数据结构各种排序算法总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构各种排序算法总结
计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。
1. 冒泡排序BubbleSort
最简单的一个
public void bubbleSort()
{
int out, in;
for(out=nElems-1; out>0; out--) // outer loop (backward)
for(in=0; in if( a[in] > a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序selectSort public void selectionSort() { int out, in, min; for(out=0; out { min = out; // minimum for(in=out+1; in if(a[in] < a[min] ) // if min greater, min = in; // we have a new min swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。public void insertionSort() { int in, out; for(out=1; out { long temp = a[out]; // remove marked item in = out; // start shifts at out while(in>0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间 4. 归并排序mergeSort 利用递归,不断的分割数组,然后归并有序数组 效率为O(N*logN),缺点是需要在存储器中有一个大小等于被排序的数据项数目的数组。public void mergeSort() // called by main() { // provides workspace long[] workSpace = new long[nElems]; recMergeSort(workSpace, 0, nElems-1); } //----------------------------------------------------------- private void recMergeSort(long[] workSpace, int lowerBound, int upperBound) { if(lowerBound == upperBound) // if range is 1, return; // no use sorting else { // find midpoint int mid = (lowerBound+upperBound) / 2; // sort low half recMergeSort(workSpace, lowerBound, mid); // sort high half recMergeSort(workSpace, mid+1, upperBound); // merge them merge(workSpace, lowerBound, mid+1, upperBound); } // end else } // end recMergeSort() //----------------------------------------------------------- private void merge(long[] workSpace, int lowPtr, int highPtr, int upperBound) { int j = 0; // workspace index int lowerBound = lowPtr; int mid = highPtr-1; int n = upperBound-lowerBound+1; // # of items while(lowPtr <= mid && highPtr <= upperBound) if( theArray[lowPtr] < theArray[highPtr] ) workSpace[j++] = theArray[lowPtr++];