相变蓄热材料综述

合集下载

相变储热技术研究进展

相变储热技术研究进展

相变储热技术研究进展一、本文概述随着全球能源需求的日益增长和环保意识的逐渐加强,高效、环保的能源存储技术成为了研究热点。

相变储热技术作为一种重要的热能存储方式,因其能在特定温度下进行热能的吸收和释放,从而实现对热能的有效管理和利用,受到了广泛关注。

本文旨在全面综述相变储热技术的研究进展,包括其基本原理、材料研究进展、应用领域以及未来的发展趋势。

通过对现有文献的梳理和分析,本文旨在为相关领域的研究者提供有价值的参考,推动相变储热技术的进一步发展和应用。

二、相变储热材料的研究进展相变储热技术作为一种高效、环保的储热方式,近年来受到了广泛关注。

其核心在于相变储热材料(Phase Change Materials, PCMs),这些材料能够在特定的温度下吸收或释放大量的热能,从而实现对热能的储存和利用。

近年来,相变储热材料的研究取得了显著的进展,不仅拓宽了材料种类,还提高了储热效率和稳定性。

在材料种类方面,传统的相变储热材料主要包括无机盐类、石蜡类和脂肪酸类等。

然而,这些材料在某些应用场合下存在导热性差、易泄漏、化学稳定性不足等问题。

因此,研究人员开始探索新型相变储热材料,如高分子材料、纳米复合材料等。

这些新材料不仅具有更高的储热密度和更好的稳定性,还能通过纳米效应、界面效应等提高导热性能,从而满足更广泛的应用需求。

在储热效率方面,研究者们通过改变材料的微观结构、优化复合材料的配比、引入纳米增强剂等方法,有效提高了相变储热材料的储热效率和热稳定性。

一些研究者还将相变储热材料与其他储能技术相结合,如与太阳能、地热能等可再生能源相结合,实现了热能的高效利用和存储。

在应用方面,相变储热材料已广泛应用于建筑节能、工业余热回收、航空航天等领域。

在建筑节能领域,相变储热材料可以用于墙体、屋顶等建筑构件中,通过储存和释放热能来调节室内温度,提高建筑的保温性能。

在工业余热回收领域,相变储热材料可以回收和利用工业生产过程中产生的余热,提高能源利用效率。

相变储热材料

相变储热材料

相变储热材料相变储热材料是一种能够在相变过程中吸收或释放大量热量的材料,广泛应用于太阳能热能储存、建筑节能、电力系统调峰等领域。

相变储热材料利用物质在相变过程中吸收或释放的潜热来实现热储存和释放,具有储热密度高、储热温差小、循环稳定性好等优点,因此备受关注。

常见的相变储热材料包括蓄热水、蓄热混凝土、相变蜡等。

其中,相变蜡因其熔点明确、热储存密度大、循环稳定性好等特点,成为相变储热材料中的热门产品。

相变蜡的主要成分是石蜡或蜂蜡,其在固态和液态之间的相变过程可以吸收或释放大量热量,因此被广泛应用于太阳能集热系统、建筑节能材料、电力系统调峰等领域。

相变储热材料的性能对其应用效果起着至关重要的作用。

首先,相变储热材料的相变温度应与应用系统的工作温度相匹配,以确保在需要释放热量时能够准确释放。

其次,相变储热材料应具有良好的循环稳定性,能够经受多次相变循环而不发生明显的性能衰减。

此外,相变储热材料的热导率也是影响其应用效果的重要因素,高热导率可以加快热量的传输速度,提高系统的热效率。

在实际应用中,相变储热材料的设计和制备也是至关重要的。

首先,需要根据具体的应用需求选择合适的相变储热材料,包括相变温度、热储存密度、循环稳定性等指标。

其次,需要设计合理的储热结构,确保相变储热材料能够充分接触传热,并且能够在相变过程中保持稳定的温度分布。

最后,制备工艺也需要精益求精,以确保相变储热材料具有良好的物理结构和热物性。

总的来说,相变储热材料作为一种高效的热能储存和释放方式,在太阳能热能储存、建筑节能、电力系统调峰等领域具有广阔的应用前景。

随着科技的不断进步,相变储热材料的性能和制备工艺也在不断提升,相信其在未来会有更加广泛的应用。

相变储热材料的发展将为推动清洁能源利用和建筑节能领域的发展做出重要贡献。

科技成果——相变储能材料

科技成果——相变储能材料

科技成果——相变储能材料项目简介相变储能材料(Phase Change Materials,PCMs)是一类利用在某一特定温度下发生物理相态变化以实现能量的存储和释放的储能材料,一般有固-液、液-气和固-固相变三种形式。

目前固-液相变储能材料的研究和应用最为广泛,其工作原理为:当环境温度高于相变温度时,材料由固态转变为液态并吸收热量;而当环境温度低于相变点时,材料由液态转变为固态释放热量,从而维持环境温度在适宜水平。

在相变过程中材料吸收或释放的热量,是材料单一相态温度变化时吸收或释放热量的几十倍甚至几百倍。

相变储能材料储能原理应用范围相变储能材料响应温度变化所吸收和释放的是热能,在能源高效利用和节能保温领域有着重要的应用价值。

如在建筑节能、太阳能利用、电力调峰、可再生能源消纳、工业余热回收、纺织品、冷链运输、医疗健康等方面拥有广阔的市场前景。

项目阶段目前主要的有机相变储能材料产品来源于石油工业的副产物,具有毒性,同时因其不会被生物降解,所以会持续产生污染。

研发团队以国家“973”计划——“节能领域纳米材料机敏特性关键科学问题研究”课题的研究成果为基础,制备出基于天然可再生油脂的相变储能材料,具有绿色无毒、可降解、储能密度高等优点。

通过对相变储能材料进行功能化处理,使其进一步具备了高光热转换效率及良好的储热特性,可高效利用太阳能及环境余热。

知识产权已申请相关专利。

调配出的不同温度的相变材料合作方式1.可根据实际情况研制具有不同相变温度的相变储能材料,满足各类需求。

2.完成建筑用相变储能材料产品的中试生产,实现了相变储能产品的规模化制备,如相变储能地板产品、相变储能板材产品、相变储能粉体(60-80目)与颗粒产品(5-8mm)等。

