数据结构各种排序算法总结
头歌数据结构十大经典排序算法 -回复
头歌数据结构十大经典排序算法-回复什么是经典排序算法?经典排序算法是指在计算机科学领域中被广泛应用和研究的排序算法。
排序是计算机科学中的基本操作之一,它的目标是将一组元素按照某种特定的顺序进行排列。
经典排序算法通常被用来解决排序问题,可以应用于数据的排序、搜索、统计等各种计算任务中。
在这篇文章中,我们将讨论头歌数据结构中的十大经典排序算法,探索每个算法的原理和实现方法,以及它们的优缺点和适用场景。
1. 冒泡排序(Bubble sort)冒泡排序是一种简单直观的排序算法,它的基本思想是重复地交换相邻两个元素,将较大的元素逐渐“浮”到数组的尾部。
具体实现可以使用两层嵌套循环,外层循环控制比较的轮数,内层循环进行元素比较和交换。
冒泡排序的时间复杂度为O(n^2)。
2. 选择排序(Selection sort)选择排序是一种简单的选择最小元素的排序算法,它的基本思想是从头开始,逐个选择最小的元素,并将其放置到已排序部分的末尾。
具体实现可以使用两层嵌套循环,外层循环控制已排序部分的末尾位置,内层循环用于选择最小元素。
选择排序的时间复杂度为O(n^2)。
3. 插入排序(Insertion sort)插入排序是一种简单直观的排序算法,它的基本思想是将已排序部分的元素依次与未排序部分的元素进行比较并插入到正确的位置。
具体实现可以使用两层嵌套循环,外层循环控制未排序部分的元素,内层循环用于比较和插入元素。
插入排序的时间复杂度为O(n^2)。
4. 希尔排序(Shell sort)希尔排序是一种改进的插入排序算法,它的基本思想是将数组划分为若干个子序列,并分别对子序列进行插入排序,直到整个数组有序。
具体实现使用增量序列来控制子序列的划分和插入排序的间隔,最终将整个数组排序。
希尔排序的时间复杂度为O(nlogn)。
5. 归并排序(Merge sort)归并排序是一种分治法排序算法,它的基本思想是将数组分成两个子数组,分别对子数组进行递归排序,然后将排序好的子数组合并成一个有序的数组。
十大经典排序算法总结
⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
排序算法
数据结构算法面试总结:全部机测通过。
// 插入排序:适用于少量的输入,O(n^2)=i;public int[] insertSort(int[] array) {for (int i = 0; i < array.length; i++) {int temp = array[i]; int j = i;while (j >0 && array[j - 1] > temp ) {//将当前元素插入已排好序的数组,判断当前元素和其他元素大小array[j] = array[j - 1];j--; }array[j] = temp; }return array; }//希尔排序:插入排序的升级版,不稳定,O(n^2)public int[] shellSort(int[] array){for (int gap = array.length/2; gap>0; gap =(int)(gap ==2?1:(gap/2.2))) { for (int i = gap; i < array.length; i++) {int temp=array[i];int j=i;while(j>=gap && array[j-gap]>array[j] ){array[j]=array[j-gap];j-=gap;array[j]=temp;}// for(;j>=gap&&array[j-gap]>array[j];j-=gap){// array[j]=array[j-gap];// array[j-gap]=temp;// }}}return array;}//选择排序public static void selectSort(int[] list){for (int i = 0; i < list.length; i++) {//循环整个数组对每一个元素进行判断 int posi=i; //位置int temp=list[i];//值//找最小的元素for (int j=i+1; j < list.length; j++) {if (list[j]<temp) {temp=list[j];//循环整个未排序的数组,找出其中最小的元素付给temp posi=j; } }//交换位置list[posi]=list[i];//交换temp和第i 个位置的数值list[i]=temp; } }//递归格式的归并排序public List<Integer> mergeSort(List<Integer> list) { if (list.size() > 1) {List<Integer> lowList = new ArrayList<Integer>(); List<Integer> sameList = new ArrayList<Integer>(); List<Integer> upList = new ArrayList<Integer>();int middle = list.get(list.size() / 2);for (Integer temp : list) {if (temp < middle) {lowList.add(temp);} else if (temp > middle) {upList.add(temp);} else {sameList.add(temp);}}mergeSort(lowList);mergeSort(upList);list.clear();list.addAll(lowList);list.addAll(sameList);list.addAll(upList);}return list;}/*** 冒泡排序* 时间复杂度:n^2;*/public class BubbleSort {public static void main(String[] args) { BubbleSort bs=new BubbleSort(); int[] a ={1,6,5,4,3,2,1};int[] c={0};int[] b=bs.bubbleSort1(c);for (int i = 0; i < b.length; i++) {System.out.print(a[i]+","); } }public int[] bubbleSort(int[] a){//从小到大int temp=0;for (int i = 0; i < a.length-1; i++) {for (int j = 0; j < a.length-1-i; j++) {// a={1,0} a.length=2; i<1 j<1;j=0时进行比较if (a[j]>a[j+1]) {temp=a[j];a[j]=a[j+1];a[j+1]=temp; } } }return a; }public int[] bubbleSort1(int[] a){ //从大到小int temp=0;for (int i = 0; i < a.length-1; i++) {for (int j = 0; j < a.length-1-i; j++) {// a={1,0} a.length=2; i<1 j<1;j=0时进行比较if (a[j]<a[j+1]) {temp=a[j+1];a[j+1]=a[j];a[j]=temp; } } }return a; }}/*** 快速排序* 时间复杂度:nlog(n);*/package