导数与函数的单调性ppt课件演示文稿(1)
合集下载
导数与函数的单调性ppt文档
![导数与函数的单调性ppt文档](https://img.taocdn.com/s3/m/aab6aa68c77da26924c5b04c.png)
观察选项可知,排除A,C.
如图所示,f′(x)有3个零点,从左到右依次设为x1,x2, x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故选项 D正确.故选D.
【答案】 D
第1课时 导数与函数的单调性
题型一 不含参数的函数的单调性
【例1】 (1)函数f(x)=(x-3)ex的单调递增区间是( )
C.4
D.2
【解析】 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,
当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x∈(-2
,2)时,f ′ (x)<0,函数f(x)单调递减,当x∈(2,+ ∞ )时,
f′(x)>0,函数f(x)单调递增.
故f(x)在x=2处取得极小值,∴a=2.
A.(-∞,2)
B.(0,3)
C.(1,4)
D.(2,+∞)
(2)(2018·宁夏模拟)函数f(x)=x+eln x的单调递增区间
为( )
A.(0,+∞)
B.(e,+∞)
C.(-∞,0)和(0,+∞)
D.R
【解析】 (1)依题意得 f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex, 令 f′(x)>0,解得 x>2,∴f(x)的单调递增区间是(2,+∞).故选 D.
(2)函数的极大值与极大值点 若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其 他点的函数值_都__大__,f′(b)=0,而且在点x=b附近的左侧 __f_′(_x_)_>_0__,右侧__f_′(_x_)_<_0_,则点b叫做函数的极大值点, f(b)叫做函数的极大值.
3.函数的最值与导数的关系 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条_连__续__不__断_ 的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的_极__值__; ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比 较,其中_最__大__的一个是最大值,_最__小__的一个是最小值.
如图所示,f′(x)有3个零点,从左到右依次设为x1,x2, x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故选项 D正确.故选D.
【答案】 D
第1课时 导数与函数的单调性
题型一 不含参数的函数的单调性
【例1】 (1)函数f(x)=(x-3)ex的单调递增区间是( )
C.4
D.2
【解析】 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,
当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x∈(-2
,2)时,f ′ (x)<0,函数f(x)单调递减,当x∈(2,+ ∞ )时,
f′(x)>0,函数f(x)单调递增.
故f(x)在x=2处取得极小值,∴a=2.
A.(-∞,2)
B.(0,3)
C.(1,4)
D.(2,+∞)
(2)(2018·宁夏模拟)函数f(x)=x+eln x的单调递增区间
为( )
A.(0,+∞)
B.(e,+∞)
C.(-∞,0)和(0,+∞)
D.R
【解析】 (1)依题意得 f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex, 令 f′(x)>0,解得 x>2,∴f(x)的单调递增区间是(2,+∞).故选 D.
(2)函数的极大值与极大值点 若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其 他点的函数值_都__大__,f′(b)=0,而且在点x=b附近的左侧 __f_′(_x_)_>_0__,右侧__f_′(_x_)_<_0_,则点b叫做函数的极大值点, f(b)叫做函数的极大值.
3.函数的最值与导数的关系 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条_连__续__不__断_ 的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的_极__值__; ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比 较,其中_最__大__的一个是最大值,_最__小__的一个是最小值.
(北师大版)选修1-1课件:第3章-导数与函数的单调性-参考课件(1)
![(北师大版)选修1-1课件:第3章-导数与函数的单调性-参考课件(1)](https://img.taocdn.com/s3/m/561e1536376baf1ffc4fade4.png)
例题讲解
例 1求函数f ( x) 2x3 3x 2 36x 16 的函数导数的符号有关,因此,可以通过 分析导数的符号求出函数的单调区间. 解 :由导数公式表和求导法 则可得:
f ( x) 6 x 6 x 36 6( x 2)(x 3). 当x (,2)或者x (3,)时, f ( x) 0,因此,
y
40
20
3 2 O x
f ( x) 2x3 3x 2 36x 16
方法归纳 由导数来求函数的单调区间步骤: 1,先求出函数的导函数. 2,由导函数得到相应的不等式. 3,由不等式得相应的单调区间.
