数学建模论文 饮酒驾车
数学建模论文 饮酒驾车
第九篇饮酒驾车者三思2004年 C题饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:⑴酒是在很短时间内喝的;⑵酒是在较长一段时间(比如2小时)内喝的。
3.怎样估计血液中的酒精含量在什么时间最高;4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如表9-1。
表9-1 喝两瓶啤酒后的时间的血液中酒精含量(毫克/百毫升)饮酒驾车者三思*摘要:本文讨论了不同饮酒方式、饮酒数量情况下血液中酒精含量的变化规律。
我们假设喝完酒后血液中的酒精含量达到峰值的时间相同,任意时刻血液中的酒精含量与饮酒量成正比,通过散点图作曲线拟合得到血液中酒精浓度与时间的函数关系:2/t x-e t=;根据酒精在人体内变化的弹性系数成线性下降的趋势建立了微199)(t.71本文获2004年全国二等奖。
饮酒驾车问题
8
C (t )
k1Q (e k2t e k1t ) C0e k2t V0 (k1 k2 )
5.2.2 具体模型二的求解
模型二求解:根据题设,我们取 T 2 。
Q dy (t ) k1 y (t ), 2 由 dt k1 y (t ),
3 模型假设
(1) 体液总体积保持不变 (2) 在较短时间内喝酒的情况下,酒精量是瞬间进入到胃里的。 (3) 体液的总体积不变。 (4) 酒精在血液中的含量与在体液中的含量大至相同。 (5) 不管喝的是什么酒,只以涉入的酒精总量纳入计算。 (6) 假设整体过程中人没有摄入任何影响代谢的药类物质和作剧烈性运 动。 (7) 人的吸收速率和代谢速率是恒定的。 (8) 忽略不同人对酒精代谢能力的差异。
5.1.3 具体模型二(慢速饮酒)
针对具体模型二:该模型针对长期饮酒效应,可将其近似认为在持续饮酒的 过程中酒精是匀速进入肠胃的,参照模型一可有 y (0) 0 ,在此我们引入函数
f 1 (t ) 来表示酒精进入肠胃的速率(单位:毫克/小时), T 表示饮酒时的持续总
时间,则酒精进入肠胃的速率与整个过程中喝入的酒精量有如下关系:
5.2 模型求解 5.2.1 具体模型一的求解
模型一求解:根据具体模型一得:
dy (t ) k1 y (t ) dt f (t ) k1 y (t )
将其整理并带入一般模型中求解得到 C (t ) 与 t 的关系:
dC (t ) aC0 k1t e k2C (t ) dt V0
关键词:房室模型 微分方程组
Ct 驻点法 吸收和代谢
饮酒驾车数学模型摘要
饮酒驾车数学模型摘要:本问题是生活中的饮酒驾车问题,酒精对人体的作用过程实际上类似于生物医学中的药用过程,针对饮酒量和时间、方式的不同,本文根据国家标准新标准规定。
并分别建立了血液对酒精的吸收过程——吸收室(第1室),血液对酒精的排除过程——中心室(第2室)。
并将情况分为短时间饮酒和长时间饮酒两种情况分别讨论并运用线性常系数方程,11121()dx f t k x dt =- 22232()dx f t k x dt=- ()()i i i x t V c t =⋅ ()1,2i =从而得到了血液中酒精含量与时间的函数关系。
2323201201222()()k tk t x t D k e D k t c t e V -⋅-⋅⎧=⋅⋅⎪⋅⋅⎨=⋅⎪⎩(2312k k =)进而得到血液中酒精含量与饮酒时间的关系。
进而确定司机在饮酒后多长时间开车不违反交通规则的血液酒精含量与饮酒时间的正确函数关系。
根据以上标准,并考虑到个体的差异性,我们给出了几点建议,以供司机参考。
第九组 于龙 赵珍珍 董水花[摘要]针对酒后驾车普遍存在并致交通肇事居高无下的现实,掌握饮酒后不同时刻血液中酒精的浓度非常必要,本文结合药理学,通过讨论酒精在血液中的吸收及排除时浓度的变化过程并建立了二室模型:11121()dx f t k x dt =- 22232()dx f t k x dt=- ()()i i i x t V c t =⋅ ()1,2i = ,分别针对其在长短时间内摄入酒精时,酒精在人体血液中的浓度变化情况作具体的分析,同时利用数学软件对相关参数进行估计,得到结论:2323201201222()()k tk t x t D k e D k t c t e V -⋅-⋅⎧=⋅⋅⎪⋅⋅⎨=⋅⎪⎩2312k k =。
即长时间多次摄入同质量酒精比短时间摄入其浓度消除速率要小。
从数学理论上解决了不同体重、不同时间饮用不同量的酒后在不同时刻血液中的酒精含量。
最新数学建模-饮酒驾车
第九篇饮酒驾车者三思2004年 C题饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:⑴酒是在很短时间内喝的;⑵酒是在较长一段时间(比如2小时)内喝的。
3.怎样估计血液中的酒精含量在什么时间最高;4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如表9-1。
