 I A革I :=/(10-4) 1 +(-I-I) ) +(。-9) 2 ::7.
I |元 =/(2-4) 2 +<.:i-门 2 +(3-9)1::7,
” 17. 的,,Jr,川
I I I ..!.. = 饵 U知 Ir =4.贝lj l勺’j,, r
r ,·o执 0=4 ·叫 王 : 4X =2.
3
2
: J: 18. 才句 (I() 1 右,-�� fl:点IJ(2. 叶 ,7). 'l;:.° (1: .t 输 、y圳和 z 4111 l二的投影依次为4, -4和1

yOz

( 2) 111 ("O揭 β=!!刘lβ=0 , 攸向;,t与 ) 4·111 la]向.JliJI'β=0知。=β= 旦 2 . 伙向没if'i自于宫和h和I J'轨,且II与z都Ii平行,

同济高数(第七版)--第八章

同济高数(第七版)--第八章

一:向量代数与空间几何定理1:设0 ≠a ,则向量b 与a 平行的充要条件为:存在唯一的实数λ,使得a bλ=。

证:充分性:已知一个向量a ,且0 ≠a ,因为规定a λ是一个向量,当0>λ,方向与a相同;当0<λ时,方向与a相反,但方向无论是相反还是相同,都成为两向量共线,即平行,故由a b λ=,所以向量b 与a平行。

必要性:已知a b //,且0 ≠a ,故设b 与a的模长相差一个λ倍关系,即a b =λ,故而b a a==λλ,即a λ的模长等于b 的模长,当b 与a 同向时,令0>λ,则a λ与a 的方向相同,则此次b与aλ同向且等模,故a bλ=;当b与a 反向时,令0<λ,则a λ与a的方向相反,则此次b与aλ仍然同向且等模,故a bλ=仍成立;故又假设存在不等于λ的实数μ满足上面所述的关系,即a b μ=(λμ≠),故a b b)(0μλ-=-=,又0 ≠a ,故μλ=,与假设矛盾,故假设不成立,所以能满足上述关系的实数唯一。

注意:①当02=x 时,而022≠⋅z y ,即),0(22,z y b ,若b a //,则⇒=b aλ⎪⎪⎩⎪⎪⎨⎧====λλz z y y x x 2121210;②当022==y x 时,而02≠z ,即),0,0(2z b ,若b a //,则⇒=b aλ⎪⎪⎩⎪⎪⎨⎧=====z z y y x x 21212100λλλ,但是注意到无论λ=z z 21为何值,021==x x λ以及021==y y λ都恒成立,因为00⋅=λ时,λ可以取任意实数。

故就不需要约定z 1与z 2的关系,即⎪⎩⎪⎨⎧====002121y y x x λλ。

**4.向量的混合积cb ac b a ⋅⨯=)(][作用:①可以求平行六面体的体积;②可以判定a,b,c三个向量是否共面。

推导:假设有如图所示的一个平行六面体,设底面积为S ,因为底面为一个平行四边形,故b a b b a a S⨯=⋅><=,sin ,而该六面体的高θcos c h =,根据叉乘的右手规则,得b a ⨯的方向垂直于底面,如图所示,则θ即为b a z⨯=与c 所成的夹角,故该六面体的体积c b a V c z c c z z c b a h S V⋅⨯=⇒⋅=><=⨯=⋅=)(,cos cos θ,故向量的混合积等于一个以a ,b ,c三个向量为邻边的平行六面体的体积;注意到当混合积的值为零时,该平行六面体的体积就为零,也就是说a,b,c三个向量为棱不能构成平行六面体,这种情况就只有三个向量在同一个平面时才能满足,即a,b ,c 三个向量共面。

高数下册知识点

高数下册知识点

高等数学下册(同济大学第七版)知识点高等数学下册知识点下册预备知识第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角。

(二) 数量积,向量积1、 数量积:θcos b a b a=⋅1)2a a a =⋅高等数学(下)知识点 2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a z y x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1)椭圆锥面:22222zbyax=+2)椭球面:1222222=++czbyax旋转椭球面:1222222=++czayax3)单叶双曲面:1222222=-+czbyax4)双叶双曲面:1222222=--czbyax5)椭圆抛物面:zbyax=+22226)双曲抛物面(马鞍面):zbyax=-22227)椭圆柱面:12222=+byax8)双曲柱面:12222=-byax9)抛物柱面:ay x=2(四)空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F 2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第九章 多元函数微分法及其应用(一) 基本概念(了解)1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。

空间解析几何与向量代数同济六版_2022年学习资料

空间解析几何与向量代数同济六版_2022年学习资料

【例1】如果四边形对角线互相平分,-则它是口-解:如图M为四边形ABCD对角线的交点,则-AB 41+b,-DC =a,+B,-由已知41=a2,b=b2-所以-AB=DC-所以ABCD为平 四边形-甘录上贞下贞返▣结束
三、空间直角坐标系-1.空间直角坐标系(右手系-竖轴-²坐标原点-²坐标轴-V-0z面-坐标面 0x面-²卦限(八个)-I-纵轴-横轴-甘录上页下贞返回结束
3.平行向量对应坐标成比例:-当a≠0时,-b//a→b=2d-→bx,b,b=九ax,4,4 -【例2】Ps例2-录上贞下贞返回结束
【例3】已知两点Ax1,y,乙,Bx2,y2,还2及实数入≠-1-在直线AB上求一点M,使AM 人MB-解:设M的坐标为x,y,乙,如图所示-AM-OM-OA-MB =OB-OM-由已知AM 2MB-→OM-OA=2OB-OM-0N=1+克0A+20B-x,y3=1+x+xy+2y3+ ,-甘录-贞返回结束
3.性质-a.B -allbl-cos0-1a.aa2-2a.b=0→aLb-4.i,,飞两两 间的数量积-【例5】Ps例1-5.运算规律见P14-15-日录}-贞返回结束
2.向量的坐标表示-i,j,k分别表示坐标轴x,y,z上的单位向量-1设点Mx,y,z,则-O -ON +NM =0A+0B+OC-=xi+yj+3k-记为-X-目录上下.设d=ax,a,42,b=b,b,b,入为实数,则-a±b= .±b,a,±b,42±b-2a=2ax,九ay,a-)-2.己知两点Ax1,y,1,Bx2, 2,乙2则-AB=OB-OA=x2,Jy2,32-x1,y1,31)-=x2-x1,y2-y1 32-31)-甘录上-八贞返回结束

