平方根与立方根复习-PPT课件

合集下载

平方根与立方根复习PPT课件

平方根与立方根复习PPT课件

0
0
负数
没有
立方根
一个正的 立方根
0 一个负的 立方根
练习:
一、判断正误 ⑴ 0.0009 0.03 。 ⑵ 9是的(-9)2算术平方根。 ⑶ 361 的平方根是±19。 ⑷有理数一定有立方根。 ⑸若某数的立方根是它本身,那么 这个数一定是±1或0。 ⑹一个数的立方根总比这个数的平 方根要小。
例九:已知:x2=64, x =-x, 求:
的值
x+1
十 :若x、y为实数,y< x-1 +
1-x +
1 2
化简: 1-y . y-1
十一
已知x=(
-2a 4+a
-
a - 3 + 3- a
)2013
3-a
求:x的个位数字
⑴ 121
⑵ 232
⑶ (-4)2
⑷0
⑸ -25
平方根的情况: ⑴一个正数的平方根有两个, 它们是互为相反数; ⑵ 0的平方根只有一个, 就是它本身0; ⑶负数没有平方根.
立方根的概念:
如果一个数的立方等于a,那么这个 数就叫做a的立方根。 即:若x3=a,则x叫做a的立方根
立方根的表示:3 a (为任意有理数)
一、什么叫平方根?什么叫算术平 方根?
如果一个数的平方等于a ,那么这 个数就叫做a的平方根。
即:若x2=a,则x叫做a的平方根。
正数a的正的平方根叫做a的算术平 方根;零的算术平方根是零。
二、平方根和算术平方根的表示方法: 平方根: ± a (a≥0)
算术平方根: a (a≥0)
想一想
下列各数的平方根会是怎样的?
正数有立方根吗?如果有,有几个? 负数呢? 零呢?

数的开方PPT教学课件

数的开方PPT教学课件

宫妇左右莫不私王 朝廷之臣莫不畏王
四境之内莫不有 求于王
“ ——
《 古 文 观 止 》
语 破 之 , 快 哉 ! ”
关 头 , 从 闺 房 小
臣 谄 君 蔽 , 兴 亡
参 出 微 理 。 千 古
详 勘 。 正 欲 于 此
徐 公 之 美 , 细 细
邹 忌 将 己 之 美 、
思考问题:
从文中看,齐威王最终能使 齐国“战胜于朝廷”,达到 “大治”的原因是什么?这给 我们带来什么启示?请结合你 的生活体验,简要谈谈你的看 法。
( )
四:小结 1:为什么要学习数的开方? 2:开方与什么互为逆运算? 3:平方根,算术平方根,立方根的概念和性质
五:作 业 练习册
导入新课
“以铜为镜,可以正衣冠; 以史为镜,可以知兴亡; 以人为镜,可以明得失。”
唐·魏征
《战国策》是一部重要的历史著作,也 是一部重要的散文集。作者已不可考, 最初有《国策》、《国事》、《短长》 等名称,经过汉代刘向整理编辑,始定 为《战国策》。全书共33篇,分国别编 辑。
2.君子之过,如日月之食也。过也, 人皆见之,及其更也,人皆仰之。 (《论语》)
3.良药苦口利于病,忠言逆耳利于行。 (孔子家语)
4.信言不美,美言不信。(老子)
解释下列蓝色的词 词类活用
1、吾妻之美我 认为……美,形容词意动用 者,私我也。 法 偏爱,形容词作动词。
2、能面刺寡人 之过者
3、受上赏
《战国策》的内容,主要记载战国时期 各国谋臣策士游说诸侯或进行谋议论辩 时的政治主张和纵横捭阖、尔虞我诈的 故事,也记叙了一些义士豪侠不畏强暴、 勇于斗争的行为。
《战国策》长于议论和叙事,文笔流畅, 生动活泼,在我国散文史上具有重要的 地位。

