11.1.1三角形的边 ( 教案)
11.1.1三角形的边教案(修订)
年级
教学媒体
八年级
课题
11.1.1 三角形的边
多 媒 体
授课人
于霞
教 学 ห้องสมุดไป่ตู้ 标
知识 技能
过程 方法 情感 态度
教学重点 教学难点
学情分析
(1)理解三角形的有关概念. (2)会用符号表示三角形,会对三角形进行分类. (3)能说出三角形的三边关系,并能运用三角形三边关系 解决相关问题. 在三角形三边关系的探究过程中,使学生对三角形三边关 系从具体、形象、直观的认识,到学会用数学的思维方式去观 察、分析和表达,提高学生分析问题、解决问题的能力。 经过创设学生主动参与的情境,激起学生强烈的好奇心和 求知欲望;求三角形的边长时必须注意三角形的三边关系,训 练学生思维的严密性。 三角形及其有关的概念;三角形的分类;三角形三边关系. 运用三角形三边的不等关系解决生活实际问题。 三角形是认识其它图形的基础,学生在小学时已经学过有 关三角形的一些知识, 也了解三角形的许多性质, 在第三章 《图 形认识初步》和第五章《相交线与平行线》中也学习了线段、 平行线、相交线等有关知识,为本节的学习打下了基础.
充分体 欣赏生活中的三 现 数 学 来 源 角形,回答老师提出 于生活, 激起 的问题。 了学生强烈 的好奇心和 求知欲望。 学生拼图形,指 培养学 名展示成果。 生的动手能 指 名 说 三 角 形 力和表达能 的定义。 力。 学习三角形的 教学三 边、顶点、角的概念。 角形相关知 学习三角形、三 识, 使学生掌 角 形 的 边 及 角 的 表 握知识, 为后 示。并在练习本上练 面应用做铺 习 三 角 形 的 表 示 方 垫。 法。 提高学生 将“活学活用” 应用知识解 题写到练习本上(三 决问题的能
2022年人教版八年级上册数学第十一章三角形同步单元教案及教学反思
第十一章三角形11.1与三角形有关的线段11.1.1三角形的边◇教学目标◇【知识与技能】1.认识三角形的概念及其基本要素;2.掌握三角形三条边之间的关系.【过程与方法】1.通过操作对比、观察、推理、交流等活动认识三角形及其概念和表示方法,运用分类思想对三角形进行分类;2.经历度量三角形边长的实践活动中,理解三角形的三边关系.【情感、态度与价值观】培养学生的符号语言表达能力,体会三角形在日常生活中的应用价值.◇教学重难点◇【教学重点】三角形的三边关系.【教学难点】三角形三边关系的应用.◇教学过程◇一、情境导入埃及金字塔、常见的交通标志和移动信号塔都是什么形状?在我们日常生活中还有哪些东西是三角形的?二、合作探究探究点1三角形的概念典例1看图填空:(1)图中共有个三角形,它们是;(2)△BGE的三个顶点分别是,三条边分别是,三个角分别是;(3)△AEF中,顶点A所对的边是;(4)∠ACB是△的内角,∠ACB的对边是.[解析]根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.[答案](1)4;△ABC,△EBG,△AEF,△CGF(2)B,G,E;BE,EG,BG;∠B,∠BEG,∠BGE(3)EF(4)ACB;AB探究点2三角形的分类典例2如图,过A,B,C,D,E五个点中的任意三点画三角形.(1)以AB为边画三角形,能画几个?写出各三角形的名称.(2)分别指出(1)中的三角形中的等腰三角形和钝角三角形.[解析](1)如图所示,以AB为边的三角形能画3个,分别是△EAB,△DAB,△CAB.(2)△ABD是等腰三角形,△EAB,△CAB是钝角三角形.探究点3三角形的三边关系典例3已知三角形的三条边互不相等,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个符合上述条件的第三边长.(2)符合上述条件的三角形有多少个?[解析](1)第三边长是4.(答案不唯一)(2)设三角形的另一边长为m.∵2<m<16,∴m 的值为4,6,8,10,12,14,共六个.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形. 三、板书设计三角形的边三角形{三角形的相关概念{三角形的边三角形的角三角形的顶点三角形的分类三边关系◇教学反思◇由于初次接触三角形的相关元素,教师要注意引导学生发现三角形的三边关系,要留给学生充足的时间和空间去思考讨论,培养学生解决问题的能力.11.1.2三角形的高、中线与角平分线◇教学目标◇【知识与技能】1.