课堂练习
2 1,确定函数 f ( x ) x 2 x 4 在哪个区间内是增函数, 哪个区间内是减函数.
令 6 x 2 12 x 0,解得 x 2或 x 0, f ( x )是增函数; 因此, 当 x (,0) 时,
f ( x )是增函数; 当 x (2,) 时,
再令 6 x 2 12 x 0 ,解得 0 x 2 , 因此, f ( x )是减函数; 当 x (0,2)时,
判断函数 f ( x) x 4x 3 的单调性
2
解(定义法):设 x1 x2 则 2 2 f(x1 ) f(x2 ) x1 4 x1 x2 4 x2
y
图象法
Y
10
8
x1 x2
(x1 x2 )(x1 x2 4 )
6
4
2
X
O
5 10
当x1 x2 2时,f ( x1 ) f ( x2 ) 当x2 x1 2时,f ( x1 ) f ( x2 ) 函数f ( x)在(2,)上单调递增 在 , 2上单调递减
高中数学第四章导数应用1.1导数与函数的单调性ppt课件
![高中数学第四章导数应用1.1导数与函数的单调性ppt课件](https://img.taocdn.com/s3/m/d8c91bb83c1ec5da51e270b4.png)
证明
y′=axln a-ln a=ln a(ax-1), 当a>1时,由于ln a>0,ax<1, 所以y′<0,即y在(-∞,0)上是减少的; 当0<a<1时,由于ln a<0,ax>1, 所以y′<0,即y在(-∞,0)上是减少的. 综上,函数y=ax-xln a在(-∞,0)上是减少的.
12345
4 B.m>3
C.m≤43
4
D.m<3 ,3)内可导,其图像如下图,记y=f(x)的导
函数为y=f′(x),那么不等式f′(x)≤0的解集是 答案 解析
√-1 3
12345
3.假设函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,那么m的 取值范围答是案 解析
√
No
Image
∵函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,
答案
如下图,函数y=f(x)在(0,b)或(a,0) 内导数的绝对值较大,图像“峻峭〞, 在(b,+∞)或(-∞,a)内导数的绝对值 较小,图像“平缓〞.
梳理
普通地,假设一个函数在某一范围内导数的绝对值较大,那么 函数在这个范围内变化得快,这时,函数的图像就比较“峻峭 〞(向上或向下);反之,函数的图像就“平缓〞一些.
第四章 §1 函数的单调性与极值
1.1 导数与函数的单调性
学习目的 1.了解导数与函数的单调性的关系. 2.掌握利用导数判别(证明)函数单调性的方法. 3.能利用导数求不超越三次多项式函数的单调 区间.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 函数的单调性与导函数正负的关系
思索
察看以下各图,完成表格内容
y′=axln a-ln a=ln a(ax-1), 当a>1时,由于ln a>0,ax<1, 所以y′<0,即y在(-∞,0)上是减少的; 当0<a<1时,由于ln a<0,ax>1, 所以y′<0,即y在(-∞,0)上是减少的. 综上,函数y=ax-xln a在(-∞,0)上是减少的.
12345
4 B.m>3
C.m≤43
4
D.m<3 ,3)内可导,其图像如下图,记y=f(x)的导
函数为y=f′(x),那么不等式f′(x)≤0的解集是 答案 解析
√-1 3
12345
3.假设函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,那么m的 取值范围答是案 解析
√
No
Image
∵函数f(x)=x3+2x2+mx+1在(-∞,+∞)上是添加的,
答案
如下图,函数y=f(x)在(0,b)或(a,0) 内导数的绝对值较大,图像“峻峭〞, 在(b,+∞)或(-∞,a)内导数的绝对值 较小,图像“平缓〞.
梳理
普通地,假设一个函数在某一范围内导数的绝对值较大,那么 函数在这个范围内变化得快,这时,函数的图像就比较“峻峭 〞(向上或向下);反之,函数的图像就“平缓〞一些.
