小学六年级奥数新定义运算

合集下载

六年级奥数定义新运算

六年级奥数定义新运算

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算.解答定义新运算, 关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序, 将数值代入, 转化为常规的四则运算算式进行计算.定义新运算是一种人为的、临时性的运算形式, 它使用的是一些特殊的运算符号, 如:*、△、⊙等, 这是与四则运算中的“+、-、×、÷”不同的.新定义的算式中有括号的, 要先算括号里面的. 但它在没有转化前, 是不适合于各种运算定律的.二、精讲精练【例题1】假设a*b=(a+b)+(a-b), 求13*5和13*(5*4).练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).. 求27*9.2、设a*b=a2+2b, 那么求10*6和5*(2*8).【例题2】设p、q是两个数, 规定:p△q=4×q-(p+q)÷2. 求3△(4△6).练习2:1、设p、q是两个数, 规定p△q=4×q-(p+q)÷2, 求5△(6△4).2、设p、q是两个数, 规定p△q=p2+(p-q)×2. 求30△(5△3).【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, 4*2=4+44, 那么7*4=________;210*2=________.练习3:1、如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, ……那么4*4=________.2、规定, 那么8*5=________.【例题4】规定②=1×2×3, ③=2×3×4 , ④=3×4×5, ⑤=4×5×6, ……如果1/⑥-1/⑦ =1/⑦×A, 那么, A是几?练习4:1、规定:②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤=4×5×6, ……如果1/⑧-1/⑨=1/⑨×A, 那么A=________.2、规定:③=2×3×4, ④=3×4×5, ⑤=4×5×6, ⑥=5×6×7, ……如果1/⑩+1/⑾=1/⑾×□, 那么□=________.【例题5】设a⊙b=4a-2b+ ab /2,求x⊙(4⊙1)=34中的未知数x.练习5:1、设a⊙b=3a-2b, 已知x⊙(4⊙1)=7求x.2、对两个整数a和b定义新运算“△”:a△b= , 求6△4+9△8.3、设M、N是两个数, 规定M*N=M/N+N/M, 求10*20-1/4.三、课后作业1、设a*b=3a-b×1/2, 求(25*12)*(10*5).2、如果2*1=1/2, 3*2=1/33, 4*3=1/444, 那么(6*3)÷(2*6)=________.3、如果1※2=1+2, 2※3=2+3+4, ……5※6=5+6+7+8+9+10, 那么x※3=54中, x=________.4、对任意两个整数x和y定于新运算, “*”:x*y=(其中m是一个确定的整数). 如果1*2=1, 那么3*12=________.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。

小学奥数-定义新运算

小学奥数-定义新运算

小学奥数-定义新运算小学奥数——定义新运算1.定义运算△为a△b=3×a-2×b。

求4△3,3△4,(17△6)△2,17△(6△2)和5△b=5时的b的值。

2.定义运算※为a※b=a×b-(a+b)。

求5※7,7※5,12※(3※4),(12※3)※4和3※(5※x)=3时的x的值。

3.暂无内容。

4.已知4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。

5.定义运算▽为a▽b=a×b+a-b,求5▽8.6.定义运算△为a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。

求1△100的值和5△b=5时的b的值。

7.定义运算为a b3a4b,求(87) 6.8.定义运算⊖为a⊖b=5×a×b-(a+b),求11⊖12.9.定义运算※为a※b=2×a×b-1/4×b,求8※(4※16)。