高等数学第六版(同济版)第八章复习资料

高等数学第六版(同济版)第八章复习资料

第八章 空间解析几何与向量代数§8.1向量及其线性运算一、向量的相关概念1.向量的定义:称既有大小又有方向的量为向量(或矢量).2. 向量的数学表示法:用一条有方向的线段表示,记为 AB 或a .3. 向量的模:称向量的大小为向量的模,记为||a .4. 自由向量:称与起点无关的向量为自由向量.(如位移)5. 单位向量:称模为1的向量为单位向量,记作e .6. 零向量:称模为0的向量为零向量,记作0.7. 两向量相等:若向量与同模同方向,则称的与相等,记作=.(即两个向量平移后重合.)8. 两向量的夹角:],0[),(πϕ∈=∧b a ,≠,.9. 两向量平行:若非零向量a 与b 所成的角•b a 0),(=∧或π,则称的a 与b 平行,记作b //a . 规定: 零向量与任何向量平行.10. 两向量垂直:若非零向量a 与b 所成的角•2/),(π=∧,则称的a 与b 垂直,记作⊥.注: 零向量可认为与任何向量平行或垂直.11. 向量共线:平行的向量可移动到同一条直线上,也称之为向量共线.12. 向量共面:将)3(≥k k 个向量的起点放到同一点时,若k 个终点与公共起点在一个平面上,则称这k 个向量共面. 二、向量的线性运算 1.向量的加减法 (1). 向量的加法①.运算法则:设有向量a 与b ,求a 与b 的和.I. 三角形法则:c AC BC AB b a ==+=+.II. 平行四边形法则:==+=+=+.②.运算规律:1°. 交换律:a b b a +=+.2°. 结合律:)()(c b a c b a ++=++.注:)3(≥n 个向量相加的法则:用前一个向量的终点作为后一个向量的起点,依次作向量n a a a ,,,21 ,再以第一个向量的起点为起点,最后一个向量的终点为终点作一向量,这个向量即为所求向量的和,即n a a a s +++= 21. (2). 向量的减法①.负向量:称与向量a 同模反向的向量为它的负向量,记作a -.②. 两向量的差:称向量b 与向量a 的负向量a -的和为b 与a 的差向量,记作)(-+=-. 注:特别地,当a b =时,0)(=-+=-a a a a . ③.运算法则:设有向量a 与b ,求a 与b 的差.I.平行四边形法则:AB OC OA OB a b ==-=-. II.三角形法则:AB OA OB a b =-=-. (3). 运算定理:||||||+≤±. 2.向量与数的乘法(1). 定义:称向量与实数λ的乘积λ为向量的数乘. 注:1°. 规定a λ是一个向量.2°. ||||||a a ⋅=λλ3°. 若0>λ,则a λ与a 同向;若0<λ,则a λ与a 反向;若0=λ,则0=a λ. (2). 运算规律:①. 结合律:a a a )()()(λμλμμλ==. ②. 分配律:b a b a λλλ+=+)(. (3). 性质①.向量a 的同向单位向量:||a ae a =,a e a a ⋅=||. ②.向量平行的充要条件(定理):若向量0≠a ,则向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使a b λ=.③.数轴上的点P 的坐标为x 的充要条件为:i x OP =,其中向量i 为数轴的单位向量,实数x称为有向线段OP 的值.例1. 如图,用a 、b 表示MA 、MB 、MC 以及MD .解:由于MC AC b a 2==+,故()b a MC +=21,进而()b a MA +-=21. 又MD BD a b 2==-,故()-=21,进而()()-=--=2121.三、空间直角坐标系1. 空间直角坐标系:oxyz 坐标系或],,;[O 坐标系.2. 坐标面:xoy 面;yoz 面;zox 面.3. 卦限:),,(+++→z y x I ;),,(++-→z y x II ;),,(+--→z y x III ;),,(+-+→z y x IV ; ),,(-++→z y x V ;),,(-+-→z y x VI ; ),,(---→z y x VII ;),,(--+→z y x VIII .4. 空间点的坐标:),,(z y x M .OM r =(向径)OR OQ OP ++=k z j y i x ++=. (1). 向量r 的坐标分解式:k z j y i x r ++=. (2). 向量的分向量:z y x ,,. (3). 向量的坐标:),,(z y x =. (4). 点M 的坐标:),,(z y x M .注:1°. xoy 面上点M 的坐标:)0,,(y x M ; 2°. x 轴上点M 的坐标:)0,0,(x M ;yoz 面上点M 的坐标:),,0(z y M ; y 轴上点M 的坐标:)0,,0(y M ;zox 面上点M 的坐标:),0,(z x M . z 轴上点M 的坐标:),0,0(z M .四、利用坐标作向量的线性运算:设),,(z y x a a a =,),,(z y x b b b =. 1. 向量线性运算的坐标表示:(1). 加减法:),,(z z y y x x b a b a b a ±±±=±. (2). 数乘:),,(z y x a a a λλλλ=.(3). 两向量平行:)0,,(,),,(),,(≠==⇔=⇔z y x zzy y x x z y x z y x a a a a b a b a b a a a b b b b //a λ.注:1°. 若0,,0≠=z y x a a a ,则⎪⎩⎪⎨⎧==⇔z z yy x ab a b b b //a 0.2°. 若0,0≠==z y x a a a ,则⎩⎨⎧==⇔00yx b b //.例2. 已知)2,1,2(=,)2,1,1(--=,求线性方程组⎪⎩⎪⎨⎧=-=-by x ay x 2335的解向量.解:方程①乘2减去方程②乘3得:b a x 32-=)2,1,1(3)2,1,2(2---=)10,1,7(-=,方程①乘3减去方程②乘5得:b a y 53-=)2,1,1(5)2,1,2(3---=)16,2,11(-=.例3. 已知两点),,(111z y x A 、),,(222z y x B 及实数1-≠λ,在直线AB 上求一点M ,使λ=. 解:因为OA OM AM -=,OM OB MB -=,因此有)(-=-λ,整理得)(11OM λλ++=, 代入坐标得)],,(),,[(11222111z y x z y x OM λλ++=⎪⎭⎫ ⎝⎛++++++=λλλλλλ1,1,1212121z z y y x x , 从而得到点M 的坐标⎪⎭⎫⎝⎛++++++λλλλλλ1,1,1212121z z y y x x M .注:线段AB 中点坐标公式⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x M .五、向量的模、方向角、投影 1.向量的模与两点间距离公式:(1). 向量的模:k z j y i x z y x OM r ++===),,(,222||z y x ++=. (2). 两点间距离公式:点),,(111z y x A 与),,(222z y x B 之间的距离:212212212)()()(|z z y y x x AB -+-+-=.推导:因为()121212,,z z y y x x OA OB AB ---=-=,所以|)()()(||||212212212z z y y x x AB AB -+-+-==.例4. 求证以三点)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 为顶点的三角形是一个等腰三角形. 解:由两点间距离公式,有 14)12()31()47(||22221=-+-+-=M M ;6)23()12()75(||22232=-+-+-=M M ; 6)31()23()54(||22213=-+-+-=M M ,由于||||1322M M M M =,故321M M M ∆为等腰三角形. 例5. 在z 轴上求与两点)7,1,4(-A 、)2,5,3(-B 等距离的点. 解:由题可设所求点为),0,0(z M ,有||||MB MA =,即222222)2()05()03()7()10()40(z z --+-+-=-+-++,整理得914=z ,故所求点为⎪⎭⎫ ⎝⎛914,0,0M . 例6. 已知两点)5,0,4(A 、)3,1,7(B ,求与AB 同向的单位向量e .解:因为)2,1,3()53,01,47(-=---=,所以14)2(13||222=-++=,于是)2,1,3(141||-==AB .2. 方向角与方向余弦(1). 向量的方向角:称非零向量r 与三条坐标轴的夹角γβα,,为向量r 的方向角,],0[,,πγβα∈.(2). 向量的方向余弦:方向角的余弦γβαcos ,cos ,cos .222||cos zy x x r ++==α,222||cos zy x y r ++==β,222||cos zy x z r ++==γ.注:1°. 1cos cos cos 222=++γβα;2sin sin sin 222=++γβα.2°. )cos ,cos ,(cos ),,||||γβα===z y x r r r e . 例7. 已知两点)2,2,2(1M 、)0,3,1(2M ,计算向量21M M 的模、方向余弦和方向角. 解:由于)2,1,1()20,23,21(21--=---=M M ,从而有2)2(1)1(||22221=-++-=M M于是,21cos -=α,21cos =β,22cos -=γ,由此可得43,3,32πγπβπα===.例8.设点A 位于第I 卦限,向径与x 轴、y 轴的夹角依次为3π、4π,且6||=OA ,求点A 的坐标.解:由于3πα=,4πβ=,并且1cos cos cos 222=++γβα,有4122211cos 222=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=γ,由题可知0cos >γ,故21cos =γ,于是)3,23,3(21,22,216||=⎪⎪⎭⎫ ⎝⎛==e ,故点A 的坐标为)3,23,3(. 3. 向量在轴上的投影(1). 向量在轴上的投影:设向量与u 轴正向的夹角为ϕ,称数ϕcos ||为向量在u 轴上的投影,记作j u Pr 或u )(.注:向量),,(z y x a a a a =在三个坐标轴上的投影即为对应的坐标,即x x a j =Pr ,y y a j =Pr ,z z a j =Pr .(2). 投影的性质:①.j j j u u u Pr Pr )(Pr +=+. ②.j j u u Pr )(Pr λλ=.例9.设立方体的一条对角线为OM ,一条棱为OA ,且|OA|= a ,求OA 在OM 方向上的投影OA j OM Pr .解:记ϕ=∠MOA ,有31||||cos ==OM OA ϕ, 于是3cos ||Pr a OA OA j OM ==ϕ.§8.2数量积、向量积一、两向量的数量积1.常力沿直线所作的功:θcos ||||S F W ⋅= 2. 两向量的数量积(1). 定义:称向量与的模及其夹角余弦的乘积),cos(||||∧⋅⋅b a b a 为与的数量积,也称为内积或点积,记作b a ⋅.注:1°. a j b b j a b a Pr ||Pr ||==⋅.2°. 2||=⋅. 3°. 0=⋅⇔⊥b a b a . (2). 运算规律①.交换律:a b b a ⋅=⋅.(由定义可知) ②.分配律:c b c a c b a ⋅+⋅=⋅+)(c b c a b j c a j c b a j c c b a ⋅+⋅=⋅+⋅=+⋅=⋅+Pr ||Pr ||)(Pr ||)(③.结合律:)()(⋅=⋅λλ;)()()(⋅=⋅λμμλ.3. 两向量数量积的坐标表示式:若),,(z y x a a a a =,),,(z y x b b b =,则z z y y x x b a b a b a b a ++=⋅.4. 两非零向量夹角余弦的坐标公式:222222||||),cos(||||zy x zyxz z y y x x bb b aa ab a b a b a b a ba b a b a ++++++=⋅=⋅⋅∧.例1. 试用向量证明三角形的余弦定理: θcos 2222ab b a c -+=. 解:在ABC ∆中,记a BC =||,b CA =||,c AB =||,a CB =,b CA =,c AB =,有b a c -=,从而⋅+⋅-⋅=-⋅-=⋅=2)()(||22||cos ||||2||+⋅-=θ,即θcos 2222ab b a c -+=.例2. 已知三点)1,1,1(M 、)1,2,2(A 和)2,1,2(B ,求AMB ∠.解:由题可得)0,1,1()11,12,12(=---=MA ,)1,0,1()12,11,12(=---=MB ,于是21221||||cos =⋅=⋅=∠MB MA AMB ,故3π=∠AMB .例3. 设液体流过平面S 上面积为A 的一个区域,液体在这区域上各点处的流速均为(常向量)v . 设为垂直于S 的单位向量,计算单位时间内经过这区域流向所指一侧的液体的质量m (液体的密度为ρ).解:单位时间内经过该区域的液体的体积为n v A v A V ⋅==θcos ||, 所求质量为n v A V m ⋅==ρρ. 二、两向量的向量积1. 力对支点的力矩:M .模:||||||OQ =θsin ||||=; 方向:与及的方向成右手规则. 2. 两向量的向量积(1).定义:设有向量a 与b ,夹角为θ,称c 为a 与b 的向量积(叉积、外积),其中c 的模θsin ||||||b a c =,方向与a 和b 的方向符合右手规则,记作b a c ⨯=. 注:1°. 0=⨯a a .2°. 0//=⨯⇔b a b a .3°. ||⨯的几何意义:以a 与b 为邻边的平行四边形的面积. (2).运算规律①.反交换律:⨯-=⨯. ②.分配律:c b c a c b a ⨯+⨯=⨯+)(. ③.结合律:)()()(b a b a b a ⨯=⨯=⨯λλλ.(3). 两向量的向量积的坐标表示式:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则b b a a b b a a b b a a b a xx xzz zyy ++=⨯zyxz y x b b b a a a =⨯.例4. 试用两向量的向量积证明三角形正弦定理:CcB b A a sin sin sin ==. 证明:在三角形ABC ∆中,记a BC =||,b CA =||,c AB =||,由于||21||21||21CB CA BA BC AC AB S ABC ⨯=⨯=⨯=∆,即c b a B c a A c b sin sin sin ⋅=⋅=⋅, 整理得 C cB b A a sin sin sin ==. 例5. 设)1,1,2(-=,)2,1,1(-=,计算b a ⨯.解:k j i kj b a 352111--=--=⨯. 例6. 已知三角形ABC 的顶点分别是)3,2,1(A 、)5,4,3(B 和)7,4,2(C ,求三角形ABC 的面积.解:由于)2,2,2(=AB ,)4,2,1(=AC ,有26422+-==⨯,于是142)6(421|264|21||21222=+-+=+-=⨯=S ABC ∆. 例7. 设刚体一角速度ω绕l 轴旋转,计算刚体上一点M 的线速度v . 解:在轴l 上引进一个角速度向量ω,使ωω=||,其方向与旋转方向 符合右手法则,在l 上任取一点O ,作向径=,它与ω的夹角为θ, 则点M 离开转轴的距离θsin ||a =,由物理学中线速度和角速度的关系可知,θωωsin ||||||||r a v ==,且ω、r 、v 符合右手规则,于是r v ⨯=ω.§8.3曲面及其方程一、曲面方程的相关概念1.曲面方程:若曲面S 上任一点的坐标都满足方程(*)0),,(=z y x F ,且不在曲面S 上的点的坐标都不满足方程(*),则称方程(*)为曲面S 的方程,而称曲面S 为称方程(*)的图形.2.关于曲面的两个基本问题(1). 已知一曲面作为空间点的几何轨迹,建立该曲面的方程.(2). 已知关于点),,(z y x M 的坐标x 、y 、z 之间的一个方程0),,(=z y x F ,研究该方程所表示曲面的形状.例1. 建立球心在点),,(0000z y x M 、半径为R 的球面方程.解:设),,(z y x M 为所求球面上任一点,有R M M =||0,即R z z y y x x =-+-+-202020)()()(, 整理得 2202020)()()(R z z y y x x =-+-+-.例2. 设有点)3,2,1(A 和)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 为所求平面上任一点,由题意,有||||BM AM =,即222222)4()1()2()3()2()1(-+++-=-+-+-z y x z y x ,整理得 07262=-+-z y x .例3. 方程042222=+-++y x z y x 表示怎样的曲面?解:原方程变形为5)2()1(222=+++-z y x ,表示以)0,2,1(0-M 为球心,以5为半径的球面. 二、旋转曲面1. 定义:称由一条平面曲线绕其平面上一条定直线旋转一周所成的曲面为旋转曲面,称旋转曲线为旋转曲面的母线,定直线为旋转曲面的轴.2. 旋转曲面的方程:曲线C :0),(=z y f 绕z 轴旋转一周所成的旋转曲面方程为:0),(22=+±z y x f .(绕y 轴旋转一周所成的旋转曲面方程为:0),(22=+±x z y f .)(巧记:绕谁谁不动,缺谁补上谁.)推导:在曲线C 上任取一点),,0(111z y M ,有0),(11=z y f ,且点1M 到z 轴的距离||1y d =.当曲线C 绕z 轴旋转时,点1M 绕z 轴旋转到点),,(z y x M ,其中1z z =,点M 到z 轴的距离221y x d +=,由于1d d =,有221||y x y +=, 即221y x y +±=,代入曲线方程有0),(22=+±z y x f .注:1°. 曲线C :0),(=y x f 绕x 轴旋转一周所成的旋转曲面方程为:0),(22=+±z y x f ;绕y 轴旋转一周所成的旋转曲面方程为:0),(22=+±y x z f .2°. 曲线C :0),(=x z f 绕z 轴旋转一周所成的旋转曲面方程为:0),(22=+±y x z f ;绕x 轴旋转一周所成的旋转曲面方程为:0),(22=+±x z y f .3. 常见旋转曲面及其方程(1). 圆锥面及其方程①.圆锥面:称由直线L 绕与其相交的直线旋转一周所成的曲面为圆锥面,称两直线的交点为圆锥面的顶点,称两直线的夹角)2/,0(πα∈为圆锥面的半顶角.②.圆锥面的方程:以坐标原点o 为顶点,以α为半顶角,以z 轴为旋转轴的圆锥面的方程为:)(2222y x a z +=,其中αcot =a .推导:在yoz 坐标面上,过原点且与z 轴夹角为α的直线方程为y z ⋅=αcot ,于是,直线L 绕z 轴旋转而成的圆锥面的方程为)(cot 22y x z +±⋅=α,整理得)()(cot 2222222y x a y x z +⋅=+⋅=α.注:1°. 以坐标原点O 为顶点,以α为半顶角,以x 轴为旋转轴的圆锥面的方程为:)(2222z y a x +=,其中αcot =a .2°. 以坐标原点O 为顶点,以α为半顶角,以y 轴为旋转轴的圆锥面的方程为:)(2222x z a y +=,其中αcot =a .(2). 旋转双曲面及其方程①.旋转双曲面:称由双曲线绕其对称轴旋转一周所成的曲面为旋转双曲面,分为单叶和双叶双曲面.②.旋转双曲面的方程:(双曲线:12222=-cz a x ) 旋转单叶双曲面的方程:(绕z 轴旋转) 122222=-+cz a y x . 旋转双叶双曲面的方程:(绕x 轴旋转) 122222=+-cz y a x .三、柱面1. 柱面的定义: 称由直线L 沿定曲线C 平行于定直线l 移动所成的轨迹为柱面,称定曲线C 为柱面的准线,动直线L 为柱面的母线.2. 