了解三角形的高、中线、角平分线的概念;2.会用工具准确画出三角形的高、中线、角平分线.【过程与方法】1.让学生经历画三角形的高、中线、角平分线过程,理解三角形的高、中线、角平分线的特点以及符号语言和图形语言的表达方法;2.培养学生观察、分析、作图、解决问题的能力.【情感、态度与价值观】培养学生敢于实践操作、勇于发现、大胆探索、合作创新的精神.◇教学重难点◇【教学重点】三角形的高线、中线、角平分线的概念及画法.【教学难点】探究三角形的三条高线、三条角平分线、三条中线都交于一点的过程.◇教学过程◇一、情境导入有一块三角形的地,小明的爸爸想种花草,妈妈想种菜.于是想平分三角形的面积,一半种花草,一半种菜,不知如何做,小明说,这还不好办,作一边的中线就行了,聪明的你,能帮他们家把这块地分成面积相等的两部分吗?知道小明这样做的原因吗?二、合作探究探究点1三角形的高典例1如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD,BE相交于点F,连接CF.(1)在△ABC中,AC边上的高为,BC边上的高为;(2)在△ABD中,AD边上的高为;(3)在△BCE中,CE边上的高为;(4)在△BCF中,BC边上的高为;(5)在△ABF中,AF边上的高为,BF边上的高为.[解析]三角形的高即从三角形的一个顶点向它的对边所在直线引垂线,顶点和垂足间的线段. [答案](1)BE;AD(2)BD(3)BE(4)FD(5)BD;AE锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.探究点2中线的特性典例2三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形[解析]根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.[答案]B【技巧点拨】三角形的中线把三角形分为两个等底同高的三角形,这两个三角形的面积相等.探究点3三角形的角平分线典例3如图,CD,BE分别是△ABC的角平分线,它们相交于点I,则:(1)∠ACD=∠=∠ACB,∠ABC=∠ABE.(2)BI是∠的平分线,CI是∠的平分线.(3)若∠ABC=60°,∠ACB=80°,则∠BIC=度.(4)你能画出△ABC的第三条角平分线吗?[解析] (1)BCD ;12;2.(2)ABC ;ACB. (3)110°.(4)连接AI 并延长,即为∠BAC 的角平分线. 探究点4 三角形的中线与周长典例4 如图,AD 是△ABC 的中线,且AB =10 cm,AC =6 cm,求△ABD 与△ACD 的周长之差.[解析] ∵AD 为中线,∴BD =CD ,∴△ABD 与△ACD 的周长之差=(AB +AD +BD )-(AC +AD +CD )=AB -AC , ∵AB =10,AC =6,∴△ABD 与△ACD 的周长之差=10-6=4 cm . 三、板书设计三角形的高、中线与角平分线三角形的高、中线与角平分线{三角形的高{定义画法符号表达三角形的中线{定义画法符号表达三角形的角平分线{定义画法符号表达◇教学反思◇通过本课时的教学要让学生认识三角形的三条重要线段的概念、图形和它们的相关特性,如三角形的中线把三角形分为面积相等的两部分,三角形的三条高线、三条中线、三条角平分线都相交于一点的性质,应逐步加强学生几何语言的表达能力.11.1.3三角形的稳定性◇教学目标◇【知识与技能】了解三角形的稳定性以及三角形的稳定性在实际生活中的应用.【过程与方法】培养动手操作、归纳概括能力,提高运用知识解题的能力,训练思维的灵活性.【情感、态度与价值观】感受生活中数学的美学价值,体会生活中处处有数学,体验学习数学的乐趣.◇教学重难点◇【教学重点】三角形的稳定性.【教学难点】三角形稳定性的应用.◇教学过程◇一、情境导入三角形在我们日常生活中应用广泛,仔细观察上面一组图片,你知道有些物体的形状做成三角形的原因吗?三角形形状的物体有什么作用?二、合作探究探究点1三角形的稳定性典例1如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性[解析]观察图可发现图中窗钩构造了一个三角形AOB,根据三角形稳定性,可得答案.[答案]D变式训练如图所示是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形两边之差小于第三边D.