其中,地板和板材产品可用于室内装修,粉体和颗粒产品可作为其他建材,如涂料、砂浆、水泥、混凝土等的添加物。

3.将制备的相变储能板材应用于实际建筑中,取得了很好的控温节能效果:在北京冬季时,白天室内最多可少升温6-7℃,且温度峰值延后近2小时;夜晚温度降低时间最多可延迟近6小时(以降至18℃为限),有效减小了室内温度波动,并减少约18%的采暖电能能耗。

相变材料的研究进展及其在建筑领域的应用综述

相变材料的研究进展及其在建筑领域的应用综述

相变材料的研究进展及其在建筑领域的应用综述内容提示:相变材料是相变物质与传统建筑材料复合而成的一种新型储能建筑材料,本文对相变材料的概念、相变材料的分类、相变材料的筛选和改进、相变材料的制备方法以及封装方法进行了阐述,同时论述了相变材料在建筑领域的应用,并提出了相变材料应用于建筑领域的发展方向。

延伸阅读:建筑材料建筑节能相变材料能源是人类社会生存和发展的血液,在电力供电引起的能源和环境危机越来越被人们关注的情况下,如何开发出新的绿色能源以及提高能源的利用率显得越发重要。

(参考《》)现阶段,人们关心比较多的新能源是太阳能,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。

相变储能材料可以从环境中吸收能量和向环境释放能量,较好地解决了能量供求在时间和空间上不匹配的矛盾,有效地提高了能量的利用率。

同时相变储能材料在相变过程中温度基本上保持恒定,能够用于调控周围环境的温度,并且能重复使用[1]。

相变储能材料的这些特性使得其在电力移峰填谷、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。

1相变材料的研究进展1middot;1相变材料的分类相变材料是可将一定形式的能量在高于其相变温度时储存起来,而在低于其相变温度时释放出来加以利用的储能材料。

它主要由主储热剂、相变点调整剂、防过热剂、防相分离剂、相变促进剂等组分组成[2]。

相变材料种类很多,从所储能量的特点看,分为储热材料和储冷材料两类[2]。

从储能材料储能的方式看,可分为显热储能、潜热储能和化学反应储能3类[3]。

其中,潜热储能是利用相变材料的相变潜热来储热,储能密度大,储热装置简单、体积小,而且储热过程中储热材料近似恒温,可以较容易地实现室温的定温控制,特别适用于建筑保温节能领域[4]。

从蓄热的温度范围看,可分为高温、中温和低温3类。

高温相变材料主要是一些熔融盐、金属合金;中温相变材料主要是一些水合盐、有机物和高分子材料;低温相变材料主要是冰和水凝胶[5]。

相变蓄热材料

相变蓄热材料

1 文献综述1.1 相变蓄热材料1.1.1相变蓄热材料的研究背景随着全球能源形势的日益紧张,节能与环保受到世界各国越来越多的重视。

但是由于能源的供给与需求具有较强的时间性和空间性,在许多能源利用系统中(如太阳能系统、建筑物空调和采暖系统、冷热电联产系统、余热废热利用系统等)存在着供能和耗能之间的不协调性(失配),从而造成了能量利用的不合理性和大量浪费。

例如:在不需要热时,却有大量热的产生,有时候供应的热却有很大一部分作为余热被损失掉,这些都需要一种类似于储水池储水一样的物质把热量储存起来,需要时再释放出来,这样的物质称为热能储存材料(蓄热材料)。

人们对蓄热材料,特别是相变蓄热材料的认识和研究是近几十年的事情。

二十世纪二十年代以来,特别是七十年代能源危机的影响,相变蓄热的基础和应用技术研究在发达国家迅速崛起,并得到不断的发展,日益成为受人重视的新材料。

在太阳能利用、电力的“削峰填谷”、废热和余热的回收利用以及工业与民用建筑采暖与空调的节能领域具有广泛的应用前景,近年来已成为世界范围的研究热点。

相变储能材料作为储能技术的基础,在国内外得到了极大的发展。

1.1.2 相变蓄热材料的分类1.1.2.1根据蓄热材料的化学组成分类(1) 无机相变材料主要包括结晶水合盐、熔融盐、金属或合金。

结晶水合盐通常是中、低温相变蓄能材料中重要的一类,价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性,且工作温度跨度比较大,更重要的是可在高温下进行蓄热。

例如KNO3-NaNO3熔盐、K2CO3-Na2CO3熔盐、CaCl2·6H2O、Na2HPO4·12H2O、Na2CO3·10H2O、Na2SO4·5H2O等[1]。

但其在使用过程中会出现过冷、相分离等不利因素,严重影响水合盐的广泛应用[2-3]。

(2) 有机相变材料主要包括石蜡, 脂肪酸、某些高级脂肪烃、醇、羧酸及盐,包括石蜡类、非石蜡类、某些聚合物等。

相变储热材料的发展概况及展望

相变储热材料的发展概况及展望

相变储热材料的发展概况及展望本文系统概括了相变储热材料的发展概况,介绍了相变储热材料的分类、性能和应用,并对其未来的发展进行了展望。

标签:相变材料相变储热能源能源是人类赖以生存的基础。

随着现代工业的迅速发展,人们对能源的需求量越来越大,迫切需要全球各国不断开发和利用新能源。

在此过程中,虽然新能源在不断被开发,但是我们对能源的利用在许多情况下都未达到合理化,致使大量能源被浪费。

因此,提高能源的利用率很有必要。

储热技术可用于解决热能供给和需求失配的矛盾,是提高能源利用效率和保护环境的重要技术。

储热技术主要包括显热、潜热和反应热3种储热方式。

其中,以相变材料(Phase Change Material,PCM)的固-固、固-液相变潜热来储存热量的潜热型热能储存方式最为普遍,也最为重要。

其优点为:储热密度大、储放热过程近似等温和过程容易控制等[1]。

固-固相变储热材料和固-液相变储热材料是目前应用较为广泛的相变储热材料。

固-液相变材料存在过冷和相分离现象,从而导致储热性能恶化,具有腐蚀性等缺点。

固-固相变材料在发生相变前后固体的晶格结构改变而放热吸热,与固-液相变储热材料相比,固-固相变储热材料具有稳定性好、腐蚀性小、装置简单等特点[2]。

一、相变储热材料分类及应用1.相变储热材料分类相变储热材料主要有固-固和固-液型两类,其中固-液相变储热材料根据使用温度范围,又可分为高温型和低温型储热材料,或者根据材料类型,又可分为有机型和无机型储热材料;固-固相变储热材料主要有3大类,分别是高分子类、多元醇类和层状钙钛矿类。