几种常见柱面及其方程(缺谁母线平行谁)(1). 圆柱面:222R y x =+. (准线为xoy 坐标面上的圆:222R y x =+,母线平行z 轴.)222R z y =+. (准线为yoz 坐标面上的圆:222R z y =+,母线平行x 轴.)222R x z =+. (准线为zox 坐标面上的圆:222R x z =+,母线平行y 轴.)(2). 过坐标轴的平面:0=-y x ,过z 轴,准线为xoy 坐标面上的直线0=-y x .0=-z y ,过x 轴,准线为yoz 坐标面上的直线0=-z y .0=-x z ,过y 轴,准线为zox 坐标面上的直线0=-x z .四、二次曲面1. 椭球面:1222222=++c z b y a x .2. 椭圆锥面:22222z by a x =+. 3. 单叶双曲面:1222222=-+c z b y a x . 4. 双叶双曲面:1222222=--cz b y a x . 5. 椭圆抛物面:z b y a x =+2222. 6. 双曲抛物面:z by a x =-2222. 7. 椭圆柱面:12222=+b y a x . 8. 双曲柱面:12222=-by a x 9. 抛物柱面:ay x =2.§8.4空间曲线及其方程一、空间曲线:称空间两曲面的交线为空间曲线,记为C .二、空间曲线的方程1. 一般式(面交式)方程:⎩⎨⎧==0),,(0),,(z y x G z y x F . 例如:⎩⎨⎧=+=+632122y x y x 表示圆柱面122=+y x 与平面632=+y x 的交线. 又如:⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛---=22222222a y a x y x a z 表示上半球面222y x a z --=与圆柱面22222⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-a y a x 的交线.2. 参数方程:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x ,其中点),,(z y x M 随着参数t 的变化遍历曲线C .例1. 称由点),,(z y x M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转,又同时以线速度v 沿平行z 轴的正向上升所成的图形为螺旋线,求其参数方程.解:取时间t 为参数,0=t 对应点)0,0,(a A ,t 对应点),,(z y x M ,作M 在xoy 面上的投影'M ,有)0,,('y x M ,且t AOM ω=∠',于是t a AOM OM x ωcos 'cos |'|=∠=,t a AOM OM y ωsin 'sin |'|=∠=,又vt MM z ==',于是,螺旋线的参数方程为⎪⎩⎪⎨⎧===vt z t a y t a x ωωsin cos , 令ωωθv b t ==,,则螺旋线的参数方程为⎪⎩⎪⎨⎧===θθθb z a y a x sin cos . 三、空间曲线在坐标面上的投影1.投影柱面:称以空间曲线C 为准线,母线平行于z 轴的柱面为曲线C 关于xoy 坐标面的投影柱面.2. 空间曲线的投影:称空间曲线C 关于xoy 坐标面的投影柱面与xoy 坐标面的交线为空间曲线C 在xoy 坐标面上的投影曲线,也称为投影.3. 空间曲线的投影方程:空间曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 在xoy 坐标面上的投影方程为⎩⎨⎧==00),(z y x H ,其中0),(=y x H 为方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 消去z 所得的投影柱面方程. 注:1°. 空间曲线曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 在yoz 坐标面上的投影方程为⎩⎨⎧==00),(x z y R . 2°. 空间曲线曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 在zox 坐标面上的投影方程为⎩⎨⎧==00),(y x z T .例2. 求曲线⎪⎩⎪⎨⎧=-+-+=++1)1()1(1222222z y x z y x 在xoy 坐标面上的投影方程. 解:现求曲线C 在关于xoy 坐标面上的投影方程,将方程组⎪⎩⎪⎨⎧=-+-+=++1)1()1(1222222z y x z y x 消去z 得投影柱面方程:02222=-+y y x ,于是所求投影方程为⎩⎨⎧==-+002222z y y x .例3. 求由上半球面224y x z --=和锥面)(322y x z +=所围成的立体在xoy 坐标面上的投影. 解:先求曲线⎪⎩⎪⎨⎧+=--=)(342222y x z y x z 关于xoy 坐标面的投影方程,消去z 得投影柱面方程:122=+y x ,故曲线⎪⎩⎪⎨⎧+=--=)(342222y x z y x z 在xoy 坐标面上的投影方程为⎩⎨⎧==+0122z y x ,从而所求投影为圆域:122≤+y x .§8.5平间及其方程一、平面的点法式方程1.平面的法向量:称垂直于一平面的非零向量为该平面的法线向量.2.平面的点法式方程:过点),,(0000z y x M ,以向量),,(C B A =为一法向量的平面∏的方程为:0)()()(000=-+-+-z z C y y B x x A .推导:在平面∏上任取一点),,(z y x M ,有向量),,(0000z z y y x x M M ---=,由于M M n 0⊥,有00=⋅M M n ,即有0)()()(000=-+-+-z z C y y B x x A (1),即平面∏上的点的坐标都满足方程(1).反之,若点),,(z y x M 不在平面∏上,则向量M M 0不垂直法向量n ,从而00≠⋅M M n ,即不在平面∏上的点的坐标都不满足方程(1).于是得到平面∏的点法式方程0)()()(000=-+-+-z z C y y B x x A .例1. 求过点)0,3,2(-且以)3,2,1(-=为法向量的平面的方程.解:由平面的点法式方程得 0)0(3)3(2)2(=-++--z y x ,整理得 0832=-+-z y x . 例2. 求过三点)4,1,2(1-M 、)2,3,1(2--M 和)3,2,0(3M 的平面的方程. 解:先求所求平面的一个法向量n ,由题可得向量)6,4,3(21--=M M ,)1,3,2(31--=M M ,可取 k j i kj i M M M M n -+=----=⨯=9141326433121,于是所求平面的方程为0)4()1(9)2(14=--++-z y x ,整理得015914=--+z y x .二、平面的一般方程1. 平面的一般方程:0=+++D Cz By Ax (*)推导:若点),,(0000z y x M 满足方程(*),则有0000=+++D Cz By Ax , (**)两方程相减得0)()()(000=-+-+-z z C y y B x x A , (***)方程(***)为过点),,(0000z y x M ,以向量),,(C B A n =为一法向量的平面的点法式方程.由于方程(*)与(***)同解,可知任何一个三元一次方程(*)的图形总是一个平面,称0=+++D Cz By Ax 为平面的一般方程,其一法线向量为),,(C B A n =.2. 几种特殊平面的一般方程:(缺谁平行谁)(1). 过原点的平面方程:0=++Cz By Ax ,法向量为),,(C B A =.(2). 平行x 轴的平面方程:0=++D Cz By ,法向量为),,0(C B n =.(3). 垂直于x 轴 (平行yoz 坐标面) 的平面方程:0=+D Ax ,法向量为)0,0,(A n =. 例3.求通过x 轴和点)1,3,4(--的平面的方程.解:由题意,可设所求平面的方程为:0=+Cz By ,(*)又点)1,3,4(--在该平面上,有03=--C B ,得B C 3-=,代入方程(*)得03=-z y . 例4. 设一平面与x 、y 、z 轴的交点依次为)0,0,(a P 、)0,,0(b Q ,),0,0(c R ,求该平面的方程.解:设所求平面的方程为0=+++D Cz By Ax ,(*) 将P 、Q 、R 三点坐标代入得⎪⎩⎪⎨⎧=+=+=+000D cC D bB D aA ,得a D A -=,b D B -=,cD C -=,代入方程(*), 从而有所求平面方程为1=++cz b y a x ,称之为平面的截距式方程. 三、两平面的夹角及点到平面的距离 1. 两平面的夹角:称两平面的法线向量的夹角(锐角)为两平面的夹角.2. 两平面夹角的余弦:设平面1∏的法线向量为),,(1111C B A n =,平面2∏的法线向量为),,(2222C B A n =,两平面的夹角为θ,则22222221212121212121|||),cos(|cos C B A C B A C C B B A A n n ++⋅++++==∧θ.注:1°. 212121212121////D D C C B B A A n n ≠==⇔⇔∏∏. 2°. 021********=++⇔⊥⇔⊥C C B B A A n n ∏∏.3. 点到平面的距离:平面0:=+++D Cz By Ax ∏外一点),,(0000z y x P 到平面∏的距离为222000||C B A D Cz By Ax d +++++=.推导:在平面∏上任取一点),,(1111z y x P ,过点0P 作平面∏的一法向量n , 有|||Pr |001NP P P j d ==,由于01010101010101||||||||cos ||Pr P P e P P n P P n P P n P P P P P P j n ⋅=⋅=⋅== θ, 由于⎪⎪⎭⎫ ⎝⎛++++++=222222222,,C B A C C B A B CB A A e n ,),,(01010101z z y y x x P P ---=, 于是))()()((Pr 10101022201z zC y y B x x A C B A AP P j n -+-+-++=,又点),,(1111z y x P 在平面∏上,故有0111=+++D Cz By Ax ,从而222000||C B A D Cz By Ax d +++++=.例5. 求两平面062=-+-z y x 和052=-++z y x 的夹角. 解:由两平面夹角余弦公式211122)1(1|121)1(21|cos 222222=++⋅+-+⨯+⨯-+⨯=θ,故所求夹角为3πθ=. 例6. 一平面通过两点)1,1,1(1M 和)1,1,0(2-M 且垂直于平面0=++z y x ,求它的方程. 解:设所求平面∏的一个法线向量为),,(C B A n =,由题可知向量)2,0,1(21--=M M 在平面∏上,已知平面0:1=++z y x ∏的一个法线向量为)1,1,1(1=n ,由题意有21M M ⊥,有02=--C A ;1n n ⊥,有0=++C B A ;由以上两方程可得C A 2-=,C B =,故所求平面∏的法线向量为),,2(C C C n -=,于是所求平面∏的方程为0)1()1()1(2=-+-+--z C y C x C ,整理得02=--z y x . 另解:由题可知所求平面上一向量)2,0,1(21--=M M ,又已知平面0=++z y x 的一个法线向量为)1,1,1(1=n ,易知1n 不平行于21M M ,故可取所求平面的一个法线向量为M M ++-=--=⨯=2201111211,于是所求平面方程为:0)1()1()1(2=-+-+--z y x ,整理得02=--z y x .第六节 空间直线及其方程一、空间直线:称空间两平面1∏、2∏的交线为空间直线.二、空间直线的方程1. 一般(面交式) 方程:⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A . 2. 对称式(点向式)方程(1). 直线的方向向量:称平行于已知直线的非零向量为该直线的方向向量.(2). 直线的点向式方程:过点),,(0000z y x M 以向量),,(p n m S =为方向向量的直线L 的方程为:pz z n y y m x x 000-=-=-. 推导:在直线L 上任取一点),,(z y x M ,有向量),,(0000z z y y x x M M ---=,由于S M M //0,故有 pz z n y y m x x 000-=-=-, (*) 即直线L 上点的坐标都满足方程(*).反之,若点),,(z y x M 不在直线L 上,则由于M M 0不平行S ,所以这两向量的对应坐标就不成比例,因此方程(*)就是直线L 的方程,称为直线的对称式或点向式方程. 注:1°. m 、n 、p 不同时为零.2°. 若0,,0≠=p n m ,则直线L 的方程为⎪⎩⎪⎨⎧-=-=-p z z n y y x x 0000,即平面00=-x x 上的直线.3°. 若0,0≠==p n m ,则直线L 的方程为⎩⎨⎧=-=-0000y y x x ,即平面00=-x x 与00=-y y 上的交线,过点),,(000z y x 且平行z 轴.3. 参数方程:⎪⎩⎪⎨⎧+=+=+=pt z z nt y y m t x x 000.注:一般式⇒对称式⇔参数式.例1. 用对称式方程以及参数方程表示直线⎩⎨⎧=++-=+++043201z y x z y x .解:先找出该直线上一点),,(000z y x :不妨取10=x ,代入原方程组得⎩⎨⎧=--=+632z y y x ,解得00=y ,20-=z ,即)2,0,1(-为该直线上一点. 再找该直线的方向向量:由题可知交成该直线的两平面的法线向量分别为)1,1,1(1=n ,)3,1,2(1-=n,故可取k j i kj n n S 341121--=-=⨯=,故所给直线的对称式方程为:32141-+=-=-z y x . 令t z y x =-+=-=-32141,得到所给直线的参数方程:⎪⎩⎪⎨⎧--=-=+=t z t y t x 3241. 三、两直线的夹角1. 两直线的夹角:称两直线的方向向量的夹角(锐角)为两直线的夹角.2. 两直线夹角的余弦:直线1L 的方向向量为),,(1111p n m S =,直线2L 的方向向量为),,(2222p n m S =,两直线的夹角为ϕ,则22222221212121212121|||),cos(|cos p n m p n m p p n n m m ++⋅++++==∧ϕ. 注:1°. 021********=++⇔⊥⇔⊥p p n n m m S S L L .2°. 2121212121////p p n n m m S S L L ==⇔⇔. 例2. 求直线13411:1+=-=-z y x L 和1222:2-=-+=z y x L 的夹角. 解:由题可知直线1L 的方向向量为)1,4,1(1-=S ,直线2L 的方向向量为)1,2,2(2--=S ,设1L 与2L 的夹角为ϕ,则由两直线夹角余弦公式得21)1()2(21)4(1|)1(1)2()4(21|cos 222222=-+-+⋅+-+-⨯+-⨯-+⨯=ϕ, 故4πϕ=. 四、直线与平面的夹角 1. 直线与平面的夹角:称直线与不垂直该直线的平面上的投影 直线的夹角)2/0(πϕϕ<≤为直线与平面的夹角. 规定:直线与平面垂直时夹角为2π. 2. 直线与平面夹角的正弦:若直线L 的方向向量为),,(p n m S =,平面∏的而一个法线向量为),,(C B A n =.L 与∏的夹角为ϕ,则222222||sin p n m C B A Cp Bn Am ++⋅++++=ϕ. 注:1°. p C n B m A n S L ==⇔⇔⊥//∏. 2°. 0//2121=++⇔⊥⇔Cp Bn Am L L .例3. 求过点)4,2,1(-且与平面0432=-+-z y x 垂直的直线的方程. 解:由题意,可取)1,3,2(-=S 为所求直线的一个方向向量,故所求直线的方程为143221-=-+=-z y x . 五、平面束及其方程1. 平面束:称通过定直线的所有平面的全体为平面束.2. 平面束的方程:设有直线⎩⎨⎧=+++=+++00:22221111D z C y B x A D z C y B x A L ,其中111,,C B A 与222,,C B A 不成比例,则通过直线L 的平面束的方程为:0)(22221111=+++++++D z C y B x A D z C y B x A λ. 注:该平面束不包含平面02222=+++D z C y B x A .例4. 求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程. 解:过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束的方程为0)1(1=++-+--+z y x z y x λ,即 01)1()1()1(=-+-+-++λλλλz y x ,其中λ为待定常数.由题可知,该平面与已知平面0=++z y x 垂直,故有01)1(1)1(1)1(=⋅-+⋅-+⋅+λλλ,即01=+λ,解得1-=λ.由此可得所给直线关于所给平面 的投影平面的方程为0222=--z y ,整理得01=--z y ,故所求投影直线的方程为⎩⎨⎧=++=--001z y x z y . 六、点到直线的距离:直线pz z n y y m x x L 111:-=-=-外一点),,(0000z y x M 到直线L 的距离为: ||0S S MM d =),,(z y x M 为直线L 上的一点.推导:在直线L 上任取一点),,(z y x M ,有向量0,设点0M 到直线L 的距离为d ,由于||||0S MM S d ⨯=⋅,故||0S S MM d =. 例5. 求点)3,2,1(到直线412111-=-=-z y x 的距离. 解:由题可知,所给直线的方向向量为)4,2,1(=S ,点)1,1,1(是该直线上一点,从而有向量)2,1,0(--=a ,由平面外一点到直线的距离公式得:2154214221222=++--==d . 七、杂例: 例6. 求与两平面34=-z x 和152=--z y x 的交线平行且过点)5,2,3(-的直线的方程. 解法一 (点向式) 由题可知两已知平面的法向量分别为)4,0,1(1-=和)5,1,2(2--=,故可取21n n ⨯为所求直线的一个方向向量,即)34(514021++-=---=⨯=,于是所求直线方程为153243-=-=+z y x . 解法二 (一般式)过点)5,2,3(-且与平面34=-z x 平行的平面方程为234-=-z x ,过点)5,2,3(-且与平面152=--z y x 平行的平面方程为3352-=--z y x ,易知所求直线为上述两个平面的交线,所以所求直线方程为⎩⎨⎧-=---=-3352234z y x z x .例7.求直线241312-=-=-z y x 与平面062=-++z y x 的交点. 解:易知所给直线的参数方程为t x +=2,t y +=3,t z 24+=,代入平面方程中,得06)24()3()2(2=-+++++t t t ,解得1-=t ,代入直线的参数方程得所求交点的坐标2,2,1===z y x .例8.求过点)3,1,2(且与直线12131-=-=+z y x 垂直相交的直线方程.解:先求过点)3,1,2(且垂直于已知直线12131-=-=+z y x 的平面: 由题可知该平面的方程为 0)3()1(2)2(3=---+-z y x .再求该平面与已知直线的交点:已知直线的参数方程为t x 31+-=,t y 21+=,t z -=,代入上述平面方程解得73=t ,于是得到交点坐标⎪⎭⎫ ⎝⎛-73,713,72. 以点)3,1,2(为起点,点⎪⎭⎫ ⎝⎛-73,713,72为终点的向量为)4,1,2(76373,1713,272--=⎪⎭⎫ ⎝⎛----,于是所求直线方程为431122-=--=-z y x .。