com.lyz.test0829;public class QuickSort {public static void main(String[] args) {int[] a={1,3,2,4,9,6,7,7,8};QuickSort qs=new QuickSort();qs.quick(a);for (int i = 0; i < a.length; i++) {System.out.print(a[i]+" "); } }public int getMiddle(int[] list,int low,int high){int temp=list[low];while(low<high){while(low<high&&list[high]>=temp){high--;//中轴的元素和最高位进行比较,若最高位大,则high指针左移一位 }list[low]=list[high]; //若最高位小则交换位置while(low<high&&list[low]<=temp){low++; }list[high]=list[low]; }list[low]=temp;//记录中轴的值return low;//返回中轴位置 }public void _quickSort(int[] list,int low,int high){if (low<high) {int middle=getMiddle(list, low, high);_quickSort(list,low,middle-1);//递归_quickSort(list,middle+1,high); } }public void quick(int[] a2){if (a2.length>0) {_quickSort(a2,0,a2.length-1); } }}/*** 链表*/// 定义节点private class Node {Node previous;Object object;Node next;}package com.lyz.test0901;public class MyLinkeList {private Node first;// 首节点private Node last;// 末尾节点private int size;// 链表大小public static void main(String[] args) { MyLinkeList list = new MyLinkeList(); list.add("aaaa");list.add("bbbb");list.add("cccc");list.add("dddd");System.out.println("size: " + list.size);System.out.println("get: " + list.get(1)); list.remove(1);System.out.println("remove: " + list.get(1)); list.add(1, "bbbb");System.out.println("save: " + list.get(1)); } // 增加节点public void add(Object obj) {// 考虑首节点是否为空Node node = new Node();if (first == null) {// 新建一个节点node.next = null;node.object = obj;node.previous = null;// 将首尾节点都指向该节点first = node;last = node;} else {// 直接在last节点后面增加新节点node.object = obj;node.previous = last;node.next = null;last.next = node;// 再新建一个末尾节点last = node; }size++;// 增加大小 }// 得到节点public Object get(int index) { isOutOfIndex(index);return getNode(index).object;}// 插入节点public void add(int index, Object obj) { Node temp = getNode(index); Node newNode = new Node();if (temp != null) {Node preNode = temp.previous;newNode.next = temp;newNode.object = obj;newNode.previous = preNode;preNode.next = newNode; } }// 删除指定位置的节点public void remove(int index) {Node temp = getNode(index);if (temp != null) {Node preNode = temp.previous;Node nextNode = temp.next;preNode.next = nextNode;nextNode.previous = preNode;size--; } }public int size() {return size; }// 得到第i个节点public Node getNode(int index) {if (first == null) {return null;} else {Node temp = first;for (int i = 0; i < index; i++) {temp = temp.next;// 循环遍历链表到第index个node }return temp;}}// 判断下表是否越界public void isOutOfIndex(int index) {boolean flag = true;if (index < 0 || index >= size) {try {throw new Exception();} catch (Exception e) {e.printStackTrace();}}}}栈:数组实现package com.lyz.test0829;public class MyStack <T>{private Object[] obj=new Object[10];private int size=0;private void resize(){Object[] temp=new Object[obj.length*3/2+1]; for (int i = 0; i < size; i++) {temp[i]=obj[i];obj[i]=null;}obj=temp;}public boolean push(T data){ if (size>=obj.length) {resize();}else{obj[size++]=data;}return true;}public T pop(){if (size==0) {return null;}else{return (T) obj[size--];}}public boolean isEmpty(){ return size==0;}}package com.lyz.test0829; 链表实现public class NodeStack<T> { private Node top;private int size;public NodeStack(){top=null;size=0;}public boolean push( T t){Node node=new Node();node.data=t;node.pre=top;top=node;size++;return true;}public T pop(){if (top!