10.定义运算□为x□y=(x+y)/4,求a□16=10中a的值。

11.定义运算为a b=a×b/(a+b),求21010的值。

12.定义运算※为P※Q=(P+Q)/2,求4※(6※8)和x※(6※8)=6时的x的值。

13.定义运算⊕为x⊕y=(x+1)/y,求3⊕(2⊕4)的值。

14.已知4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50,求7⊗3的值。

15.定义运算为a b=(a+3)×(b-5),求5(67)的值。

16.定义运算为x y=6x+5y和△为x△y=3xy,求(23)△4的值。

读一读】狼&羊羊和狼在一起时,狼要吃掉羊,所以我们定义了两种运算,用符号△表示羊和狼的运算,用符号☆表示羊与羊战胜狼的运算。

具体规则见上文。

小学六年级奥数题:定义新运算(C)---习题详解

小学六年级奥数题:定义新运算(C)---习题详解

小学六年级奥数题:定义新运算(C)---习题详解简介本文详细解析了小学六年级奥数题目中关于定义新运算(C)的题。

通过这些题,学生能够熟悉并理解如何定义和应用新的运算法则。

题解析1. 问题:已知定义了新的运算法则"C",其中$x C y = x^2 +y^2$,求 $3 C 4$ 的值。

解析:根据定义,$3 C 4 = 3^2 + 4^2 = 9 + 16 = 25$。

所以 $3 C 4$ 的值为25。

2. 问题:定义了运算法则"C",其中$x C y = \frac{x}{y}$,求$24 C 3$ 的值。

解析:根据定义,$24 C 3 = \frac{24}{3} = 8$。

所以 $24 C3$ 的值为8。

3. 问题:已知定义了运算法则"C",其中$x C y = x - y$,求$10 C 5$ 的值。

解析:根据定义,$10 C 5 = 10 - 5 = 5$。

所以 $10 C 5$ 的值为5。

4. 问题:定义了运算法则"C",其中$x C y = x^3 + 2y$,求 $2C -1$ 的值。

解析:根据定义,$2 C -1 = 2^3 + 2(-1) = 8 - 2 = 6$。

所以 $2 C -1$ 的值为6。

5. 问题:给定定义了运算法则"C",其中$x C y = \sqrt{x} +\sqrt{y}$,求 $16 C 9$ 的值。

解析:根据定义,$16 C 9 = \sqrt{16} + \sqrt{9} = 4 + 3 = 7$。

所以 $16 C 9$ 的值为7。

总结通过解析以上题,我们可以看到,定义新的运算法则(C)可以使我们对数学运算有更多的理解和应用。

在研究中,我们应该灵活运用各种运算法则,深入理解数学的本质和规律。

以上是关于小学六年级奥数题目中关于定义新运算(C)的题详解。

希望能对同学们的研究有所帮助,提高数学能力。

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。

12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。

4×26﹣2。

小学六年级奥数第一讲:定义新运算【附练习题】

小学六年级奥数第一讲:定义新运算【附练习题】

【导语】知⼰知彼,百战不殆,熟悉每⼀种题型的解法,这样才会对考试中不同形式的题⽬都应付⾃如。

⽆忧考准备了以下内容,供⼤家参考。

第1讲定义新运算 ⼀、知识要点 定义新运算是指运⽤某种特殊符号来表⽰特定的意义,从⽽解答某些算式的⼀种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代⼊,转化为常规的四则运算算式进⾏计算。

定义新运算是⼀种⼈为的、临时性的运算形式,它使⽤的是⼀些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号⾥⾯的。

但它在没有转化前,是不适合于各种运算定律的。

⼆、精讲精练 【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。

这⾥的“*”就代表⼀种新运算。

在定义新运算中同样规定了要先算⼩括号⾥的。

因此,在13*(5*4)中,就要先算⼩括号⾥的(5*4)。

练习1: 1.将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2.设a*b=a2+2b,那么求10*6和5*(2*8)。

3.设a*b=3a-b×1/2,求(25*12)*(10*5)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航】根据定义先算4△6。

在这⾥“△”是新的运算符号。

练习2: 1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2.设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

小学六年级《定义新运算》奥数课件

小学六年级《定义新运算》奥数课件
9#(6#5)=9# 11
4
9# 11
4 9 11 4
4 47
16
练习二
如果A#B表示 A 2B ,那么5#(3#6)的结果是多少?
3
A#B= A 2B
3
5#(3#6)(有括号的先去括号)
3#6= 326 5
3
5#5
525 3
5
5#(3#6)的运算意义。
1326131 325
练习四
若规定a△b= b - a ,a□b= b + a ,5△(4□6)+625的值
ab
ab
是多少?
5△(4□6)+625 4□6 64 13
46 6
5△(4□6)+625
=5△
13 6
+625
1330625 30 13
6251330 30 13
623 49 390
例题五(选讲)
6△ 32=810
1
(相同)
678
6,7,8 (3个连续自然数)
总结
在计算过程中,同级运算的顺序是从左到 右,有括号先算括号,在定义新运算中,运算 顺序也是一样的。
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
x2
8△3= 10825
1
(相同)
9 10
8,9,10 (3个连续自然数)
练习五(选做)

小学六年级奥数——新定义运算

小学六年级奥数——新定义运算

第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。

?——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。

二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、?等,这是与四则运算中“+、-、×、÷”不同。

新定义运算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【举一反三】1、设a*b=(a+b)×(a-b),求27*9。