1.1固-固相变储热材料高分子类相变储热材料主要是一些高分子的聚合物。

如聚烯烃类、聚缩醛类等。

目前最常见的是聚乙烯。

这种材料一般不产生过冷或相分离现象,结晶度高,导热率高,物美价廉。

多元醇类相变储热材料主要有季戊四醇(PE)、2,2-二羟甲基-丙醇(PG)、新戊二醇(NPG)、三羟甲基乙烷(TMP)等。

相变储能材料的研究与应用

相变储能材料的研究与应用

相变储能材料的研究与应用第一章:引言相变储能材料是一种具有广阔应用前景的新型材料,其能够通过物质相变吸收或释放大量的热能,实现高效能量储存。

随着能源危机的加剧和环保意识的增加,相变储能材料作为一种清洁、高效、可靠的能量储存方式,越来越受到人们的关注。

针对相变储能材料的研究和应用问题,本文从材料性能、制备工艺、应用领域等方面进行探究。

第二章:相变储能材料的基本特性相变储能材料是指在特定条件下从一个相态转变为另一个相态时所释放或吸收的能量。

相变储能材料有许多具有吸引力的特点,例如能量密度高、长寿命、稳定性好、环保等。

相变储能材料的优点主要包括以下几个方面:1、高能量密度,比传统化学储能材料要高出几倍;2、分光潜热,储能效果更优;3、多次循环使用,具有较长的使用寿命;4、不受纵横向外力影响,稳定性好;5、制备过程简单、成本低。