=null) {Node node=top;top=node.pre;size--;return (T)node;}return null;}private final class Node{private Node pre;private T data;}}package com.lyz.test0829;import java.util.Stack;//用栈将十进制数变为n进制public class Conversion {public static void main(String[] args) { System.out.println(conversion(8,2));}public static String conversion(int num,int base){ Stack<Integer> stack=new Stack<Integer>(); Integer result=num;while(true){stack.push(result%base);result=result/base;if (result==0) {break;}}StringBuffer sb=new StringBuffer();while((stack.pop())!=null){sb.append(result);}return sb.toString();} }map如果equals为true则hashcode码相等;map里面的键的判断依赖于equals方法;index>>1:index除以2;元素的查找:list里面查找元素,看index的值大小而判断从前查找还是从后面开始查找;class Entity{Object key;Object value;public Entity(Object key, Object value) {super();this.key = key;this.value = value;}}public class TestMap {List[] arr=new ArrayList[990];//声明一个键值对对象:数组加链表 int size;//大小public void put(Object key,Object value){//数组加链表实现:在数组里面放链表的头部地址信息,//每个链表存放哈希码一样的元素Entity e=new Entity(key,value);int a=key.hashCode()%73;a=a<0?-a:a;//判断是否为负数if (arr[a]==null) {List list=new ArrayList();arr[a]=list;list.add(e);}else{//判断键值是否重复List list=arr[a];//得到的arr[a]为一个链表,直接给链表添加元素for (int i = 0; i < list.size(); i++) {Entity e2=(Entity)list.get(i);if (e2.key.equals(key)) {e2.value=value;}}arr[a].add(e);}size++;}final Entry<K,V> getEntry(Object key) {int hash = (key == null) ? 0 : hash(key);for (Entry<K,V> e = table[indexFor(hash, table.length)];e != null;e = e.next) {Object k;if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;}return null;}set:无序不重复底层通过Map实现(值放在map的key中)public class MyHashSet {HashMap map;private static final Object PRESERNT=new Object();public MyHashSet(){map=new HashMap();}public void add(Object o){map.put(o,PRESERNT); } }public TreeSet() {this(new TreeMap<E,Object>());}迭代器:Iterator泛型:T(type),V(value),E(element)——获取值:1、强制类型转换;避免classCastException:instanseofJDK1.7之后:int x=(int)object;包装了由object到Integer然后到int的过程;优点:1、安全:进行类型检查,不使用时只能强制装换造成数据丢失;2、方便:进行类型装换,在获取值得时候自动拆箱进行类型转换;注意:1、使用时指定类型,且只能为指定类型2、不能使用静态属性,静态方法,3、接口中泛型只能使用在方法中,不能使用在全局常亮中,接口默认的为finalde ;4、泛型方法:修饰符后面,返回类型前面public static <t> void test(T t)static File dir=new File("d:/fileTest");static FileOutputStream fout;;static ObjectOutputStream objOut;static FileInputStream fin;static ObjectInputStream objIn;public static void main(String[] args) throws IOException {FileOption fo=new FileOption();String str="张三0 3000 李四1 5000 王五0 4000";String str1="aaa ss 我。
【数据结构】常见排序算法复杂度
【数据结构】常见排序算法复杂度相关概念1、稳定排序(stable sort)和⾮稳定排序稳定排序是指所有相等的数经过某种排序算法操作后仍然能保持它们在排序之前的相对次序。
反之就是⾮稳定排序。
2、内排序(internal sorting)和外排序(external sorting)在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调⼊内存,并借助内存调整数在外存中的存放顺序排序⽅法称为外排序。
排序算法【冒泡排序】(Bubble Sort)冒泡排序⽅法是最简单的排序⽅法。
这种⽅法的基本思想是,将待排序的元素看作是竖着排列的“⽓泡”,较⼩的元素⽐较轻,从⽽要往上浮。
在冒泡排序算法中我们要对这个“⽓泡”序列处理若⼲遍。
所谓⼀遍处理,就是⾃底向上检查⼀遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下⾯,就交换它们的位置。
显然,处理⼀遍之后,“最轻”的元素就浮到了最⾼位置;处理⼆遍之后,“次轻”的元素就浮到了次⾼位置。
在作第⼆遍处理时,由于最⾼位置上的元素已是“最轻”元素,所以不必检查。
⼀般地,第i遍处理时,不必检查第i⾼位置以上的元素,因为经过前⾯i-1遍的处理,它们已正确地排好序。
冒泡排序是稳定的。
算法时间复杂度是O(n2)。
【选择排序】(Selection Sort)选择排序的基本思想是对待排序的记录序列进⾏n-1遍的处理,第 i 遍处理是将[i..n]中最⼩者与位置 i 交换位置。
这样,经过 i 遍处理之后,前 i 个记录的位置已经是正确的了。
