锅炉效率反平衡计算公式
锅炉效率计算
![锅炉效率计算](https://img.taocdn.com/s3/m/2c73cf433c1ec5da50e2708a.png)
单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每标准立方米(气体燃料)所对应的输入热量中有效利用热量所占百分比为锅炉热效率,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。
锅炉的热效率的测定和计算通常有以下两种方法:1.正平衡法用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。
正平衡热效率的计算公式可用下式表示:热效率=有效利用热量/燃料所能放出的全部热量*100%=锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料低位发热量*100%式中锅炉蒸发量——实际测定,kg/h;蒸汽焓——由表焓熵图查得,kJ/kg;给水焓——由焓熵图查得,kJ/kg;燃料消耗量——实际测出,kg/h;燃料低位发热量——实际测出,kJ/kg。
上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算。
从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。
因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。
2.反平衡法通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。
此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。
反平衡热效率可用下列公式计算。
热效率=100%-各项热损失的百分比之和=100%-q2-q3-q4-q5-q6式中q2——排烟热损失,%;q3——气体未完全燃烧热损失,%;q4——固体未完全燃烧热损失,%;q5——散热损失,%;q6——灰渣物理热损失,%。
大多时候采用反平衡计算,找出影响热效率的主因,予以解决。
锅炉热效率的具体计算公式
![锅炉热效率的具体计算公式](https://img.taocdn.com/s3/m/4ac470ecfc4ffe473268aba6.png)
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。
采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的.目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。
但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。
本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。
2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。
人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。
锅炉能效测试技术简介
![锅炉能效测试技术简介](https://img.taocdn.com/s3/m/3d478b1a650e52ea5518980e.png)
3.有关锅炉热效率标准 3.有关锅炉热效率标准
JB/T 10094-2002 工业锅炉通用技术条件 GB 24500-2009 工业锅炉能效限定值及能效等级 GB/T 15317-2009 燃煤工业锅炉节能监测 GB/T 17954-2007 工业锅炉经济运行 以1t/h锅炉为例,对有关数据列表如下:
5. 部分仪器 烟气分析仪(德国)
量热仪
全自动工业分析仪
元素分析仪
完
谢谢!
q2 — 排烟热损失 q3 — 气体未完全燃烧热损失 q4 — 固体未完全燃烧热损失 q5 — 散热损失 q6 — 灰渣物理热损失 可见,热效率表示锅炉中燃料输入热量的利用程度。 2.影响锅炉热效率的因素分析 2.影响锅炉热效率的因素分析 由锅炉热效率分析可以知道,影响锅炉热效率的因素包括 :固体不完全燃烧损失、气体不完全燃烧热损失、排烟热 损失、散热损失、灰渣物理热损失等。锅炉热平衡示意图 如下:
γ—— 汽化潜热,kj/kg; ω—— 蒸汽湿度,%; Gs —— 测定蒸汽湿度时,锅水取样量, kg/h; B —— 燃料消耗量,kg/h; Qr—— 输入热量,kj/kg。
锅炉正平衡主要测量项目及方法
序号 1 2 3 4 项 目 方法与仪器 元素分析仪 工业分析仪 量热仪 磅秤,容积计量
燃料元素分析 工业分析 燃料的发热量 燃料消耗量
由统计分析发现,我国工业锅炉运行效率普遍较低。造成 这一结局的原因是多方面的,主要包括:设计、制造、安 装、运行管理、使用操作等。重点环节是设计、运行管理 与使用操作。 锅炉节能的关键是提高锅炉热效率, 锅炉节能的关键是提高锅炉热效率,以及有效能的充分利 用。 那么,锅炉热效率如何监测?以下做简单介绍。
反平衡测试主要项目
生物质直燃发电机组效率计算
![生物质直燃发电机组效率计算](https://img.taocdn.com/s3/m/83ecb54dbe23482fb4da4c4e.png)
生物质直燃发电机组效率计算方法和说明国能生物发电集团有限公司生产技术部本文依据现有燃煤电厂效率计算的基本方法,结合生物质直燃发电厂性能试验取得的经验数据,编制了生物质直燃发电机组效率计算方法和说明。
一、生物质锅炉效率计算(一)基本原则(1)采用反平衡法(热损失法)测定锅炉热效率,正平衡法(输入-输出热量法)计算作为参考。
(2)将送风机入口的空气温度作为锅炉热效率计算的基准温度,也即送风机附近的大气温度。
(3)因本文主要目的是计算实际工况下的锅炉热效率,故未进行修正。
(二)正平衡计算1、正平衡热效率计算(η1)(1-1)式中:——锅炉热效率,%;——输入热量,kJ;——输出热量,kJ。
2、输入热量(Qr)因目前大部分生物质发电厂无外来热源加热空气和燃料雾化蒸汽,为简化计算,忽略入炉燃料显热,将燃料收到基低位发热量作为输入热量。
即(1-2)式中:——燃料收到基低位发热量,kJ/kg。
3、输出热量(Q1)(1-3)式中:——燃料消耗量,kg;——锅炉主汽流量,kg/h;——锅炉主蒸汽出口焓值,kJ/kg;——锅炉给水焓值,kJ/kg;——锅炉排污水量,%;——锅炉排污水的焓值,kJ/kg。
因连续排污和定期排污水量很少,一般约为主蒸汽流量2%左右,为简化计算,不考虑锅炉排污水量。
蒸汽和给水焓值通过水和水蒸气热力性质通用计算模型IAPWS—IF97编程实现。