沪科版数学七下61《平方根立方根》ppt课件

沪科版数学七下61《平方根立方根》ppt课件

1 2
立方根的定义
一个数$a$的立方根是一个数$x$,满足$x^3 = a$。
立方根的性质
任何实数的立方根只有一个值,可以是正数、负 数或零。例如,$-8$的立方根是$-2$。
3
立方根的运算规则
$(a^3)^n = a^{3n}$;$(a^n)^3 = a^{3n}$。
平方根与立方根的混合运算
混合运算的顺序
注意事项
先进行乘除运算,再进行加减运算。
在进行混合运算时,需要注意运算顺 序和符号的变化,避免出现计算错误。
运算规则
$(a pm b)^3 = a^3 pm 3a^2b + 3ab^2 pm b^3$。
05
实际应用
平方根在日常生活中的应用
计算土地面积
在农业、土地测量等领域,经常 需要计算土地面积,平方根是计
关系,以及平方根的近似值计算方法。
学生对于本节课的评价和建议
03
学生可以提出自己的意见和建议,以便教师更好地改进教学方
法和课件内容,提高教学质量。
THANKS
感谢观看

开方与乘方的关系
开方是乘方的逆运算,即a的平方根是a的1/2次方。
平方根的近似值计算
如何使用四舍五入法或二分法等近似计算平方根的值。
学生自我评价与反馈
学生对本节课内容的掌握程度
01
学生应该能够理解并掌握平方根的基本概念和性质,以及如何
进行简单的平方根运算。
学生对于本节课难点的理解情况
02
学生应该能够理解平方根与算术平方根的区别、开方与乘方的
平方根的表示方法
代数表示法
在代数中,我们通常用符号√来表示平方根,并在数字上方画一条横线或使用斜杠 来表示。例如,√4=2或√4=∣2∣。

平方根与算术平方根立方根无理数PPT课件

平方根与算术平方根立方根无理数PPT课件
根”。
(2)个数不同:一个正数有两个平方根,而一个
正数的算术平方根只有一个。
(3)表示方法不同:正数a的算术平方根表示
第9页/共32页
立方根:
1. 定义:
一般地,如果一个数x的立方等于a,即x3=a, 那么这个数x就叫做a的立方根.(也叫做三次方 根) 。
2.表示方法:
第10页/共32页
什么叫做开平方?那开立方呢?
无理数: 无限不循环小数
含有 ~ 的数
有规律但不循环的数
第25页/共32页
按性质分类: 实数
正实数
0
负实数
正有理数
正无理数
负有理数
负无理数
负实数
正实数
0
第26页/共32页
你能在数轴上找到表示 的点吗?
2
小结:
有理数可以用数轴上的点表示,无理数也可以用数轴上的点 表示.
每一个无理数都能在数轴上表示出来. 数轴上的点有些表示有理数,有些表示无理数. 每一个实数都可以用数轴上的一个点来表示;反过来, 数轴上的每一点都表示一个实数。即实数和数轴上的 点是一一对应的。
第21页/共32页
思考:
2 介于哪两个整数之间?你是根据什么考虑的?
A
1
2
B 4D
1
2
2C
1.42 __<__( 2)2 __<__1.52
1.4 ___<_ 2 __<__1.5
1.412 _<___( 2)2 __<__1.42 2
1.41 ___<_ 2 __<__1.42
1.414 2 _<___( 2)2 _<___1.415 2
第28页/共32页

