导数与函数的单调性ppt课件演示文稿(1)
合集下载
导数与函数的单调性ppt文档
观察选项可知,排除A,C.
如图所示,f′(x)有3个零点,从左到右依次设为x1,x2, x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故选项 D正确.故选D.
【答案】 D
第1课时 导数与函数的单调性
题型一 不含参数的函数的单调性
【例1】 (1)函数f(x)=(x-3)ex的单调递增区间是( )
C.4
D.2
【解析】 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,
当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x∈(-2
,2)时,f ′ (x)<0,函数f(x)单调递减,当x∈(2,+ ∞ )时,
f′(x)>0,函数f(x)单调递增.
故f(x)在x=2处取得极小值,∴a=2.
A.(-∞,2)
B.(0,3)
C.(1,4)
D.(2,+∞)
(2)(2018·宁夏模拟)函数f(x)=x+eln x的单调递增区间
为( )
A.(0,+∞)
B.(e,+∞)
C.(-∞,0)和(0,+∞)
D.R
【解析】 (1)依题意得 f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex, 令 f′(x)>0,解得 x>2,∴f(x)的单调递增区间是(2,+∞).故选 D.
(2)函数的极大值与极大值点 若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其 他点的函数值_都__大__,f′(b)=0,而且在点x=b附近的左侧 __f_′(_x_)_>_0__,右侧__f_′(_x_)_<_0_,则点b叫做函数的极大值点, f(b)叫做函数的极大值.
3.函数的最值与导数的关系 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条_连__续__不__断_ 的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的_极__值__; ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比 较,其中_最__大__的一个是最大值,_最__小__的一个是最小值.
如图所示,f′(x)有3个零点,从左到右依次设为x1,x2, x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故选项 D正确.故选D.
【答案】 D
第1课时 导数与函数的单调性
题型一 不含参数的函数的单调性
【例1】 (1)函数f(x)=(x-3)ex的单调递增区间是( )
C.4
D.2
【解析】 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,
当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x∈(-2
,2)时,f ′ (x)<0,函数f(x)单调递减,当x∈(2,+ ∞ )时,
f′(x)>0,函数f(x)单调递增.
故f(x)在x=2处取得极小值,∴a=2.
A.(-∞,2)
B.(0,3)
C.(1,4)
D.(2,+∞)
(2)(2018·宁夏模拟)函数f(x)=x+eln x的单调递增区间
为( )
A.(0,+∞)
B.(e,+∞)
C.(-∞,0)和(0,+∞)
D.R
【解析】 (1)依题意得 f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex, 令 f′(x)>0,解得 x>2,∴f(x)的单调递增区间是(2,+∞).故选 D.
(2)函数的极大值与极大值点 若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其 他点的函数值_都__大__,f′(b)=0,而且在点x=b附近的左侧 __f_′(_x_)_>_0__,右侧__f_′(_x_)_<_0_,则点b叫做函数的极大值点, f(b)叫做函数的极大值.
3.函数的最值与导数的关系 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条_连__续__不__断_ 的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的_极__值__; ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比 较,其中_最__大__的一个是最大值,_最__小__的一个是最小值.
(北师大版)选修1-1课件:第3章-导数与函数的单调性-参考课件(1)
例题讲解
例 1求函数f ( x) 2x3 3x 2 36x 16 的函数导数的符号有关,因此,可以通过 分析导数的符号求出函数的单调区间. 解 :由导数公式表和求导法 则可得:
f ( x) 6 x 6 x 36 6( x 2)(x 3). 当x (,2)或者x (3,)时, f ( x) 0,因此,
y
40
20
3 2 O x
f ( x) 2x3 3x 2 36x 16
方法归纳 由导数来求函数的单调区间步骤: 1,先求出函数的导函数. 2,由导函数得到相应的不等式. 3,由不等式得相应的单调区间.
课堂练习
2 1,确定函数 f ( x ) x 2 x 4 在哪个区间内是增函数, 哪个区间内是减函数.