直角三角形[答案]B探究点2四边形的不稳定性的应用典例2(1)工程建筑中经常采用三角形的结构,如屋顶的钢架,输电线的支架等,这里运用的三角形的性质是.(2)下列图形具有稳定性的有个.①正方形;②长方形;③直角三角形;④平行四边形.(3)已知四边形的四边长分别为2,3,4,5,这个四边形的四个内角的大小能否确定?(4)要使五边形木架(用5根木条钉成)不变形,工人准备再钉上两根木条,如图的两种钉法中正确的是.(5)要使四边形木架(用4根木条钉成)不变形,至少需要加1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,……,如果要使一个n边形木架不变形,至少需要加根木条固定.[解析](1)三角形的稳定性.(2)1.(3)不能确定.(4)方法1.(5)根据三角形具有稳定性,可以知道需要的木条数等于过多边形的一个顶点的对角线的条数.过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.【技巧点拨】这里是利用三角形的稳定性以及多边形的对角线解决问题,考虑到利用对角线把多边形分成三角形是解题的关键. 探究点3 克服四边形的不稳定性典例3如图,工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A ,C 两点之间B.E ,G 两点之间C.B ,F 两点之间D.G ,H 两点之间[解析] 用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. [答案] B【方法点拨】三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.三、板书设计三角形的稳定性三角形的稳定性{三角形的稳定性{自行车框架学校篮球架起重机等四边形的不稳定性{应用:放缩尺、活动门、晾衣架等克服:把四边形转化成三角形◇教学反思◇通过对生活中三角形稳定性的探索,吸引学生的注意力,调动学生的积极性,体会数学的应用价值.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和◇教学目标◇【知识与技能】应用三角形内角和定理解决一些简单的实际问题.【过程与方法】通过小组学习,经历得出三角形内角和等于180°的过程,进一步提高学生利用所学知识解决问题的能力.【情感、态度与价值观】经历猜想、归纳、证明等过程,学会研究问题的方法.◇教学重难点◇【教学重点】三角形内角和定理.【教学难点】三角形内角和定理的推理过程.◇教学过程◇一、情境导入如图,小学的时候我们通过度量或剪拼得到:∠A+∠B+∠ACB=180°.现在你能用我们学习的方法给出证明吗?二、合作探究探究点1三角形内角和定理典例1如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.[解析]∵∠A=47°,∠ADB=116°,∴∠ABD=180°-47°-116°=17°.∵BD为△ABC的角平分线,∴∠ABC=2∠ABD=34°,∴∠C=180°-47°-34°=99°.探究点2三角形内角和定理的应用典例2如图,△ABC中,∠B=65°,∠BAD=40°,∠AED=100°,∠CDE=45°,求∠CAD的度数.[解析]在△ABD中,∵∠B=65°,∠BAD=40°,∴∠BDA=180°-(∠B+∠BAD)=180°-(65°+40°)=75°.∵∠CDE=45°,∴∠ADE=180°-(∠BDA+∠CDE)=180°-(75°+45°)=60°.在△ADE中,∵∠AED=100°,∴∠CAD=180°-∠ADE-∠AED=180°-60°-100°=20°.变式训练完成下面的推理过程:如图,在三角形ABC中,已知∠2+∠3=180°,∠1=∠A,试说明∠CFD=∠B.解:∵∠2+∠DEF=180°(邻补角定义),∠2+∠3=180°(已知),∴(同角的补角相等).∴AC∥EF().∴∠CDF=(两直线平行,内错角相等).∵∠1=∠A(已知),∴∠CDF=∠A(等量代换).∴DF∥AB().∴∠CFD=∠B().[答案]∠DEF=∠3;内错角相等,两直线平行;∠1;同位角相等,两直线平行;两直线平行,同位角相等三、板书设计三角形的内角和三角形的内角和{三角形内角和的证明三角形内角和的应用◇教学反思◇本节课主要是通过小学的探究形式,引导学生寻找做辅助线,对三角形的内角和等于180°进行严谨的证明,慢慢培养学生对证明的理解,逐步认识几何证明的必要性.