第八章 空间解析几何与向量代数(同济六版)ppt课件

第八章 空间解析几何与向量代数(同济六版)ppt课件

z
坐标轴 :
o
y
x轴
y轴
y0 z0
z0 x0
x
坐标面 : xoy面 z 0
x 0 z轴 y 0
x 0 yoz面 zox面 y 0
目录 上页 下页 返回 结束
2. 向量的坐标表示
i , j , k 分别表示坐标轴x, y, z上的单位向量
(1)设点 M (x, y, z), 则
第八章 空间解 析几何与向量 代数(同济六版 )
§1 向量及其线性运算
§2 数量积,向量积 §3 平面及其方程
§4 空间直线及其方程
§5 曲面及其方程
§6 空间曲线及其方程
目录 上页 下页 返回 结束
§1 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系
第一次课
四、利用坐标作向量的线性运算 五、向量的模、方向角、投影
目录 上页 下页 返回 结束


【例1】如果四边形对角线互相平分,则它是
解: 如图 M 为四边形ABCD 对角线的交点, 则
D
A B a b , 1 1
b
2
a
M
b1
C
2
D C a b 2 2
a
A
1
B
由已知 a a ,b b 1 2 1 2 所以
A B D C
所以ABCD为平行四边形.
( 2 , 3 , )
c a 2 ( 2 )( 1 3 )( 1 ) 0

6 2 0 取λ =1,则μ =3
c (, 58 , 2 )
特殊点的坐标 : 原点 O(0,0,0) ; 坐标面上的点 A , B , C

高等数学(第八章)向量代数与空间解析几何(全)

高等数学(第八章)向量代数与空间解析几何(全)

若向量a = x1i y1 j z1k,b = x2i y2 j z2k,由数量积的运算性质得
a b = x1x2 y1 y2 z1z2.
设非零向量a = x1, y1, z1,b = x2, y2, z2,则
(1) | a | a a x12 y12 z12;
(2) cos a, b a b
2
向量代数与空间解析几何
空间直角坐标系
一、空间直角坐标系 空间两点间的距离
向量的概念---大小,方向,相等,向径,坐标等.
二、向量代数 向量的运算---加减,数乘,点乘,叉乘,混合积.
❖ 向量位置关系的刻画 ---平行,垂直,夹角. ❖ 向量的方向角、方向余弦.
平面的方程
三、空间的平面 两平面的位置关系
五、 向量的坐标
空间直角坐标系Oxyz 中,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位 向量,以此记作i,j,k,把它们称为基本单位向量或基向量.任一向量都可以 唯一地表示为i,j,k 数乘之积.
设M (x, y, z)是空间任意一点,记OM r,则r xi yj zk,我们把上式称为 向量r 的坐标分解式,xi,yj 和zk 称为向量r 沿3 个坐标轴方向的分向量,i,j,
d (x2 x1)2 ( y2 y1)2 (z2 z1)2 .
11
二、 空间两点间的距离 例 1 在z轴上求与点A(3,5, 2)和B(4,1,5)等距离的点M .
解 由于所求的点M 在z 轴上,因此M 点的坐标可设为(0, 0, z),又由于
MA MB ,
由空间两点间的距离公式,得
(3)结合律:(a) b = (a b) a (b);
(4)a a = a 2 ; (5)a b = 0 a b; (6) | a b || a | | b | . 特别地,有