第四章 §1 函数的单调性与极值
1.1 导数与函数的单调性
学习目的 1.了解导数与函数的单调性的关系. 2.掌握利用导数判别(证明)函数单调性的方法. 3.能利用导数求不超越三次多项式函数的单调 区间.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 函数的单调性与导函数正负的关系
思索
察看以下各图,完成表格内容
1.3.1函数的单调性与导数1-人教A版高中数学选修2-2课件
![1.3.1函数的单调性与导数1-人教A版高中数学选修2-2课件](https://img.taocdn.com/s3/m/1443be5666ec102de2bd960590c69ec3d5bbdbd2.png)
令(x
1)(x x2
1)
0,解得 1
x
0或0
x
1
y x 1 的单调减区间是(1,0)和(0,1) x
注: 如果一个函数具有相同单调性的单调区间不止 一个,这些单调区间一般不能用“∪”连接,而 只能用“逗号”或“和”分开。
四、课堂练习 1、判断下列函数的单调性, 并求出单调区间:
(1) f ( x) x 2 2x 4; (2) f ( x) e x x;
2
3
3
因 此 , 函 数f ( x)的 递 增 区 间 是(2k 2 ,2k 2 )(k Z );
3
3
递 减 区 间 是(2k 2 ,2k 4 )(k Z ).
3
3
(2) f ( x) x ln(1 x) 1 2
解:函数的定义域是(1,),f ( x) 1 1 x 1 . 2 1 x 2(1 x)
2
2
归纳: 1°什么情况下,用“导数法” 求函数单调性、单 调区间较简便?
总结: 当遇到三次或三次以上的,或图象很难画出的函数求 单调性问题时,应考虑导数法。
2°求可导函数f(x)单调区间的步骤: ①求定义域
②求f'(x)
③令f'(x)>0解不等式⇒f(x)的递增区间 f'(x)<0解不等式⇒f(x)的递减区间
(2) f ( x) x 2 2x 3;
(3) f ( x) sin x x, x (0, );
(4) f ( x) 2x 3 3x 2 24x 1.
解:
(3)因为f ( x) sin x x, x (0, ),所以f ( x) cos x 1 0.
因此,函数f ( x) sin x x在x (0, )上单调递减
3.1.1 导数与函数的单调性 课件(北师大选修2-2)
![3.1.1 导数与函数的单调性 课件(北师大选修2-2)](https://img.taocdn.com/s3/m/15585a26b4daa58da0114a81.png)
ቤተ መጻሕፍቲ ባይዱ
(3)函数的定义域为R,y′=3x2-1. 3 3 令3x -1<0,解得- <x< ; 3 3
2
3 3 令3x -1>0,解得x<- 或x> . 3 3
2
因此-
3 3 , 为函数的单调递减区间, 3 3
3 3 , ,+∞为函数的单调递增区间. 3 3
1 解得a≥ . 3 1 当a= 时,f′(x)=x2-2x+1=0, 3 有且只有f′(1)=0. 1 所以,实数a的取值范围为[ ,+∞). 3
[一点通] 已知函数y=f(x),x∈[a,b]的单调性,求参数 的取值范围的步骤:
(1)求导数y=f′(x);
(2)转化为f′(x)≥0或f′(x)≤0在x∈[a,b]上恒成立问题;
3.判断y=ax3-1(a∈R)在R上的单调性. 解:∵y′=3ax2,又x2≥0. (1)当a>0时,y′≥0,函数在R上单调递增; (2)当a<0时,y′≤0,函数在R上单调递减; (3)当a=0时,y′=0,函数在R上不具备单调性.
[例2]
求下列函数的单调区间:
(1)y=2x-ln x; x (2)y= +cos x; 2 (3)y=x3-x.
②判断f′(x)的符号;
③给出单调性结论.