选择排序是不稳定的。
算法复杂度是O(n2 )。
【插⼊排序】(Insertion Sort)插⼊排序的基本思想是,经过i-1遍处理后,L[1..i-1]⼰排好序。
第i遍处理仅将L插⼊L[1..i-1]的适当位置,使得L[1..i]⼜是排好序的序列。
要达到这个⽬的,我们可以⽤顺序⽐较的⽅法。
数据结构排序算法总结表格
在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)
是
选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)
是
希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)
是
快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)
是
O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)
是
堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。
数据结构课程设报告—各种排序算法的比较
数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。
排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。
每种排序过程中均显示每一趟排序的细节。
程序的输入:输入所需排序方式的序号。
输入排序的数据的个数。
输入具体的数据元素。
程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。
b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列, 它只包含一个数据元素。
然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。
c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。
d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。
数据结构第9章 排序
数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。
如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。
2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。
如果排序依据的是主关键字,排序的结果将是唯一的。
3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。
4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。
内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。
整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。
本章仅讨论常用的内部排序方法。
5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。
6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。
对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。
因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。
辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。
理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。
7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。
在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。
数据结构的常用算法
数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。
通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。
2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。
3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。
4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。
5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。
二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。
常见的查找算法有线性查找、二分查找、哈希查找等。
1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。
2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。
通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。
3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。
三、图算法图算法是解决图结构中相关问题的算法。
数据结构之各种排序的实现与效率分析
各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。
效率分析:该排序算法简洁,易于实现。
从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。
当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。
插入排序算法对于大数组,这种算法非常慢。
但是对于小数组,它比其他算法快。
其他算法因为待的数组元素很少,反而使得效率降低。
插入排序还有一个优点就是排序稳定。
(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。
效率分析:由上可知该排序所需存储空间和直接插入排序相同。
从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。
而记录的移动次数不变。
因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。
排序稳定。
(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。
Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。
数据排序技巧
数据排序技巧在现代数字化时代,大量的数据涌现出来,如何对这些数据进行排序成为了一项必备的技能。
数据排序可以提高数据的可读性、搜索效率和数据处理的速度。