(三)反平衡计算1、入炉燃料元素成分的确定由于现场不具备开展入炉燃料的元素分析工作,且影响燃料低位发热量的主要成分是水分和灰分,所以通过折算实际入炉燃料与典型燃料水分和灰分的差异,拟合实际入炉燃料元素分析的方法来解决。
(1)典型燃料元素分析成分因入炉燃料种类多,所以选择国能高唐电厂性能试验时入炉燃料作为典型燃料。
具体如下:(2)入炉燃料元素成分的拟合方法根据现场工业分析所得的水分(Mar)和灰分(Aar)数值,按照公式(1-4)进行拟合计算入炉燃料的元素成分:(1-4)式中:——拟合的入炉燃料收到基下含碳量;、——入炉燃料工业分析收到基下水分和灰分;、、——典型燃料收到基下含碳量、水分和灰分。
锅炉效率反平衡计算公式
![锅炉效率反平衡计算公式](https://img.taocdn.com/s3/m/29febaa4336c1eb91b375d76.png)
反平衡计算效率公式
η=q1=100%-(q2+q3+q4+q5+q6)
锅炉热平衡方程式
q r= q1 +q2 +q3 +q4 +q5 +q6
q r—随1Kg燃料的输入锅炉的热量KJ/Kg q1—对应于1Kg燃料锅炉的有效利用热量KJ/Kg
q2—对应于1Kg燃料的排烟损失的热量KJ/Kg
q3—对应于1Kg燃料的化学不完全燃烧损失的热量KJ/Kg
q4—对应于1Kg燃料的机械不完全燃烧损失的热量KJ/Kg
q5—对应于1Kg燃料的锅炉散热损失的热量KJ/Kg
q6—对应于1Kg燃料的灰渣物理热损失的热量KJ/Kg
q2—对应于1Kg燃料的排烟损失的热量KJ/Kg
q PY={[(21/21-O2+0.18)×3.55]+0.44}×(T PY- T lf)
T PY、排烟温度。
T lf、冷风温度。
q4—对应于1Kg燃料的机械不完全燃烧损失的热量KJ/Kg
q JX=32825×A/q DW(0.9×C FH/100- C FH+0.1
×C LZ/100- C LZ)
A、入炉灰份。
q DW、低位发热量。
C FH、飞
灰含碳量。
C LZ、炉渣含碳量。
q5—对应于1Kg燃料的锅炉散热损失的热量KJ/Kg
q5=0.59×D E/ D
D E、额定产气量。
D、实际产气量。
锅炉热效率计算
![锅炉热效率计算](https://img.taocdn.com/s3/m/1e390ee75ebfc77da26925c52cc58bd6318693a9.png)
1兆帕MPa=10巴bar=大气压atm约等于十个大气压,1标准大气压=76cm汞柱=×10^5Pa=水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱水的汽化热为千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量.一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热;用量是70万大卡/H 相当于吨的锅炉以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×100-20=8万/千卡时;第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=万/千卡时;把显热和潜热加起来,即是一吨蒸汽其表压力为零时在锅内所获得的热能,即:+8=万/千卡时;这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量;天然气热值天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里kcal=千焦kJ,所以每立方米燃烧热值为—产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳;天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里kcal=千焦kJ,所以每立方米燃烧热值为—; 而1度=1kWh=10^6J=10^3KJ; 即每立方燃烧热值相当于—度电产生的热能, < OR天然气价格:天然气的主要成分是甲烷,分子式是CH4,分子量是12+41=16.在1标准大气压下,1mol气体的体积是升,1立方米的气体有1000/≈,所以质量为16≈克.1000KG/=立方米Nm3是天然气的密度,一吨天然气的体积就是1394m^3,运输时需要压缩;所说的罐装的那是液化石油气; 压缩方式不同密度不同气体的质量=气体的摩尔质量克/摩尔x气体体积升/升/摩尔一立方米天然气=1000升天然气天然气中主要成分是甲烷,摩尔质量为16克/摩尔1立方米天然气的质量=16克/摩尔x1000升/升/摩尔=克1克=公斤,所以克=公斤一立方米天然气大约等于公斤天然气LNG即液态甲烷CH4,其储存温度为-162℃;液化天然气由液态汽化为气态,体积增大几百倍,气态甲烷是液态甲烷体积的625倍;液化天然气密度:0.42~0.46 g/cm3气态大约是: g/cm3也就是1方 KG;1吨为 1000/=1600方1 m3液化天然气LNG可气化600 m3气1 m3 LNG 的质量约为 430-470 Kg天然气的主要成分是甲烷,化学式是CH4 ;离开气体的状态谈体积没有意义,1吨液态天然气为1×10^6g÷16g/mol=62500mol;在标准状况下STP,0℃,101kPa气体摩尔体积为mol,1吨液态天然气为1400立方米;在25℃,×10^5Pa时气体摩尔体积约为mol,1吨液态天然气为立方米;Nm3是天然气的密度,一吨天然气的体积就是1394m^3,运输时需要压缩;所说的罐装的那是液化石油气; 压缩方式不同密度不同一立方米天然气质量为:千克每吨天然气体积为:1390立方米;天然气运输或交易,一般是按立方米计算的;换算方法如下:天然气的标准立方米指1大气压下,20摄氏度时的1立方米;在这个条件下,任何气体升都含有一摩尔×10^23个分子;一立方米为1000升;天然气的主要成分是甲烷,分子量为16,一个甲烷分子质量约等于16个氢原子,也约等于16个质子质量;质子质量为×10^-27 千克所以一立方米天然气质量为:×10^-27×16××10^23×1000÷=千克每吨天然气体积为:1000/ = 1390立方米;关注几个天然气价格的微信公众号燃气蒸汽锅炉产生1吨蒸汽需要多少方天然气,首先我们需要了解1吨水变成水蒸气需要吸收热量,而这个热量值需要天然气燃烧释放热量,通过锅炉设备,传递给介质水,水吸收热量发生物理性质的变化,低温水变成高温水继而气化变成水蒸气,它完成这一过程需要吸收热量约60万大卡然气品质.