1.下列函数中,在(0,+∞)上为增加的是 A.y=sin x C.y=x3-x B.y=x·x e
(
)
D.y=ln x-x
解析:(sin x)′=cos x, (x·x)′=ex+x·x=(1+x)·x, e e e 1 (x -x)′=3x -1,(ln x-x)′=x-1,
3 2
当x∈(0,+∞)时,只有(x·x)′=(1+x)·x>0. e e
(3)函数的定义域为R,y′=3x2-1. 3 3 令3x -1<0,解得- <x< ; 3 3
2
3 3 令3x -1>0,解得x<- 或x> . 3 3
2
因此-
3 3 , 为函数的单调递减区间, 3 3
3 3 , ,+∞为函数的单调递增区间. 3 3
1 解得a≥ . 3 1 当a= 时,f′(x)=x2-2x+1=0, 3 有且只有f′(1)=0. 1 所以,实数a的取值范围为[ ,+∞). 3
[一点通] 已知函数y=f(x),x∈[a,b]的单调性,求参数 的取值范围的步骤:
(1)求导数y=f′(x);
(2)转化为f′(x)≥0或f′(x)≤0在x∈[a,b]上恒成立问题;
3.判断y=ax3-1(a∈R)在R上的单调性. 解:∵y′=3ax2,又x2≥0. (1)当a>0时,y′≥0,函数在R上单调递增; (2)当a<0时,y′≤0,函数在R上单调递减; (3)当a=0时,y′=0,函数在R上不具备单调性.
[例2]
求下列函数的单调区间:
(1)y=2x-ln x; x (2)y= +cos x; 2 (3)y=x3-x.
②判断f′(x)的符号;
③给出单调性结论.
1.下列函数中,在(0,+∞)上为增加的是 A.y=sin x C.y=x3-x B.y=x·x e
(
)
D.y=ln x-x
解析:(sin x)′=cos x, (x·x)′=ex+x·x=(1+x)·x, e e e 1 (x -x)′=3x -1,(ln x-x)′=x-1,
3 2
当x∈(0,+∞)时,只有(x·x)′=(1+x)·x>0. e e
函数的单调性与导数-图课件
![函数的单调性与导数-图课件](https://img.taocdn.com/s3/m/8c8ba39e185f312b3169a45177232f60ddcce7b1.png)
单调减函数的性质
03
04
05
函数图像从左至右下降 。
若$f(x)$在区间$I$上单 调递减,且$a, b in I$, 且$a < b$,则有$f(a) geq f(b)$。
若函数$f(x)$在区间$I$ 上单调递减,则其反函 数在相应的区间上单调 递增。
单调性与导数的关系
01
导数与单调性的关系
如果函数在某区间的导数大于0,则该函数在此区间单调递增;如果导
数小于0,则函数在此区间单调递减。
02
导数不存在的点
对于使导数不存在的点,需要单独判断其单调性。
03
高阶导数与单调性的关系
高阶导数的符号可以提供关于函数单调性更精细的信息。例如,二阶导
数大于0表示函数在相应点处有拐点,即由单调递增变为单调递减或反
之。
02 导数在判断函数单调性中 的应用
导数大于0与函数单调性的关系
定义法判断单调性
• 定义法判断单调性是指通过比较函数在某区间内任意两点x1和x2的函数值f(x1)和f(x2),来判断函数在该区间内的单调性。 如果对于任意x1<x2,都有f(x1)<f(x2),则函数在该区间内单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则函数在该 区间内单调递减。
03 导数在实际问题中的应用
导数在经济学中的应用
边际分析
导数可以用来分析经济函数的边 际变化,例如边际成本、边际收 益等,帮助企业做出更好的经济
决策。
最优化问题
导数可以用来解决最优化问题,例 如最大利润、最小成本等,为企业 提供最优的资源配置方案。
需求弹性
导数可以用来分析需求弹性,例如 价格敏感度、需求变化等,帮助企 业制定更加精准的市场策略。
函数的单调性与导数优秀ppt课件
![函数的单调性与导数优秀ppt课件](https://img.taocdn.com/s3/m/0e975a660812a21614791711cc7931b764ce7b1a.png)
①当1<x<4时,f’(x)>0; ②当x>4,或x<1时,f’(x)<0; ③当x=4,或x=1时,f’(x) =0. 试画出函数f(x)图象的大致形状。
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
y y=f(x)
O1
4
x
7/20/2024
例2 求函数 f (x) 2x3 3x2 12x 1 的单调区间
解: f '(x) 6x2 6x 12
7/20/2024
例1
设 f '( x)是函数 f ( x) 的导函数,y f '( x)的图象如
c 右图所示,则 y f ( x) 的图象最有可能的是( )
y
y f (x)
y
y f (x)
y
y f '( x)
o 1 2x o 1 2x
(A)
y y f (x)
(B)
o
2x
y y f (x)
G=(a,b)
y
y
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数,
则 f(x) 在G上有单调性。
G 称为单调增(减少)区间
新授 画出下列函数的图像,并根据图像指出每个函数的单调区间
y x2
y x3
y1 x
y
y
y
ox
ox
o
x
(-∞,0) (0,+∞)
(- ∞ ,+∞) (-∞,0) (0,,+∞)
为增区间; (4)解不等式f’(x)<0,解集在定义域内的部分
为减区间.