本文将介绍一些常见的数据排序技巧,帮助读者掌握数据排序的基本方法。
一、冒泡排序法冒泡排序法是一种简单直观的排序方法。
它通过比较相邻的两个元素,如果它们的顺序不正确,则交换它们的位置。
通过多次的遍历和比较,将最大(或最小)的元素不断“冒泡”到最前面(或最后面),从而完成排序。
冒泡排序的步骤如下:1. 遍历数据元素,从第一个元素开始,依次比较相邻的两个元素。
2. 如果顺序不正确,则交换它们的位置。
3. 继续遍历比较相邻的元素,直到遍历完所有的元素。
4. 重复上述步骤,直到所有元素都按照要求排序。
冒泡排序的时间复杂度为O(n^2),它是一种效率较低的排序方法,适用于数据量较小的情况。
二、快速排序法快速排序法是一种常用且高效的排序方法。
它使用了分治的思想,将一个大问题拆分成若干个小问题进行解决。
快速排序的步骤如下:1. 选择一个基准元素(通常为第一个元素),将数据分成两部分,一部分小于基准元素,一部分大于基准元素。
2. 递归地对两部分数据进行排序。
3. 合并排序后的两部分数据。
快速排序的时间复杂度为O(nlogn),它是一种较为高效的排序方法,适用于各种规模的数据。
三、归并排序法归并排序法是一种稳定且高效的排序方法。
它采用了分治的思想,将一个大问题拆分成若干个小问题进行解决,并在合并的过程中完成排序。
归并排序的步骤如下:1. 将数据拆分成若干个小的子序列。
2. 对每个子序列递归地进行排序。
3. 将排好序的子序列进行合并,得到完整的有序序列。
归并排序的时间复杂度为O(nlogn),它是一种稳定的排序方法,适用于各种规模的数据。
四、堆排序法堆排序法是一种利用堆数据结构进行排序的方法。
堆是一种完全二叉树,它满足堆的性质,即对于每个非叶子节点,其值都大于等于(或小于等于)它的子节点的值。
数据结构排序算法稳定性总结——写给自己看
数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。
在数组内部前半部为排好序的记录,后半部是未排好序的。
⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。
折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。
冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。
也不会改变相等记录的相对位置。
2-路归并排序:将两个有序表合并成⼀个有序表。
每次划分的两个⼦序列前后相邻。
合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。
因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。
基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。
分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。
(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。
经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。
但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。
这种跳跃式的移动导致该排序⽅法是不稳定的。
快速排序:改进的冒泡排序。
冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。
快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。
五种常用的排序算法详解
五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。
常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。
由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。
冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。
以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。
该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。
以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。
数据结构——排序——8种常用排序算法稳定性分析
数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说⼀下稳定性的好处。
排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。
基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。
另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。
回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。
⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。
所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。
(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。
那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。
⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。
(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。
当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。
六大经典算法
六大经典算法经典算法是计算机科学中非常重要的一部分,它们被广泛应用于各种领域,包括数据结构、排序、搜索、图论和机器学习等。
下面我将介绍六大经典算法,分别是:冒泡排序、快速排序、插入排序、选择排序、归并排序和二分查找。
一、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的元素,并按照大小顺序交换它们。
通过多次遍历,将最大的元素逐渐“冒泡”到列表的末尾,直到整个列表有序为止。
二、快速排序快速排序是一种高效的排序算法,它采用分治的思想,将一个待排序的列表不断划分为两个子列表,然后分别对子列表进行排序,最后将排序好的子列表合并起来。
快速排序的关键在于选择一个基准元素,并根据基准元素将列表划分为左右两个子列表,然后递归地对子列表进行排序。
三、插入排序插入排序是一种简单直观的排序算法,它的工作原理是将一个元素插入到已排序的列表中的适当位置,从而得到一个新的有序列表。
插入排序的核心思想是将待排序的列表分为已排序和未排序两部分,然后依次将未排序部分的元素插入到已排序部分中。
四、选择排序选择排序是一种简单的排序算法,它每次从待排序的列表中选择最小(或最大)的元素,然后将其放到已排序的列表的末尾。