表9-1 喝两瓶啤酒后的时间的血液中酒精含量(毫克/百毫升)时间(小时) 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5酒精含量30 68 75 82 82 77 68 68 58 51 50 41时间(小时) 6 7 8 9 10 11 12 13 14 15 16酒精含量38 35 28 25 18 15 12 10 7 7 4饮酒驾车者三思*摘要:本文讨论了不同饮酒方式、饮酒数量情况下血液中酒精含量的变化规律。
11557-数学建模-2004年C题《饮酒驾车》题目、论文、点评
2004年C题《饮酒驾车》题目、论文、点评现实生活的数学描述-饮酒与驾车王强本文说明了“饮洒与驾车”问题的命题动因,以及面向现实生活的工作方向。
针对参赛论文的各种不足之处,着重讲述了数学模型的一般属性和模型假设的重要地位。
现实生活的数学描述-饮酒与驾车.pdf (97.06 KB)饮酒驾车的优化模型王毅李妃...本文通过分析啤酒中酒精在人体体内胃肠(含肝脏)与体液(含血液一)之间的交换机理,分别建立了在短时间内喝酒和长时间喝酒两种情况下,胃肠和体液(含血液)中的酒精含量的微分方程模型。
对给出的数据,利用非线性最小二乘数据拟合及高斯-牛顿算法,确定了酒精含量以及酒精从胃肠进入血液的速度系数和酒精从血液渗透出体外的速度系数。
继而,对不同喝酒方式下,血液中酒精尝试进行分析:该模型可以预测喝酒后任一时刻血液中的酒精渡。
对于第一问假设大李在第一次检查后半小时间喝酒,由于体液中有残留的酒精,故第二次检查时酒精浓度为20.2448毫克/百毫升饮酒驾车的优化模型.pdf (214.13 KB)饮酒与驾车的关系李蒙赫黄二梅...本文针对酒后驾车问题,建立了一个反映体液中酒精含量变化的微分方程模型,接下来用常数变易法对模型进行求解,用最小二乘法并借助于Matlab软件对数据进行了拟合,得到了模型的具体解。
然后我们利用Mathematica软件对题目中的各个问题一一做出了解答:(1)很好地解释了大李碰到的问题;(2)饮酒后分别在11.6341小时、12.7169小时内驾车就会违反国家新标准;(3)对两种饮酒方式分别在饮酒后1.35067小时和2.62436小时时体液中酒精含量达到最大值;(4)如果天天饮酒,则酒精涉入量的极限安全值为8288.93毫克,相当于0.382瓶啤酒所含的酒精最。
此外,我们还对一般模型进行了误差和灵敏度分析,利用微分方程的稳定性理论严格的证明了微分方程对初值和非齐次项都是渐进稳定的。
饮酒与驾车的关系.pdf (155.24 KB)酒精代谢的数学分析方信兵苏丽本文从生物学角度出发,根据微分方程理论,结合给定的数据,经过合理的假设,建立了血液中酒精的浓度随时间变化的基础模型。
饮酒驾车问题的数学模型
饮酒驾车问题的数学模型按照国家质量监督检验检疫总局《车辆驾驶人员血液、呼气酒精含量阈值与检验》规定,饮酒驾车指:车辆驾驶人员血液中的酒精含量大于或者等于20mg/100mL,小于80mg/100mL的驾驶行为。
醉酒驾车指:车辆驾驶人员血液中的酒精含量大于或等80mg/100mL的驾驶行为。
那么酒后什么时候酒精浓度最高,酒后到底多长时间才能安全驾车下面我们就此问题建立数学模型。
一、提出问题体重为70kg的人在喝下(认为是瞬时饮酒)1瓶啤酒后,测量他的血液中酒精含量(毫克/百毫升),得数据[1]如下问题1.饮酒后多长时间后血液中含酒精量最大。
问题2.某人在早上8点喝了一瓶啤酒,下午2点检查时符合新的驾车标准,他在19点吃晚饭时又喝了一瓶啤酒,过了6小时后驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他陷入困惑,为什么喝同样多的酒,两次检查结果会不一样呢过六小时后再喝一瓶,过多长时间才可以驾车。
问题3.一次喝3瓶啤酒多长时间可以驾车。
二、基本假设短时间饮酒是一次饮入,中间时差不计。
酒精在血液与体液中含量相同。
酒精进入体内后不受其他因素对酒精的分解,不考虑个体差异。
转移过程为,胃→体液→体外。
人的体液占人体重的65%至70%,血液占体重的7%左右;而酒精在血液与体液中的含量是一样的。
三、参数说明t为饮酒时间,y1(t)为时刻人体消化的酒精量,y2(t)为时刻人体的酒精量,k1为酒精在人体中的吸收率常数,k2为酒精在人体中的消除率常数,c(t)为时刻内血液中酒精浓度。
f为酒在人体的吸收度(为一常数,其值等于血液与体液的重量之比)。
四、模型建立与求解可把酒精在体内的代谢看成进与出的过程,用和分别表示酒精输入速率和酒精输出速率,这样问题可简化为血液中酒精的变化律等于输入速率减去输出速率,即。
通过一系列计算得到人体内酒精含量。
可以看出,当酒精含量最大,解得,且此时c(t)达到最大值。
五、问题的回答 1.饮酒后多长时间后血液中含酒精量最大。
酒后驾车问题
《数学模型》课程结业论文酒后驾车问题任务书[要求]1、将所给的问题翻译成汉语;2、给论文起个题目(名字或标题)3、根据任务来完成数学模型论文;4、论文书写格式要求按给定要求书写;5、态度要认真,要独立思考,独立完成任务;6、论文上交时间:6月1日前(要求交纸质论文和电子文档)。