第三章:相变储能材料的制备工艺相变储能材料的制备工艺是影响其性能的一个关键因素。

传统的相变储能材料制备方法主要包括封装法、微胶囊法、溶胶-凝胶法、溶液旋转镀法等。

这些方法制备的相变储能材料使用寿命较短,储存容量较小,不能满足实际应用需求。

针对传统制备方法出现的瓶颈,研究人员们不断探索新的相变储能材料制备方法,目前研究进展最为显著的是气相沉积法和溶胶-凝胶自组装法。

气相沉积法是一种利用高温高压条件下,使前驱体沉积在基底上形成相变储能材料的制备方法,能够制备出高纯度、晶体质量高、密度均匀的相变储能材料。

溶胶-凝胶自组装法则是通过调节前驱体浓度,利用物质自组装成膜的性质制备相变储能材料,这种方法制备出的材料具有良好的膜性能和凝胶微观结构。

第四章:相变储能材料的应用领域由于相变储能材料优异的性能特点,其在能源领域、热管理领域、建筑领域等方面均有广泛的应用。

相变储能材料在能源领域的应用主要涉及能量储存和转换。

例如,可以使用相变储能材料制成锂电池,提高电池的能量密度和使用寿命,还可以生产太阳能电池板、地热发电等途径。

相变储能材料的研究及应用

相变储能材料的研究及应用

相变储能材料的研究及应用随着科技的发展,科学家们不断地探索新的材料,以实现更好的性能和应用。

其中,相变储能材料备受关注。

相变储能材料因其具有的高能量密度、快速响应速度和长寿命等优点已经应用于很多领域,例如节能、环保、信息存储等。

本文将介绍相变储能材料的研究过程和应用前景,并探讨未来的发展方向。

一、相变储能材料的研究相变储能材料包括有机和无机两种类型。

其中,无机相变储能材料主要有氧化物、硫化物、氮化物、硼化物、碳化物等。

这些材料的相变点在220K至1500K之间,具有高储能密度和良好的热稳定性。

有机相变储能材料则由聚合物、柔性电路和聚合物薄膜等构成。

这些材料的相变点在240K至400K之间,具有良好的复原性和可调节性。

相比之下,无机相变储能材料具有更高的储能密度和漫长的使用寿命。

相变储能材料的研究主要集中在相变现象的探讨和储能机制的研究上。

其中,相变现象是指在温度或压力变化下物质的相态发生改变的现象。

而储能机制则是指相变储能材料吸收或释放热时,储存或释放储能的机制。

储能机制的研究有助于深入了解相变储能材料的性能,并推进材料的优化。

二、相变储能材料的应用相变储能材料在节能、环保和信息储存等领域具有广泛的应用。

以下是相变储能材料的应用情况:1.太阳热能储存:相变储能材料可以吸收太阳能并将其储存起来,然后在需要时释放储存的热能以供电力或热水使用。

2.智能窗帘:采用相变储能材料制成的智能窗帘,可以根据室内温度自动调节百叶的倾角,使室内温度保持恒定。

3.电缆保护:相变储能材料可以制成电缆保护材料,能够有效防止电缆在高温条件下出现过热现象。

4.信息存储:相变储能材料在信息存储方面也具有潜力,可用于高速数据读写、容量更大的硬盘和移动储存设备。

三、未来的发展方向相变储能材料是一个非常有前途的领域,但仍面临一些挑战。

例如,相变储能材料的热稳定性和能量密度等需要进一步提高。

目前,一些研究机构已经投入研究力量,以推进相变储能材料的性能和应用。

相变材料种类及优缺点比较综述

相变材料种类及优缺点比较综述

为了提高热导率,相变材料装在浅而大的盘状容器中;也可以将PCM装入有导热流体包围的小圆柱管中;或者是壳管换热器的壳中。

部分填充PCM的蜂窝结构,以及将PCM置于球状的塑料容器中(即相变胶囊),很好的解决了相变时体积变化导致泄漏、导热面积减小引起热阻增大的问题。

组合相变材料直接接触的换热器固—固相变材料水和盐与不溶流体的使用,扰动解决了PCM的过冷和相隔离的问题,而且微/纳胶囊较大的面积/体积比,使得导热率加强。

材料在固态、液态、气态中发生转变的过程叫做相变。

材料在相变过程中,会放热或者吸热,而物体会维持恒温。

而这种特性为我们热控制带来了福音。

相变材料是由多组分构成的,包括主储剂、相变点调整剂、防过剂、防相分离剂、相变促进相变材料的分类:按照其相变过程可分为固——固相变、固——液相变、固——气相变和液——气相变材料四种,目前应用较多的是固——液相变材料。

按照其化学组成可分为无机相变材料、有机相变材料和复合相变材料。

无机相变材料包括结晶水合盐(可逆性不好)、熔融盐、金属合金等无机物;有机相变材料包括石蜡、羧酸、酯、多元醇等有机物;混合相变材料主要是有机和无机共融相变材料的混合物。

(多种相变材料混合可以获得合适的相变温度)三种各自的特点存在的问题:过冷、相分离、相变时体积变化、腐蚀容器、液相泄露;有机相变材料熔点低,易燃、导热率低。

近年来出现的产品:为解决固液相变时泄露和腐蚀,产生了胶囊相变材料,为增加表面积/体积比,微/纳米胶囊相变材料及其应用;定型相变材料综合了是将相变材料与高分子材料复合,既避免固-固相变材料潜热低的问题,又回避了固——液相变材料液体泄露的问题;金属泡沫相变材料等相变材料,应满足的要求有:合乎需要的相变温度;足够大的相变潜热;性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。

改善相变材料导热性能的办法是,在相变材料中加人金属、陶瓷材料和热解石墨等导热系数高的填料,填料通常有以下结构形式:粉末、纤维、肋片及蜂窝;利用2种或者3种相变温度不同的材料按相变温度高低顺序进行放置,可得到合适的相变温度点,同时加快导热速度。