平方根与立方根课件

平方根与立方根课件

平方根的符号

在数学中,平方根通常用符号√来表示。例如, √9表示9的平方根,结果为3。
sqrt()
在计算机编程中,我们可以使用sqrt()函数来 计算平方根。
平方根的性质
• 平方根是非负数 • 平方根的平方等于原数 • 平方根的值可以是小数或分数
如何计算平方根?
1. 使用根号符号 (√) 进行计算 2. 使用计算器或计算机中的平方根函数 3. 使用近似方法估算平方根的值
平方根与立方根
欢迎来到平方根与立方根的世界!在这个PPT课件中,我们将深入探讨平方 根和立方根的定义、性质、计算方法、运算及应用。让我们一起开始这次奇 妙的数学之旅吧!
什么是平方根?
平方根是数学中一个重要的概念,表示能够使一个数的平方等于另一个数的 那个数。它在解方程、几何和实际生活中都有广泛的应用。
平方根和立方根的举例对比
• 平方根:√4 = 2,平方根的运算是相对简单的。 • 立方根:³√8 = 2,立方根要求更高的计算能力。
平方根和立方根的基本运算法则
乘法法则
当两个数的平方根或立方根相乘时,可以将指数相加得到结果的根。
除法法则
当两个数的平方根或立方根相除时,可以将指数相减得到结果的根。
立方根是指能够使一个数的立方等于另一个数的那个数。它在代数学、几何学和计算机科学中具有重要 的作用。
立方根的符号
³√
在数学中,立方根通常用符号³√来表示。例 如,³√8表示8的立方根,结果为2。
cbrt()
在计算机编程中,我们可以使用cbrt()函数来 计算立方根。
立方根ቤተ መጻሕፍቲ ባይዱ性质
• 立方根是实数 • 立方根的立方等于原数 • 立方根的值可以是小数或分数

算术平方根、平方根、立方根之间区别联系(课堂PPT)

算术平方根、平方根、立方根之间区别联系(课堂PPT)
做二次方根)。记为“ a ”读作“正、负
根号a”
2
立方根的定义. 一般地,如果一个数的立方等于a,这个
数就叫做a的立方根(也叫做三次方根). 用式子表示,如果X3 =a,那么X叫做a的立方根.
数a的立方根用符号“3 a ”表示,读作“三次根号a
其中a是被开方数,3是根指数(注意:根指数3不能省 略).
算术平方根
定义:如果一个正数x的平方等于a,即 x2
=a ,那么这个正数x就叫做a的算术平方
根,记为“ 做被开方数
a
”,读作“ 根号 a ”。a叫
规定:0的算术平方根是0,即 0 0
非负数
a ≥0 (a≥0)
算术平方根具有双重非负性
1
平方根定义
一般的,如果一个数X的平方等于a,即
x2=a那么这个数X叫做a的平方根(也叫
3
区别
你知道算术平方根、平方根、立方根联 系和区别吗?
算术平方根
平方根
立方根
表示方法
a的取值
正数

0

负数
开 方 是本身
a ≠ a
a≥ 0
a≥ 0
3a a是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0 没有
0 没有
0 负数(一个)
求一个数的平方根 求一个数的立方根
的运算叫开平方 的运算叫开立方
10
3.说出下列各式的值:
(1) - 81 9 (4) 3 125 5
(2) (-25)2 2 5 (5)-3 0.027 0 .3
( 3) 25 36
5 (6) - 3 125 5
6
82
11
不 要 遗 漏 哦!

算术平方根平方根和立方根PPT课件

算术平方根平方根和立方根PPT课件
9
平方根与算术平方根的联系与区别: 联系:1.包含关系:平方根包含算术平方根,
算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根.
3.0的平方根是0,算术平方根也是0.
区别:1.个数不同:一个正数有两个平方根, 但只有一个算术平方根.
2.表示法不同:平方根表示为 aa ,
而算术平方根表示为a a .
3 3 64;
43 53 ;
5
3
16
3
.
21
比一比 平方根与立方根(读背5分钟)
1.开平方的定义
1.开立方的定义
求一个数a的平方根的运算, 叫做开平方,其中a叫做被开
方数如: 22=4,
4= 2.
求一个数a的立方根的运算, 叫做开立方,其中a叫做被开
方数如: -23=-8,
162已知xy满足19的平方根是算术平方根是216的平方根是算术平方根是30的平方根是算术平方根是43的平方根是算术平方根是510的平方根是算术平方根是平方根101016联系
提问:(记到书上)
1、11--20的平方;
2、1--10的立方;
3、 2, ≈1.414
3≈ 1.732
5 ≈ 2.236 1
23
(3)平方根和立方根的区别: 正数有两个平方根,但只有一个立方根, 负数没有平方根,但却有一个立方根;
(4)灵活运用公式: (5)立方与开立方也互为逆运算.我们也可 以用立方运算求一个数的立方根,或检验一个 数是不是另一个数的立方根.
, 3 a 3 a 3 a3 a, 3 a 3 a
求一个数a的立方根的运算叫开立方
18
例1 求下列各数的立方根:
(1)-27;(2)1285