7、严禁抄袭行为,若发现抄袭,则成绩记为“不及格”。
[任务]据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。
3. 怎样估计血液中的酒精含量在什么时间最高。
4. 根据你的模型论证:如果天天喝酒,是否还能开车?5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
全国大学生数学建模竞赛2004优秀论文:C、D题()
cc11101..0274
20.1490 20.0122
20 20
通过验证,证明观测值基本接近实际值。
k01 ——为胃室(吸收室)进入中心室的转移速率系数(由人体机能确定的 常数);
x0 (t) ——是 t 时刻胃室的酒精;其微分方程为:
x0
t
x0
k
0
01 x0 D0
t
(1)
x1(t) ——是 t 时刻进入中心室的酒精,其微分方程为:
x1t
k10 x1t x1t Vc1t
f
0
t
(2)
酒精进入中心室的速率为: f0 k01x0 (t)
(3)
将方程(1)的解代入(3)得:
f0 t
D k e k01t 0 01
(4)
房室模型Ⅱ(在较长一段时间内喝酒) 假设在较长的一段时间内喝下的酒是匀速进入胃室,则简化如下图:
f in 常数
胃室
x0 (t)
f0 k01x(0 t)
中心室
x1 (t)
f out k10 x1 (t)
排除
建模过程: fin ——为酒精进入胃的速率:
房室模型Ⅰ(在短时间内喝下酒精量为 D0 ) 在短时间内喝下酒精量为 D0 ,酒精进入胃,人体吸收酒精,然后排除出体外。吸收酒
精的过程相当于酒精进入体液(中心室)的过程,全过程可以简化为下图:
胃室
x0 (t)
f0 k01x(0 t)
中心室
x1 (t)
f out k10 x1 (t) 排除体外
建模过程: D0 ——短时间内进入胃的酒精;
C 题之一(全国一等奖)
酒精在人体内的分布与排除优化模型
桂林工学院,袁孟强,王哲,张莉 指导教师:数模辅导组
2004年中国大学生数学建模竞赛C题饮酒驾车问题
2004年中国大学生数学建模竞赛C题饮酒驾车问题2004年全国大学生数学建模竞赛C题及建模论文C题饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克,百毫升,小于80毫克,百毫升为饮酒驾车(原标准是小于100毫克,百毫升),血液中的酒精含量大于或等于80毫克,百毫升为醉酒驾车(原标准是大于或等于100毫克,百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢,请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1) 酒是在很短时间内喝的;) 酒是在较长一段时间(比如2小时)内喝的。
23.怎样估计血液中的酒精含量在什么时间最高。
4.根据你的模型论证:如果天天喝酒,是否还能开车,5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克,百毫升),得到数据如下:时间(小0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 时)酒精含量 30 68 75 82 82 77 68 68 58 51 50 41 时间(小6 7 8 9 10 11 12 13 14 15 16 时)酒精含量 38 35 28 25 18 15 12 10 7 7 4酒后不开车摘要近年来,因饮酒、醉酒驾车而造成的交通事故频发,且呈逐年上升趋势。
数学建模论文-饮酒驾车的优化模型
饮酒驾车的优化模型摘要酒后驾车发生事故给人身安全造成极大的伤害,在全世界引起了广泛的关注。
本文通过分析啤酒中酒精在人体体内胃肠(含肝脏)与体液(含血液)之间的交换机理,分别建立了在短时间内喝酒和长时间喝酒两种情况下,胃肠和体液(含血液)中的酒精含量的微分方程。
对给出的数据,利用非线性最小二乘数据拟合及高斯-牛顿算法,确定了一瓶啤酒中的酒精含量以及酒精从胃肠进入血液的速度系数和酒精从血液渗透出体外的速度系数。
继而,对不同喝酒方式下,血液中酒精浓度进行分析。
该模型不仅能很好地解释大李在中午12:00时喝了一瓶啤酒后,在下午6:00时检查时符合驾车标准,紧接着再喝一瓶啤酒后,在次日凌晨2:00时检查却被判为饮酒驾车这一现象,而且可以预测喝酒后任一时刻血液中的酒精浓度.利用所建立的模型,我们可得到以下结果:1.大李在第一次检查时血液酒精浓度为19.9616毫克/百毫升。
第二次检查时血液酒精浓度为20.2448毫克/百毫升,这是由于第一次喝酒在体液中残留的酒精所导致。
2.在短时间内,喝三瓶啤酒或喝半斤低度白酒分别在12.25小时和13.6小时内驾车会违反驾车新标准规定;在2小时间内喝3瓶啤酒或喝半斤低度白酒分别在13.28小时和14.63小时内驾车会违反驾车新标准规定。