相变储热材料的制备与应用

相变储热材料的制备与应用

相变储热材料的制备与应用摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。

气化、化学反应等方式实现。

它是一种平衡热能供需和使用的手段。

热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。

关键词:相变;储热;复合材料一、相变材料在国内外的发展状况国外对相变储能材料的研究工作始于20世纪60年代。

最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。

近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。

国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。

相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。

上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。

二、相变储热材料的分类(1)从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。

无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。

与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。

其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。

但石蜡类相变储能材料热导率较低,也限制了其应用范围。

为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。

复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。

同时它的导热能力较有机物有较大的改善。

(2)根据使用的温度不同又可以分为高、中、低温相变储热材料。

相变蓄热材料

相变蓄热材料

相变蓄热材料
相变蓄热材料是一种能够在相变过程中吸收或释放大量热量的材料,它在热能存储和传递方面具有独特的优势。

相变蓄热材料主要包括蓄热蜡、蓄热盐和金属相变材料等,它们在建筑节能、太阳能利用、储能系统等领域有着广泛的应用。

首先,相变蓄热材料在建筑节能领域具有重要意义。

在夏季,建筑物内部温度升高,相变蓄热材料吸收热量并进行相变,使室内温度得到控制。

而在冬季,相变蓄热材料释放储存的热量,起到保温的作用,从而减少了建筑物的能耗。

其次,相变蓄热材料在太阳能利用领域也具有重要作用。

太阳能热水器和太阳能集热器中常常使用相变蓄热材料来储存太阳能热量,使得热水可以在夜间或阴雨天继续供应,提高了太阳能利用的效率。

此外,相变蓄热材料还被广泛应用于储能系统中。

通过在蓄热盐、蓄热蜡等相变材料中储存热量,可以实现在需要时释放热量,用于蒸汽发电、储能电热锅炉等领域,提高了能源的利用效率。

相变蓄热材料的应用还在不断拓展,例如在电子产品散热、汽车空调、服装保暖等领域也有着潜在的应用前景。

相变蓄热材料的研究和应用将进一步推动绿色能源的发展和利用,为人类社会可持续发展作出贡献。

总之,相变蓄热材料以其独特的热能存储和传递特性,在建筑节能、太阳能利用、储能系统等领域具有广泛的应用前景。

随着科技的不断进步和人们对可持续发展的重视,相变蓄热材料的研究和应用将会得到进一步推动,为实现清洁能源和可持续发展目标贡献力量。

相变储热换热器文献综述

相变储热换热器文献综述

相变储热换热器文献综述1引言在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。

它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。

对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。

通常在化工厂得建设中,换热器约占总投资的10~20%。

在石油炼厂中,换热器约占全部工艺设备投资的85~40%。

在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。

换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。

由于使用的条件不同,换热设备又有各种各样的形式和结构。

另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。

其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。

总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。

2换热器发展历史简要回顾二十世纪20年代出现板式换热器,并应用于食品工业。

以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。

30年代初,瑞典首次制成螺旋板换热器。

接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。

30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。

在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。

60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。

此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。

70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。

相变蓄热材料

相变蓄热材料

相变蓄热材料
相变蓄热材料是指利用物理特性,在一定温度范围内可以消耗大量热
量而不改变其物理性质的物质。

它是一种特殊的储热材料,具有高密度、
高比热、低污染、调节便捷等特点,可用于固体蓄热技术。

它们的典型特
性是在一个温度范围内,可以消耗大量的热量而不影响它们的状态。

此外,在一定的温度之外,它们也可以吸收热量,从而达到蓄热的目的。

这种材
料可以应用于冷却系统、蓄热系统以及加热系统,满足工业和商业的冷暖
需求。

典型的相变蓄热材料有聚丙烯、酚醛树脂、水醋酸乙烯、聚氨酯、
塑料乳液、聚四氟乙烯、甲醇、聚维酮等。

国内外相变储能材料技术现状及应用情况研究综述

国内外相变储能材料技术现状及应用情况研究综述

0 引言能源是社会发展的重要物质基础,是经济的主要驱动力之一[1]。

不可再生资源的不断枯竭和全球变暖的不断升级,迫使趋势转向使用可持续能源[2,3]。

因此,进行可再生能源开发势在必行。

研究充放效率高的储热、储电系统是推动可再生能源普及应用的必经环节[4,5]。

据统计,目前全球18%以上的能源消耗来自可再生能源[6]。

长远看来,可再生能源由于其可持续性、环境友好性而比传统化石能源更具应用前景[7]。

然而,可再生能源也面临亟待解决的问题,特别是以风光为主的间歇性能源,其自然脉动性与人类社会活动的24小时能源供应需求相违背,需配置储能手段来平抑能源供给侧与需求侧的波动[8]。

在热能制取与利用领域,通过将热能储存(Thermal Energy Storage,TES)应用于高效和清洁的能源系统,可以最大限度地减少对二次能源/化石燃料的依赖,从而提高可再生能源热能的可靠性[12,13]。

此外,TES系统可以储存多余的能源,并通过在电力需求高峰期间交付来弥补供需缺口[14,15]。

国内外能源技术领域正在努力从可再生能源中获得更稳定、更高效、全天候的能源供给[16]。

1 热能储存TES通过Web of Science对TES相变材料进行了全面的文献调查,在过去的30年里,共统计出4300多篇关于材料、组件、系统、应用、发展等基础科学/化学的研究论文。

如图1(a)所示,近10多年来,TES材料的研究非常活跃。

此外,TES 材料也获得了市场认可,一些组织对相关技术申请了专利保护[见图1(b)],从文献和专利增长情况来看,储热行业发展增速较为迅猛[17-18]。

用于潜热储热(LHTES)的材料称为相变材料(Phase Change Materials,PCM)[19],在相变过程中具有恒定温度进行吸收和释放热量的能力[20]。

PCM的分类和相关应用情况如图2所示,组成成分多样,可以是有机、无机或共晶混合物。

通过将PCM配置进TES系统,可有效地利用其相变过程进行热量储存与馈出,通过控制系统的运行参数可以满足热负荷。

相变蓄热材料

相变蓄热材料

1 文献综述1.1 相变蓄热材料1.1.1相变蓄热材料的研究背景随着全球能源形势的日益紧张,节能与环保受到世界各国越来越多的重视。

但是由于能源的供给与需求具有较强的时间性和空间性,在许多能源利用系统中(如太阳能系统、建筑物空调和采暖系统、冷热电联产系统、余热废热利用系统等)存在着供能和耗能之间的不协调性(失配),从而造成了能量利用的不合理性和大量浪费。

例如:在不需要热时,却有大量热的产生,有时候供应的热却有很大一部分作为余热被损失掉,这些都需要一种类似于储水池储水一样的物质把热量储存起来,需要时再释放出来,这样的物质称为热能储存材料(蓄热材料)。

人们对蓄热材料,特别是相变蓄热材料的认识和研究是近几十年的事情。

二十世纪二十年代以来,特别是七十年代能源危机的影响,相变蓄热的基础和应用技术研究在发达国家迅速崛起,并得到不断的发展,日益成为受人重视的新材料。

在太阳能利用、电力的“削峰填谷”、废热和余热的回收利用以及工业与民用建筑采暖与空调的节能领域具有广泛的应用前景,近年来已成为世界范围的研究热点。

相变储能材料作为储能技术的基础,在国内外得到了极大的发展。

1.1.2 相变蓄热材料的分类1.1.2.1根据蓄热材料的化学组成分类(1) 无机相变材料主要包括结晶水合盐、熔融盐、金属或合金。

结晶水合盐通常是中、低温相变蓄能材料中重要的一类,价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性,且工作温度跨度比较大,更重要的是可在高温下进行蓄热。

例如KNO3-NaNO3熔盐、K2CO3-Na2CO3熔盐、CaCl2·6H2O、Na2HPO4·12H2O、Na2CO3·10H2O、Na2SO4·5H2O等[1]。

但其在使用过程中会出现过冷、相分离等不利因素,严重影响水合盐的广泛应用[2-3]。

(2) 有机相变材料主要包括石蜡, 脂肪酸、某些高级脂肪烃、醇、羧酸及盐,包括石蜡类、非石蜡类、某些聚合物等。

相变蓄热材料综述

相变蓄热材料综述

相变虚热材料综述蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。

一相变蓄热材料的分类根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。

由于后两种相变方式在相变过程中伴随有大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。

根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。

其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放置有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍相变过程。

有机相变材料主要包括石蜡,脂肪酸及其他种类.石蜡主要由不同长短的直链烷烃混合而成,可用通式C。

H抖:表示,可以分为食用蜡、全精制石蜡、半精制石蜡、粗石蜡和皂用蜡等几大类,每一类又根据熔点分成多个品种.短链烷烃的熔点较低,随着碳链的增长,熔点开始增长较快,墨、陶瓷、膨润土、微胶囊等.膨胀石墨是由石墨微晶构成的疏松多孔的蠕虫状物质,它除了保留了鳞片石墨良好的导热性外,还具有良好的吸附性[1引.陶瓷材料有耐高温、抗氧化、耐化学腐蚀等优点,被大量地选做工业蓄热体.主要的陶瓷材质有石英砂、碳化硅、刚玉、莫来石质、锫英石质和堇青石质等.膨润土有独特的纳米层问结构,采用“插层法”将有机相变材料嵌入其层状空间,制备有机/无机纳米复合材料,是开发新型纳米功能材料的有效途径,微胶囊相变材料口阳是用微胶囊技术制备出的复合相变材料。