7/20/2024
课堂练习 求下列函数的单调区间。
(1) f (x) x2 2x 3 (2) f (x) x3 3x
导数与函数的单调性ppt课件
![导数与函数的单调性ppt课件](https://img.taocdn.com/s3/m/dde49960e45c3b3567ec8bb0.png)
x1x2 x1 - x2
x0x
一般地,设函数y=f(x)在某个区间内可导,则函数在
该区间有下面的结论:
如果在某区间上f/(x)>0,则f(x)为该区间上的增函数;
如果在某区间上f/(x)<0,则f(x)为该区间上的减函数.
引例:讨论函数y=x2-4x+3的单调性.
(方法3:导数法)
解:函数的定义域为R, f/(x)=2x-4 令f /(x)>0,解得x>2, 则f(x)的单增区间为(2,+∞). 再令f /(x)<0,解得x<2, 则f(x)的单减区间(-∞,2).
上是单调递增的,求a的取值范围. a 16
f
(x) 2x
a x2
0对任意x [2, )恒成立.
2x3 a 0对任意x [2, )恒成立.
2x3 a对任意x [2, )恒成立.
变式:(2已x3)知min函数a对f (任x)意xx2[2,a(a)恒 R成)立在.x (, 2] x
课外作业
教材P84页 习题4-1 第1题
步骤:根据导数确定函数的单调性
1.确定函数f(x)的定义域.
. 2.求出函数的导数f/(x)
3.解不等式f/(x)>0,得函数单增区间; 解不等式f/(x)<0,得函数单减区间.
例5:已知函数f (x) x2 a (a R)在x [2, ) x
解:函数的定义域为x>0, f/(x)=lnx+1.
当lnx+1>0时,解得x>1/e.则f(x)的 单增区间是(1/e,+∞). 当lnx+1<0时,解得0<x<1/e.则f(x) 的单减区间是(0,1/e).
函数的单调性与导数PPT教学课件
![函数的单调性与导数PPT教学课件](https://img.taocdn.com/s3/m/836f0a12c950ad02de80d4d8d15abe23492f0377.png)
A1型最密堆积(配位数为12)(例如铜)
2.离子晶体属非等径圆球的密堆积方式:
大球先按一 定的方式做 等径圆球密 堆积
小球再填充 到大球所形 成的空隙中
配位数:一个原子或离子周围所邻接的原子 或离子数目。
NaCl:Cl- 离 子密先堆以积,AN1a型+ 离紧 子再填充到空 隙中。
ZnS: S2-离子 先以A1型紧密 堆积,Zn2+ 离 子再填充到空 隙中。
第一层:密置型排列 第二层:将球对准 1,3,5 位。
1
6
2
5
3
4
12
6
3
54
对准 2,4,6 位,其情形是一样的 吗?
密置双层只有一种
思考
取A、B两个密置层,将B层放 在A层的上面,有几种堆积方式? 最紧密的堆积方式是哪种?它有 何特点?