令 6 x 2 12 x 0,解得 x 2或 x 0, f ( x )是增函数; 因此, 当 x (,0) 时,
f ( x )是增函数; 当 x (2,) 时,
再令 6 x 2 12 x 0 ,解得 0 x 2 , 因此, f ( x )是减函数; 当 x (0,2)时,
判断函数 f ( x) x 4x 3 的单调性
2
解(定义法):设 x1 x2 则 2 2 f(x1 ) f(x2 ) x1 4 x1 x2 4 x2
y
图象法
Y
10
8
x1 x2
(x1 x2 )(x1 x2 4 )
6
4
2
X
O
5 10
当x1 x2 2时,f ( x1 ) f ( x2 ) 当x2 x1 2时,f ( x1 ) f ( x2 ) 函数f ( x)在(2,)上单调递增 在 , 2上单调递减
高中数学第四章导数应用1.1导数与函数的单调性ppt课件
证明
y′=axln a-ln a=ln a(ax-1), 当a>1时,由于ln a>0,ax<1, 所以y′<0,即y在(-∞,0)上是减少的; 当0<a<1时,由于ln a<0,ax>1, 所以y′<0,即y在(-∞,0)上是减少的. 综上,函数y=ax-xln a在(-∞,0)上是减少的.
12345
4 B.m>3
C.m≤43
4
D.m<3 ,3)内可导,其图像如下图,记y=f(x)的导
函数为y=f′(x),那么不等式f′(x)≤0的解集是 答案 解析
√-1 3
12345
3.假设函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,那么m的 取值范围答是案 解析
√
No
Image
∵函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,
答案
如下图,函数y=f(x)在(0,b)或(a,0) 内导数的绝对值较大,图像“峻峭〞, 在(b,+∞)或(-∞,a)内导数的绝对值 较小,图像“平缓〞.
梳理
普通地,假设一个函数在某一范围内导数的绝对值较大,那么 函数在这个范围内变化得快,这时,函数的图像就比较“峻峭 〞(向上或向下);反之,函数的图像就“平缓〞一些.
第四章 §1 函数的单调性与极值
1.1 导数与函数的单调性
学习目的 1.了解导数与函数的单调性的关系. 2.掌握利用导数判别(证明)函数单调性的方法. 3.能利用导数求不超越三次多项式函数的单调 区间.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 函数的单调性与导函数正负的关系
思索
察看以下各图,完成表格内容
y′=axln a-ln a=ln a(ax-1), 当a>1时,由于ln a>0,ax<1, 所以y′<0,即y在(-∞,0)上是减少的; 当0<a<1时,由于ln a<0,ax>1, 所以y′<0,即y在(-∞,0)上是减少的. 综上,函数y=ax-xln a在(-∞,0)上是减少的.
12345
4 B.m>3
C.m≤43
4
D.m<3 ,3)内可导,其图像如下图,记y=f(x)的导
函数为y=f′(x),那么不等式f′(x)≤0的解集是 答案 解析
√-1 3
12345
3.假设函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,那么m的 取值范围答是案 解析
√
No
Image
∵函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,
答案
如下图,函数y=f(x)在(0,b)或(a,0) 内导数的绝对值较大,图像“峻峭〞, 在(b,+∞)或(-∞,a)内导数的绝对值 较小,图像“平缓〞.
梳理
普通地,假设一个函数在某一范围内导数的绝对值较大,那么 函数在这个范围内变化得快,这时,函数的图像就比较“峻峭 〞(向上或向下);反之,函数的图像就“平缓〞一些.
第四章 §1 函数的单调性与极值
1.1 导数与函数的单调性
学习目的 1.了解导数与函数的单调性的关系. 2.掌握利用导数判别(证明)函数单调性的方法. 3.能利用导数求不超越三次多项式函数的单调 区间.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 函数的单调性与导函数正负的关系
思索
察看以下各图,完成表格内容
1.3.1函数的单调性与导数1-人教A版高中数学选修2-2课件
令(x
1)(x x2
1)
0,解得 1
x
0或0
x
1
y x 1 的单调减区间是(1,0)和(0,1) x
注: 如果一个函数具有相同单调性的单调区间不止 一个,这些单调区间一般不能用“∪”连接,而 只能用“逗号”或“和”分开。
四、课堂练习 1、判断下列函数的单调性, 并求出单调区间:
(1) f ( x) x 2 2x 4; (2) f ( x) e x x;
2
3
3
因 此 , 函 数f ( x)的 递 增 区 间 是(2k 2 ,2k 2 )(k Z );
3
3
递 减 区 间 是(2k 2 ,2k 4 )(k Z ).