在解决问题的过程中,关注学生在推理中语言使用的准确性,引导学生用规范的格式进行书写.第2课时直角三角形的两个锐角互余◇教学目标◇【知识与技能】认识直角三角形,探索图形性质.【过程与方法】1.通过小组实践探索找到直角三角形的性质.2.用以学为主的教学模式中的启发式教学策略与方法,让学生养成自主探索、合作交流的学习方式.【情感、态度与价值观】经历猜想、归纳、证明等过程,学会研究问题的方法.让学生在已有知识的基础上通过观察来总结理论知识.◇教学重难点◇【教学重点】直角三角形的两个锐角互余.【教学难点】直角三角形的两个锐角互余的探索过程.◇教学过程◇一、情境导入如图,在△ABC中,∠C=90°,你能求出∠A,∠B的度数吗?为什么?你能求出∠A+∠B的度数吗?利用上面的结果,你能得出什么结论?∠A+∠B=90°,现在你能用我们学习的方法给出证明吗?二、合作探究探究点直角三角形的两锐角互余典例如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°[解析]根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.∵CD⊥BD,∠C=55°,∴∠CBD=90°-55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.[答案]D三、板书设计直角三角形的两个锐角互余直角三角形的两锐角互余◇教学反思◇通过引导学生理解直角三角形的两个锐角互余,激发学生参与的主动性.11.2.2三角形的外角◇教学目标◇【知识与技能】了解三角形的外角的两条性质,能利用三角形的外角性质解决问题.【过程与方法】经历观察、探索、交流等过程,增强表达能力和推理能力.【情感、态度与价值观】通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯.◇教学重难点◇【教学重点】三角形的外角的性质.【教学难点】探究三角形外角的性质,进行相关计算.◇教学过程◇一、情境导入两只野狼在如图的A处发现有一只野牛离群独自在O处觅食,野狼打算用迂回的方式,一只先从A前进到B处,然后再折回在C处截住野牛返回牛群的去路D处,另一只则直接从A处扑向野牛.已知∠BAC=40°,∠ABC=70°,问野狼从B处要转多少度才能直达C处?二、合作探究探究点1三角形的外角典例1如图,CE是△ABC的外角∠ACD的平分线,若∠B=25°,∠ACE=60°,则∠A=()A.105°B.95°C.85°D.25°[解析]先根据角平分线的性质求出∠ACD的度数,再由三角形外角的性质即可得出结论.∵CE 是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°.∵∠B=25°,∴∠A=120°-25°=95°.[答案]B变式训练一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°[答案]D探究点2三角形外角的性质的应用典例2如图,已知D为△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=30°,∠D=40°,求∠ACD的度数.[解析]∵DF⊥AB,∠D=40°,∴∠DFB=90°,∴∠B=90°-∠D=90°-40°=50°.∵∠ACD是△ABC的外角,∠A=30°,∴∠ACD=∠B+∠A=50°+30°=80°.【技巧点拨】解决几何问题的关键是认准图形,找出图中三角形的外角,利用“三角形的一个外角等于和它不相邻的两个内角的和”的性质和三角形内角和定理解决.变式训练如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°[答案]A三、板书设计三角形的外角三角形的外角{三角形的外角{定义图形与性质三角形外角的应用◇教学反思◇本节课的教学围绕三角形的外角识别、性质及应用展开教学,在讲解外角和内角关系时层层递进,使重点得到突出;及时根据学生学习的情况进行点评和分析;对于易错问题及时讲解,此外注意指导学生总结解题思路和方法,让学生对所学知识的掌握更到位.11.3多边形及其内角和11.3.1多边形◇教学目标◇【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图等过程,进一步发展空间能力.