通过多次选择最小(或最大)元素,选择排序可以得到一个有序的列表。
五、归并排序归并排序是一种高效的排序算法,它采用分治的思想,将一个待排序的列表递归地划分为两个子列表,然后分别对子列表进行排序,最后将排序好的子列表合并起来。
归并排序的关键在于将两个有序的子列表合并成一个有序的列表。
六、二分查找二分查找是一种高效的查找算法,它适用于有序列表。
二分查找的核心思想是不断地将待查找的区间分为两部分,然后根据目标值与中间值的大小关系,确定接下来要查找的区间,直到找到目标值或查找区间为空。
总结:以上六大经典算法分别是冒泡排序、快速排序、插入排序、选择排序、归并排序和二分查找。
这些算法在计算机科学中具有重要的地位,它们不仅可以用来解决排序和查找问题,还可以应用于其他领域,如图论、机器学习等。
数据结构与算法-排序
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序
目
CONTENTS
录
01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入
头歌数据结构十大经典排序算法
头歌数据结构十大经典排序算法导言在计算机科学中,排序算法是一类常见且重要的算法。
通过对一组元素进行排序,我们可以提高数据的组织性和检索效率。
本文将介绍头歌数据结构十大经典排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序。
冒泡排序冒泡排序是一种简单直观的排序算法。
它通过多次比较和交换相邻元素的方式,将较大(或较小)的元素逐渐交换至数组的一端,从而达到排序的目的。
选择排序选择排序是一种简单且高效的排序算法。
它通过每次选择未排序部分的最小元素,并将其交换至已排序部分的末尾,从而逐步构建有序序列。
插入排序插入排序是一种自然而然的排序算法。
它通过将待排序元素逐个插入已排序序列的正确位置,不断扩大已排序部分的范围,从而完成排序。
希尔排序希尔排序是一种高效的插入式排序算法。
它通过将待排序元素分组,分组内进行插入排序,然后逐步减小分组的大小,以达到整体有序的目的。
归并排序归并排序是一种高效且稳定的排序算法。
它将已排序的子序列合并,不断递归地执行该操作,直到合并整个序列,从而实现排序。
快速排序快速排序是一种高效的分治排序算法。
它通过选择一个基准元素,将序列分割成两部分,并分别对这两部分进行排序,最终将序列有序地整合起来。
堆排序堆排序是一种高效且稳定的排序算法。
它利用堆这种特殊的数据结构,在每次构建堆过程中,获取最大(或最小)元素,并将其放入已排序部分的末尾,从而完成排序。
计数排序计数排序是一种非比较性的排序算法。
它通过统计每个元素出现的次数,计算每个元素应该在有序序列中的位置,从而完成排序。
桶排序桶排序是一种高效的排序算法。
它通过将元素分配到不同的桶中,并对每个桶进行排序,从而得到排序结果。
基数排序基数排序是一种高效的排序算法。
它通过将待排序元素按照个位、十位、百位等进行排序,最终得到有序序列。
结语头歌数据结构十大经典排序算法是计算机科学中不可或缺的内容。
数据结构-排序PPT课件
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。
数据结构课程设计排序算法总结
排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。
(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。
折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。
(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。
(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。
(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。
(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。
假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。
常见数据结构与算法整理总结
常见数据结构与算法整理总结一、常见数据结构与算法整理总结在我们日常的工作中,数据结构和算法是非常重要的知识体系。
它们可以帮助我们更好地理解和处理数据,提高我们的工作效率。
在这篇文章中,我将对一些常见的数据结构和算法进行整理和总结,帮助大家更好地掌握这些知识。
二、数据结构的基础知识1.1 数组数组是一种最基本的数据结构,它可以存储一组具有相同类型的数据。
数组的优点是查找、插入和删除操作非常快,因为它们的时间复杂度都是O(1)。
但是,数组的大小是固定的,不能动态扩展。
1.2 链表链表是一种由一系列节点组成的数据结构。
每个节点包含两部分:数据域和指针域。
数据域用于存储数据,指针域用于指向下一个节点。
链表的优点是可以动态扩展,但是查找、插入和删除操作的时间复杂度都是O(n)。
1.3 栈栈是一种后进先出(LIFO)的数据结构。
它有两个主要的操作:入栈和出栈。
入栈是将元素压入栈顶,出栈是从栈顶弹出元素。
栈的优点是空间利用率高,但是只能在栈顶进行插入和删除操作,查找操作的时间复杂度是O(n)。
1.4 队列队列是一种先进先出(FIFO)的数据结构。
它有两个主要的操作:入队和出队。
入队是将元素放入队尾,出队是从队头取出元素。
队列的优点是可以动态扩展,但是只能在队头进行插入操作,查找操作的时间复杂度是O(n)。
三、算法的基础知识2.1 排序算法排序算法是将一组无序数据按照某种规则排列成有序数据的算法。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序等。
排序算法的时间复杂度通常在O(nlogn)到O(n^2)之间,其中最常用的是快速排序算法。
2.2 查找算法查找算法是在一组数据中查找指定元素的算法。
常见的查找算法有顺序查找、二分查找、哈希查找等。
查找算法的时间复杂度通常在O(logn)到O(n)之间,其中最常用的是二分查找算法。
2.3 图论算法图论算法是研究图结构的一类算法。
常见的图论算法有深度优先搜索、广度优先搜索、最短路径算法等。
各种排序算法大全
6.1.3 直接插入排序
实用例子:
已知待序的一组记录的初始排列为:21, 25, 49, 25*, 16, 08
21 25 49 25* 16 08 012345
6.1.3 直接插入排序
实用例子:
i=1
21 25 49 25* 16 08 25 012345 temp
i=2 i=3
21 25 49 25* 16 08 49 012345 temp
6.1.3 直接插入排序
算法实现:
void InsertSort (int r[ ], int n ) {
// 假设关键字为整型,放在向量r[]中 int i, j, temp; for (i = 1;i< n;i++ ) {
temp = r[i]; for(j = i;j>0;j- -) {//从后向前顺序比较,并依次后移
k=i
for j=i+1 to n
真
a[j]<a[k]
k=j
真
i != k
a[i]a[k]
输出a[1] 到 a[n]
#include <stdio.h> main() { int a[11],i,j,k,x;