小学教育ppt课件教案掌握代数式的根号运算平方根和立方根的计算

小学教育ppt课件教案掌握代数式的根号运算平方根和立方根的计算

运算顺序
根据运算的优先级,先进行括号 内的运算,再进行乘除运算,最 后进行加减运算。例如, √(a+b)^2≠a+b,而是等于 |a+b|。
符号问题
在进行根号运算时,需要注意符 号的处理。例如,√a^2=|a|,而 不是a;√(ab)=√a×√b( a≥0,b≥0)。
05
CATALOGUE
典型例题分析与解答
课程目标与要求
知识与技能目标
情感态度与价值观目标
通过本课程的学习,学生应掌握代数 式根号运算的基本概念和性质,能够 熟练进行平方根和立方根的计算。
通过本课程的学习,激发学生对数学 的兴趣和热爱,培养学生的数学素养 和严谨的科学态度。
过程与方法目标
通过讲解、示范、练习等多种教学方 法,引导学生积极参与课堂活动,培 养学生的数学思维和解决问题的能力 。
动。
课程拓展与延伸学习资源
1ቤተ መጻሕፍቲ ባይዱ2
相关数学书籍
推荐学生阅读《数学分析》、《高等代数》等相 关数学书籍,加深对代数式根号运算、平方根和 立方根计算的理解。
在线学习资源
推荐学生使用中国大学MOOC、网易公开课等在 线学习平台,学习相关数学课程,拓展知识面。
3
数学竞赛与活动
鼓励学生参加数学竞赛和数学活动,如全国大学 生数学竞赛、数学建模竞赛等,提高学生的数学 应用能力和创新能力。
THANKS
感谢观看
例题1
化简$sqrt{8}$。
解析
例题2
首先,将8进行质因数分解, 得到$8=2times2times2$。然 后,将其写成平方数的形式, 即 $sqrt{8}=sqrt{4times2}=2sq rt{2}$。
化简$sqrt[3]{27a^3}$。

第二章平方根与立方根复习PPT课件

第二章平方根与立方根复习PPT课件
2
回顾:
4. 关于立方根的三个式子:
①当a_任_意__数_时, 3 a 3 =__a__ ②当a_任_意__数_时,(3 a ) 3 =___a_ ③当a_任_意__数_时,3 a =___3_a
5. ________叫做这个数的有效数字. 6. 勾股定理是___________________
勾股定理逆定理是______________
3
回顾:
7. 三角形的三边长a、b、c有关系: 若a²+b²<c²,则这个三角形是___三角形; 若a²+b²>c²,则这个三角形是___三角形;
8. ①等腰直角三角形的三边长之比为_______ ②有一个角是300的直角三角形,它的三边
长度之比是____,即300所对的直角边是 _____的一半.
4. 正方形的判定有: ①____ ②____ ③____
5. 在直角三角形中: ①__斜__边_上__的__中__线___等于斜边的一半 ②_3_0_°__角__所__对_的__直__角__边___也等于斜边的一半
11
练习
1. 下列图形是轴对称但不是中心对称的有 ______ ①等边三角形 ②矩形 ③菱形 ④平行四边形 ⑤角 ⑥等腰梯形
3. 如图,将矩形纸片沿着对角线BD折叠,使 点C落在平面上的C’处,BC’交AD于E,若 ∠EBD=25º,则∠C’DE=_____.
C’
AE
D
B
C
14
练习:
4. 如图,在菱形ABCD中,AB=4a,E为 BC中点,∠BAD=1200,P为BD上一动点, 则PE+PC的最小值为______
A
D
P
12
练习
2. 由下列条件可以证明出平行四边形的有___