3
3
(2) f ( x) x ln(1 x) 1 2
解:函数的定义域是(1,),f ( x) 1 1 x 1 . 2 1 x 2(1 x)
2
2
归纳: 1°什么情况下,用“导数法” 求函数单调性、单 调区间较简便?
总结: 当遇到三次或三次以上的,或图象很难画出的函数求 单调性问题时,应考虑导数法。
2°求可导函数f(x)单调区间的步骤: ①求定义域
②求f'(x)
③令f'(x)>0解不等式⇒f(x)的递增区间 f'(x)<0解不等式⇒f(x)的递减区间
(2) f ( x) x 2 2x 3;
(3) f ( x) sin x x, x (0, );
(4) f ( x) 2x 3 3x 2 24x 1.
解:
(3)因为f ( x) sin x x, x (0, ),所以f ( x) cos x 1 0.
因此,函数f ( x) sin x x在x (0, )上单调递减
3.1.1 导数与函数的单调性 课件(北师大选修2-2)
ቤተ መጻሕፍቲ ባይዱ
(3)函数的定义域为R,y′=3x2-1. 3 3 令3x -1<0,解得- <x< ; 3 3
2
3 3 令3x -1>0,解得x<- 或x> . 3 3
2
因此-
3 3 , 为函数的单调递减区间, 3 3
3 3 , ,+∞为函数的单调递增区间. 3 3
1 解得a≥ . 3 1 当a= 时,f′(x)=x2-2x+1=0, 3 有且只有f′(1)=0. 1 所以,实数a的取值范围为[ ,+∞). 3
[一点通] 已知函数y=f(x),x∈[a,b]的单调性,求参数 的取值范围的步骤:
(1)求导数y=f′(x);
(2)转化为f′(x)≥0或f′(x)≤0在x∈[a,b]上恒成立问题;
3.判断y=ax3-1(a∈R)在R上的单调性. 解:∵y′=3ax2,又x2≥0. (1)当a>0时,y′≥0,函数在R上单调递增; (2)当a<0时,y′≤0,函数在R上单调递减; (3)当a=0时,y′=0,函数在R上不具备单调性.
[例2]
求下列函数的单调区间:
(1)y=2x-ln x; x (2)y= +cos x; 2 (3)y=x3-x.
②判断f′(x)的符号;
③给出单调性结论.
1.下列函数中,在(0,+∞)上为增加的是 A.y=sin x C.y=x3-x B.y=x·x e
(
)
D.y=ln x-x
解析:(sin x)′=cos x, (x·x)′=ex+x·x=(1+x)·x, e e e 1 (x -x)′=3x -1,(ln x-x)′=x-1,
3 2
当x∈(0,+∞)时,只有(x·x)′=(1+x)·x>0. e e
(3)函数的定义域为R,y′=3x2-1. 3 3 令3x -1<0,解得- <x< ; 3 3
2
3 3 令3x -1>0,解得x<- 或x> . 3 3
2
因此-
3 3 , 为函数的单调递减区间, 3 3
3 3 , ,+∞为函数的单调递增区间. 3 3
1 解得a≥ . 3 1 当a= 时,f′(x)=x2-2x+1=0, 3 有且只有f′(1)=0. 1 所以,实数a的取值范围为[ ,+∞). 3
[一点通] 已知函数y=f(x),x∈[a,b]的单调性,求参数 的取值范围的步骤:
(1)求导数y=f′(x);
(2)转化为f′(x)≥0或f′(x)≤0在x∈[a,b]上恒成立问题;
3.判断y=ax3-1(a∈R)在R上的单调性. 解:∵y′=3ax2,又x2≥0. (1)当a>0时,y′≥0,函数在R上单调递增; (2)当a<0时,y′≤0,函数在R上单调递减; (3)当a=0时,y′=0,函数在R上不具备单调性.
[例2]
求下列函数的单调区间:
(1)y=2x-ln x; x (2)y= +cos x; 2 (3)y=x3-x.
②判断f′(x)的符号;
③给出单调性结论.