3. 短时间喝酒,无论喝多少酒,血液中的酒精含量达到最高所用时间均为1.3255 小时。
长时间也与所喝酒精的量无关,只与喝酒所持续时间有关,我们得到喝酒持续时间与酒精含量到达最高点的时间的关系如下:4. 如果天天喝酒,只要适当控制好喝酒量与喝酒以后到开车的间隔时间还是可以开车的。
比如:一个70公斤,喝2瓶啤酒需间隔10小时以上。
该模型能较精确的预测时间与血液中酒精浓度的关系,其解具有较好的稳定性,为定量研究饮酒与驾车的关系提供了科学的依据。
同时,它具有很好的推广和应用价值,模型可推广到医学,化学等方面。
一、问题的重述酒后驾车引起的死亡事故占全国交通事故相当大的比例。
数学建模饮酒驾车的数学模型(含程序和数据)
收速率和分解速率,单位: mg h-1 。 k0 是表示饮酒速率的参数,单位: mg h1 ; k1 , k2 是 表示酒精吸收能力和分解能力的常数,单位:h1 。t 为时间变量,t 0 表示饮酒开始,t1 为 饮酒结束时间。
1.分析酒精饮用,吸收和代谢三个过程:
⑴司机饮酒过程:我们用 gt表示酒精的饮用速率。可以通过司机饮酒时间和饮酒量确
1 t
m1t
V1
,
2
t
m2 t
V2
,
估算一下 1(t) , 2 (t) 数值大小。体重70 kg 的正常人体液质量 45 ~ 50kg ,消化道液包
括刚饮用的酒水质量不超过 2kg
, V1 V2
20 , m1 不小于 m2 。相比
m1t ,
V1
m2 t 对吸收速率
V2
的影响可以忽略不计。由于体液体积是一定的,我们可以将酒精的吸收速率表示成如下形
大李的“续酒超标”是由于再次饮酒时体内仍有酒精残留。大李饮酒 6 小时后血液酒 精含量为16.2083mg / dl ,符合标准。晚饭时体内有酒精残留13.5610 mg / dl ,导致了再次饮 酒后 6 个小时血液酒精含量为 24.9183mg / dl 这样超标的结果。短时间饮用 3 瓶啤酒后, 0.0507 小时到 11.0522 小时内血液酒精含量大于 20mg / dl ,共持续 11.0015 小时;若在 2 小 时内慢慢饮用,则在 0.5947 小时到 11.8517 小时内血液酒精含量大于 20mg / dl ,共持续 12.0915 小时,以上时间段内驾车就会违反新标准。通过求导解零点法我们可以估计酒后血 液酒精含量达到最高值的时间。想天天喝酒的司机如果采取合理的饮酒方案仍能安全驾驶。 关键字:饮酒驾车 Fick 原理 微分方程 非线性最小二乘拟合
2004年中国大学生数学建模竞赛C题_饮酒驾车问题[1]
数学建模饮酒驾车题及建模论文饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31号发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。
3.怎样估计血液中的酒精含量在什么时间最高。
4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:酒后不开车摘要近年来,因饮酒、醉酒驾车而造成的交通事故频发,且呈逐年上升趋势。
加强司机的安全观念成为重中之重。
和大李一样困惑的司机也不在少数,问题1我们便会对大李所遇到的情况加以科学地解释;问题2我们要将情况推广,在喝酒持续时间长短两种情况下讨论酒后驾车的合理时间间隔;在问题2的基础上,进而我们引出问题3来研究酒后人体血液中的酒精含量出现最高的时间点;问题4是帮助那些想每天喝酒的司机来协调他们喝酒和开车的问题。
饮酒驾车的问题 2014高教社杯全国大学生数学建模竞赛
饮酒驾车摘要由于全国道路交通事故死亡人数中饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,以此来规范和警醒广大的司机群众,减少交通事故的发生。
针对酒后驾车问题,本文联系联系实际情况作出合理的假设,针对问题一,考虑到人体吸收和排出酒精的过程同时进行,建立了房室模型以及运用一般微分方程进行分析,并且运用Matlab中的cftool对数据进行拟合,最终得到在大李第一次喝完酒6小时后酒精含量为18.79毫克/百毫升,小于20毫克/百毫升,到晚上8点钟时酒精剩余为12.66毫克/百毫升。
在第二次喝完酒6小时后,即凌晨2点时,酒精含量为22.54毫克/百毫升,大于20毫克/百毫升。
由于大李在第一次喝完酒到第二次喝酒之前仍有酒精剩余,导致大李在第二次被检测出为饮酒驾车。
针对问题二,我们在问题一模型建立的基础上进行推广,即从一瓶啤酒增加到三瓶酒(或者半斤低度白酒),当人在短时间内喝酒时,建立微分方程模型,得出新的图表曲线三(见附录一),从表中我们得出在11.5小时后酒精含量会小于20毫克/百毫升,所以在11.5小时内不可驾车。
当人在长时间内喝酒时,建立微分方程得到曲线四(见附录一),从表中可得出12小时后酒精含量会小于20毫克/百毫升。
因此若在12小时内驾车将会违反标准。