平方根、立方根第1课时PPT课件(沪科版)

平方根、立方根第1课时PPT课件(沪科版)

要点归纳
平方根的性质: 1.正数有两个平方根,两个平方根
互为相反数. 2.0的平方根还是0. 3.负数没有平方根.
典例精析
例1 已知一个正数的两个平方根分别是2a-2和a-4, 则a的值是______.
解析:∵一个正数的两个平方根分别是2a-2和a-4, ∴2a-2+a-4=0,解得a=2.故答案为2.
类似平方根的讨论, 思考:正数、负数、0的算术平方根各有几个? 正数的算术平方根是一个正数,0的算术平方根 还是0,负数没有算术平方根.
例如:16的平方根是4和-4,其中4是16的算 术平方根.
算术平方根的性质
非负数 a 0
a的算术平方根 a
非负数 a 0
算术平方根具有双重非负性
典例精析
例3 分别求下列各数的算术平方根:
4和-4互为相 反数,会不会
是巧合呢?
想一想:4和-4有什么特征?
合作与交流
x2
1
4
9
...
a2
x
1 ±2 ±3 ...
±a
视察所填的数据,填一填:
1的平方根是 1 ;16的平方根是 4 ,... ; a2 的
平方根是 ±a . 你发现了什么?
一个正数的平方根有两个,并且这两个数是相反数
试一试
1. 144的平方根是什么? 12
是多少吗?
每块正方形地垫的面积是
10.8÷30=0.36(m2).

即 边长×边长=0.36. 由于 0.62=0.36, 因此面积为0.36m2的正方形地垫的边长是0.6m.
一 平方根的概念及其性质
问题引导
学校要举行美术作品比赛,小鸥想裁出一块 面积为25 dm2的正方形画布,画上自己的得意之 作参加比赛,这块正方形画布的边长应取多少?

平方根与立方根复习课件

平方根与立方根复习课件

立方根的运算性质
立方根具有分配律和结合 律,即 a×(b^3)=(a×b)^3和 (a^3)×(b^3)=(a×b)^3 。
立方根的运算
立方根的近似值
对于一些无法直接开立方的数,我们 可以使用近似值来计算其立方根。例 如,³√17≈4.123,³√213≈12.62。
立方根与平方的关系
对于任何正实数a,都有 (³√a)^2=a^(2/3)。例如, (³√4)^2=4^(2/3)=8。
平方根的应用题
解析与平方根相关的应用题,如面积、体积、勾股定理等问题。
立方根的常见题型解析
立方根的定义与性质
解析立方根的定义,理解立方根的性质,如唯一性、连续性等。
立方根的计算方法
掌握立方根的计算方法,包括直接开立法、因式分解法、配方法 等。
立方根的应用题
解析与立方根相关的应用题,如体积、密度、速度等问题。
平方根与立方根复习课件
目 录
• 平方根基础概念 • 立方根基础概念 • 平方根与立方根的应用 • 平方根与立方根的常见题型解析 • 平方根与立方根的易错点解析
01
平方根基础概念
平方根的定义
平方根的定义
如果一个数的平方等于给定的数 ,则这个数被称为给定数的平方 根。例如,4的平方根是2,因为 2的平方等于4。
VS
运算顺序混淆
与平方根类似,学生在进行立方根运算时 也容易忽略运算的优先级。例如,在计算 表达式 $sqrt[3]{2} times sqrt[3]{3}$ 时 ,应先进行乘法运算再进行开方,但学生 可能会直接将两者相乘后再开方。
平方根与立方根混淆的错误解析
概念混淆
部分学生在处理平方根与立方根问题时容易 将两者概念混淆,导致解题思路和答案出现 偏差。例如,将 $sqrt[3]{8}$ 误认为是 $sqrt{8}$ 的值,或者在处理平方根和立方 根混合运算时出现混乱。