1.下列函数中,在(0,+∞)上为增加的是 A.y=sin x C.y=x3-x B.y=x·x e
(
)
D.y=ln x-x
解析:(sin x)′=cos x, (x·x)′=ex+x·x=(1+x)·x, e e e 1 (x -x)′=3x -1,(ln x-x)′=x-1,
3 2
当x∈(0,+∞)时,只有(x·x)′=(1+x)·x>0. e e
函数的单调性与导数-图课件
单调减函数的性质
03
04
05
函数图像从左至右下降 。
若$f(x)$在区间$I$上单 调递减,且$a, b in I$, 且$a < b$,则有$f(a) geq f(b)$。
若函数$f(x)$在区间$I$ 上单调递减,则其反函 数在相应的区间上单调 递增。
单调性与导数的关系
01
导数与单调性的关系
如果函数在某区间的导数大于0,则该函数在此区间单调递增;如果导
数小于0,则函数在此区间单调递减。
02
导数不存在的点
对于使导数不存在的点,需要单独判断其单调性。
03
高阶导数与单调性的关系
高阶导数的符号可以提供关于函数单调性更精细的信息。例如,二阶导
数大于0表示函数在相应点处有拐点,即由单调递增变为单调递减或反
之。
02 导数在判断函数单调性中 的应用
导数大于0与函数单调性的关系
定义法判断单调性
• 定义法判断单调性是指通过比较函数在某区间内任意两点x1和x2的函数值f(x1)和f(x2),来判断函数在该区间内的单调性。 如果对于任意x1<x2,都有f(x1)<f(x2),则函数在该区间内单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则函数在该 区间内单调递减。
03 导数在实际问题中的应用
导数在经济学中的应用
边际分析
导数可以用来分析经济函数的边 际变化,例如边际成本、边际收 益等,帮助企业做出更好的经济
决策。
最优化问题
导数可以用来解决最优化问题,例 如最大利润、最小成本等,为企业 提供最优的资源配置方案。
需求弹性
导数可以用来分析需求弹性,例如 价格敏感度、需求变化等,帮助企 业制定更加精准的市场策略。
函数的单调性与导数优秀ppt课件
①当1<x<4时,f’(x)>0; ②当x>4,或x<1时,f’(x)<0; ③当x=4,或x=1时,f’(x) =0. 试画出函数f(x)图象的大致形状。
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
导数与函数的单调性ppt课件
x1x2 x1 - x2
x0x
一般地,设函数y=f(x)在某个区间内可导,则函数在
该区间有下面的结论:
如果在某区间上f/(x)>0,则f(x)为该区间上的增函数;
如果在某区间上f/(x)<0,则f(x)为该区间上的减函数.
引例:讨论函数y=x2-4x+3的单调性.
(方法3:导数法)
解:函数的定义域为R, f/(x)=2x-4 令f /(x)>0,解得x>2, 则f(x)的单增区间为(2,+∞). 再令f /(x)<0,解得x<2, 则f(x)的单减区间(-∞,2).
上是单调递增的,求a的取值范围. a 16
f
(x) 2x
a x2
0对任意x [2, )恒成立.
2x3 a 0对任意x [2, )恒成立.
2x3 a对任意x [2, )恒成立.
变式:(2已x3)知min函数a对f (任x)意xx2[2,a(a)恒 R成)立在.x (, 2] x
课外作业
教材P84页 习题4-1 第1题
步骤:根据导数确定函数的单调性
1.确定函数f(x)的定义域.
. 2.求出函数的导数f/(x)
3.解不等式f/(x)>0,得函数单增区间; 解不等式f/(x)<0,得函数单减区间.
例5:已知函数f (x) x2 a (a R)在x [2, ) x
解:函数的定义域为x>0, f/(x)=lnx+1.
当lnx+1>0时,解得x>1/e.则f(x)的 单增区间是(1/e,+∞). 当lnx+1<0时,解得0<x<1/e.则f(x) 的单减区间是(0,1/e).