针对问题三,我们基于问题二的模型分两种情况进行讨论,在短时间一次性喝下的情况下,建立微分方程模型,得到曲线当x=1.3的时候,即1.3小时后,酒精含量最高。
在长时间饮酒的情况下,由曲线六(见附录一)可得当T=2时,在t=2.472的时候达到峰值。
即在2.472个小时后,酒精含量最高。
针对问题四,建立模型图,天天喝酒,应该有规律有节制地喝,在每天定时喝,1中午12:00最多喝一瓶啤酒,下午6点才能开车;晚上8:00时喝一瓶啤酒或慢速喝两瓶啤酒,在第二天早上7:00才能开车。
酒驾问题的数学建模
饮酒驾车的数学模型学院:数学学院姓名:***班级:15-数学四班学号:********【摘要】本文的目的在于,通过对人饮酒后体内酒精含量进行建模,然后根据所建模型,对相关问题进行分析和处理,并予以解决。
本文主要根据假设合理条件,用常微分方程建立酒精在人体内的变化模型。
以时间为变量,分类讨论酒精在人体内的变化。
最后,根据国家酒驾标准,结合所建立的模型,给司机朋友发出忠告。
【关键词】房室系统、MATLAB、酒后驾车,常微分方程。
一、问题重述小王,12点喝一瓶啤酒,18:00被检查合格,吃晚饭喝一瓶啤酒,夜里 2点,开车回家。
讨论问题:(1)如果小王凌晨2点驾车上路遇到酒驾检查,问他能否顺利通过?(2)喝3瓶啤酒,隔多久开车会违反标准,并回答:1)酒是在很短时间内喝的;2)较长一段时间内喝的。
(2小时内)3)估计体内酒精含量达到MAX的确切时间。
4)根据你的模型论证:如果天天喝酒,是否还能开车?5)提出忠告。
参考数据1.国家标准:驾驶员血液的酒精含量≥20毫克/百毫升,<80毫克/百毫升为饮酒驾车,≥80毫克/百毫升为醉酒驾车。
2. 体液占人体重的65%至70%,3. 体重70kg人短时间内喝下2瓶啤酒后其体内酒精含量(毫克/百毫升),数据如下:时间(小时) 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 酒精含量30 68 75 82 82 77 68 68 58 51 50 41 时间(小时) 6 7 8 9 10 11 12 13 14 15 16酒精含量38 35 28 25 18 15 12 10 7 7 4二、模型假设1、喝酒越多,酒精发散到体内的速率越快。
2、酒精浓度越大,酒精吸收速率越大3、酒精被吸收的过程中不考虑损失。
4、酒精均匀分布。
三、符号说明D:短时间喝酒的酒精量。
:酒精由吸收室到中心室的速率系数;K1K:酒精从中心室到体外的速率系数;2C(t):中心室中的酒精含量;T:长时间酒精达到MAX时间;:酒精摄入胃的速率;kY(t):人的酒精含量;:体液容积;V(t):酒精被吸收速率;f1(t):酒精消化速率;f2X(t):胃里的酒精含量。
数学建模饮酒驾车
数学建模饮酒驾车引言饮酒驾车是指酒后驾驶机动车辆的行为,这种行为不仅是违法的,也是极其危险的。
根据世界卫生组织的数据,全球每年因酒后驾驶事故导致的死亡人数高达100万人。
因此,为了减少饮酒驾车事故的发生,数学建模在此领域具有重要的作用。
模型建立饮酒驾车的危险性主要在于酒精的影响。
我们通过建立数学模型,来量化血液中的酒精含量与驾驶能力之间的关系。
1. 血液酒精浓度计算酒精在人体内的分布服从一定的动力学,可以用下面的公式来计算血液酒精浓度:$$ BAC = \\frac{{a \\cdot S}}{{m - w \\cdot t}} $$其中,BAC 表示血液酒精浓度,a 表示饮酒体积,S 表示酒精体积分布系数,m 表示受体体重,w 表示体重分布系数,t 表示经过的时间。
2. 饮酒驾驶风险预测根据研究,饮酒后的驾驶能力会受到影响,我们可以用一些统计模型来预测饮酒驾驶的风险。
我们可以通过分析历史驾驶数据,并结合血液酒精浓度,使用回归分析模型来预测驾驶风险。
具体的模型可以是线性回归模型、逻辑回归模型等。
模型应用建立数学模型后,我们可以通过以下方式来应用模型进行饮酒驾车问题的解决:1. 提醒饮酒驾车风险通过将模型整合到智能手机或车载系统中,当用户输入他们的性别、体重、酒精饮用量和时间时,系统可以自动计算他们的血液酒精浓度,并提醒他们可能存在的饮酒驾车风险。
2. 设定饮酒驾车限制基于模型的预测结果,政府可以制定更有效的饮酒驾车政策。
例如,根据血液酒精浓度的不同阈值设置不同的处罚措施,来强制执行饮酒驾车的限制。
3. 教育和宣传数学模型可以帮助我们了解饮酒驾车的真正危险性。
通过将模型结果可视化,并结合相关的教育和宣传活动,可以提高公众对饮酒驾车风险的认识,从而减少事故的发生。
结论数学建模在饮酒驾车问题上发挥着重要的作用。
通过建立数学模型,我们可以量化血液酒精浓度与驾驶能力之间的关系,并预测饮酒驾车的风险。
这些模型的应用可以帮助我们提醒个体的饮酒驾车风险、制定更有效的政策,以及提高公众对问题的认识。
大学生数学建模:饮酒驾车问题的分析房室模型
饮酒驾车问题的分析摘要本文通过Excel 对附录中给出的饮酒后血液中酒精含量随时间变化的关系表进行分析,根据药物代谢动力学原理,进行了合理的假设建立“房室模型”。