2、设a*b=a 2+2b,求10*6和5*(2*8)。

3、设a*b=3a -b ×21,求(25*12)*(10*5)。

例2、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。

求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。

求5△(6△4)。

2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。

求30△(5△3)。

3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。

例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。

【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。

2、规定*a b a aa aaa aa a =+++⋅⋅⋅⋅⋅⋅,那么8*5= 。

小学六年级奥数——新定义运算

小学六年级奥数——新定义运算

小学六年级奥数——新定义运算第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。

——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。

二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、等,这是与四则运算中“+、-、×、÷”不同。

新定义运算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【举一反三】1、设a*b=(a+b)×(a-b),求27*9。

2、设a *b=a 2+2b ,求10*6和5*(2*8)。

3、设a *b=3a -b ×21,求(25*12)*(10*5)。

例2、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。

求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。

求5△(6△4)。

2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。

求30△(5△3)。

3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。

例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。

【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。

2、规定*a b a aa aaa aa a =+++,那么8*5= 。

六年级奥数定义新运算及答案

六年级奥数定义新运算及答案

定义新运算1.规定:玄※b=(b+a) Xb,那么(2探3)探5= _________ 。

2•如果a△)表示(a 2) b,例如3也(3 2) 4 4,那么,当a药=30时,a= _________ 。

3. 定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4Z6=(4,6)+[4,6]=2+12=14. 根据上面定义的运算,18 42= ___________ 。

4. 已知a,b是任意有理数,我们规定:a ®b= a+b-1, a b ab 2,那么4 (6 8) (3 5) _________ 。

5. x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4> X<1> X<8>> 的值是__________ 。

6. 如果a O b 表示3a 2b ,例如4 O 5=3 X4-2 X5=2,那么,当x O 5 比5 O x 大5 时,x= ________ 。

7. 如果1 探4=1234,2 ※^3=234,7 ※^2=78,那么4 探5= _____ 。

8. 规定一种新运算“※”:a探b= a (a 1) (a b 1).如果(x※可^4=421200,那么x= ___________ 。

9. 对于任意有理数x, y,定义一种运算"※”,规定:x※尸ax by cxy ,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1沁=3,2探3=4,x※口=x(m工0),则m的数值2 210. 设a,b为自然数,定义a△)a b ab。

(1)计算(4 43)+(8 △的值;⑵计算(2△ 44;⑶计算(2 45) A(3 △!)。

11. 设a, b为自然数,定义a※匕如下:如果a >b,定义a探b=a-b,如果a<b,则定义a探b= b-a 。

小学六年级奥数 第六章 定义新运算

小学六年级奥数 第六章 定义新运算

第六章 定义新运算知识要点加、减、乘、除四则运算是数学中最基本的运算,它的意义、法则已被我们所熟知。

所谓“定义新运算”,是以四则运算为基础,以一种特殊的符号来表示的特别定义(规定)的运算。

运算时要严格按照新运算的定义进行代换,再进行计算。

具体程序如下:1.代换。

即按照定义符号的运算方法,进行代换。

注意此程序不能轻易改变原有的运算顺序。

2.计算。

准确地计算代换后的算式结果。

例1 (第五届“希望杯”邀请赛试题)对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b⨯+⨯⨯(m 是一个确定的整数)。

如果1⊗4=2⊗3,那么3⊗4= 。

点拨 首先,应确定所定义新运算中待定的常数m ,利用1⊗4=2⊗3,求出m 的值,再求3⊗4的值。

解 因为a ⊗b =2m a b a b⨯+⨯⨯ 所以1⊗4=14214m ⨯+⨯⨯=48m + 2⊗3=23223m ⨯+⨯⨯=2312m + 又已知 1⊗4=2⊗3所以48m +=2312m + 即 31224m +=4624m + 于是 3m +12=4m +6解得 m =6从而 3⊗4=634234⨯+⨯⨯=2224=1112说明 要准确理解新运算⊗的含义,将特定的⊗转化为普通的加、乘、除运算。

例2 定义运算“*”,对于任意数a 和b ,有a*b =a×b-(a +b)。

计算:(1)7*8;(2)12*4;(3)(3*5)*7;(4)4*(9*10).点拨 (1)、(2)根据题意可知“a*b =a×b-(a +b)”,两个数按定义的运算步骤是两个数的积减去这两个数的和。