【情感、态度与价值观】经历探索、归纳等过程,学会研究问题的方法.◇教学重难点◇【教学重点】了解多边形、内角、外角、对角线等数学概念以及凸多边形和正多边形的概念.【教学难点】多边形定义的准确理解.◇教学过程◇一、情境导入请同学们回忆一下三角形的概念,并尝试说明多边形的概念.二、合作探究探究点1多边形的概念典例1如图所示的图形中,属于多边形的有()A.3个B.4个C.5个D.6个[解析]根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫做多边形.显然只有第一个、第二个、第五个是多边形.[答案]A变式训练如图,下列图形不是凸多边形的是()[答案]C探究点2正多边形的概念典例2我们知道各边都相等,各角都相等的多边形是正多边形,小明却说各边都相等的多边形就是正多边形,各角都相等的多边形也是正多边形,他的说法对吗?如果不对,你能举反例(画出相应图形)说明吗?[解析]他的说法错误.菱形各边相等,但不是正多边形.如图,菱形ABCD的四个角不相等,不是正多边形;矩形各个角相等,但四边不一定相等,不是正方形.探究点3多边形的剪切典例3若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14或15或16B.15或16C.14或16D.15或16或17[解析]因为一个多边形截去一个角后,根据剪的角度、方式不同,多边形的边数可能增加了一条,也可能不变或减少了一条,依此即可解决问题.一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.[答案]A【技巧点拨】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.变式训练 把一个四边形锯掉一个角,剩下的多边形是( )A.三角形B.四边形C.五边形D.三角形或四边形或五边形[答案] D三、板书设计多边形多边形{ 多边形{ 定义多边形的内角多边形的外角多边形的对角线凸多边形正多边形◇教学反思◇通过类比的数学思想,引导学生理解多边形的相关概念,引导学生自主探索多边形的边数与对角线的数量关系.教师应注重课堂小结,激发学生参与的主动性.11.3.2多边形的内角和◇教学目标◇【知识与技能】了解多边形的内角、外角等概念,能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.【过程与方法】经历合作、交流等过程,初步形成推理思维.【情感、态度与价值观】经历猜想、探索、归纳等过程,学会多角度、全方位研究问题的方法,体会转化、类比等数学思想.◇教学重难点◇【教学重点】多边形的内角和公式与外角和公式.【教学难点】多边形的内角和定理的推导以及对多边形外角和的理解.◇教学过程◇一、情境导入如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是多少米?你能计算吗?二、合作探究探究点1多边形的内角和典例1已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形[解析]设这个多边形是n边形,内角和是(n-2)·180°,这样就得到一个关于n的方程,从而求出边数n的值.[答案]C变式训练把n边形变为(n+x)边形,内角和增加了720°,则x的值为()A.4B.6C.5D.3[答案]A探究点2多边形的外角和典例2小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多()A.1080°B.720°C.540°D.360°[解析]根据多边形的内角和公式(n-2)·180°,外角和等于360°列出算式求解即可.(8-2)×180°-360°=1080°-360°=720°.故该游戏盘的内角和比外角和多720°.[答案]B多边形的外角和与边数无关,任何多边形的外角和都是360°.探究点3正多边形的内角与外角典例3如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.6[答案]D探究点4多边形外角的理解典例4如图,小东在足球场的中间位置,从A点出发,每走6 m向左转60°,已知AB=BC =6 m.(1)小东是否能走回A点,若能回到A点,则需走多少米?走过的路径是一个什么图形?为什么?(路径A到B到C到…)(2)求出这个图形的内角和.[解析] (1)∵从A 点出发,每走6 m 向左转60°,∴360°÷60°=6,6×6=36(米),即能回到A 点,需走36米,走过的路径是一个边长为6的正六边形.(2)正六边形的内角和为(6-2)×180°=720°.三、板书设计多边形的内角和多边形的内角{ 多边形的内角和{多边形与三角形多边形的内角和公式多边形的外角和◇教学反思◇通过丰富有趣的探究活动,让学生积极参与其中,充分调动学生的学习热情,使学生灵活掌握多边形内角和与外角和的概念与运用.多数学生能达到预期目的,对课上吃力的同学,课下还要及时进行进一步的关注,以后在课堂上还应充分给学生探究的时间和空间,使每一个学生均有收获.。