5.1--5.2_平方根与立方根复习--

5.1--5.2_平方根与立方根复习--

64 的值是
64 的平方根是
64 的立方根是
4
解下列方程:
x 196
2
x 14
x 5 2
x 2 3或 x 2 3
不 要 遗 漏
4 x 25
2
( x 2) 3
2
9 (3 y ) 4
2
y 2
1 3
或y 3
2 3
当方程中出现平方时,若有解,一般都有 两个解
x
2
(3)若x2=25,则 x= ±5 ,若 x= ±5 ;
=5,则
(4)若(x-1)2=25,则x= 6或-4 ,
(5)若一个数的一个平方根为-3,则另一个 平方根为 3 ,这个数是 9 。
(6)若一个正数的两个平方根为2a-6、3a+1, 1 则a= ,这个正数为 ; 16 (7)平方根等于本身的数是 0 ,
7 .如 果 A
a2b3
a 3 b 是 a 3 b的 算 术 1 a 为1 a 的 立 方
2 2
平方根,B
2 a b 1
根 , 求 A B的 平 方 根 。
自我测试:
(1)(-2)2的平方根是 ±2 ,算术平方根 是 2 ; (2)
16
的平方根是 ±2 ,算术平方 根是 2 。
10.a2的算术平方根是a. 11.若 ( a ) 2 5 , 则a=-5.
下列说法正确的是(B )
A . 16 的平方根是
B.
4
6 表示 6的算术平方根的相反数
C .任何数都有平方根
D . a 一定没有平方根
2
8是
64
的平方根
64 的平方根是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1平方根与立方根复习
一、什么叫平方根?什么叫算术平 方根?
如果一个数的平方等于a ,那么这个数就叫做a的平方根。
即:若x2=a,则x叫做a的平方根。 正数a的正的平方根叫做a的算术平方根;零的算术平方根是零。
二、平方根和算术平方根的表示方法:
± 平方根:
(a≥0)aBiblioteka (a≥0)算术平方根:
a
0.0009 0.03
361
二、下列各式中,x为何值时有意义?
1 3
x 1 x x
2
x 1
2
x 3 4 x4
三、已知
x y
y 3 x x 3
, 求 的值。
四、求下列各式中的x:
(1)3(2x+1)2-147=0
(2)27x3=7 +1
81
五、解关于x的方程。
立方根的概念: 如果一个数的立方等于a,那么这个数就叫做a的立方根。
即:若x3=a,则x叫做a的立方根
立方根的表示:
3
a
(为任意有理数)
平方根与立方根的比较:
平方根
两个平方根, 正 数 他们互为相反 数 0 0
立方根
一个正的 立方根 0 一个负的 立方根
负 数
没有
练习:
一、判断正误,并把错误的改正: ⑴ 。 ⑵ 9是的(-9)2算术平方根。 ⑶ 的平方根是±19。 ⑷有理数一定有立方根。 ⑸若某数的立方根是它本身,那么 这个数 一定是±1或0。 ⑹一个数的立方根总比这个数的平 方根要小。
十、借助计算器计算下列各题:
1
2
1
3
3
3
1 2
3
3
1 2 3
3
3
3 3 3 3 4 1 2 3 4
根据上面的计算结果,请计算下面一题:
1 2 3 n
3 3 3
3
4 x 4 x
2 3
六、若x2 =(-5)2,求(x-1)3的值。
2
七、已知
求 x+y+z的平方根。
x 1
2
5 y 5x x y z 0
八、求9a2+12ab+4b2的算术平方根,其中a<0,b <0。
九、填写下表:
a
a
0.04
4
400
40000
观察上表,你从中能发现什么规律?
相关文档
最新文档