对于短时间内的饮酒情况,我们建立了二室模型进行研究;而长时间内的饮酒的情况,则建立一室模型进行研究。
下面,我们先就两个模型进行简单介绍。
(1) 模型一(短时间内的饮酒问题):由于时间比较短,我们可将其看成是口服或肌肉注射药物的过程,即酒精经吸收进入血液后,再进入中心室。
这里,我们将酒精吸收进入血液的过程简化为一个吸收室,建立一个酒精经吸收进入中心室的“二室模型”。
具体过程为酒精进入吸收室后,按照一定的速率进入中心室,再由中心室排出体外。
所以某一时刻血液中的酒精含量变化率为某一时刻由吸收室进入中心室的酒精量减去排出体外的酒精量。
从而建立模型,并求解出血液中的酒精含量与时间的关系式为()t k ktBe Aet C 0---=,然后利用Matlab 对所提供的数据进行分析拟合,得到一个具体的关系式:(2) 模型二(长时间内的饮酒问题):由于饮酒的时间比较长,我们可将其看成是恒速静脉滴注过程。
假设血液中酒精在较长时间内按恒速进入中心室,因此将“二室模型”简化为“一室模型”,即酒精以()00k t f =流入中心室,再由中心室排出体外。
得出解析式:----⎧-<≤⎪⎪=⎨⎪->⎪⎩01(2)201()(1)(02)()()(1)(2)ktk t k f t e t V k c t f t e e t V k然后根据提供的数据,得出在2小时内喝了3瓶啤酒或者半斤较低度的白酒后,血液中的酒精量与时间的关系式:根据以上建立的模型,代入时间计算,经过检验,比较符合实际情况。
问题的解答: (1) 大李在中午12点喝一瓶啤酒,下午6点检查时,代入=6t 得:随后又喝一瓶啤酒,凌晨2点检查时,代入=14t 得: (2) 短时间内饮酒则;长时间内饮酒则 (3) (4)关键词 二室模型 一室模型 数据分析拟合一.问题重述1.1背景据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
饮酒驾车三房室数学模型
组长:张冲平组员:余勤杨永清[摘要] 就酒后驾车问题, 仿照药物动力学原理,考虑吸收系统和迟滞时间,建立了二房室模型, 得出了饮酒者饮酒后血液中的酒精含量与饮酒量、饮酒方式及时间的关系.根据提供的测量数据, 通过多种方法计算模型参数,选用了总体残差平方和最小的阻尼最小二乘法的计算结果作为模型参数. 最后对相关问题进行了解答,结果表明, 模型是合理和有效的.[关键词] 数学建模; 酒后驾车;房室模型; 药物动力学一、问题的重述据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1. 对大李碰到的情况做出解释;2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。
3. 怎样估计血液中的酒精含量在什么时间最高。
4. 根据你的模型论证:如果天天喝酒,是否还能开车?5. 根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据1. 人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
第二次作业饮酒驾车问题数学建模
dw = − kw dt w(0) = w0
其中 k 为吸收速率常数,解得: w( t) = w0 e− kT 时,由于经过时间间隔 T,又第二次饮酒,饮入量为 w0 ,所以 t=T 时
w(T ) = w0 + w0 e − kt
同理:当 t=2T 时,前两次酒精残余为: ( w0 + w0 e − kT )e − kT 并且当 t = 2T 时,又第三次饮酒,饮酒量仍为 w0 ,所以,
在前面就设好喝酒瓶数 n 比较方便)
问题一: (喝一瓶酒故参数 f/V 应代为 51.35) 下午六点检时测, t=6 时代入: w(6)= 19(mg/100ml) w(6)<20,即下午六点时没有检测出为饮酒驾车。 再次喝酒时,体内有酒精残余,有一个值为 19 的初始值, 凌晨两点再次检测时, t=8 代入: y(8)=27(mq/ml) 酒精含量 y(8)>20,因此大李被认定为饮酒驾车。
数学建模作业二:
饮酒驾车问题分析
一、 一次性饮酒的模型:
假设: 1 .酒精转移的速率与出发处酒精浓度成正比; 2 .过程为酒精从胃到体液到体外; 3. 酒精在血液与体液中含量相同; 4 在很短时间内饮酒,认为是一次性饮入,中间的时间差不计; 5.不考虑个体差异。
t为饮酒时间, y1 (t ) 为 t 时刻人体消化的酒精量, y2 (t ) 为 t 时刻人体的酒精