2
A
B
1
第一种排列
A
B
12
6
3
A
54
B
A
于是每两层形成一个 周期,即 AB AB 堆 积方式。
对于给定区间上的函数f(x): 1.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时, 都有 f(x1)<f(x2),那么就说f(x)在这个区间上是增函数. 2.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时, 都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数 对于函数y=f(x)在某个区间上单调递增或单调递减的性 质,叫做f(x)在这个区间上的单调性,这个区间叫做f(x) 的单调区间。
1. 等径圆球的密堆积
把乒乓球装入盒中,盒中 的乒乓球怎样排列才能使 装入的乒乓球数目最多?
《函数单调性与导数》课件
![《函数单调性与导数》课件](https://img.taocdn.com/s3/m/6a45dba36394dd88d0d233d4b14e852458fb398f.png)
导数在物理问题中的应用
速度与加速度
在运动学中,导数可以用来描述 物体的速度和加速度。例如,自 由落体运动中,物体的速度和加
速度可以通过求导得到。
热传导
在热力学中,导数可以用来描述 热量传递的过程。例如,通过求 导得到温度场的变化率,可以帮
助我们理解热传导的规律。
弹性力学
在弹性力学中,导数可以用来描 述物体的应力应变关系。例如, 通过求导得到物体的应力分布和 应变状态,可以帮助我们理解物
调性
利用导数的符号变化,确定函数 在某区间内的增减性
通过求解一阶导数的不等式,判 断函数的单调性
利用导数判断函数单调性的方法
直接求导
对于已知函数,直接求导并分 析导数的符号变化
利用导数的几何意义
通过导数的几何意义,绘制函 数图像,直观判断函数的单调 性
构造新函数
通过构造函数并求导,利用导 数判断新函数的单调性来研究 原函数的单调性
成本效益分析
导数可以用来分析企业的成本效益,从而制定最优的经营策略。例如,通过求导找到最小 化成本或最大化的利润点,可以帮助企业制定合理的价格和产量策略。
投资组合优化
在金融领域,导数可以用来优化投资组合,以实现最大的收益或最小的风险。例如,通过 求导找到最优的投资组合比例,可以帮助投资者实现资产配置的目标。
详细描述:导数的计算方法包括定义法、求导公式和法则、复合函数求导、隐函数求导、参数方程确定的函数求导等。
03
利用导数判断函数单调性
导数与函数单调性的关系
导数大于零,函数单 调递增
导数等于零,函数可 能为极值点或拐点
导数小于零,函数单 调递减
单调性判定定理的推导
基于极限的导数定义,通过分析 函数在某区间的变化率来判断单
函数的单调性与导数-图课件
![函数的单调性与导数-图课件](https://img.taocdn.com/s3/m/05d86068bc64783e0912a21614791711cc7979ea.png)
函数的单调性与导数-图 课件
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
y f ( x)
1 2 x o
y
y f ( x)
y 1 2 x o
o
y f '( x )
2 x
(A)
y
(B)
y f ( x)
2
y
y f ( x)
x
o 1xΒιβλιοθήκη o 1 2(C)(D)
课堂练习
求下列函数的单调区间
(1)y 2x 5x 4
2
(2)y 3x x
3 x
(3)y (x 3)e
3 2 f ( x ) 2 x 3 x 12x 1 单调递增. 函数 (2 )求导数f’(x); 即 2 x 1时, 当 f '( x) 0,
高考 设 f '( x )是函数 f ( x ) 的导函数, y f '( x )的图象如 链接 右图所示,则 y f ( x ) 的图象最有可能的是( )
yx
y
yx
y
2
yx
3
y
1 y x y
o
x
o
x
o
x
o
x
函数在R上
(-∞,0) (0,+∞)
函数在R上
(-∞,0)
f '( x) 1 0 f '( x) 2 x 0 f '( x) 3x2 0 f '( x) x2 0
f '( x) 2 x 0
(0,+∞) f '( x) x2 0
再观察函数y=x2-4x+3的图象 总结: 函数在区间 y
0
. . . . . ..