(3)先计算出括号中3*5的值,得3*5=3×5-(3+5)=15-8=7。

求出括号内的值是7,原式(3*5)*7可化简为7*7,再计算出它的值即可。

(4)先计算9*10的值,9*10=9×10-(9+10)=90-19=71。

进而求4*(9*10),即4*71的值。

(完整版)六年级奥数定义新运算及答案

(完整版)六年级奥数定义新运算及答案

定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。

2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。

3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。

4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。

5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。

6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。

7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。

8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。

9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。

10.设a,b 为自然数,定义a △b ab b a -+=22。

(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。

11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数新定义运

The following text is amended on 12 November 2020.
第一周 定义新运算
【名言警句】
天才由于积累,聪明在于勤奋。

——华罗庚
【知识点精讲】
一、什么是定义新运算
定义新运算指用一个符号和已知运算表达式表示一种新的运算。

二、怎么解答定义新运算
解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、等,这是与四则运算中“+、-、×、÷”不同。

新定义运算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例1、假设a*b=(a +b)+(a-b),求13*5和13*(5*4)。

【举一反三】
1、设a*b =(a+b)×(a-b),求27*9。

2、设a*b=a 2+2b ,求10*6和5*(2*8)。

3、设a*b=3a -b ×2
1,求(25*12)*(10*5)。

例2、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。

求3△(4△6)
【举一反三】
1、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。

求5△(6△4)。

2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。

求30△(5△3)。

3、设M 、N 是两个数,规定:*M N M N N M =
+,求110*204-。

例3、如果1*5111111111111111=++++,2*42222222222=+++,
3*3333333=++,4*2444=+,那么7*4= ;210*2= 。

【举一反三】
1、如果1*5111111111111111=++++,2*42222222222=+++,
3*3333333=++,…那么4*4= 。

2、规定*a b a aa aaa =+++⋅⋅,那么8*5= 。

(b-1)个a
3、如果12*12=,13*233=,14*3444
=,那么((26*)3)*6÷= 。

例4、规定123②=⨯⨯,234③=⨯⨯,345④=⨯⨯,456⑤=⨯⨯,…如果
1
1
1
A ⑥⑦⑦-=⨯。

那么,A 是几
【举一反三】
1、规定:123②=⨯⨯,234③=⨯⨯,345④=⨯⨯,456⑤=⨯⨯,…如果
1
1
1
A ⑧⑨⑨-=⨯,那么A= 。

2、规定:234③=⨯⨯,345④=⨯⨯,456⑤=⨯⨯,567⑥=⨯⨯,…如果
1
111111
⑩-=⨯,那么□= 。

3、如果12=1+2,23=2+3+4,…,56=5+6+7+8+9+10,那么,在X 3=54中,X
= 。

例5、设1422b a b a ab =-+,求(41)34x =中的未知数x 。

【举一反三】
1、设32b b a a =-,已知(41)7x =,求x 。

2、对两个整数a 和b 定义新运算“▽”: 2()()
a b a ▽b a b a b -=+⨯-,求6▽4+9▽8。

3、对任意两个整数x 和y 定义新运算“*”:4*3xy x y mx y =
+(其中m 是一个确定的整数)。

如果 1*21=,那么3*12= 。

【家庭作业】
1. 设b a ,表示两个不同的数,规定b a b a 43+=∆.求6)78(∆∆。

2. 定义运算为a b =5×)(b a b a +-⨯.求1112。

3. b a ,表示两个数,记为:a ※b =2×b b a 4
1-⨯.求8※(4※16)。

4. 设y x ,为两个不同的数,规定x □y 4)(÷+=y x .求a □16=10中a 的值。

5. 规定a b
a b a b +⨯=
.求21010的值。

6. Q P ,表示两个数,P ※Q =2Q P +,如3※4=2
43+=.求4※(6※8);如果x ※(6※8)=6,那么=x 7. 定义新运算x ⊕y
x y 1+=.求3⊕(2⊕4)的值。

8. 有一个数学运算符号“”,使下列算式成立:48=16,106=26,610=22,1814=50.求73=
9. “▽”表示一种新运算,它表示:)8)(1(11+++=
∇y x xy y x .求3▽5的值。

10. b
a b a b a ÷+=∆,在6)15(=∆∆x 中.求x 的值。

11. 规定xy y x xA y x ++
=∆,而且1∆2=2∆3.求3∆4的值。

12. 规定a ⊕)1()2()1(-+++++++=b a a a a b ,(b a ,均为自然数,a b >).如果x ⊕10=65,那么=x
13. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值。

14. y x ,表示两个数,规定新运算“”及“△”如下:x y x y 56+=,x △xy y 3=.求(23)△4的值。

相关文档
最新文档