铝基合金高温相变储热材料

铝基合金高温相变储热材料

铝基合金高温相变储热材料一、研究背景因使用化石能源造成的温室气体排放和环境污染对人类的生存和发展构成了严重威胁,并且化石能源资源有限,终将可能枯竭,因此开发清洁的可再生能源是全球各国面临的重大挑战.在水能、太阳能、风能、生物质能等可再生能源中,太阳能因其储量的无限性、存在的普遍性、利用的清洁性和开发的经济性[1]成为最重要的可再生能源。

太阳能发电模式主要有光伏和光热两种模式,太阳能热发电技术因其供电连续稳定、成本低等优点,将成为未来太阳能发电的主要方式之一。

太阳能热发电技术客观上要求发展高效率、低成本的高温潜热能存储技术。

在太阳能热发电技术中,储热技术可在太阳能流高峰时吸热、低谷时放热,能解决太阳能流的不连续性,使塔式、槽式或蝶式发电系统连续稳定的发电,成为太阳能热发电技术的关键。

相变储热材料具有相变潜热大、储热密度高、吸放热过程近似等温等优点,是目前最有效的储热方式之一。

在120~1 000℃温度区间内基于无机盐和金属合金的相变储热材料有几百种,其中铝合金相变储热材料具有储热密度大、抗高温氧化性强、热稳定性好、导热系数大、过冷度小、相偏析小及性价比高等优点,在太阳能高温热发电技术中有着较好的应用前景。

热能存储研究。

二、储热材料概述材料蓄热的本质在于它可将一定形式的热量在特定的条件下贮存起来,并能在特定的条件下加以释放和利用。

因此可以实现能量供应与人们需求一致性的目的,并达到节能降耗的作用。

这一本质,也决定了蓄热材料必须具有可逆性好、贮能密度高、可操作性强的特点。

蓄热方式按蓄热方式划分,蓄热材料一般可分为:显热型、潜热型和化学反应型3大类。

在这3大类蓄热材料中,潜热型最具有发展前途,也是目前应用最多和最重要的蓄热方式。

1)显热储热材料显热储热材料主要有:土壤、地下蓄水层、砖石、水泥及Li20与A1203、Ti02、B203、Zr02等混合高温烧结成型的显热储热材料。

它是利用物质本身温度的变化过程来进行热量的储存。

相变蓄能材料

相变蓄能材料

纳米吸附相变材料
相变材料在相变过程中 存在泄漏的问题,因此常将具 有纳米级微孔结构的材料与相变材料结合,利用毛细力 将相变材料吸附到微孔中,组成定性相变材料。在毛细 作用力和表面张力的作用下,相变材料很难从微孔结构 内渗透出来,从而抑制了相变材料在蓄热技术中应用时 的液态流动问题。
纳米微胶囊相变材料
在制冷系统热回收装臵中的应用
热回收装臵由装臵外壳、制冷剂管路、水管路及相变蓄能材料组成。制冷 系统热回收装臵是将热回收技术和相变蓄能技术有机结合起来的一种新装 臵。 原理:利用相变材料在等温或者近似等温的条件下储存或释放大量相变潜 热实现能量的蓄、放。
在建筑节能中的应用
相变蓄能建筑材料是将 相变材料加入到建筑材 料中, 既能作为承载或 装饰材料,又能储蓄较 多的热量。复合到建筑 材料中的相变材料(PCM) 在其转化温度下发生相 变, 可以吸收环境的热 量, 并在低于转化温度 时向外释放热量, 相变 材料的转化过程在其转 变温度下进行。
相变蓄能 材料
安丽焕
目录
1
简介
新型相变材料的研究
2
3
相变蓄能材料的应用
简介
概念
相变蓄能材料(PCM)是指在其物相变化过程中, 可以从环境吸收热(冷)量或向环境放出热 (冷)量 , 从而达到能量的蓄存和释放的目的。
特点
优点☞蓄热密 度大、蓄放热 过程近似等温、 过程易控制、 并且可以多次 重复使用等。
蓄热材料的工作过程包括两个阶段:一是热量的储存阶 段 ,即把高峰期多余的动力、 工业余热废热或太阳能等 通过蓄热材料储存起来;二是热量的释放阶段 ,即在使用 时通过蓄热材料释放出热量 ,用于采暖、供热等。 热量储存和释放阶段循环进行 ,就可以利用蓄热材料解决 热能在时间和空间上的不协调性 ,达到能源高效利用和节 合相变蓄能材 料

相变材料传热强化的研究综述

相变材料传热强化的研究综述

相变材料传热强化的研究综述相变材料在蓄能技术中的应用展现了良好前景,但目前的部分有机相变材料存在着导热系数低的问题。

本文对近年来国内外针对相变材料的传热强化技术进行归纳分析,强化传热技术主要包括蓄能结构的优化、添加导热填料等强化方法,并探讨了未来相变材料强化传热的研究方向重点,认为相变材料的传热性能强化对提高整个蓄能系统的能效具有重要意义。

标签:相变材料;强化传热;导热系数;蓄热技术0 引言当今世界的能源的大量消耗,引起全球对节能减排的关注。

蓄能技术的研究和应用,已经成为开发新能源、提高能源利用率的关键技术,在风能、太阳能利用、工业余热废热的回收利用、空调节能等领域具有广阔的应用前景[1]。

热能是目前最为重要的能源之一,蓄热方式主要有三种:显热蓄热、化学反应蓄热、潜热蓄热3种[2]。

显热蓄热利用温度升降来蓄热,但蓄热密度小体积大且蓄热温度难以控制;化学反应蓄热利用化学反应的发生热蓄热,其技术复杂;潜热蓄热是通过相变材料相变时发生的吸热(放热)过程来储热(放热),其蓄热和放热过程近似等温,蓄热密度大且体积小[3]。

因此潜热蓄热方式容易控制运行,具有重要的实际应用价值。

潜热蓄热方式采用的相变材料(PCM - Phase Change Material)是指随温度变化而相变并能提供潜热的物质,在物理状态转变时,相变材料将吸收或释放大量的潜热,其过程温度近乎恒定且具有蓄熱密度高、蓄热结构体积小等优点[4]。