2
(-∞,2)上单调 递减,切线斜率小于 0,即其导数为负;
在区间(2,+∞) x 上单调递增,切线斜 率大于0,即其导数 为正.
在某个区间(a,b)内, ①如果f’(x)>0, 那么函数y=f(x)在这个区间内单调 递增. ②如果f’(x)<0, 那么函数y=f(x)在这个区间内单调 递减.
课本62页 习题3.1 A组 1,2
课后思考:
课本62页 习题3.1 B组
如果在某个区间内恒有f’(x)=0,那么函数f(x) 有什么特性?
应用判断函数 f ( x) 2x 3x 12x 1 的单调性,
3 2
并求出其单调区间. 3 2 f ( x ) 2 x 3 x 12x 1 因为 你能小结求解函数单调区间的步骤吗? 所以 f '( x) 6 x2 6 x 12 x 1或 x 2时, (1)确定函数 y=f(x) 的定义域; 当 f '( x) 0, 即 (3)解不等式f’(x)>0 3 2 ,解集在定义域内的部分 函数 f ( x) 2x 3x 12x 1 单调递减. 为增区间; 3 2 f ( x ) 2 x 3 x 12 x 1 的单调递增区间为 (1 , )和(, 2) (4)解不等式 f’(x)<0 ,解集在定义域内的部分 函数 为减区间. 单调递减区间为( -2,1)
y f ( x)
1 2 x o
y
y f ( x)
y 1 2 x o
o
y f '( x )
2 x
(A)
y
(B)
y f ( x)
2
y
y f ( x)
x
o 1xΒιβλιοθήκη o 1 2(C)(D)
课堂练习
求下列函数的单调区间
(1)y 2x 5x 4
2
(2)y 3x x
3 x
(3)y (x 3)e
3 2 f ( x ) 2 x 3 x 12x 1 单调递增. 函数 (2 )求导数f’(x); 即 2 x 1时, 当 f '( x) 0,
高考 设 f '( x )是函数 f ( x ) 的导函数, y f '( x )的图象如 链接 右图所示,则 y f ( x ) 的图象最有可能的是( )
yx
y
yx
y
2
yx
3
y
1 y x y
o
x
o
x
o
x
o
x
函数在R上
(-∞,0) (0,+∞)
函数在R上
(-∞,0)
f '( x) 1 0 f '( x) 2 x 0 f '( x) 3x2 0 f '( x) x2 0
f '( x) 2 x 0
(0,+∞) f '( x) x2 0
再观察函数y=x2-4x+3的图象 总结: 函数在区间 y
0
. . . . . ..
2
(-∞,2)上单调 递减,切线斜率小于 0,即其导数为负;
在区间(2,+∞) x 上单调递增,切线斜 率大于0,即其导数 为正.
在某个区间(a,b)内, ①如果f’(x)>0, 那么函数y=f(x)在这个区间内单调 递增. ②如果f’(x)<0, 那么函数y=f(x)在这个区间内单调 递减.
课本62页 习题3.1 A组 1,2
课后思考:
课本62页 习题3.1 B组
如果在某个区间内恒有f’(x)=0,那么函数f(x) 有什么特性?
应用判断函数 f ( x) 2x 3x 12x 1 的单调性,
3 2
并求出其单调区间. 3 2 f ( x ) 2 x 3 x 12x 1 因为 你能小结求解函数单调区间的步骤吗? 所以 f '( x) 6 x2 6 x 12 x 1或 x 2时, (1)确定函数 y=f(x) 的定义域; 当 f '( x) 0, 即 (3)解不等式f’(x)>0 3 2 ,解集在定义域内的部分 函数 f ( x) 2x 3x 12x 1 单调递减. 为增区间; 3 2 f ( x ) 2 x 3 x 12 x 1 的单调递增区间为 (1 , )和(, 2) (4)解不等式 f’(x)<0 ,解集在定义域内的部分 函数 为减区间. 单调递减区间为( -2,1)