11.1.1三角形的边教学设计 2022-2023学年人教版八年级上册数学
11.1.1 三角形的边教学设计2022-2023学年人教版八年级上册数学教学目标1.理解三角形的边的定义和特点;2.掌握用已知边长或已知角度推导三角形边长的方法;3.能够解决与三角形边有关的实际问题。
教学内容1.三角形边的定义和特点;2.三角形边的推导方法;3.解决与三角形边有关的实际问题。
教学步骤导入引入(5分钟)教师通过举一个简单的问题引入,如:小明手中有一根长为3cm的线段A和一根长为5cm的线段B,他可以用这两根线段拼接成什么样的图形?请同学们思考并回答。
概念讲解(10分钟)教师通过讲解,向学生介绍三角形边的定义和特点: - 三角形边是连接三角形两个顶点的线段; - 三角形的三边之和等于180度; - 可以根据三角形已知边的信息推导出其他边的长度。
基础知识巩固(20分钟)教师设计一些基础练习题,供学生巩固对三角形边特点的理解和掌握。
1.题目:已知三角形的两边长度分别为4cm和6cm,第三边长度可以是多少?请计算出所有可能的长度。
–解答:根据三角形两边之和大于第三边的特点,可得:4 + 6 > 第三边,所以第三边的长度可以为5cm、7cm或更大。
2.题目:若三角形的两边长度分别为8cm和12cm,能确定第三边的长度吗?为什么?–解答:可以确定,因为8 + 12 > 第三边,同时要满足8 + 第三边 > 12和12 + 第三边 > 8的条件。
根据这三个不等式可以确定第三边的长度。
教师可根据学生的掌握情况调整题目的难易程度,并对学生的解答进行点评和讲解。
推导方法讲解(15分钟)教师向学生介绍用已知边长或已知角度推导三角形边长的方法:1.已知两边和夹角,利用余弦定理计算第三边长;2.已知两边和非夹角,利用正弦定理计算第三边长;3.已知一个角和两边的长度,利用正弦函数计算另外两个角的度数;4.已知三个角的度数,利用三角形内角和为180度的特点进行计算。
教师可以通过具体的例子帮助学生理解和掌握这些推导方法,并进行相关的提示和指导。
初二数学人教版八上第十一章第一节第一课时11.1.1 三角形的边教案
11.1.1 三角形的边教案1、教学目标(或三维目标)1、 在认识三角形概念及其基本要素的基础上,学会三角形的表示方法,掌握三角形三边之 间的关系;2、通过观察、操作、交流和反思,获得必需的数学知识,发展空间概念,推理能力和有条理的表达能力。
2、教学重点三角形三边关系的探究与归纳.3、教学难点三角形三边关系的应用.教学过程:1)课堂导入1.教师引入: 三角形是一种最常见的几何图形之一.从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑到微小的分子结构, 处处都有三角形的身影.我们所研究的“三角形”这个课题来源于实际生活之中.本节我们将从认识三角形开始。
学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形存在于我们的生活之中.2.教师板书课题。
2)重点讲解(1)三角形及有关概念学生活动一阅读课本P 1~P 2思考上面的部分,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC 用符号表示________.(4)三角形ABC 的边AB 、AC 和BC 可用小写字母分别表示为________.板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.2. 教师提问:上述对三角形的描述中你认为有几个部分要引起重视?(学生回答): a.不在一直线上的三条线段. a b c (1)C B Ab.首尾顺次相接.教师讲解: 组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC 。