当然,燃烧机的品质也是最主要的、好产品节能省气,锅炉品质是燃气蒸汽锅炉每场生1吨蒸汽耗气量的主要因素;每立方天然气热值为9000大卡天燃气每立方燃烧热值为8000大卡至8500大卡;锅炉热效率;由此可以得出锅炉工作热量转移指数为=8190,8500=7735通过600000/8190=,600000/7735=也就是说,理论上每产生一吨水蒸气,需要消耗约70-75方天然气一吨锅炉相当于60万大卡的热水锅炉,1吨==60万大卡1吨常压热水锅炉每小时最多提供热量60万大卡1吨锅炉是指锅炉1小时产生的饱和蒸汽/饱和水或过热蒸汽量;它与你锅炉的参数有关;产生多少大卡的热量与你从锅炉内吸收的热量有关;即跟出去的介质与进入的介质的焓差有关;锅炉可用额定热功率来表征热量的大小,常用符号Q来表示,单位是MW.热功率和蒸发量之间的关系,可以由下式表示:Q=ig-igs MW式中--锅炉的蒸发量,t/hig,igs--分别为蒸汽和给水的焓,kj/kg.对于热水锅炉:Q=irs``-irs` MW式中:G--热水锅炉每小时送出的水量,t/hirs``,irs`--分别为锅炉进,出热水的焓,kj/kg.60万大卡/h的热量相当于1t/h锅炉;通常所说的一吨锅炉相当于兆瓦,相当于60万大卡;所以2吨锅炉的额定热功率是120万大卡,也就是兆瓦一吨常压锅炉,每小时产生1吨开水,也就是万大卡,假设冷水温度5度,需要热量: 水的比热=大卡/4200j大卡=1000卡=4000千焦Q=水的比热容水的质量温度绝对值=42001000100-5=大卡下面是直接一吨水变成蒸汽的所需能量:10^62260 000千焦539大卡或者10^92260 000 000焦耳水的比热容是103焦/千克·摄氏度,蒸气的比热容是103焦/千克·摄氏度汽化热是一个物质的物理性质.其定义为:在标准大气压 kPa下,使一摩尔物质在其沸点蒸发所需要的热量.常用单位为千焦/摩尔或称千焦耳/摩尔,千焦/千克亦有使用.其他仍在使用的单位包括 Btu/lb英制单位,Btu为British Thermal Unit,lb为磅.水的汽化热为千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量.一吨水=1000千克每千克水2260千焦1000千克就是2260 000千焦蒸汽锅炉的功率又称蒸发量,就是每小时把水变成蒸汽的量:吨/小时T/h或公斤/小时kg/h;一吨锅炉,就是每小时能把一吨水变成水蒸气;在我国,蒸汽锅炉的蒸发量与功率的对应关系是:1T/h=1000kg/h==720kW≈955Hp马力1MW=10^6W1kW=1000W1Hp1马力,一匹=蒸发的潜热是2260kJ/kg,所以,一吨蒸汽有热量22601000/=54万大卡;1吨燃气蒸汽锅炉每小时约需要80m3天然气;根据每立方天然气燃烧值8500大卡计算,将1t水加热到100°C需要20万大卡热量,再加汽化热和高圧蒸汽温度根据压力不同超过100°C所需的热量,和损耗8~15%85~92%的热效率,以1蒸吨锅炉为例,工作圧力在时,每小时耗气每小时耗气75~80m3锅炉制造厂家不同略有差别;热值单位换算卡、千卡、大卡、卡路里、千焦都是热量单位,它们之间的换算是:1卡=1卡路里=焦耳;1千卡=1大卡=1000卡=1000卡路里 =4186焦耳=千焦;卡路里简称“卡”,缩写为"calorie"的定义为将1克水在1大气压下提升1摄氏度所需要的热量; 1千卡等于1000卡路里,约4186焦耳;脂肪的热量约900大卡每百克;糖类和蛋白质的热量都只有400大卡每百克;1大卡=1000卡=1000焦耳=4180焦耳1MJ=1000000焦耳=大卡热效率计算一.燃气锅炉锅炉蒸发量与锅炉热效率1吨/时t/h≈60×104千卡大卡/时kcal/h≈兆瓦MW锅炉的热效率的测定和计算通常有以下两种方法:1.正平衡法用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法;正平衡热效率的计算公式可用下式表示:热效率=有效利用热量/燃料所能放出的全部热量100%=锅炉蒸发量蒸汽焓-给水焓/燃料消耗量燃料低位发热量100%式中锅炉蒸发量——实际测定,kg/h;蒸汽焓——由表焓熵图查得,kJ/kg;给水焓——由焓熵图查得,kJ/kg;燃料消耗量——实际测出,kg/h;燃料低位发热量——实际测出,kJ/kg;上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算;从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失;因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施;2.反平衡法通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法;此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径;反平衡热效率可用下列公式计算;热效率=100%-各项热损失的百分比之和=100%-q2-q3- q4- q5-q6式中 q2——排烟热损失,%;q3——气体未完全燃烧热损失,%;q4——固体未完全燃烧热损失,%;q5——散热损失,%;q6——灰渣物理热损失,%;。
锅炉效率计算公式图文解释
![锅炉效率计算公式图文解释](https://img.taocdn.com/s3/m/e5563953fe00bed5b9f3f90f76c66137ee064f87.png)
锅炉效率计算公式图文解释锅炉效率是指锅炉在工作过程中将燃料燃烧产生的热能转化为蒸汽或热水的能力。
锅炉效率的高低直接影响着锅炉的能源利用率和运行成本,因此对于锅炉效率的计算和提高是非常重要的。
在工程实践中,通常使用锅炉效率计算公式来评估锅炉的性能,下面我们将对锅炉效率计算公式进行图文解释。
锅炉效率计算公式一般可以表示为:锅炉效率 = 实际热效率 / 理论热效率。
其中,实际热效率是指锅炉在实际工作中产生的热量与燃料的热值之比,而理论热效率是指在完全燃烧的情况下,燃料的热值全部转化为热能的情况下的效率。
通常情况下,锅炉的实际热效率会受到一些因素的影响,比如燃料的质量、燃烧方式、烟气的损失等,因此实际热效率往往会低于理论热效率。
在实际工程中,锅炉效率的计算一般是通过测量锅炉的各项参数来进行的。
常见的参数包括锅炉的燃料消耗量、燃烧后产生的热量、热损失等。
通过这些参数的测量和计算,我们可以得到锅炉的实际热效率,从而进一步计算出锅炉的效率。
下面我们来具体解释一下锅炉效率计算公式中的各个参数:1. 燃料消耗量,燃料消耗量是指锅炉在工作过程中所消耗的燃料的量,通常以单位时间内消耗的燃料重量来表示,比如每小时消耗的煤量或者油量。
2. 燃烧后产生的热量,燃烧后产生的热量是指燃料在燃烧过程中释放出的热能,通常以单位时间内产生的热量来表示,比如每小时产生的蒸汽量或者热水量。
3. 热损失,热损失是指锅炉在工作过程中由于各种原因而损失的热能,包括烟气带走的热量、散热损失等。
热损失会直接影响锅炉的实际热效率,因此在计算锅炉效率时需要对热损失进行合理的估算和补偿。