这样考虑 1.假设饮酒周期固定; 2.假设每次饮酒量也一定; 3.假设为一次性饮入; 4. 酒精浓度消除率为常数; 5.不考虑个体差异。 设 w(t ) 表式 t 时刻酒精在人体内的浓度, w(0) 表示 t=0 时饮入酒精量在体 内浓度, y (0) 表示饮入酒精量,T 表示周期,V 为体液体积,k 为酒精浓度消除 率。 饮酒后体内酒精的浓度逐渐降低, 酒精浓度消除率与饮酒量成线性比, 则有:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九篇饮酒驾车者三思2004年 C题饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:⑴酒是在很短时间内喝的;⑵酒是在较长一段时间(比如2小时)内喝的。
3.怎样估计血液中的酒精含量在什么时间最高;4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如表9-1。
表9-1 喝两瓶啤酒后的时间的血液中酒精含量(毫克/百毫升)时间(小时) 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5酒精含量30 68 75 82 82 77 68 68 58 51 50 41时间(小时) 6 7 8 9 10 11 12 13 14 15 16酒精含量38 35 28 25 18 15 12 10 7 7 4饮酒驾车者三思*摘要:本文讨论了不同饮酒方式、饮酒数量情况下血液中酒精含量的变化规律。
我们假设喝完酒后血液中的酒精含量达到峰值的时间相同,任意时刻血液中的酒精含量与饮酒量成正比,通过散点图作曲线拟合得到血液中酒精浓度与时间的函数关系:2/199.71)(t e t t x -=;根据酒精在人体内变化的弹性系数成线性下降的趋势建立了微分方程模型:tt x bt a dt t dx )()()(-=。
我们用a mathematic 软件,并利用表9-1中的数据,求出该微分方程的解:t e t t x 264028.0464667.01141.44)(-=,该解为血液中酒精浓度与时间的函数关系。
利用上述两种函数关系对题目中提出的所有问题进行解答,结果如下:问题1:大李碰到的情况是:第一次测量的酒精含量低于20毫克/百毫升,第二次测量的酒精含量超过20毫克/百毫升。
问题2:3瓶啤酒在短时间内喝完后,在0.038小时至9.7731小时内开车违反标准,3瓶酒在2小时内喝完,喝完酒后的14.49个小时内开车违反标准。
.问题3:血液中的酒精含量何时达到峰值与饮酒方式有关,与饮酒量无关。
问题4:一天喝一次酒,当55.00<≤N 时,不影响开车;当57.855.0<<N 时,一天中的部分时间可以开车;当57.8≥N 时,一天中的各个时刻都不能开车。
一天喝两次,当5003.00<≤N 时,一天中的各个时刻都能开车;当4.35.0<<N 时,一天中的部分时间可以开车;当4.3≥N 时一天中的各个时刻都不能开车。
对于一天喝n 次酒还能否开车的问题我们也进行了讨论。
本文对所建模型进行了评价,最后对饮酒驾车者提出了忠告。
关键词:饮酒驾车;微分方程模型;a mathematic9.1 问题的重述9.1.1 背景知识据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
9.1.2 参考数据⑴人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
⑵体重约70kg 的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如表9-1。
9.1.3 具体案例大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝本文获2004年全国二等奖。
队员:苏警,胡晓娟,高玉娜;指导教师:裴崇峻,吴礼斌。
了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考前面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:9.1.4 要解决的具体问题1.问题一:对大李碰到的情况做出解释;2.问题二:在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:⑴酒是在很短时间内喝的;⑵酒是在较长一段时间(比如2小时)内喝的。
3.问题三:怎样估计血液中的酒精含量在什么时间最高;4.问题四:根据你的模型论证:如果天天喝酒,是否还能开车?5.问题五:根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
9.2 模型的假设1.不同年龄段,不同性别,不同种族的人的酒精代谢功能大致相同;2.喝的都是同一种酒,酒精含量相同;3.血液中的酒精含量与在短时间内喝下的啤酒中的实际酒精含量成正比;4.大李的体重大约为70kg;5.假设血液的密度为1g/ml;6.酒精在血液中的含量与在体液中的含量大体相同。
9.3 符号的说明9.4 问题的分析众所周知,司机酒后驾车的危险性非常大,我国道路交通事故中因饮酒驾车造成的占有相当比例,如何抑制?找出饮酒后酒精在血液中的变化规律至关重要。