同济高等数学第八章学习指导及习题详解

同济高等数学第八章学习指导及习题详解

462第八章 向量代数与空间解析几何一、预习导引第一节 向量及其线性运算1. 中学阶段已经学习了向量的概念、线性运算及运算规律.阅读本节前两部分的内容,从中找出与你以前学过的向量有关内容不同之处.2. 尝试自己画出空间直角坐标系的图形,确认每一个卦限的方位.你能找出坐标轴上的点、坐标面上的点及各卦限内的点的坐标的特点吗?空间任意一个向量你能用坐标表示吗?阅读本节第三部分内容,从中找出答案.3. 在空间直角坐标系中,向量可以用坐标来表示,那么向量的线性运算是否也可以利用坐标作运算?点的坐标表示与向量的坐标表示有区别吗?利用坐标进行向量运算要注意什么问题?仔细阅读本节第四部分内容,你将会正确解答这些问题.4. 在空间直角坐标系中画出向量()1,2,2OM =,利用本节第三部分知识,求向量OM 的模及它与,,x y z 三个坐标轴的夹角(分别设为,,αβγ,称为向量的方向角)的余弦cos ,cos ,cos αβγ,并考察向量的模、方向余弦与其坐标的关系.这种关系式可以推广到空间任意向量吗?阅读本节第五部分的1、2,验证你的结论是否正确.在书上画出来空间任意两点间的距离公式.5 .阅读本节第五部分的3,细心体会向量在轴上的投影概念.向量(),,OM x y z =在三个坐标轴上的投影分别是什么?与向量OM 在三个坐标轴上的分向量有什么区别?注意向量投影的性质.第二节 数量积 向量积 *混合积1. 中学阶段我们已经学习了平面上两向量的数量积的定义、坐标表示及运算规律,请你尝试把数量积的定义、坐标表示及运算规463 律推广到空间向量.阅读本节第一部分内容,验证你的推论.2. 两向量的向量积是一个向量,怎样确定这个向量的模、方向及向量积如何用坐标表示、有什么运算规律?带着这些问题阅读本节第二部分,从中找出答案.3. 向量的混合积顾名思义,是指既含有向量积又含有数量积的向量运算,即()a b c ⨯⋅.根据本节前两部分所学知识,用坐标表示向量的混合积()a b c ⨯⋅;混合积()a b c ⨯⋅的几何意义是什么?阅读本节第三部分内容,检验你的结论.第三节 平面及其方程1. 在平面解析几何中,把平面曲线看作动点的轨迹,建立了曲线和二元方程之间的关系,那么空间曲面或曲线是否也可以看作动点的几何轨迹,建立三元方程或方程组之间的关系?阅读曲面方程与空间曲线方程的概念,从你熟悉的学习和生活实践中举例说明这些概念.2. 用坐标表示向量()0000,,M M x x y y z z =---垂直于向量(),,n A B C =.把(),,M x y z 看作动点,满足0M M n ⊥的点M 的集合在空间表示怎样的图形?如果把n 换为2n ,0M M n ⊥的坐标表示式会变吗?换为任意非零常数乘以n 呢?仔细阅读本节第二部分,回答上述问题,揣摩用平面的点法式方程求解的问题类型.3. 平面方程0Ax By Cz D +++=中,,,,A B C D 中任意一个为零、任意两个为零及,,A B C 中任意两个为零且0D =时,它们对应的几何图形分别有什么特点?阅读本节第三部分,总结特殊的三元一次方程所表示的平面的特点.4. 阅读本节第四部分,弄清楚两平面的夹角的概念,夹角取值的范围,并用向量的坐标表示两平面的夹角.思考如何判断两平面的位置关系.推导空间中的点到平面的距离公式.第四节 空间直线及其方程4641. 从几何的角度看,两张相交平面确定一条直线L ,直线L 用动点的坐标表示,即由两个三元一次方程构成的方程组.通过空间一条直线L 的平面有多少?L 的方程唯一吗?阅读本节第一部分,从中找出答案.2. 用坐标表示向量()0000,,M M x x y y z z =---平行于向量(),,s m n p =.把(),,M x y z 看作动点,满足0//M M s 的点M 的集合在空间表示怎样的图形?如果把s 换为2s ,0//M M s 的坐标表示式会变吗?换为任意非零常数乘以s 呢?仔细阅读本节第二部分,回答上述问题,在书上画出直线的对称式方程和参数式方程.3. 阅读本节第三部分,弄清楚两直线夹角的取值范围.如何计算两直线的夹角?如何判断两直线的位置关系?4. 阅读本节第四部分,弄清楚直线与平面的夹角的取值范围.如何计算直线与平面的夹角?如何判断直线与平面的位置关系?分析平面束方程与三元一次方程的关系.第五节 曲面及其方程1. 阅读本节第一部分内容,通过例1与例2仔细揣摩:已知空间曲面如何建立其方程;已知坐标,,x y z 间的一个方程怎样研究它所表示的曲面的形状.2. 阅读本节第二部分内容,找出在进行旋转曲面方程的推导过程中,变化的量和不变的量,总结旋转曲面的方程的特点.思考给定一个三元二次方程,你能判断出它是否是旋转曲面?如果是,你能给出它的母线的方程和轴吗?它的母线唯一吗?3. 柱面方程的特点是什么?它的图形有什么特点?柱面方程与平面曲线方程有什么区别与联系?带着这些问题,阅读本节第三部分内容,从中找出答案.4. 阅读本节第四部分内容,从中找出下列问题的答案,怎样方程表示的曲面是二次曲面?常见的二次曲面有哪些?它们的图形是怎样的?。

高等数学-第8章-空间解析几何与向量代数

高等数学-第8章-空间解析几何与向量代数

-。

b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。

、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。

a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。

由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。

当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。

上的射影。

投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。

向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。

向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。

推论:相等矢量在同一轴上的射影相等。

性质2:Prj(12a a +)=Prj 1a +Prj 2a 。

性质2可推广到有限个向量的情形。

性质3:Prj u λa =λPrj u a 。

向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。

向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。

同济大学数学系《高等数学》笔记和课后习题(含考研真题)详解(向量代数与空间解析几何)【圣才出品】

同济大学数学系《高等数学》笔记和课后习题(含考研真题)详解(向量代数与空间解析几何)【圣才出品】

图 8-1-3 4.利用坐标作向量的线性运算 设
,λ 为实数,则
注:当向量 时,向量 相当于
Hale Waihona Puke ,坐标表示式为5 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台


5.向量的模、方向角、投影 (1)向量的模 向量 r=(x,y,z),则模
(2)两点距离公式
设点
6 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)性质


②a·b=0⇔a⊥b(a、b 都为非零向量).
(3)运算规律
①交换律 a·b=b·a;
②分配律(a+b)·c=a·c+b·c;
③结合律

(4)两向量夹角余弦的坐标表示式
2.两向量的向量积 (1)定义
①当 a、b、c 组成右手系时,α 为锐角,[abc]为正; ②当 a、b、c 组成左手系时,α 为钝角,[abc]为负. (5)a、b、c 共面⇔混合积[abc]=0,即
9 / 77
圣才电子书

十万种考研考证电子书、题库视频学习平台
ax ay az bx by bz 0 cx cy cz
2 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台

个平面上,称这 k 个向量共面.
2.向量的线性运算
(1)向量的加法
①定义
设有两个向量 a 与 b,任取一点 A,作
,再以 B 为起点,作
,连接
AC(图 8-1-2),则
向量
称为向量 a 与 b 的和,记作 a+b,即 c=a+b.
设 a (ax , ay , az ), b (bx , by , bz ), c (cx , cy , cz ) ,则 ax ay az