通过测量和计算上述参数,我们可以得到锅炉的实际热效率,进而计算出锅炉的效率。
通常情况下,锅炉的效率会在70%~90%之间,而高效的锅炉甚至可以达到95%以上的效率。
因此,提高锅炉效率是工程实践中非常重要的课题。
在实际工程中,我们可以通过一些方法来提高锅炉的效率,比如优化燃烧系统、改善热传递系统、减少热损失等。
发电煤耗的正反平衡计算指导入炉煤科学掺配
![发电煤耗的正反平衡计算指导入炉煤科学掺配](https://img.taocdn.com/s3/m/4cc7ed29ccbff121dd36836b.png)
发电煤耗的正反平衡计算指导入炉煤科学掺配作者:郑恒大李方诚孙志宇来源:《华中电力》2013年第05期摘要通过对炉煤的全水分、收到基低位热值和灰分的数据计算锅炉发电煤耗的反平衡,寻找最佳入炉煤的掺配数据,达到降低煤耗的目的。
关键词:入炉煤;发电煤耗;反平衡;科学掺配0 引言入炉煤的科学掺配有助于锅炉的安全、稳定、经济运行,对于节能有重要的参考依据。
1 锅炉反平衡煤耗计算影响因素的确认锅炉发电煤耗的反平衡计算公式为:锅炉效率反平衡:100- (q2 +q3+q4+q5+q6)式中:q2:为排烟热损失的百分率,% ;q3为可燃气体未完全损失的百分率,% ;q4为固体未完全燃烧热损失的百分率,% ;q5为锅炉散热损失的百分率,% ;q6为灰渣物理显热损失的百分率,%。
入炉燃料为固体燃料,故q3为0,对于入炉煤直接有关系的计算公式为q2、q4、q6。
q2:(排烟温度-一次风温)*(3.35*21/(21-O2)+3.35*△a+0.4)*((1 - q4)/100)q4:7850*Ay*0.9*Clz/Qy(100 -Clz)+7850Ay*0.9*Cfh/Qy(100 - Cfh)其中:Ay(煤水份-炉);Clz(炉渣可燃物);Cfh:(飞灰可燃物);Qy:(煤低位发热量);O2,锅炉氧量;△a:锅炉漏风系数,计算时为定值,在本文计算中,取△a=0.所以,入炉煤掺配的影响因素主要从入炉煤水分、发热量、灰分几个方面说明。
2 入炉煤影响因素的影响2.1 水分对锅炉燃烧的影响水分对锅炉中煤粒的燃烧过程有显著的影响。
从燃烧动力学的角度来看,燃煤中适量含水还有其有利的一面。
主要表现在以下3个方面:(1)水分蒸发后形成内部中空的多孔结构粒子,减少了各种反应的内部阻力,同时,高温下水分蒸发时发生的爆裂现象形成颗粒表面的大空穴或碎成几个小块,增加了反应比表面积。
(2)在高温下水蒸气和炭可进行气化反应,对炭的燃烧起到了催化作用,同时适量的水分(7%-9%)还会加快CO的反应速度。
锅炉效率计算
![锅炉效率计算](https://img.taocdn.com/s3/m/b7fbb7e1ddccda38366baf5f.png)
单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每(气体燃料)所对应的输入热量中有效利用热量所占百分比为,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。
锅炉的热效率的测定和计算通常有以下两种方法:1.正平衡法用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。
正平衡热效率的计算公式可用下式表示:热效率=有效利用热量/燃料所能放出的全部热量*=锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料*式中锅炉蒸发量——实际测定,kg/h;蒸汽焓——由表焓熵图查得,kJ/kg;给水焓——由焓熵图查得,kJ/kg;燃料消耗量——实际测出,kg/h;燃料——实际测出,kJ/kg。
上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于热效率的粗略计算。
从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。
因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。
2.反平衡法通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。
此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。
反平衡热效率可用下列公式计算。
热效率=-各项热损失的百分比之和=100%-q2-q3-q4-q5-q6式中q2——排烟热损失,%;q3——气体未完全燃烧热损失,%;q4——固体未完全燃烧热损失,%;q5——散热损失,%;q6——灰渣物理热损失,%。
大多时候采用反平衡计算,找出影响热效率的主因,予以解决。
电厂主要参数计算公式
![电厂主要参数计算公式](https://img.taocdn.com/s3/m/b4094a90ec3a87c24028c41c.png)
生产日报主要参数运算公式一、汽耗率:汽耗率(kg/kwh):=(汽机进汽量-0.4123×供热日抽汽量)÷(日发电量×10) 二、汽机效率(%):汽机效率=(860*4.1816)÷(汽耗率×(主汽焓-给水焓))*100 主汽焓:根据汽机参数中的主汽温度和主汽压力,用内插法,从主汽焓熵图运算出主汽焓。
给水焓:根据锅炉参数中的给水温度和给水压力,用内插法,从给水焓熵图运算出给水焓。
三、反平衡煤耗(g/Kwh):发电煤耗:=12300÷全厂热效率供电煤耗:=发电煤耗÷((100-厂用电率) ÷100)四、锅炉效率(%):锅炉效率:q1=(100)-(q2+q6+q4+q5)q5:散热损失;q4:机械不完全燃烧损失;q2:排烟损失;q6:灰渣物理热损失q5:散热损失;=0.65*130*lys/lrzlys:锅炉日运行小时数。
lrz:锅炉日蒸发量。
q4:机械不完全燃烧损失;q4=(7850*hf*h*hfb)/g/((100)-(hf))+(7850*lz*h*lzb)/g/((100)-(lz))hf:锅炉飞灰可燃物h:灰份hfb: 飞灰比g:燃料低位发热量lz:炉渣可燃物lzb: 炉渣比q2:排烟损失:q2=(k1+k2*(21/((21)-(o2))+lfx))*(((p)-(l))/100)*(((100)-( q4))/100)K1:排烟损失1#K2:排烟损失2#O2:含氧量LFX:漏风系数P:排烟温度L:冷风温度Q4:机械不完全燃烧损失q6:灰渣物理热损失q6=(lzb*(100/((100)-(lz)))*(hzh1)*(h/100))/gLZB:炉渣比LZ:炉渣可燃物HZH1:灰渣焓用内插法:根据床温或冷渣器出口温度用内插法根据灰渣焓温度—灰渣焓对应表求出温度对应的灰渣焓。
h:灰份g:燃料低位发热量。