函数的单调性与导数PPT教学课件
A1型最密堆积(配位数为12)(例如铜)
2.离子晶体属非等径圆球的密堆积方式:
大球先按一 定的方式做 等径圆球密 堆积
小球再填充 到大球所形 成的空隙中
配位数:一个原子或离子周围所邻接的原子 或离子数目。
NaCl:Cl- 离 子密先堆以积,AN1a型+ 离紧 子再填充到空 隙中。
ZnS: S2-离子 先以A1型紧密 堆积,Zn2+ 离 子再填充到空 隙中。
第一层:密置型排列 第二层:将球对准 1,3,5 位。
1
6
2
5
3
4
12
6
3
54
对准 2,4,6 位,其情形是一样的 吗?
密置双层只有一种
思考
取A、B两个密置层,将B层放 在A层的上面,有几种堆积方式? 最紧密的堆积方式是哪种?它有 何特点?
2
A
B
1
第一种排列
A
B
12
6
3
A
54
B
A
于是每两层形成一个 周期,即 AB AB 堆 积方式。
对于给定区间上的函数f(x): 1.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时, 都有 f(x1)<f(x2),那么就说f(x)在这个区间上是增函数. 2.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时, 都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数 对于函数y=f(x)在某个区间上单调递增或单调递减的性 质,叫做f(x)在这个区间上的单调性,这个区间叫做f(x) 的单调区间。
1. 等径圆球的密堆积
把乒乓球装入盒中,盒中 的乒乓球怎样排列才能使 装入的乒乓球数目最多?
《函数单调性与导数》课件
导数在物理问题中的应用
速度与加速度
在运动学中,导数可以用来描述 物体的速度和加速度。例如,自 由落体运动中,物体的速度和加
速度可以通过求导得到。
热传导
在热力学中,导数可以用来描述 热量传递的过程。例如,通过求 导得到温度场的变化率,可以帮
助我们理解热传导的规律。
弹性力学
在弹性力学中,导数可以用来描 述物体的应力应变关系。例如, 通过求导得到物体的应力分布和 应变状态,可以帮助我们理解物
调性
利用导数的符号变化,确定函数 在某区间内的增减性
通过求解一阶导数的不等式,判 断函数的单调性
利用导数判断函数单调性的方法
直接求导
对于已知函数,直接求导并分 析导数的符号变化
利用导数的几何意义
通过导数的几何意义,绘制函 数图像,直观判断函数的单调 性
构造新函数
通过构造函数并求导,利用导 数判断新函数的单调性来研究 原函数的单调性
成本效益分析
导数可以用来分析企业的成本效益,从而制定最优的经营策略。例如,通过求导找到最小 化成本或最大化的利润点,可以帮助企业制定合理的价格和产量策略。
投资组合优化
在金融领域,导数可以用来优化投资组合,以实现最大的收益或最小的风险。例如,通过 求导找到最优的投资组合比例,可以帮助投资者实现资产配置的目标。
详细描述:导数的计算方法包括定义法、求导公式和法则、复合函数求导、隐函数求导、参数方程确定的函数求导等。
03
利用导数判断函数单调性
导数与函数单调性的关系
导数大于零,函数单 调递增
导数等于零,函数可 能为极值点或拐点
导数小于零,函数单 调递减
单调性判定定理的推导
基于极限的导数定义,通过分析 函数在某区间的变化率来判断单
函数的单调性与导数-图课件
函数的单调性与导数-图 课件
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
y f ( x)
1 2 x o
y
y f ( x)
y 1 2 x o
o
y f '( x )
2 x
(A)
y
(B)
y f ( x)
2
y
y f ( x)
x
o 1xΒιβλιοθήκη o 1 2(C)(D)
课堂练习
求下列函数的单调区间
(1)y 2x 5x 4
2
(2)y 3x x
3 x
(3)y (x 3)e
3 2 f ( x ) 2 x 3 x 12x 1 单调递增. 函数 (2 )求导数f’(x); 即 2 x 1时, 当 f '( x) 0,
高考 设 f '( x )是函数 f ( x ) 的导函数, y f '( x )的图象如 链接 右图所示,则 y f ( x ) 的图象最有可能的是( )
yx
y
yx
y
2
yx
3
y
1 y x y
o
x
o
x
o
x
o
x
函数在R上
(-∞,0) (0,+∞)
函数在R上
(-∞,0)
f '( x) 1 0 f '( x) 2 x 0 f '( x) 3x2 0 f '( x) x2 0
f '( x) 2 x 0
(0,+∞) f '( x) x2 0
再观察函数y=x2-4x+3的图象 总结: 函数在区间 y
0
. . . . . ..