高等数学教案-向量代数与空间解析几何

高等数学教案-向量代数与空间解析几何

高等数学教学教案第8章 向量代数与空间解析几何授课序号01教 学 基 本 指 标教学课题 第8章 第1节 向量及其运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 数量积、向量积、混合积,两个向量垂直、平行的条件教学难点 两个向量垂直、平行的条件参考教材 同济七版《高等数学》下册 作业布置大纲要求 1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(向量运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用表达式进行向量运算的方法.教 学 基 本 内 容一.空间直角坐标系1.直角坐标系,点叫做坐标原点.2.在直角坐标系下,数轴统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为三个坐标平面将空间分为八个部分,每一部分叫作一个卦限,分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.3.数组为点在空间直角坐标系中的坐标,其中分别称为点的横坐标、纵坐标和竖坐标.二.空间两点间的距离设,为空间两点,则与之间的距离为.三.向量的概念1. 向量:既有大小又有方向的量,叫做向量(或矢量).O Oxyz 111(, , )M x y z 222(, , )N x y z M N 212212212)()()(z z y y x x d -+-+-=Oxyz Oz Oy Ox ,,zOx yOz xOy ,,(, , )x y z M Oxyz z y x ,,M2. 向量的模:向量的长度称为向量的模,记作或.3. 单位向量:模为的向量叫做单位向量.4. 零向量:模为的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.5. 相等向量:大小相等,方向相同的向量叫做相等向量,记作.规定:所有的零向量都相等.6.负向量:与向量大小相等,方向相反的向量叫做的负向量(或反向量),记作.7. 平行向量:平行于同一直线的一组向量称为平行向量(或共线向量).8. 共面向量:平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量共面.四.向量的线性运算1. 向量的加法定义 对向量,,从同一起点作有向线段、分别表示与,然后以、为邻边作平行四边形,则我们把从起点到顶点的向量称为向量与的和,记作.这种向量求和方法称为平行四边形法则.若将向量平移,使其起点与向量的终点重合,则以的起点为起点,的终点为终点的向量就是与的和,该法则称为三角形法则.对于任意向量,,,满足以下运算法则:(1)(交换律). (2) (结合律). (3).2.向量的减法定义 向量与的负向量的和,称为向量与的差,即.特别地,当时,有.若向量与的起点放在一起,则,的差向量就是以的终点为起点,以的终点为终点的向量.3.数乘向量定义 实数与向量的乘积是一个向量,记作,的模是,方向:当时,与同向;当时,与反向;当时,.对于任意向量,以及任意实数,,有下列运算法则:(1) . (2) . (3) .向量的加法、减法及数乘向量运算统称为向量的线性运算,称为,的一个线性组合.特别地,与同方向的单位向量叫做的单位向量,记作,即. 定理 向量与非零向量平行的充分必要条件是存在唯一的实数,使得.a AB10b a =a a -a a b A AB AD a b AB ADABCD A C ACa b b a +b a a b c a b a b c a +b =b +a ()()a +b +c =a +b +c 0a +=a a b -b a b ()--a b =a +b b =a ()-0a +a =a b a b b a λa λa λa λa 0λ>λa a 0λ<λa a 0λ=λ0a =a b λμ()()λμλμa =a ()+λμλμ+a =a a ()+λλλ+a b =a b λμa +b a b (, )R λμ∈a a a e ||a ae a =a b λλa =b例7 已知向量,,求.例8 已知三角形的顶点分别是,求三角形的面积.授课序号02教 学 基 本 指 标教学课题 第8章 第2节 空间平面和直线 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 平面方程和直线方程及其求法,平面与平面,平面与直线,直线与直线之间的夹角教学难点 利用平面、直线的相互关系(平行、垂直、相交等)解决问题参考教材 同济七版《高等数学》下册作业布置大纲要求 1.掌握平面方程和直线方程及其求法.2.会求平面与平面,平面与直线,直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.3.会求点到直线以及点到平面的距离.教 学 基 本 内 容一.空间平面方程1.平面方程的各种形式(1)若一个非零向量垂直于平面,则称向量为平面的一个法向量.(2)平面的点法式方程:过点,法向量为的平面方程为.(3)平面的三点式方程:过三点的平面方程为 称为平面的三点式方程.(4)平面的截距式方程:过三点,,的平面的方程为}2,1,3{--=a }1,2,1{-=b b a 2⨯ABC (1,1,1)(1,2,3)(2,3,4)、、A B C ABC n ∏n ∏0000(, , )M x y z {, , }A B C n =000()()()0A x x B y y C z z -+-+-=(,,)(1,2,3)k k k k M x y z k =1112121213131310x x y y z z x x y y z z x x y y z z ------=---(, 0, 0)A a (0, , 0)B b (0, 0, )C c (0)abc ≠例8将直线的一般式方程化为点向式方程和参数方程.例9求直线和的夹角. 例10求直线与平面的夹角.授课序号03教 学 基 本 指 标教学课题 第8章 第3节 空间曲面和曲线 课的类型 新知识课教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程教学难点 空间曲线在坐标平面上的投影及其方程参考教材 同济七版《高等数学》下册 作业布置大纲要求 1.理解曲线方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程. 2.了解空间曲线的参数方程和一般方程.3.了解空间曲线在坐标平面上的投影,并会求其方程.教 学 基 本 内 容一.空间曲面定义 如果曲面与方程满足如下关系: (1) 曲面上每一点的坐标都满足方程; (2) 以满足方程的解为坐标的点都在曲面上. 则称方程为曲面的方程,而称曲面为此方程的图形.几个常见的曲面方程.1.球面(1)以坐标原点为球心,以为半径的球面方程为.(2)以为球心,以为半径的球面方程为. (3)一般方程.2310,32120,x y z x y z -+-=⎧⎨+--=⎩113:141x y z l -+==-220:20x y l x z ++=⎧⎨+=⎩300x y z x y z ++=⎧⎨--=⎩10x y z --+=∑(, , )0F x y z =∑(, , )0F x y z =(, , )0F x y z =∑(, , )0F x y z =∑∑R 2222R z y x =++000(,,)x y z R 2222000()()()x x y y z z R -+-+-=0222=++++++D Cz By Ax z y x组称作空间曲线的一般方程.2.空间曲线的参数方程对于空间曲线,若上的动点的坐标可表示成为参数的函数随着的变动可得到曲线上的全部点,此方程组叫做空间曲线的参数方程.3.空间曲线在坐标面上的投影(1)设空间曲线的一般方程为消去变量之后所得到的方程,表示一个母线平行于轴的柱面,因此,此柱面必定包含曲线.以曲线为准线,母线平行于轴的柱面叫做关于面的投影柱面.投影柱面与面的交线叫做空间曲线在面上的投影曲线,该曲线的方程可写成(2)消去方程组中的变量或,再分别与或联立,我们便得到了空间曲线在或面上的投影曲线方程:或(3)确定一个空间立体或空间曲面在坐标面上的投影.一般来说,这种投影往往是一个平面区域,我们称它为空间立体或空间曲面在坐标面的投影区域..投影区域可以利用投影柱面与投影曲线来确定.三.二次曲面1.椭圆锥面由方程所确定的曲面称为椭圆锥面.2.椭球面(,,)0,(,,)0.F x y z G x y z =⎧⎨=⎩C C x y z ,,t ⎪⎩⎪⎨⎧===),(),(),(t z z t y y t x x t C C (,,)0,(,,)0.F x y z G x y z =⎧⎨=⎩z (,)0H x y =z C C z xoy xoy C xoy (,)0,0.H x y z =⎧⎨=⎩(,,)0,(,,)0F x y zG x y z =⎧⎨=⎩x y 0x =0y =C yoz xoz (,)0,0,R y z x =⎧⎨=⎩(,)0,0.T x z y =⎧⎨=⎩22222x y z a b+=由方程 ()所确定的曲面称为椭球面,称为椭球面的半轴,此方程称为椭球面的标准方程.3.单叶双曲面由方程()所确定的曲面称为单叶双曲面.4.双叶双曲面由方程()所确定的曲面称为双叶双曲面.注 方程和也都是单叶双曲面;方程和也都是双叶双曲面.5.椭圆抛物面由方程 ()所确定的曲面称为椭圆抛物面.6.双曲抛物面由方程 ()所确定的曲面称为双曲抛物面.双曲抛物面的图形形状很象马鞍,因此也称马鞍面.四.例题讲解例1建立球面的中心是点,半径为的球面方程. 例2 方程表示怎样的曲面? 例3 分析方程表示怎样的曲面?例4 双曲线型冷却塔是电厂、核电站的循环水自然通风冷却的一种建筑物, 如图8.24所示.试分析双曲线型冷却塔外表面的数学模型.1222222=++cz b y a x 0, 0, 0a b c >>>, , a b c 1222222=-+cz b y a x 0, 0, 0a b c >>>1222222-=-+c z b y a x 0, 0, 0a b c >>>1222222=+-c z b y a x 1222222=++-cz b y a x 1222222-=+-c z b y a x 1222222-=++-cz b y a x 2222by a x z +=0, 0, 0a b c >>>2222by a x z -=0, 0, 0a b c >>>),,(0000z y x M R 024222=+-++y x z y x 222R y x =+8.24 图8.25坐标面上的双曲线分别绕绕另一条与相交的直线旋转一周,所得旋转曲面叫圆锥面.两直线的交点为圆锥面的12222=-by c z L。

同济高等数学下册第八章知识点精讲

同济高等数学下册第八章知识点精讲

总之:
运算律 : 结合律 分配律
可见
因此
机动 目录 上页 下页 返回 结束
设 a 为非零向量 , 则
a∥b
( 为唯一实数)
证: “ ”. 设 a∥b , 取 =±
, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且
再证数 的唯一性 . 设又有 b= a , 则
机动 目录 上页 下页 返回 结束
求三
机动 目录 上页 下页 返回 结束
导出刚体上
一点 M 的线速度 的表示式 .
解: 在轴 l 上引进一个角速度向量 使

方向与旋转方向符合右手法则 , 在 l 上任取一点 O, 作
向径
它与 的夹角为 , 则
点 M离开转轴的距离

符合右手法则
机动 目录 上页 下页 返回 结束
1. 定义 已知三向量
机动 目录 上页 下页 返回 结束
两平面法向量的夹角(常指锐角)称为两平面的夹角. 设平面∏1的法向量为
平面∏2的法向量为
则两平面夹角 的余弦为

机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
和 垂直于平面∏: x + y + z = 0, 求其方程 .
解: 设所求平面的法向量为 方程为
• 坐标轴

• 坐标面

• 卦限(八个) Ⅶ
y轴(纵轴)
x轴(横轴) Ⅷ
Ⅵ Ⅴ
机动 目录 上页 下页 返回 结束
点M
有序数组
向径
(称为点 M 的坐标) 特殊点的坐标 :
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ;