五、全厂热效率(%):(日供热量+日发电量×3600)÷(日用矸石量×当日矸石发热量×4.1868)×100注: (1)日供热量单位为GJ(2)日用矸石量单位为吨(3) 日发电量单位为万千瓦时.(4) 当日矸石发热量单位为大卡.经过单位换算后:全厂热效率=24403×(日供热量+日发电量×36)÷((日用矸石量×当日矸石发热量) +煤泥支出*煤泥发热量)五、正平衡煤耗:供电煤耗:((日支出矸石总量-供热矸石量) ×矸石低位发热量/7000+煤泥支出*煤泥发热量/7000)/(供电量)×100发电煤耗:((日支出矸石总量-供热矸石量) ×矸石低位发热量/7000+煤泥支出*煤泥发热量/7000))/发电量×100六、供热标煤=日供热量*34.12/(锅炉效率*0.99)七、供热矸石量=供热标煤*(7000/当日矸石发热量)/1000520*47.12*7000/1950/1000八、供热煤耗=日供热量/矸石量.供热煤耗=34.12/(锅炉效率*0.99)锅炉效率取2个炉效率中的最大值九、热比=日供热量/(日供热量+36*发电量)十、供热用厂用量=(总厂用电-纯发电厂用电量(纯值)-纯供热厂用电(纯值))*热比+纯供热厂用电量.十一、供热厂用电率=供热厂用电量/总供热量十二、发电厂用电率=(厂用电(总)-供热厂用电)/总发电量。
锅炉热效率的具体计算公式
![锅炉热效率的具体计算公式](https://img.taocdn.com/s3/m/8a0698e233d4b14e852468bb.png)
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。
采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的。
目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。
但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。
本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。
2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。
人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。
反平衡计算公式
![反平衡计算公式](https://img.taocdn.com/s3/m/72caf222bf1e650e52ea551810a6f524cdbfcb7a.png)
反平衡计算公式哎呀,一说起“反平衡计算公式”,可能很多人会觉得这听起来就挺复杂、挺头疼的。
但别担心,让我来给您好好说道说道。
咱们先来说说什么是反平衡计算。
其实啊,它就像是解开一个复杂谜题的关键钥匙。
比如说,在能源领域,我们想知道一个系统到底效率有多高,损耗有多少,这时候反平衡计算就派上用场啦。
我记得有一次,我去参观一个小型的火力发电厂。
那时候,我就亲眼看到工程师们在那里忙碌地进行各种计算和监测。
其中,反平衡计算公式就是他们非常重要的工具之一。
他们对着那些密密麻麻的数据和图表,一丝不苟地运用反平衡计算公式,来找出系统中的问题和可以优化的地方。
在那个电厂里,我看到巨大的锅炉呼呼地冒着热气,各种管道错综复杂。
工程师们跟我解释说,通过反平衡计算,他们能知道有多少能量被浪费在了散热上,有多少被损耗在了机械摩擦里。
这就好像是给这个庞大的系统做了一次全面的“体检”,找出那些隐藏的“病症”。
那反平衡计算公式具体是怎么回事呢?咱们拿锅炉效率的计算来举个例子。
一般来说,正平衡计算是通过输入的热量和输出的有效热量来算效率。
而反平衡计算呢,则是先算出各种损失,比如排烟热损失、化学不完全燃烧热损失、机械不完全燃烧热损失、散热损失等等,然后用 1 减去这些损失的总和,就得到了锅炉的效率。
比如说排烟热损失,这就得考虑排烟的温度、过量空气系数这些因素。
温度越高,损失就越大;过量空气系数不合适,也会增加损失。
化学不完全燃烧热损失呢,就得看燃料燃烧得彻不彻底,有没有一些可燃气体没被完全利用。
机械不完全燃烧热损失呢,就是看有没有没烧完的固体颗粒被排出去了。
散热损失则和锅炉的保温情况有关。
在实际应用中,反平衡计算公式的优势可不少。
它能够更全面、更细致地分析系统的性能,帮助我们发现那些容易被忽略的小问题。
而且,对于一些难以直接测量的参数,通过反平衡计算也能间接得到。
但是呢,反平衡计算也不是那么简单的。
它需要大量准确的数据支持,而且计算过程相对复杂,一个不小心就可能出错。
锅炉反平衡求热效率及各项热损失
![锅炉反平衡求热效率及各项热损失](https://img.taocdn.com/s3/m/938e3e20bcd126fff7050b06.png)
在进行燃料输送系统和 制粉系统计算时使用 “燃料消耗量 B”;在进行空气需要量 及烟气容积 等计算时使用“计算 燃料消耗量 B j ”。
二、煤耗率 (一)原煤煤耗率 原煤煤耗率是指发电厂或机组生产1kW ⋅ h的电能所 消耗的原煤量,用符号b表示,计算式如下 B b= kg原煤/(kW ⋅ h) N (二)标准煤煤耗率 标准煤煤耗率是指发电厂或机组生产1kW ⋅ h的电能所 消耗的标准煤量,用符号bb 表示,计算式如下 Bb bb = kg标准煤/(kW ⋅ h) N 一般,超高压以上锅炉的发电煤耗率应在350 g标准煤 /(kW ⋅ h)以下。
当空气预热器的吸热量比锅炉有效利用热量小得多时, 上式可简化为: Q1 q5 Q1 Qr η ϕ= = = = 1− Q1 + Q5 Q1 + Q5 η + q5 η + q5 Qr 式(3 − 73)可改写为: 1-ϕ = q5 η + q5
(3 - 73)
1 - ϕ称为散热系数,表示受热面所在烟道的散热程度。
1)炉内过量空气系数的影响 当炉内过量空气系数较小时, 当炉内过量空气系数较小时,由于 氧气供应不足, 增大; 氧气供应不足,使q3增大;炉内过量空 气系数过大,使炉膛温度降低, 气系数过大,使炉膛温度降低,一氧化 碳燃烧不充分, 也会增大。因此, 碳燃烧不充分,q3也会增大。因此,炉 内过量空气系数应该适当。 内过量空气系数应该适当。
(二)化学不完全燃烧热损失
1.化学不完全燃烧热损失的计算 化学不完全燃烧热损失的计算 对于燃煤锅炉,烟气中H 、 对于燃煤锅炉,烟气中 2、CH4等可燃气体的含 量极少,可以认为烟气中的可燃气体只是CO。其计 量极少,可以认为烟气中的可燃气体只是 。 算公式为: 算公式为q = V gy (12640CO )(1 − q 4 ) :
反平衡煤耗
![反平衡煤耗](https://img.taocdn.com/s3/m/2c9f48eff705cc175527095b.png)