这些优点使得相变材料在太阳能利用和余热回收等方面都有十分广阔的应用空间。

但部分有机相变材料存在着导热率偏低的缺点,该不足导致蓄热系统传热性能较差,使系统的效率不高。

因此国内外都开始针对相变材料导热率低的问题进行了深入的研究。

1 蓄能结构优化1.1 肋片在蓄能系统中增加肋片,金属肋片能够增加额外的传热面积,增加流体热传导,是一种有效的强化传热的方法。

肋片一般为导热系数高的铜、铝等金属。

Bugaje[5]对20种低导热率的相变材料做了添加20%星状铝制肋片的研究实验,研究表明,铝制肋片增强传热效果明显,其蓄热时间减少2倍以上,放热时间减少4倍以上。

相变蓄热材料

相变蓄热材料

1 文献综述1.1 相变蓄热材料1.1.1相变蓄热材料的研究背景随着全球能源形势的日益紧张,节能与环保受到世界各国越来越多的重视。

但是由于能源的供给与需求具有较强的时间性和空间性,在许多能源利用系统中(如太阳能系统、建筑物空调和采暖系统、冷热电联产系统、余热废热利用系统等)存在着供能和耗能之间的不协调性(失配),从而造成了能量利用的不合理性和大量浪费。

例如:在不需要热时,却有大量热的产生,有时候供应的热却有很大一部分作为余热被损失掉,这些都需要一种类似于储水池储水一样的物质把热量储存起来,需要时再释放出来,这样的物质称为热能储存材料(蓄热材料)。

人们对蓄热材料,特别是相变蓄热材料的认识和研究是近几十年的事情。

二十世纪二十年代以来,特别是七十年代能源危机的影响,相变蓄热的基础和应用技术研究在发达国家迅速崛起,并得到不断的发展,日益成为受人重视的新材料。

在太阳能利用、电力的“削峰填谷”、废热和余热的回收利用以及工业与民用建筑采暖与空调的节能领域具有广泛的应用前景,近年来已成为世界范围的研究热点。

相变储能材料作为储能技术的基础,在国内外得到了极大的发展。

1.1.2 相变蓄热材料的分类1.1.2.1根据蓄热材料的化学组成分类(1) 无机相变材料主要包括结晶水合盐、熔融盐、金属或合金。

结晶水合盐通常是中、低温相变蓄能材料中重要的一类,价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性,且工作温度跨度比较大,更重要的是可在高温下进行蓄热。

例如KNO3-NaNO3熔盐、K2CO3-Na2CO3熔盐、CaCl2·6H2O、Na2HPO4·12H2O、Na2CO3·10H2O、Na2SO4·5H2O等[1]。

但其在使用过程中会出现过冷、相分离等不利因素,严重影响水合盐的广泛应用[2-3]。

(2) 有机相变材料主要包括石蜡, 脂肪酸、某些高级脂肪烃、醇、羧酸及盐,包括石蜡类、非石蜡类、某些聚合物等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相变蓄热材料综述Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT相变虚热材料综述蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。

一相变蓄热材料的分类根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。

由于后两种相变方式在相变过程中伴随有大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。

根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。

其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。

混合类又可分为:有机混合类、无机混合类及无机一有机混合类。

根据使用温度范围的不同,潜热蓄热材料(相变蓄热)又可分为分为高、中、低温三种.1低温相变蓄热材料低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金.结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点.但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂.例如,Dr.Telkes经过千余次试验后发现在Na2SO。

·10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放置有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍相变过程。

有机相变材料主要包括石蜡,脂肪酸及其他种类.石蜡主要由不同长短的直链烷烃混合而成,可用通式C。

H抖:表示,可以分为食用蜡、全精制石蜡、半精制石蜡、粗石蜡和皂用蜡等几大类,每一类又根据熔点分成多个品种.短链烷烃的熔点较低,随着碳链的增长,熔点开始增长较快,而后逐渐减慢,再增长时熔点将趋于一致。

V.H.Moreos等人研究了将不同形状的翅片管用于潜热蓄热系统中增强换热睁引,L.F.Cabeza等人研究了将高导热率粉末、碳纤维植入相变材料中以增强导热率,该法同时也能有效地减少石蜡相变时的容积变化[103.脂肪酸的性能特点与石蜡相似[1卜12],其分子通式为GH。

O:.大部分的脂肪酸都可以从动植物中提取,其原料具有可再生和环保的特点,是近年来研究的热点.其他还有有机类的固一固相变材料,如高密度聚乙烯,多元醇等.这种材料发生相变时体积变化小,过冷度轻,无腐蚀,热效率高,是很有发展前途的相变材料复合相变材料材料的复合化可将各种材料的优点集合在一起,制备复合相变材料是潜热蓄热材料的一种必然的发展趋势。

复合相变材料的支撑目前,国内外学者研制的支撑材料主要有膨胀石墨、陶瓷、膨润土、微胶囊等.膨胀石墨是由石墨微晶构成的疏松多孔的蠕虫状物质,它除了保留了鳞片石墨良好的导热性外,还具有良好的吸附性[1引.陶瓷材料有耐高温、抗氧化、耐化学腐蚀等优点,被大量地选做工业蓄热体.主要的陶瓷材质有石英砂、碳化硅、刚玉、莫来石质、锫英石质和堇青石质等.膨润土有独特的纳米层问结构,采用“插层法”将有机相变材料嵌入其层状空间,制备有机/无机纳米复合材料,是开发新型纳米功能材料的有效途径,微胶囊相变材料口阳是用微胶囊技术制备出的复合相变材料。

在微胶囊相变材料中发生相变的物质被封闭在球形胶囊中,有效地解决了相变材料的泄漏、相分离及腐蚀等问题,有利于改善相变材料的应用性能,并可拓宽相变蓄热技术的应用领域。