同济大学(高等数学)-第八章-向量代数与解析几何

同济大学(高等数学)-第八章-向量代数与解析几何

第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。

高等数学第六版(同济版)第八章复习资料汇总

高等数学第六版(同济版)第八章复习资料汇总

高等数学第六版(同济版)第八章复习资料汇总第一篇:高等数学第六版(同济版)第八章复习资料汇总第八章空间解析几何与向量代数§8.1向量及其线性运算一、向量的相关概念1.向量的定义:称既有大小又有方向的量为向量(或矢量).2.向量的数学表示法:用一条有方向的线段表示,记为或.3.向量的模:称向量的大小为向量的模,记为.4.自由向量:称与起点无关的向量为自由向量.(如位移)5.单位向量:称模为1的向量为单位向量,记作.6.零向量:称模为0的向量为零向量,记作7.两向量相等:若向量与同模同方向,则称的与相等,记作.(即两个向量平移后重合 8.两向量的夹角:,9.两向量平行:若非零向量与所成的角或,则称的与平行,记作.规定: 零向量与任何向量平行10.两向量垂直:若非零向量与所成的角,则称的与垂直,记作注: 零向量可认为与任何向量平行或垂直 11.向量共线:平行的向量可移动到同一条直线上,也称之为向量共线 12.向量共面:将个向量的起点放到同一点时,若个终点与公共起点在一个平面上,则称这个向量共面.二、向量的线性运算1.向量的加减法(1).向量的加法①.运算法则:设有向量与,求与的和.I.三角形法则: II.平行四边形法则:.②.运算规律:1°.交换律:2°.结合律:注:,再以第一个向量的起点为起点,最后一个向量的终点为终点作一向量,这个向量即为所求向量的和,即.(2).向量的减法①.负向量:称与向量同模反向的向量为它的负向量,记作②.两向量的差:称向量与向量的负向量的和为与的差向量,记作.注:特别地,当时,.③.运算法则:设有向量与,求与的差.I.平行四边形法则:.II.三角形法则:.(3).运算定理:.2.向量与数的乘法(1).定义:称向量与实数的乘积为向量的数乘.注:1°.规定是一个向量2°.3°.若,则与同向;若,则与反向;若,则.(2).运算规律:①.结合律:.②.分配律:.(3).性质①.向量的同向单位向量:,.②.向量平行的充要条件(定理):若向量,则向量平行于唯一的实数,使③.数轴上的点的坐标为的充要条件为:,其中向量为数轴的单位向量,实数称为有向线段的值.例1.如图,用、表示、、以及,进而.又,故,进而三、空间直角坐标系解:由于,故1.空间直角坐标系:坐标系或坐标系2.坐标面:面;面;面.3.卦限:;;;;;;;4.空间点的坐标:(向径).(1).向量的坐标分解式:.(2).向量的分向量:.(3).向量的坐标:.(4).点的坐标:注:1°.面上点的坐标:;2°.轴上点的坐标:;面上点的坐标:;轴上点的坐标:;面上点的坐标:.z轴上点的坐标:四、利用坐标作向量的线性运算:设,.1.向量线性运算的坐标表示:(1).加减法:.(2).数乘:(3).两向量平行:注:1°.若,则2.若,则例2.已知,求线性方程组的解向量解:方程①乘2减去方程②乘3得:,方程①乘3减去方程②乘5得:例3.已知两点、在直线AB上求一点M,使.及实数,解:因为,因此有,整理得,代入坐标得,从而得到点M的坐标注:线段AB中点坐标公式五、向量的模、方向角、投影1.向量的模与两点间距离公式:(1).向量的模:,.(2).两点间距离公式:点与之间的距离:推导:因为,所以例4.求证以三点、、为顶点的三角形是一个等腰三角形.解:由两点间距离公式,有;;,由于,故为等腰三角形.例5.在z轴上求与两点、等距离的点.解:由题可设所求点为,有,即,整理得,故所求点为.例6.已知两点、,求与同向的单位向量解:因为,所以,于是 2.方向角与方向余弦(1).向量的方向角:称非零向量与三条坐标轴的夹角为向量的方向角(2).向量的方向余弦:方向角的余弦 , , 注:1°.;2°..例7.已知两点、,计算向量的模、方向余弦和方向角.解:由于,从而有于是,,由此可得例8.设点A位于第I卦限,向径与x轴、y轴的夹角依次为的坐标、,且,求点A,解:由于,并且,有由题可知,故,于是,故点A的坐标为.3.向量在轴上的投影(1).向量在轴上的投影:设向量与u轴正向的夹角为,称数为向量在u轴上的投影,记作或注:向量在三个坐标轴上的投影即为对应的坐标,即,(2).投影的性质:①..②.例9.设立方体的一条对角线为OM,一条棱为OA,且|OA|= a,求在解:记,有,于是.§8.2数量积、向量积一、两向量的数量积1.常力沿直线所作的功:2.两向量的数量积(1).定义:称向量与的模及其夹角余弦的乘积为与的数量积,内积或点积,记作注:1°.2°..3°..(2).运算规律①.交换律:.(由定义可知)②.分配律:③.结合律:; 3.两向量数量积的坐标表示式:若,则4.两非零向量夹角余弦的坐标公式:例1.试用向量证明三角形的余弦定理:.解:在中,记,,,有,从而,即例2.已知三点、和,求解:由题可得,于是,故例3.设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的流速均为(常向量)v.设为垂直于S的单位向量,计算单位时间内经过这区域流向所指一侧的液体的质量m(液体的密度为解:单位时间内经过该区域的液体的体积为,所求质量为.二、两向量的向量积1.力对支点的力矩:模:;方向:与及的方向成右手规则.2.两向量的向量积(1).定义:设有向量与,夹角为,称为与的向量积(叉积、外积),其中,方向与和的方向符合右手规则,记作.注:1°.2°.3°.的几何意义:以与为邻边的平行四边形的面积.(2).运算规律①.反交换律:.②.分配律:.③.结合律:(3).两向量的向量积的坐标表示式:设,则.例4..证明:在三角形中,记,,由于,即,整理得.例5.设,计算解:.例6.已知三角形ABC 的顶点分别是、和,求三角形ABC的面积解:由于,有,于是.例7.设刚体一角速度绕轴旋转,计算刚体上一点M的线速度.解:在轴l上引进一个角速度向量,使,其方向与旋转方向符合右手法则,在l上任取一点O,作向径,它与的夹角为,则点M离开转轴的距离,由物理学中线速度和角速度的关系可知,且、、符合右手规则,于是.§8.3曲面及其方程一、曲面方程的相关概念1.曲面方程:若曲面S上任一点的坐标都满足方程,且不在曲面S上的点的坐标都不满足方程(*),则称方程(*)为曲面S的方程,而称曲面S为称方程(*)的图形.2.关于曲面的两个基本问题(1).已知一曲面作为空间点的几何轨迹,建立该曲面的方程.(2).已知关于点的坐标、、之间的一个方程,研究该方程所表示曲面的形状例1.建立球心在点、半径为R的球面方程解:设为所求球面上任一点,有,即,整理得例2.设有点和,求线段AB的垂直平分面的方程.解:设为所求平面上任一点,由题意,有,即,整理得例3.方程表示怎样的曲面?解:原方程变形为,表示以为球心,以5为半径的球面.二、旋转曲面1.定义:称由一条平面曲线绕其平面上一条定直线旋转一周所成的曲面为旋转曲面,称旋转曲线为旋转曲面的母线,定直线为旋转曲面的轴.2.旋转曲面的方程:曲线C:绕z轴旋转一周所成的旋转曲面方程为:.(绕y轴旋转一周所成的旋转曲面方程为:.)(巧记:绕谁谁不动,缺谁补上谁推导:在曲线C上任取一点,有,且点到z轴的距离.当曲线C绕z轴旋转时,点绕z轴旋转到点,其中,点到z轴的距离,由于,有,即,代入曲线方程有注:1°.曲线C:绕x 轴旋转一周所成的旋转曲面方程为:;绕y轴旋转一周所成的旋转曲面方程为:2°.曲线C:绕z轴旋转一周所成的旋转曲面方程为:;绕x轴旋转一周所成的旋转曲面方程为:3.常见旋转曲面及其方程(1).圆锥面及其方程①.圆锥面:称由直线L绕与其相交的直线旋转一周所成的曲面为圆锥面,称两直线的交点为圆锥面的顶点,称两直线的夹角为圆锥面的半顶角②.圆锥面的方程:以坐标原点o为顶点,以为半顶角,以z轴为旋转轴的圆锥面的方程为:,其中推导:在坐标面上,过原点且与z轴夹角为的直线方程为,于是,直线L绕z轴旋转而成的圆锥面的方程为,整理得注:1°.以坐标原点O为顶点,以为半顶角,以x,其中2°.以坐标原点O为顶点,以为半顶角,以y,其中(2).旋转双曲面及其方程①.旋转双曲面:称由双曲线绕其对称轴旋转一周所成的曲面为旋转双曲面,分为单叶和双叶双曲面②.旋转双曲面的方程:(双曲线:.旋转单叶双曲面的方程:(绕z轴旋转.旋转双叶双曲面的方程:(绕x轴旋转)三、柱面1.柱面的定义:称由直线L沿定曲线C平行于定直线l 移动所成的轨迹为柱面,称定曲线C为柱面的准线,动直线L为柱面的母线.2.几种常见柱面及其方程(缺谁母线平行谁(1).圆柱面:.(准线为坐标面上的圆:,母线平行z轴.(准线为坐标面上的圆:,母线平行x 轴.(准线为坐标面上的圆:,母线平行y轴(2).过坐标轴的平面:,过z 轴,准线为坐标面上的直线,过x轴,准线为坐标面上的直线.,过y 轴,准线为坐标面上的直线四、二次曲面 1.椭球面:.2.椭圆锥面: 3.单叶双曲面:.4.双叶双曲面:5.椭圆抛物面:.6.双曲抛物面:7.椭圆柱面:.8.双曲柱面: 9.抛物柱面:§8.4空间曲线及其方程一、空间曲线:称空间两曲面的交线为空间曲线,记为C.二、空间曲线的方程1.一般式(面交式)方程:例如:表示圆柱面与平面的交线.表示上半球面又如:与圆柱面的交线 2.参数方程:,其中点随着参数t的变化遍历曲线C 例1.称由点在圆柱面上以角速度绕z轴旋转,又同时以线速度v沿平行z轴的正向上升所成的图形为螺旋线,求其参数方程解:取时间t为参数,对应点,对应点,作M在xoy面上的投影,有,且,于是,又,于是,螺旋线的参数方程为,令,则螺旋线的参数方程为三、空间曲线在坐标面上的投影 1.投影柱面:称以空间曲线C为准线,母线平行于z轴的柱面为曲线C关于坐标面的投影柱面2.空间曲线的投影:称空间曲线C关于坐标面的投影柱面与坐标面的交线为空间曲线C在坐标面上的投影曲线,也称为投影3.空间曲线的投影方程:空间曲线C:在坐标面上的投影方程,其中为方程组消去z所得的投影柱面方程.注:1.空间曲线曲线C:在坐标面上的投影方程为2°.空间曲线曲线C:在坐标面上的投影方程为例2.求曲线在坐标面上的投影方程.解:现求曲线C在关于坐标面上的投影方程,将方程组消去z 得投影柱面方程:,于是所求投影方程为例3.求由上半球面和锥面所围成的立体在坐标面上的投影解:先求曲线关于坐标面的投影方程,消去z 在坐标面上的投影方程为,从而所求投,故曲线影为圆域:§8.5平间及其方程一、平面的点法式方程1.平面的法向量:称垂直于一平面的非零向量为该平面的法线向量2.平面的点法式方程:过点,以向量为一法向量的平面推导:在平面上任取一点,有向量,由于,有,即有(1),即平面上的点的坐标都满足方程(1).反之,若点不在平面上,则向量不垂直法向量,从而,即不在平面上的点的坐标都不满足方程(1).于是得到平面的点法式方程.例1.求过点且以为法向量的平面的方程解:由平面的点法式方程得,整理得.例2.求过三点、和的平面的方程解:先求所求平面的一个法向量,由题可得向量,可取,于是所求平面的方程为,整理得.二、平面的一般方程1.平面的一般方程:(*)推导:若点满足方程(*),则有,(**)两方程相减得,(*** 方程(***)为过点,以向量为一法向量的平面的点法式方程.由于方程(*)与(***)同解,可知任何一个三元一次方程(*)为平面的一般方程,其一法线向量为2.几种特殊平面的一般方程:(缺谁平行谁(1).过原点的平面方程:,法向量为.(2).平行x轴的平面方程:,法向量为(3).垂直于x轴(平行坐标面)的平面方程:,法向量为.例3.求通过x轴和点的平面的方程解:由题意,可设所求平面的方程为:,(*)又点在该平面上,有,得,代入方程(*)得.例4.设一平面与x、y、z轴的交点依次为、,求该平面的方程解:设所求平面的方程为,(*)将PQR三点坐标代入得,,代入方程(*),从而有所求平面方程为,称之为平面的截距式方程三、两平面的夹角及点到平面的距离得1.两平面的夹角:称两平面的法线向量的夹角(锐角)为两平面的夹角 2.两平面夹角的余弦:设平面1的法线向量为,平面,两平面的夹角为,则注:1°..2°.3.点到平面的距离:平面外一点到平面的距离为推导:在平面上任取一点,过点作平面的一法向量,有,由于,,由于于是,又点在平面上,故有,从而例5.求两平面和的夹角.解:由两平面夹角余弦公式,故所求夹角为例6.一平面通过两点和且垂直于平面,求它的方程.解:设所求平面的一个法线向量为,由题可知向量在平面上,已知平面的一个法线向量为,由题意有,有;,有;由以上两方程可得,故所求平面的法线向量为,于是所求平面的方程为,整理得另解:由题可知所求平面上一向量,又已知平面的一个法线向量为,易知不平行于,故可取所求平面的一个法线向量为,于是所求平面方程为:,整理得第六节空间直线及其方程一、空间直线:称空间两平面1、的交线为空间直线.二、空间直线的方程1.一般(面交式)方程:2.对称式(点向式)方程(1).直线的方向向量:称平行于已知直线的非零向量为该直线的方向向量(2).直线的点向式方程:过点以向量为方向向量的直线L.推导:在直线L上任取一点,有向量,由于,故有,(*)即直线L上点的坐标都满足方程(*)反之,若点不在直线L上,则由于不平行,所以这两向量的对应坐标就不成比例,因此方程(*)就是直线L 的方程,称为直线的对称式或点向式方程.注:1°.mnp不同时为零2°.若,则直线L的方程为,即平面上的直线3°.若,则直线L的方程为,即平面与交线,过点且平行z轴 3.参数方程:注:一般式对称式参数式例1.用对称式方程以及参数方程表示直线解:先找出该直线上一点:不妨取,代入原方程组得,解得,即为该直线上一点再找该直线的方向向量:由题可知交成该直线的两平面的法线向量分别为,故可取.,得到所给直线的参数方程:令.三、两直线的夹角 1.两直线的夹角:称两直线的方向向量的夹角(锐角)为两直线的夹角 2.两直线夹角的余弦:直线的方向向量为,直线的方向向量 ,两直线的夹角为,则注:1°.2°.例2.求直线.和的夹角.解:由题可知直线的方向向量为,直线的方向向量为,设的夹角为,则由两直线夹角余弦公式得故四、直线与平面的夹角 , 1.直线与平面的夹角:称直线与不垂直该直线的平面上的投影直线的夹角为直线与平面的夹角..2.直线与平面夹角的正弦:若直线的方向向量为,平面为.与的夹角为,则.注:1°.2°..例3.求过点且与平面垂直的直线的方程解:由题意,可取为所求直线的一个方向向量,故所求直线的方程为.五、平面束及其方程1.平面束:称通过定直线的所有平面的全体为平面束2.平面束的方程:设有直线,其中与不成比例则通过直线的平面束的方程为:.注:该平面束不包含平面例4.求直线在平面上的投影直线的方程解:过直线的平面束的方程为,即,其中为待定常数.由题可知,该平面与已知平面垂直,故,即,解得.由此可得所给直线关于所给平面的投影平面的方程为,整理得,故所求投影直线的方程为.六、点到直线的距离:直线外一点到直线的距离为:为直线上的一点推导:在直线上任取一点,有向量,设点到直线的距离为,由于,故例5.求点的距离.解:由题可知,所给直线的方向向量为,点,由平面外一点到直线的距离公式得:.七、杂例:例6.求与两平面和的交线平行且过点的直线的方程.解法一(点向式由题可知两已知平面的法向量分别为和,故可取线的一个方向向量,即,于是所求直线方程为.解法二(一般式过点且与平面平行的平面方程为,过点平行的平面方程为以所求直线方程为例7.与平面的交点.解:易知所给直线的参数方程为,,解得,代入直线的参数方程得所求交点的坐标例8.求过点垂直相交的直线方程.第二篇:高等数学第六版(同济版)第九章复习资料[模版]第九章多元函数微分法及其应用引入:在上册书中,我们学习了一元函数微积分学,所讨论的对象都只有一个自变量的函数,而在实际应用中,研究的问题往往要涉及多方面的因素,反映在数量上就是一个变量要依赖几个自变量,即数学上的多元函数,从这节课开始,我们进入多元函数微积分学的学习阶段.先来学习多元函数微分学由于从一元函数到二元函数,单与多的差异已能充分体现,我们由二元函数入手来研究多元函数微分学,然后把相关概念及性质推广到三元、四元直至元函数上去第一节多元函数的基本概念一、平面点集的相关概念 1.平面点集:具有性质P} 例如:,其中点表示点2.邻域:(1).邻域:(2).去心邻域:3.坐标面上的点与平面点集的关系:(1).内点:若,使,则称为的内点.(2).外点:若,使,则称为的外点(3).边界点:若,且,则称为的边界点边界:的边界点的全体称为它的边界,记作.(4).聚点:若,则称为的聚点导集:的聚点的全体称为它的导集注:1°.若为的聚点,则可以属于,也可以不属于2°.内点一定是聚点;外点一定不是聚点;边界点也不总是聚点,如孤立的边界点.例如:;.4.一些常用的平面点集:(1).开集:若点集的点都是其内点,则称为开集(2).闭集:若点集的边界,则称为闭集.(开集加边界(3).连通集:若中任何两点都可用属于的折线连接,则称为连通集.(4).开区域:连通的开集称为开区域,也称为区域.(5).闭区域:开区域加上其边界称为闭区域例如:为区域.为闭区域.(6).有界集:若,使,则称为有界集.(7).无界集:若,使,则称为无界集二、维空间:对取定的自然数,称元数组的全体为维空间,记为.注:前述的邻域、区域等相关概念可推广到维空间.三、多元函数的概念 1.,或,其中因映自变变量射量定义域:D 值域:注:可推广:元函数:,.例: 1.,2.,2.几何表示:函数对应空间直角坐标系中的一张曲面:.四、二元函数的极限1.定义:设函数的定义域为,点若,,为,满足,则称为当,称之为的二重极限例1.设证明:,要使不等式,求证成立,只须取,于是,,总有,即例2.不存在,其中证明:当沿直线趋于时,总有,随着的不同而趋于不同的值,故极限不存在例3.求极限五、二元函数的连续性 1.二元函数的连续性:设函数的定义域为D,点为D的聚点,且,则称在点连续 2.二元函数的间断点: 设函数的定义域为D,点为D的聚点,若在点不连续,则称为的间断点.注:间断点可能是函数有定义的孤立点或无定义的点.3.性质:设D为有界闭区域(1).有界性:,有(2).最值性:,使得,有(3).介值性:,使得.4.二元连续函数的运算性质(1).和、差、积仍连续;(2).商(分母不为零)连续;(3).复合函数连续.5.二元初等函数及其连续性(1).二元初等函数:由二元多项式和基本初等函数经过有限次四则运算和有限次复合所构成的、并用一个式子表示的二元函数称为二元初等函数.(2)..例4.,则解:令例5...(分子有理化)第二节偏导数引入:在一元函数微分学中,我们研究了一元函数的变化率—导数,并利用导数研究了函数的性态.对于多元函数,我们也要讨论它的变化率,但由于多元函数的自变量不止一个,所以多元函数的变化率要比一元函数的变化率复杂得多.我们还是以二元函数为例来研究多元函数的变化率,先把二元函数中某一自变量暂时固定,再讨论二元函数关于另一个自变量的变化率,这就是数学上的偏导数.一、偏导数的相关概念1.偏导数:设函数在点的某邻域内有定义,把暂时固定在,而处有增量时,相应地有增量.若极存在,则称此极限值为函数在点处对的;或注: 1°..2°..2.偏导函数:若函数在区域D内每一点处对或偏导数存在,则该偏导数称为偏导函数, 或;或.注:可推广:三元函数在点处对的偏导数定义为例1.求在处的偏导数.,.例2.求的偏导数.,.例3.求的偏导数.,..3.偏导数的几何意义(1).偏导数是曲线在点处的切线关于轴的斜率(2).偏导数是曲线在点处的切线关于轴的斜率.4.函数偏导数存在与函数连续的关系:函数偏导数存在与函数连续之间无必然的蕴含关系.(1).函数在点处偏导数存在,但它在点却未必连续例如:函数在点的两个偏导数都存在,即,.不存在,故在点不连续(2).函数在点连续,但它在点处却未必存在偏导数例如:函数在点连续,但它在点对及的偏导数都不存在,这是因为:,即在点对及的偏导数都不存在.二、高阶导数1.二阶偏导数:若函数对及的偏导数及对及的偏导数也存在,则称它们是函数的二阶偏导数记作:;;(二阶纯偏导数);.(二阶混合偏导数)(二阶纯偏导数注:1°.一般地,二元函数的阶偏导数的偏导数称为它的阶偏导数2°.二阶以及二阶以上的偏导数统称为高阶导数.3°.二元函数的阶偏导数至多有个.例4.设,求它的二阶偏导数.;;;;;.总结:从这一例题,我们看到:,即两个二阶混合偏导数相等,与求导顺序无关.那是不是每个二元函数都有这样的相等的二阶混合偏导数呢?我们说不是的,例如:,在点,有,事实上,;而,,于是,,即那么满足什么条件得二元函数的两个二阶混合偏导数与求导顺序无关呢?有下面的定理:2.二阶混合偏导数的性质定理:若函数的两个二阶混合偏导数与在区域内连续,则它们在D内必相等,即注:1°.可推广:高阶混合偏导数在连续的条件下与求导顺序无关.2°.一般地,若二元函数的高阶混合偏导数都连续,则的阶偏导数只有个第三节全微分一、全微分的相关概念1.偏增量:称为函数对的偏增量称为函数对的偏增量2.偏微分:称与为对及的偏微分.注:,但在实际应用中,往往要知道函数的全面的变化情况,即当自变量有微小增量、时,相应的函数增量与自变量的增量、之间的依赖关系,这涉及到函数的全增量.3.全增量:称为函数在点、的全增量一般来讲,计算全增量是比较困难的,我们总希望像一元函数那样,利用、的线性函数来近似代替函数的全增量,为此,引入了全微分4.全微分:若函数在点的某领域内有定义,且在的全增不依赖于、,可表示为,其中而仅与、有关,则称在点可微分,而称为在点的全微分,记作,即若在区域D内每一点都可微分,则称在D内可微分.注:我们知道,当一元函数在点的微分存在时,那么,当二元函数在点的全微分存在时,、又为何值呢?下面讨论二元函数可微分与连续、可微分与偏导数存在的关系,从中得到、的值.二、二元函数可微分与偏导数存在、可微分与连续的关系1.函数可微分的必要条件定理1.若函数在点可微分,则它在点的两个偏导数必定存在,且在点的全微分证明:由于在点可微分,则有,。