2
(-∞,2)上单调 递减,切线斜率小于 0,即其导数为负;
在区间(2,+∞) x 上单调递增,切线斜 率大于0,即其导数 为正.
在某个区间(a,b)内, ①如果f’(x)>0, 那么函数y=f(x)在这个区间内单调 递增. ②如果f’(x)<0, 那么函数y=f(x)在这个区间内单调 递减.
课本62页 习题3.1 A组 1,2
课后思考:
课本62页 习题3.1 B组
如果在某个区间内恒有f’(x)=0,那么函数f(x) 有什么特性?
应用判断函数 f ( x) 2x 3x 12x 1 的单调性,
3 2
并求出其单调区间. 3 2 f ( x ) 2 x 3 x 12x 1 因为 你能小结求解函数单调区间的步骤吗? 所以 f '( x) 6 x2 6 x 12 x 1或 x 2时, (1)确定函数 y=f(x) 的定义域; 当 f '( x) 0, 即 (3)解不等式f’(x)>0 3 2 ,解集在定义域内的部分 函数 f ( x) 2x 3x 12x 1 单调递减. 为增区间; 3 2 f ( x ) 2 x 3 x 12 x 1 的单调递增区间为 (1 , )和(, 2) (4)解不等式 f’(x)<0 ,解集在定义域内的部分 函数 为减区间. 单调递减区间为( -2,1)
y f ( x)
1 2 x o
y
y f ( x)
y 1 2 x o
o
y f '( x )
2 x
(A)
y
(B)
y f ( x)
2
y
y f ( x)
x
o 1xΒιβλιοθήκη o 1 2(C)(D)
课堂练习
求下列函数的单调区间
(1)y 2x 5x 4
2
(2)y 3x x
3 x
(3)y (x 3)e
3 2 f ( x ) 2 x 3 x 12x 1 单调递增. 函数 (2 )求导数f’(x); 即 2 x 1时, 当 f '( x) 0,
高考 设 f '( x )是函数 f ( x ) 的导函数, y f '( x )的图象如 链接 右图所示,则 y f ( x ) 的图象最有可能的是( )
yx
y
yx
y
2
yx
3
y
1 y x y
o
x
o
x
o
x
o
x
函数在R上
(-∞,0) (0,+∞)
函数在R上
(-∞,0)
f '( x) 1 0 f '( x) 2 x 0 f '( x) 3x2 0 f '( x) x2 0
f '( x) 2 x 0
(0,+∞) f '( x) x2 0
再观察函数y=x2-4x+3的图象 总结: 函数在区间 y
0
. . . . . ..
2
(-∞,2)上单调 递减,切线斜率小于 0,即其导数为负;
在区间(2,+∞) x 上单调递增,切线斜 率大于0,即其导数 为正.
在某个区间(a,b)内, ①如果f’(x)>0, 那么函数y=f(x)在这个区间内单调 递增. ②如果f’(x)<0, 那么函数y=f(x)在这个区间内单调 递减.
课本62页 习题3.1 A组 1,2
课后思考:
课本62页 习题3.1 B组
如果在某个区间内恒有f’(x)=0,那么函数f(x) 有什么特性?
应用判断函数 f ( x) 2x 3x 12x 1 的单调性,
3 2
并求出其单调区间. 3 2 f ( x ) 2 x 3 x 12x 1 因为 你能小结求解函数单调区间的步骤吗? 所以 f '( x) 6 x2 6 x 12 x 1或 x 2时, (1)确定函数 y=f(x) 的定义域; 当 f '( x) 0, 即 (3)解不等式f’(x)>0 3 2 ,解集在定义域内的部分 函数 f ( x) 2x 3x 12x 1 单调递减. 为增区间; 3 2 f ( x ) 2 x 3 x 12 x 1 的单调递增区间为 (1 , )和(, 2) (4)解不等式 f’(x)<0 ,解集在定义域内的部分 函数 为减区间. 单调递减区间为( -2,1)