1.反平衡煤耗:123/(锅炉效率反*0.985*汽轮发电机效率)——0.985管道效率2.锅炉效率反:100-(((排烟温度-送风温度)*((21/(21-氧量)+0.11)*3.55+0.44))/100+(326.82*入炉燃煤收到基灰分*((0.04*炉渣可燃物/(100-炉渣可燃物))+(0.96*飞灰可燃物/(100-飞灰可燃物)))*100/入炉燃煤低位发热量/1000)+(1025*0.2/炉蒸汽流量)+((0.9504*入炉燃煤收到基灰分*0.04*(600-送风温度)+(0.8081+0.00293*排烟温度)*入炉燃煤收到基灰分*0.96*(排烟温度- 送风温度))/入炉燃煤低位发热量/1000))-0.4——0.4为制造预度/未计损失2.1排烟损失:(排烟温度-送风温度)*((21/(21-氧量)+0.07)*3.55+0.44)/100——0.07空预器漏风系数——3.55,0.44为系数2.2散热损失:1025*0.2/炉蒸汽流量2.3机械不完全热损失:(326.82*入炉燃煤灰份*((0.04*炉渣可燃物/(100-炉渣可燃物))+(0.96*飞灰可燃物/(100-飞灰可燃物)))*100/入炉燃煤低位发热量/1000)——326.82为系数——0.04为炉渣份额;0.96为飞灰份额2.4灰渣物理热损失:(0.9504*入炉燃煤收到基灰分*0.04*(600-送风温度)+(0.8081+0.00293*排烟温度)*入炉燃煤收到基灰分*0.96*(排烟温度-送风温度))/入炉燃煤低位发热量/1000 ——0.9504、0.8081、0.00293为系数——0.04为炉渣份额;0.96为飞灰份额——送风温度为送风机入口风温,近似认为环境温度3.汽轮发电机效率:3600/热耗率3.1热耗率:(总耗热量*[运行小时]-供热量*1000)/(发电量*10000)*10003.1.1总耗热量:炉蒸汽流量*f_enth(机主汽压力,机主汽温度)+冷再蒸汽流量*(f_enth(机再热汽压力,机再热汽温度)-f_enth(高缸排汽压力,高缸排汽温度))+再热减温水流量*(f_enth(机再热汽压力,机再热汽温度)-f_enth(再热减温水压力,再热减温水温度))+补水量*4.1816*补给水温度-炉给水流量*f_enth(炉给水压力,炉给水温度)-(一级过热器减温水流量+二级过热器减温水流量)*f_enth(过热减温水压力,过热减温水温度)3.1.2冷再蒸汽流量:炉蒸汽流量-汽封漏气量-汽机一抽汽流量-汽机二抽汽流量3.1.2.1汽封漏气量:13*发电量/(运行小时*32.5)+4.0723.1.2.2汽机一抽汽流量:4.1816*炉给水流量*(一号高加出水口温度-二号高加出水口温度)/(f_enth(一号高加进汽压力,一抽气温度)-4.1816*一号高加疏水温度)3.1.2.3汽机二抽汽流量:4.1816*(炉给水流量*(二号高加出水口温度-二号高加进水口温度)-汽机一抽汽流量*(一号高加疏水温度-二号高加疏水温度))/(f_enth(二号高加进汽压力,二抽气温度)-4.1816*二号高加疏水温度)——高加疏水温度用的是4月4日前平均压力下的饱和温度4.简化建议4.1不考虑灰渣物理热损失4.2冷再蒸汽流量:0.84*主蒸汽流量或(沧热#1机组_实际_炉蒸汽流量_日合计-290*沧热#1机组_实际_平均负荷_日加权平均/60)1.反平衡煤耗:123/(锅炉效率反*0.985*汽轮发电机效率)——0.985管道效率2.锅炉效率反:100-(((沧热#1机组_实际_排烟温度_日加权平均-沧热#1机组_实际_送风温度_日加权平均)*((21/(21-沧热#1机组_实际_氧量_日加权平均)+0.11)*3.55+0.44))/100+(326.82*沧热_实际_入炉燃煤收到基灰分_日加权平均*((0.04*沧热#1机组_实际_炉渣可燃物_日加权平均/(100-沧热#1机组_实际_炉渣可燃物_日加权平均))+(0.96*沧热#1机组_实际_飞灰可燃物_日加权平均/(100-沧热#1机组_实际_飞灰可燃物_日加权平均)))*100/沧热_实际_入炉燃煤低位发热量_日加权平均/1000)+(1025*0.2/沧热#1机组_实际_炉蒸汽流量_日合计)+((0.9504*沧热_实际_入炉燃煤收到基灰分_日加权平均*0.04*(600-沧热#1机组_实际_送风温度_日加权平均)+(0.8081+0.00293*沧热#1机组_实际_排烟温度_日加权平均)*沧热_实际_入炉燃煤收到基灰分_日加权平均*0.96*(沧热#1机组_实际_排烟温度_日加权平均- 沧热#1机组_实际_送风温度_日加权平均))/沧热_实际_入炉燃煤低位发热量_日加权平均/1000))-0.4——0.4为制造预度/未计损失2.1排烟损失:(沧热#1机组_实际_排烟温度_日加权平均-沧热#1机组_实际_送风温度_日加权平均)*((21/(21-沧热#1机组_实际_氧量_日加权平均)+0.07)*3.55+0.44)/100——0.07空预器漏风系数——3..55,0.44为系数2.2散热损失:1025*0.2/沧热#1机组_实际_炉蒸汽流量_日合计2.3机械不完全热损失:(326.82*沧热_实际_入炉燃煤灰份_日加权平均*((0.04*沧热#1机组_实际_炉渣可燃物_日加权平均/(100-沧热#1机组_实际_炉渣可燃物_日加权平均))+(0.96*沧热#1机组_实际_飞灰可燃物_日加权平均/(100-沧热#1机组_实际_飞灰可燃物_日加权平均)))*100/沧热_实际_入炉燃煤低位发热量_日加权平均/1000)——326.82为系数——0.04为炉渣份额;0.96为飞灰份额2.4灰渣物理热损失:(0.9504*沧热_实际_入炉燃煤收到基灰分_日加权平均*0.04*(600-沧热#1机组_实际_送风温度_日加权平均)+(0.8081+0.00293*沧热#1机组_实际_排烟温度_日加权平均)*沧热_实际_入炉燃煤收到基灰分_日加权平均*0.96*(沧热#1机组_实际_排烟温度_日加权平均-沧热#1机组_实际_送风温度_日加权平均))/沧热_实际_入炉燃煤低位发热量_日加权平均/1000——0.9504、0.8081、0.00293为系数——0.04为炉渣份额;0.96为飞灰份额——送风温度为送风机入口风温,近似认为环境温度3.