三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.(2)三角形的分类学生活动二阅读课本P 2的思考~P3探究上面的部分,并回答以下问题:(1)三角形按角的大小怎样分类? (2)三角形按边的关系怎样分类?师说:我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
人教版八年级数学上册11.1.1《三角形的边》教学设计
人教版八年级数学上册11.1.1《三角形的边》教学设计一. 教材分析人教版八年级数学上册11.1.1《三角形的边》是三角形这一章的第一节,主要介绍了三角形的三条边的关系。
本节内容是学生学习三角形其他性质的基础,对于学生理解三角形的特点,以及后续学习三角形判定定理具有重要意义。
教材通过丰富的图形和实例,引导学生探究三角形边的关系,培养学生的观察、思考和动手能力。
二. 学情分析八年级的学生已经学习了多边形的概念,对多边形的性质有一定的了解。
但是,对于三角形这种特殊的图形,学生可能还存在着一些模糊的认识。
因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和直观的图形,帮助学生建立三角形的边的关系。
三. 教学目标1.知识与技能:使学生掌握三角形的三条边的关系,能够运用这些关系解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的动手能力和探究能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极思考的精神。
四. 教学重难点重点:三角形的三条边的关系。
难点:如何引导学生通过观察和操作,发现三角形边的关系。
五. 教学方法采用问题驱动法、观察操作法、讨论交流法等,引导学生主动探究,合作学习。
六. 教学准备1.准备一些三角形的模型或图片,用于引导学生观察和操作。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些三角形的模型或图片,引导学生观察并思考:这些三角形有什么共同的特点?你能否找出一些特殊的三边关系?2.呈现(10分钟)教师通过PPT或黑板,呈现三角形的三条边的关系,如:任意两边之和大于第三边,任意两边之差小于第三边。
同时,引导学生进行操作,自己发现这些关系。
3.操练(10分钟)学生分组进行讨论,每组找出一些三角形,验证这些三角形是否符合三角形的三边关系。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成,检验学生对三角形三边关系的掌握情况。
11.1.1 三角形的边
三、三角形的要素—顶点
A
B
C
三角形相邻两边的公共端点叫做三角形的顶点。 如图,三角形ABC有几个顶点?
点A、B、C 它们分别是_________________
三角形的形状、大小和位置由它的三个顶点确定。
四、三角形的要素—内角
A
B
C
三角形相邻两边所组成的角叫做三角形的内角。简 称三角形的角。 如图,三角形ABC有几个内角?它们分是什么?
小结 三角形:由不在同一直线上的三条线段首尾 顺次相接所组成的图形. A
c
b
B
C a
三角形有基本要素
边 (AB、BC、CA) 基本要素
三角形的表示: (用符号“△”表
示) 如上面的三角形ABC记作: △ABC
角 (∠A、∠B、∠C) 顶点 (A、B、C)
1、三角形的三边关系的性质:
小结
三角形的任何两边的和大于第三边。
两点之间的所有连线中,线段最短
动手试一试
请拿出准备好的长度分别为:5cm,6cm,11cm,12cm 的纸条各一根,从中任取三根看能不能摆成一个三 角形? 从4根中取出3根有以下几种情况: (1)5cm,6cm,11cm (2)5cm,6cm,12cm (3)5cm,11cm,12cm (4)6cm,11cm,12cm 通过动手发现: (3) (4) 可以摆成三角形, (1) (2) 不能摆成三角形。 通过实验你能发现:构成一个三角形的三边有什么 规律?
构成三角形的条件 只要满足较小的两条线段之和大于第三条 线段,便可构成三角形;若不满足,则不能 构成三角形.
结论:
较小两边之和大于第三边,才能构成三角形
练习1 1. 张老师想制作一个三角形木架,现有两 根长度为19cm和9cm的木棒,第三根的 长度X的取值范围是多少?