printf("Input 10 numbers:\n"); for(i=1;i<11;i++)
27 38 [97 76 49 65 ] 27 38 49 [76 97 65 ] 27 38 49 65 [97 76 ] 27 38 49 65 76 [97 ]
6.1.5 选择排序
算法实例:
初始
21 25 49 25* 16 08
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构各种排序算法总结计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。
1. 冒泡排序BubbleSort最简单的一个public void bubbleSort(){int out, in;for(out=nElems-1; out>0; out--) // outer loop (backward)for(in=0; in<out; in++) // inner loop (forward)if( a[in] > a[in+1] ) // out of order?swap(in, in+1); // swap them} // end bubbleSort()效率:O(N2)2. 选择排序selectSortpublic void selectionSort(){int out, in, min;for(out=0; out<nElems-1; out++) // outer loop{min = out; // minimumfor(in=out+1; in<nElems; in++) // inner loopif(a[in] < a[min] ) // if min greater,min = in; // we have a new minswap(out, min); // swap them} // end for(out)} // end selectionSort()效率:O(N2)3. 插入排序insertSort在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。
public void insertionSort(){int in, out;for(out=1; out<nElems; out++) // out is dividing line{long temp = a[out]; // remove marked itemin = out; // start shifts at outwhile(in>0 && a[in-1] >= temp) // until one is smaller,{a[in] = a[in-1]; // shift item to right--in; // go left one position}a[in] = temp; // insert marked item} // end for} // end insertionSort()效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2)如果数据基本有序,几乎需要O(N)的时间4. 归并排序mergeSort利用递归,不断的分割数组,然后归并有序数组效率为O(N*logN),缺点是需要在存储器中有一个大小等于被排序的数据项数目的数组。
public void mergeSort() // called by main(){ // provides workspacelong[] workSpace = new long[nElems];recMergeSort(workSpace, 0, nElems-1);}//-----------------------------------------------------------private void recMergeSort(long[] workSpace, int lowerBound,int upperBound) {if(lowerBound == upperBound) // if range is 1, return; // no use sorting else{ // find midpointint mid = (lowerBound+upperBound) / 2;// sort low half recMergeSort(workSpace, lowerBound, mid);// sort high half recMergeSort(workSpace, mid+1, upperBound);// merge them merge(workSpace, lowerBound, mid+1, upperBound);} // end else} // end recMergeSort()//-----------------------------------------------------------private void merge(long[] workSpace, int lowPtr,int highPtr, int upperBound) {int j = 0; // workspace indexint lowerBound = lowPtr;int mid = highPtr-1;int n = upperBound-lowerBound+1; // # of itemswhile(lowPtr <= mid && highPtr <= upperBound)if( theArray[lowPtr] < theArray[highPtr] )workSpace[j++] = theArray[lowPtr++];elseworkSpace[j++] = theArray[highPtr++];while(lowPtr <= mid)workSpace[j++] = theArray[lowPtr++];while(highPtr <= upperBound)workSpace[j++] = theArray[highPtr++];for(j=0; j<n; j++)theArray[lowerBound+j] = workSpace[j];} // end merge()5. 希尔排序ShellSortpublic void shellSort(){int inner, outer;long temp;int h = 1; // find initial value of hwhile(h <= nElems/3)h = h*3 + 1; // (1, 4, 13, 40, 121, ...)while(h>0) // decreasing h, until h=1 {// h-sort the filefor(outer=h; outer<nElems; outer++){temp = theArray[outer];inner = outer;// one subpass (eg 0, 4, 8) while(inner > h-1 && theArray[inner-h] >= temp){theArray[inner] = theArray[inner-h];inner -= h;}theArray[inner] = temp;} // end forh = (h-1) / 3; // decrease h} // end while(h>0)} // end shellSort()希尔排序是基于插入排序的,由于插入排序复制的次数太多,导致效率的下降,而ShellSort 先利用n-增量排序将数据变为基本有序,然后在利用插入排序(1-增量排序)。