汽轮发电机效率:3600/热耗率3.1热耗率:(沧热#1机组_实际_总耗热量_日合计*[沧热#1机组_实际_运行小时_日合计]-沧热#1机组_实际_供热量_日合计*1000)/(沧热#1机组_实际_发电量_日合计*10000)*1000 3.1.1总耗热量:沧热#1机组_实际_炉蒸汽流量_日合计*f_enth(沧热#1机组_实际_机主汽压力_日加权平均,沧热#1机组_实际_机主汽温度_日加权平均)+沧热#1机组_实际_冷再蒸汽流量_日加权平均*(f_enth(沧热#1机组_实际_机再热汽压力_日加权平均,沧热#1机组_实际_机再热汽温度_日加权平均)-f_enth(沧热#1机组_实际_高缸排汽压力_日加权平均,沧热#1机组_实际_高缸排汽温度_日加权平均))+沧热#1机组_实际_再热减温水流量_日合计*(f_enth(沧热#1机组_实际_机再热汽压力_日加权平均,沧热#1机组_实际_机再热汽温度_日加权平均)-f_enth(沧热#1机组_实际_再热减温水压力_日加权平均,沧热#1机组_实际_再热减温水温度_日加权平均))+沧热#1机组_实际_补水量_日合计*4.1816*沧热#1机组_实际_补给水温度_日加权平均-沧热#1机组_实际_炉给水流量_日合计*f_enth(沧热#1机组_实际_炉给水压力_日加权平均,沧热#1机组_实际_炉给水温度_日加权平均)-(沧热#1机组_实际_一级过热器减温水流量_日合计+沧热#1机组_实际_二级过热器减温水流量_日合计)*f_enth(沧热#1机组_实际_过热减温水压力_日加权平均,沧热#1机组_实际_过热减温水温度_日加权平均)3.1.2冷再蒸汽流量:沧热#1机组_实际_炉蒸汽流量_日合计-沧热#1机组_实际_汽封漏气量_日合计-沧热#1机组_实际_汽机一抽汽流量_日加权平均-沧热#1机组_实际_汽机二抽汽流量_日加权平均3.1.3汽封漏气量:13*沧热#1机组_实际_发电量_日合计/(沧热#1机组_实际_运行小时_日合计*32.5)+4.0723.1.4汽机一抽汽流量:4.1816*沧热#1机组_实际_炉给水流量_日合计*(沧热#1机组_实际_一号高加出水口温度_日加权平均-沧热#1机组_实际_二号高加出水口温度_日加权平均)/(f_enth(沧热#1机组_实际_一号高加进汽压力_日合计,沧热#1机组_实际_一抽气温度_日加权平均)-4.1816*沧热#1机组_实际_一号高加疏水温度_日加权平均)3.1.5汽机二抽汽流量:4.1816*(沧热#1机组_实际_炉给水流量_日合计*(沧热#1机组_实际_二号高加出水口温度_日加权平均-沧热#1机组_实际_二号高加进水口温度_日加权平均)-沧热#1机组_实际_汽机一抽汽流量_日加权平均*(沧热#1机组_实际_一号高加疏水温度_日加权平均-沧热#1机组_实际_二号高加疏水温度_日加权平均))/(f_enth(沧热#1机组_实际_二号高加进汽压力_日合计,沧热#1机组_实际_二抽气温度_日加权平均)-4.1816*沧热#1机组_实际_二号高加疏水温度_日加权平均)——高加疏水温度用的是4月4日前平均压力下的饱和温度4.锅炉效率正:100*(沧热#1机组_实际_炉蒸汽流量_日合计*f_enth(沧热#1机组_实际_过热汽压力_日加权平均,沧热#1机组_实际_过热汽温度_日加权平均)-沧热#1机组_实际_炉给水流量_日合计*f_enth(沧热#1机组_实际_炉给水压力_日加权平均,沧热#1机组_实际_炉给水温度_日加权平均)+沧热#1机组_实际_冷再蒸汽流量_日加权平均*(f_enth(沧热#1机组_实际_炉再热汽压力_日加权平均,沧热#1机组_实际_炉再热汽温度_日加权平均)-f_enth(沧热#1机组_实际_高缸排汽压力_日加权平均,沧热#1机组_实际_高缸排汽温度_日加权平均))-(沧热#1机组_实际_一级过热器减温水流量_日合计+沧热#1机组_实际_二级过热器减温水流量_日合计)*f_enth(沧热#1机组_实际_过热减温水压力_日加权平均,沧热#1机组_实际_过热减温水温度_日加权平均)+沧热#1机组_实际_再热减温水流量_日合计*(f_enth(沧热#1机组_实际_炉再热汽压力_日加权平均,沧热#1机组_实际_炉再热汽温度_日加权平均)-f_enth(沧热#1机组_实际_再热减温水压力_日加权平均,沧热#1机组_实际_再热减温水温度_日加权平均))+沧热#1机组_实际_炉排污水量_日合计*(f_enth(沧热#1机组_实际_汽包压力_日加权平均,沧热#1机组_实际_汽包温度_日加权平均)-f_enth(沧热#1机组_实际_炉给水压力_日加权平均,沧热#1机组_实际_炉给水温度_日加权平均)))/(29271*(沧热#1机组_实际_磨煤机给煤量_日合计*沧热_实际_入炉燃煤低位发热量_日加权平均/29.271+沧热#1机组_实际_耗原油_日合计*10/7)/沧热#1机组_实际_运行小时_日合计)。
反平衡效率计算公式
![反平衡效率计算公式](https://img.taocdn.com/s3/m/ff346f09bf1e650e52ea551810a6f524ccbfcbd1.png)
反平衡效率计算公式在生活和工作中,我们经常需要评估某种系统或流程的效率,以便找到改进的空间和方法。
反平衡效率是一种常用的评估方法,它可以帮助我们了解系统的运行情况,找到问题并进行优化。
本文将介绍反平衡效率的计算公式及其应用。
反平衡效率是指系统在达到平衡状态之前所需要的时间。
在物理学和工程学中,反平衡效率通常用来评估热力学系统或控制系统的性能。
它可以帮助我们了解系统的响应速度和稳定性,从而找到改进的方法。
反平衡效率的计算公式如下:\[ E = 1 e^{-t/\tau} \]其中,\( E \) 表示反平衡效率,\( t \) 表示系统达到平衡状态所需要的时间,\( \tau \) 表示系统的时间常数。
时间常数是系统响应的一个重要参数,它反映了系统的惯性和稳定性。
通过这个公式,我们可以计算出系统的反平衡效率,并据此评估系统的性能。
在实际应用中,我们可以通过实验或模拟的方法来测量系统的反平衡时间,并据此计算出反平衡效率。
这样一来,我们就可以了解系统的响应速度和稳定性,从而找到改进的方法。
反平衡效率的计算公式可以应用于各种领域。
在工程领域,我们可以用它来评估控制系统的性能,找到系统的响应速度和稳定性。
在生物医学领域,我们可以用它来评估生物系统的稳定性和适应能力。
在环境科学领域,我们可以用它来评估环境系统的恢复能力和稳定性。
除了计算反平衡效率,我们还可以通过改变系统的参数来优化系统的性能。
例如,我们可以通过改变系统的时间常数来提高系统的响应速度和稳定性。
我们还可以通过改变系统的结构和控制策略来优化系统的性能。
通过这些方法,我们可以找到改进系统的途径,从而提高系统的效率和稳定性。
总之,反平衡效率是一种常用的评估方法,它可以帮助我们了解系统的运行情况,找到问题并进行优化。
通过计算反平衡效率,我们可以评估系统的响应速度和稳定性,从而找到改进的方法。
在实际应用中,我们可以通过实验或模拟的方法来测量系统的反平衡时间,并据此计算出反平衡效率。
什么是锅炉热效率?什么是正平衡热效率与反平衡热效率?如何计算?
![什么是锅炉热效率?什么是正平衡热效率与反平衡热效率?如何计算?](https://img.taocdn.com/s3/m/44f21857bf1e650e52ea551810a6f524cdbfcb56.png)
什么是锅炉热效率?什么是正平衡热效率与反平衡热效率?如何计算?
:
火力发电
关键词:
计算
锅炉
热效率
什么是锅炉'>锅炉热效率'>热效率?什么是正平衡热效率'>热效率与反平衡热效率?如何计算'>计算?