我们可以根据题目所给的参考数据做出散点图,找出血液中酒精含量与时间的函数关系;我们也可以由相应的医学、化学,以及数学知识,建立微分方程,找出血液中酒精含量与时间的函数关系。
由这些函数关系分析解决如何控制饮酒、安全驾车的问题。
9.5 模型的建立与求解9.5.1 模型的建立从某人喝下2瓶啤酒后血液中的酒精含量表9-1中所给的数据可分析出,并不是喝下2瓶啤酒后血液中的酒精含量立即达到2瓶啤酒中实际的酒精含量。
通过查阅医学资料可知,自饮酒后2-5分钟酒精开始入血液,随着身体对酒精的吸收,血液中酒精含量逐渐上升,在某一时刻达到了峰值,由于人体内时刻进行着代谢,所以在达到某一峰值之后血液中的酒精含量将会衰减并逐渐趋向于0。
某体重70kg 的人喝下2瓶啤酒,通过查阅资料知1瓶啤酒的酒精含量为3.5%-4%,容量为640ml ,酒精的密度为0.8kg/L 。
在喝下2瓶啤酒后血液中的实际酒精含量代入数据得203毫克/百毫升,所给数据的酒精含量都小于203毫克/百毫升,因此所给数据符合由于体内酒精代谢而导致酒精含量变化的规律,所以给出的血液中的酒精含量的数据可信性较高。
1.模型一:基于假设3,体重约70kg 的某人在短时间内喝下1瓶啤酒后,隔一定时间血液中的酒精含量如表9-2。
基于表9-2所给出的数据,运用Excel 可作出中作出酒精含量散点图,见图9-1。
图9-1 酒精含量散点图根据散点图猜测血液中酒精含量)(t x 与时间t 的关系为2/)(t e t B t x -=(9-1)其中B 为常数。
为了确定模型(9-1)中的常数B ,对(9-1)式两边取对数,得:我们用表9-2中的数据通过a mathematic 计算出199.71=B ,这样得到 2/199.71)(t e t t x -=(9-2) 我们分别将不同的时刻带入模型(9-2),可以求得不同时间间隔内血液中的酒精含量,见表9-3。
从表9-3中看出拟合的数据并不理想,运用此模型也不能够合理解释问题1,所以此模型不够合理,我们将进一步改进。
2.模型二:受模型一的启发,并注意到模型一中的)(t x 满足)1(2)()(t t t x dt t dx -=,而tt x dt t dx )(/)(是表示血液中酒精含量关于时间的弹性,这一弹性并非像模型一给出的)1(21t -。
事实上,酒精在血液中含量的变化的规律是这样的:刚开始喝酒的时候时间变化1%,血液中酒精含量变化的百分数较大,但喝下酒后较长时间的时候血液中酒精含量变化的百分数较小。
也就是酒精在人体内变化的弹性系数是线性下降的变化趋势,所以假设从而可得模型t t x bt a dt t dx )()()(-= (9-3)其中a,b 为大于0的常数。
(9-3)是一阶微分方程,其通解为:bt a e Ct t x -=)( (9-4)其中C 为积分常数。
为了确定(9-4)式中的常数a,b ,C ,对等式两边取对数,得:bt t a C t x -+=ln ln )(ln利用表9-2中数据,用最小二乘法拟合出常数b a C ,,ln ;可决系数2R 达到了0.9789,b a ,两参数的t 统计量的值分别为:8.5056和-20.7408,是高度显着的。
得:C=44.1141,a =0.464667,b =0.264028代入(9-4)得:t e t t x 264028.0464667.01141.44)(-= (9-5)我们将拟合的图形与实际的散点图相比较如图9-2所示。
3.模型三我们认为由模型二确定的常数a,b 对于饮酒量来说是不变的,为了表示喝n 瓶酒后血液中酒精变化的规律,我们让模型二中的积分常数C 随着饮酒量的变化而变化,记为)(n A ,又假设在短时间内喝下n 瓶酒,这样得⎪⎩⎪⎨⎧==-n x e t n A t x n t 15)25.0()()(264028.0464667.02 (9-6)其中)(t x n 表示在短时间内喝下n 瓶酒时血液中的酒精含量。
(9-6)式是一个方程组,其中n x n 15)25.0(=表示在喝完n 瓶酒后0.25小时时血液的酒精含量,从而得)(n A 应满足方程25.0264028.0464667.025.0)(15⨯-=e n A n (9-7)图9-2 拟合曲线与对应的散点图 图9-3 在2小时内喝完酒后t 时刻血液中的酒精含量走势图4.模型四模型三中没有考虑酒是在一段时间内喝下的,这与实际情况不符,我们在模型三的基础上,建立在[0,T ]时间内连续喝下n 瓶酒后血液中的酒精变化规律模型,其中假设在[0,T ]时间内分M 次喝完n 瓶啤酒,每次间隔的时间为M T /,每次喝下后进入到血液中的酒精含量为M n M T x /)/(,第k 次喝下酒后血液中的酒精含量满足下列方程:),,3,2,1()/()1,,/2(),,/(),,(),,(264028.0464667.0M k M n M T x k T M T x k T M T x e t k T n A k T t x n n t n =⎪⎩⎪⎨⎧+-==- (9-8)其中),,(k T t x n 表示在T 时间内第k 次喝下酒后到 t 时刻血液中的酒精含量。