n在排序中的一系列取值方法:Lnuth序列,间隔h=3h + 1效率:O(N3/2) 到O(N7/6)6. 快速排序其根本机制在于划分:划分数据就是把数据分为两组,使所有关键字大于特定值的数据项在一组,使所有关键字小于特定值的数据项在另一组。
public int partitionIt(int left, int right, long pivot){int leftPtr = left - 1; // right of first elemint rightPtr = right + 1; // left of pivotwhile(true){while(leftPtr < right && // find bigger itemtheArray[++leftPtr] < pivot); // (nop)while(rightPtr > left && // find smaller itemtheArray[--rightPtr] > pivot); // (nop)if(leftPtr >= rightPtr) // if pointers cross,break; // partition doneelse // not crossed, soswap(leftPtr, rightPtr); // swap elements} // end while(true)return leftPtr; // return partition} // end partitionIt()快速排序算法本质上通过把一个数组划分为两个子数组,然后递归的调用自身为每一个子数组进行快速排序。
枢纽(Pivot)的选择:选择数组最右端的数据项作为枢纽:public void recQuickSort(int left, int right){if(right-left <= 0) // if size <= 1,return; // already sortedelse // size is 2 or larger{long pivot = theArray[right]; // rightmost item// partition rangeint partition = partitionIt(left, right, pivot);recQuickSort(left, partition-1); // sort left siderecQuickSort(partition+1, right); // sort right side}} // end recQuickSort()//--------------------------------------------------------------public int partitionIt(int left, int right, long pivot){int leftPtr = left-1; // left (after ++)int rightPtr = right; // right-1 (after --)while(true){ // find bigger itemwhile( theArray[++leftPtr] < pivot ); // (nop)// find smaller itemwhile(rightPtr > 0 && theArray[--rightPtr] > pivot); // (nop)if(leftPtr >= rightPtr) // if pointers cross,break; // partition doneelse // not crossed, soswap(leftPtr, rightPtr); // swap elements} // end while(true)swap(leftPtr, right); // restore pivotreturn leftPtr; // return pivot location} // end partitionIt()当数据是有序的或者是逆序时,从数组的一端或者另外一端选择数据项作为枢纽都不是好办法,比如逆序时,枢纽是最小的数据项,每一次划分都产生一个有N-1个数据项的子数组以及另外一个只包含枢纽的子数组三数据项取中划分:选择第一个、最后一个以及中间位置数据项的中值作为枢纽public void recQuickSort(int left, int right){int size = right-left+1;if(size <= 3) // manual sort if smallmanualSort(left, right);else // quicksort if large{long median = medianOf3(left, right);int partition = partitionIt(left, right, median);recQuickSort(left, partition-1);recQuickSort(partition+1, right);}} // end recQuickSort()//--------------------------------------------------------------public long medianOf3(int left, int right){int center = (left+right)/2;// order left & center if( theArray[left] > theArray[center] )swap(left, center);// order left & right if( theArray[left] > theArray[right] )swap(left, right);// order center & right if( theArray[center] > theArray[right] )swap(center, right);swap(center, right-1); // put pivot on rightreturn theArray[right-1]; // return median value} // end medianOf3()public int partitionIt(int left, int right, long pivot){int leftPtr = left; // right of first elemint rightPtr = right - 1; // left of pivotwhile(true){while( theArray[++leftPtr] < pivot ) // find bigger ; // (nop) while( theArray[--rightPtr] > pivot ) // find smaller ; // (nop) if(leftPtr >= rightPtr) // if pointers cross,break; // partition done else // not crossed, so swap(leftPtr, rightPtr); // swap elements} // end while(true)swap(leftPtr, right-1); // restore pivotreturn leftPtr; // return pivot location} // end partitionIt()。