锅炉'>锅炉有效利用热量与单位时间内所消耗燃料的输入热量的百分比,称为锅炉热效率。
它表明燃料输入炉内的热量被有效利用的程度。
B——锅炉燃煤量,kg/h;
Qr¬——输入热量,kJ/kg;
Q——锅炉总有效利用热量,kJ/h
Q——相应1kg燃料的有效利用热量,kJ/kg。
利用上式计算'>计算出的热效率正平衡热效率。
也可先求出各项热损失,从100中扣除各项热损失之和,所得热效率称反平衡热效率。
目前,发电厂中较多的采用反平衡法确定热效率。
因为,用正平衡法计算热效率时,需要准确测知汽水流量、参数及燃煤量。
当前不少锅炉还没有测知燃煤量的手段,这就给计算带来困难。
同时,计算出的效率值较大,一旦有误差,误差绝对值就较大。
另外,从正平衡效率中,也较难看出效率不高的原因何在。
利用反平衡效率,各项热损失数值较小,引起误差的绝对值不会太大,同时,还可根据各项热损失的情况,采取提高效率的措施。
一部分新安装的大容量锅炉安装了电子重力式皮给煤机,可随时批示锅炉燃煤量,这为今后利用正平衡计算锅炉热效率及利用微机在线测定锅炉效率创造了有利条件。
锅炉效率反平衡计算法—简易计算教学提纲
![锅炉效率反平衡计算法—简易计算教学提纲](https://img.taocdn.com/s3/m/11185ddce45c3b3566ec8b0b.png)
锅炉效率反平衡计算法—简易计算对我厂锅炉而言,影响煤耗的因素主要有三类:煤质、运行工况和锅炉自身热效率。
查找煤耗偏高的原因,需要对各影响因素进行定量测定分析。
测定锅炉热效率,通常采用反平衡试验法。
本文对此方法进行了介绍,并简化了计算过程,可用于日常锅炉效率监控。
1 反平衡法关键参数的确定众所周知,反平衡法热效率计算公式为:η = 100-(q2+q3+q4+q5+q6)计算的关键是各项热损失参数的确定。
1.1排烟热损失q2排烟热损失q2是由于锅炉排烟带走了一部分热量造成的热损失,其大小与烟气量、排烟与基准温度、烟气中水蒸汽的显热有关。
我厂燃煤介于无烟煤和贫煤之间,计算q2可采用如下简化公式:q2 =(3.55αpy+0.44)×(tpy-t0)/100式中,αpy——排烟处过量空气系数,我厂锅炉可取为1.45tpy——排烟温度,℃t0——基准温度,℃1.2化学不完全燃烧热损失q3化学不完全燃烧热损失q3是由于烟气中含有可燃气体CO造成的热损失,主要受燃料性质、过量空气系数、炉内温度和空气动力状况等影响,可采用下列经验公式计算:q3 =0.032αpy CO×100%式中,CO——排烟的干烟气中一氧化碳的容积含量百分率,%我厂锅炉q3可估算为0.5%。
1.3机械未完全燃烧热损失q4机械未完全燃烧热损失q4主要是由锅炉烟气带走的飞灰和炉底放出的炉渣中含有未参加燃烧的碳所造成的,取决于燃料性质和运行人员的操作水平,简化计算公式为:Q4 =337.27×Aar×Cfh/[ Qnet.ar×(100-Cfh)]式中,Aar——入炉煤收到基灰分含量百分,%Cfh——飞灰可燃物含量,%Qnet.ar——入炉煤收到基低位发热量,kJ/kg1.4散热损失q5散热损失q5是锅炉范围内炉墙、管道向四周环境散失的热量占总输入热量的百分率,计算公式为:Q5 =5.82×De0.62/D式中,De——锅炉的额定负荷,t/hD——锅炉的实际负荷,t/h1.5灰渣物理热损失q6灰渣物理热损失q6包括灰渣带走的热损失和冷却热损失。
锅炉反平衡热效率
![锅炉反平衡热效率](https://img.taocdn.com/s3/m/e21c578f8ad63186bceb19e8b8f67c1cfbd6ee75.png)
锅炉反平衡热效率一、引言锅炉热效率是衡量锅炉能量利用效果的关键指标,对于节能减排、提高能源利用率具有重要意义。
反平衡法作为锅炉热效率计算的一种重要方法,通过测量锅炉各项热损失来确定热效率,具有直观、准确的特点。
本文将详细介绍锅炉反平衡热效率的概念、计算方法以及优化措施。
二、锅炉反平衡热效率的概念锅炉反平衡热效率是指通过测量锅炉各项热损失,以反推方式计算出的锅炉热效率。
与正平衡法直接测量锅炉输入和输出热量不同,反平衡法侧重于分析锅炉运行过程中的各项热损失,包括排烟热损失、化学不完全燃烧热损失、机械不完全燃烧热损失、散热损失和灰渣物理热损失等。
这些热损失的总和与锅炉输入热量的比值即为反平衡热效率。
三、锅炉反平衡热效率的计算方法1. 排烟热损失的计算:排烟热损失是锅炉运行过程中最主要的热损失之一。
其大小取决于排烟温度、排烟量以及烟气中水蒸气的含量。
排烟温度越高、排烟量越大,排烟热损失就越大。
因此,降低排烟温度和减少排烟量是降低排烟热损失的有效途径。
2. 化学不完全燃烧热损失的计算:化学不完全燃烧热损失主要是由于燃料在锅炉中未能完全燃烧而产生的。
这种热损失的大小与燃料种类、燃烧方式以及过量空气系数等因素有关。
为降低化学不完全燃烧热损失,需要优化燃烧过程、提高燃烧效率。
3. 机械不完全燃烧热损失的计算:机械不完全燃烧热损失主要是由于燃料中未燃烧的碳粒随灰渣排出锅炉而产生的。
这种热损失的大小与燃料粒度、燃烧速度以及炉膛温度等因素有关。
为降低机械不完全燃烧热损失,需要合理控制燃料粒度、提高炉膛温度并优化燃烧过程。
4. 散热损失的计算:散热损失是由于锅炉本体及管道等向周围环境散热而产生的。
散热损失的大小与锅炉保温性能、环境温度以及锅炉负荷等因素有关。
为降低散热损失,需要加强锅炉保温措施、提高保温材料性能。
5. 灰渣物理热损失的计算:灰渣物理热损失是由于灰渣带走热量而产生的。
这种热损失的大小与灰渣排放量、灰渣温度以及灰渣比热容等因素有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q4—对应于1Kg燃料的机械不完全燃烧损失的热量 KJ/Kg
qJX=32825×A/qDW(0.9×CFH/100-CFH+0.1×CLZ/100-CLZ)
A、入炉灰份。qDW、低位发热量。CFH、飞灰含碳量。CLZ、炉渣含碳量。
q5—对应于1Kg燃料的锅炉散热损失的热量 KJ/Kg
q5=0.59×DE/D
DE、额定产气。D、实际产气量。
反平衡计算效率公式
η=q1=100%-(q2+q3+q4+q5+q6)
锅炉热平衡方程式
qr=q1+q2+q3+q4+q5+q6
qr—随1Kg燃料的输入锅炉的热量 KJ/Kg
q1—对应于1Kg燃料锅炉的有效利用热量 KJ/Kg
q2—对应于1Kg燃料的排烟损失的热量 KJ/Kg
q3—对应于1Kg燃料的化学不完全燃烧损失的热量 KJ/Kg
q4—对应于1Kg燃料的机械不完全燃烧损失的热量 KJ/Kg
q5—对应于1Kg燃料的锅炉散热损失的热量 KJ/Kg
q6—对应于1Kg燃料的灰渣物理热损失的热量 KJ/Kg
q2—对应于1Kg燃料的排烟损失的热量 KJ/Kg
qPY={[(21/21-O2+0.18)×3.55]+0.44}×(TPY-Tlf)