中温相变蓄热材料太阳能热利用与建筑节能等领域对相变蓄热材料的需求,使低温范围蓄热材料具有广泛的应用前景;高温工业炉蓄热室、工业加热系统的余热回收装置以及太空应用,推动了高温相变蓄热技术的迅速发展.因此,国内外对制冷、低温和高温相变蓄热材料(PCM)做了相当多的研究,但中温PCM则较少使用.不过,近年来相关领域的发展给中温PCM的应用创造了很大的空间。

高温相变蓄热材料高温相变材料的热物性相变材料的热物性主要包括:相变潜热、导热系数、比热容、膨胀系数、相变温度等直接影响材料的蓄热密度、吸放热速率等重要性能,相变材料热物性的测量对于相变材料的研究显得尤为重要。

高温相变材料通常具有一定的高温腐蚀性,通常需要对其进行封装。

微封装的相变材料具有许多优点,促使人们对此进行研究。

Heine等人研究了4种金属对熔点在235~857℃的6种熔融盐的耐腐蚀性能。

Lane对不同的材料在不同尺寸下封装的优点和缺点进行分析,并对材料的兼容性进行了研究.由于用途广泛,很多个人和公司。

如BASF已加入了相变材料微封装的研究行列。

微封装相变材料在不同热控制领域的潜在应用将受到其成本的限制,但对于太空应用,热控制性能远重于其成本。

一些研究人员认为,相变材料微封装技术将是太空技术的一个里程碑高温相变复合材料的研究进展将相变材料同耐腐蚀性好的常规材料复合是高温相变材料的研究方向之一.目前,高温相变复合材料可分为陶瓷基和金属基两大类.邹向采用陶瓷技术将碳酸盐共熔物蓄热介质与陶瓷基体复合在一起,制成一种新型高温相变复合材料.该材料的致密度和高温相变潜热分别达到了理论值的90%和70%,使用温度可达800℃;王华等人采用融浸工艺,将性能优良的高温熔融盐分别与不同的金属基复合,得到一种新型高温相变复合材料.该金属基相变复合材料具有高的吸热一放热率、高蓄热密度等优点.他们还进行了高温熔融盐相变蓄热材料与不同高性能陶瓷复合的研究,成功制备出燃料工业炉用高温相变复合材料.相变蓄热系统的数值模拟目前,文献中提出的模型较多,但因系统结构、传热方式和相变材料的差异,模型的通用性较差.以下选出的文献中对高温相变蓄热系统的数值模拟具有代表性的研究.邢玉明等人采用焓方法建立了以控制体单元为对象的单管相变蓄热模型,并对系统进行了数值分析,得到了循环工质气体出口温度、相变材料容器最高温度和平均壁温等参数的瞬态变化曲线,数值计算与试验结果吻合良好;王华等人建立了球形相变蓄热复合材料的放热模型,采用焓增法研究了相变材料的相变潜热、基体的导热系数、复合材料的尺寸以及复合蓄热材料与流体间的传热系数等因素对放热过程的影响;Gong等人[29]建立了以管侧为传热流体、壳侧填充相变材料的管壳式换热器的蓄一放热模型,研究了蓄热过程和放热过程对相变蓄热系统效率的影响.采用有限元法对导热型融解进行数值分析.结果表明,导热型相变材料的蓄热系统的传热流体以同侧布置较好;CostaE舡3妇认为,热惯性、系统不稳定、热损失、密度的变化、假定热物性为常数等因素造成理论值和实验值偏差较大;也有人认为相变材料内部发生的物理性变化,传热数学模型很复杂,对整个相变系统来说但各项变系统内的的传热和传质可以忽略,或总结成经验系数,传热数学模型很简单相变蓄热的热力学优化BjurstrorJl和Carlson首次将验证性因素分析引入相变蓄热系统,结果表明,效率比人们预想的要低的多,只有12%,与显热蓄热系统的效率相当,从而激励人们对热力学优化进行更进一步的研究.Adebiyic353对圆柱型单元蓄热系统进行了研究,结果表明,虽然相变材料的蓄热密度大,但是效率可能低于显热蓄热系统;王剑峰等人[3阳建立了组合式柱内封装相变材料熔化一固化循环相变蓄热系统的物理模型,用有限差分法进行了数值模拟求解,结果表明,组合相变材料可以提高相变速率15%~25%;Lucia等人n7]对以导热为主和以对流为主的蓄热过程进行了分析,结果表明,当相变材料的相变温度Tc为环境温度L和热源温度T“的几何平均值时,效率最高.相变蓄热技术的应用人们对相变蓄热技术的研究虽然只有几十年的历史,但它的应用十分广泛,已成为日益受到人们重视的一种新兴技术。

该技术主要有以下几个方面的应用。

工业过程的余热利用工业过程的余热既存在连续型余热又存在间断型余热。

对于连续型余热,通常采取预热原料或空气等手段加以回收,而间断型余热因其产生过程的不连续性未被很好的利用,如有色金属工业、硅酸盐工业中的部分炉窑在生产过程中具有一定的周期性,造成余热回收困难,因此,这类炉窑的热效率通常低于30%。

相变蓄热突出的优点之一就是可以将生产过程中多余的热量储存起来并在需要时提供稳定的热源,它特别适合于间断性的工业加热过程或具有多台不同时工作的加热设备的场合,采用热能储存系统利用相变蓄热技术可节能15%~45%。

根据加热系统工作温度和储热介质的不同,应用于工业加热的相变蓄热系统可分为蓄热换热器、蓄热室式蓄热系统和显热/潜热复合蓄热系统三种形式。

蓄热换热器适用于间断性工业加热过程,是一种蓄热装置和换热装置合二为一的相变蓄热换热装置。

它采取管壳式或板式换热器的结构形式,换热器的一侧填充相变材料,另一侧则作为换热流体的通道。

当间歇式加热设备运行时,烟气流经换热器式蓄热系统的流体通道,将热量传递到另一侧的相变介质使其发生固液相变,加热设备的余热以潜热的形式储存在相变介质中。

当间歇式加热设备从新工作时,助燃空气流经蓄热系统的换热通道,与另一侧的相变材料进行换热,储存在相变材料中的热量传递到被加热流体,达到预热的目的。

相关文档
最新文档