(完整版)第八章向量代数与空间解析几何教案(同济大学版高数)

(完整版)第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何第一节 向量及其线性运算教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。

使学生对(自由)向量有初步了解,为后继内容的学习打下基础。

教学重点:1.空间直角坐标系的概念2.空间两点间的距离公式3.向量的概念4.向量的运算教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容:一、向量的概念1.向量:既有大小,又有方向的量。

在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。

在数学上只研究与起点无关的自由向量(以后简称向量)。

2. 量的表示方法有: a 、i 、F 、OM 等等。

3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。

4. 量的模:向量的大小,记为a。

模为1的向量叫单位向量、模为零的向量叫零向量。

零向量的方向是任意的。

5. 量平行b a //:两个非零向量如果它们的方向相同或相反。

零向量与如何向量都平行。

6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-42.c b a =- 即c b a =-+)(3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ0)3(<λ时,a λ与a 反向,||||||a a λλ=其满足的运算规律有:结合率、分配率。

设0a 表示与非零向量a 同方向的单位向量,那么aa a 0=定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使b =a λ例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用a 和b 表示向量MA 、MB 、MC 和MD ,这里M 是平行四边形对角线的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济大学(高等数学)-第八章-向量代数与解析几何-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面yxzO将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平yxz O y xz A B C(,,)M x y z面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=. 例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出下列各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -. 4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求下列各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz上求与三点(3, 1, 2)C等距A、(4,2,2)B--和(0, 5, 1)的点.8.求点(12,3, 4)A-与原点、各坐标平面和各坐标轴的距离.A4,3,1,B7,1,2,C5,2,3为顶点的三角形△ABC是一等腰三角9. 证明以()()()形.第2节空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB来表示向量,A称为向量的起点,B称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a,b,c,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a或AB,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a=b.规定:所有的零向量都相等.与向量a大小相等,方向相反的向量叫做a的负向量(或反向量),记作a.平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1对向量a,b,从同一起点A作有向线段AB、AD分别表示a与b,然后以AB、AD为邻边作平行四边形ABCD,则我们把从起点A到顶点C 的向量AC称为向量a与b的和(图8-5),记作a+b.这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1) a +b =b +a (交换律).(2) ()()a +b +c =a +b +c (结合律). (3) 0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.abcda +b +c +dabA Cabc =a +b由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向:当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.对于任意向量a ,b 以及任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法及数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.aabb-a b BAC特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''ACA A AB BC AA AB AD =++=-++a b c =++. 由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.yxzOA B CM(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -.2.3.2向量的坐标表示取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 及NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标. 图8-14解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =--- 222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB 的中点, 其坐标为221x x x +=, 221yy y +=, 221z z z +=. 2.3.3向量的模与方向余弦的坐标表示式向量可以用它的模与方向来表示,也可以用它的坐标式来表示,这两种表示法之间的是有联系的.设空间向量12a M M =与三条坐标轴的正向的夹角分别为,,αβγ,规定:0,0,0απβπγπ≤≤≤≤≤≤,称,,αβγ为向量a 的方向角.图8-15因为向量a 的坐标就是向量在坐标轴上的投影,因此12cos cos x a M M a αα=⋅=⋅ 12cos cos y a M M a ββ=⋅=⋅ 12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos αβ量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 xa a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M的模、方向余弦和方向角.解 12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 222αβγ=-==-;23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以 23AB ==于是}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念.定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称内积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知: (1) 2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 及任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4) 0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点及向量内积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b .解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b2222(3)3=7=+⨯-+,因此+=a b在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =. (8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以及两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则==a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 及F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.FMθ注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积.(2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质: 对任意向量a ,b 及任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律: ()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i .解 ⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式及三阶行列式有111111222222y z x z xy y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解 211112121012120201----⨯--=-ijka b =i j +k 234=--i j +k . 因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而32111⨯--ij kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--ijki j k ,所以21AB AC ⨯==故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理 如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦ 习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b+ c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模及d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1) ⋅a b ;(2) 25⋅a b ;(3) a ;(4) cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积.15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面及其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量. 显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程. 解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631ij kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。

相关文档
最新文档