人教版数学八年级上册11 三角形的边教案与反思
第十一章三角形知人者智,自知者明。
《老子》棋辰学校陈慧兰11.1与三角形有关的线段11.1.1三角形的边——三角形的有关概念、分类及三边关系一、新课导入1.导入课题:三角形是我们早已熟悉的图形,你能列举出日常生活中形如三角形的物体吗?对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?2.学习目标:(1)记住三角形的有关概念.(2)会用符号表示三角形,会对三角形进行分类.(3)能说出三角形的三边关系,并能运用三角形三边关系解决相关问题.3.学习重、难点:重点:三角形及其有关的概念;三角形的分类.难点:三角形三边关系及应用.二、分层学习1.自学指导:(1)自学内容:教材第2页到“思考”前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课本的内容,划出你认为是重点的语句.(4)自学参考提纲:①什么样的图形叫三角形?由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.②对照右边的图形,指出三角形的边、角、顶点.线段AB、BC、CA是三角形的边,点A、B、C是三角形的顶点,∠A,∠B,∠C 是三角形的角.③三角形的边有几种表示方法?对照右边的图形写出来.除了②中的表示方法,还可以用a,b,c表示.④用符号语言表述右图的三角形记作:△ABC,读作:三角形ABC.⑤什么是等腰三角形、等边三角形?等腰三角形与等边三角形之间有什么关系?有两条边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.⑥等边三角形是特殊的等腰三角形,用图示的方法表示它们之间的包容关系.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:三角形的知识在小学已经学习过,本节知识是对三角形知识的系统学习,而本层次主要是学习三角形的相关概念及两种特殊三角形的概念,学生能很快接受.②差异指导:a.引导学生理解三角形的概念中“首尾顺次相接”的意思;b.让学生认识到三角形的表示方法不是单一的.(2)生助生:学生围绕各自的学习疑点进行互助交流.4.强化:(1)三角形的有关概念及等腰三角形的意义.(2)练习:如图,共有6个三角形,其中以AC为边的三角形是△AB,△AEC,△ADC;以∠B为内角的三角形有ABC,△DBC,△EBC.1.自学指导:(1)自学内容:教材第2页“思考”到第3页“探究”之前的内容.(2)自学时间:5分钟.(3)自学方法:思考三角形的分类方法.(4)自学参考提纲:①想一想:研究三角形,我们应该从哪些方面着手?可以从角和边这两个方面着手.②试一试:按角分,可以将三角形分为哪几类?按边分,可以将三角形分为哪几类?按角分,可以分为三类:锐角三角形,直角三角形,钝角三角形;按边分可以分为两类:三边都相等的三角,等腰三角形,而等腰三角形又包括底边和腰不相等的等腰三角形和等边三角形.③议一议:你能用图示的方法表示三角形按边分的情况吗?2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:按角分类学生比较容易理解,按边分类部分学生理解等边三角形为什么放在等腰三角形中时可能会存在一定困难.②差异指导:教师对个别学困生进行点拨指导.(2)生助生:学生之间相互讨论流三角形的分类标准是什么.4.强化:三角形的分类标准,按边的分类.1.自学指导:(1)自学内容:探三角形三边之间的关系.(2)自学时间:5分钟.(3)自学方法:任意画出一个三角形ABC,思考:从B点到C点有哪几条路径?并比较各路径的长度.(4)探究提纲:①如图,假设一只小虫从点B出发,沿三角形的边爬到点C,有两条路线,路线B→C最近.根据是:两点之间段最短.于是得出结论角形两边的和大于第三边.②在三角形ABC中,可以得出:AB+BC>AC,AC+BC>AB,AB+AC>BC.③由②还可以得出:AC-AB<BC;AB-AC<BC;BC-AB<AC.由此又可得出三角形的三边关系的另一个结论是:三角形两边的差小于第三边.④下列长度的三条线段能否构成三角形,为什么?a.3、4、8b.5、6、11c.56、10a.不能,因为3+4<8;b.不能,因为5+6=11;c.能,因为5+6>10.⑤动手完成例题,看看你的方法和书上的方法一样吗?谁的更好?⑥思考例题(2)中为什么要分情况讨论?2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:这节课中探讨三边之间的不等关系.三边关系中“两边之和大于第三边”,学生通过观察能直接得出结论;“两边之差小于第三边”的结论部分学生很难推导.其次,例题的解法比较多,但是学生还不习惯用方程的知识解决几何问题,因此,教师要了解学生的认知困难在哪里.②差异指导:a.引导学生先用观察或测量的方法,归纳三边之间的不等关系,形成系统的知识体系,教师讲解推导过程.b.引导学生自己动手完成例题,然后说说书上这样做的好处,让学生形成用代数方程解决几何问题的意识.(2)生助生:学生之间相互交流帮助.4.强化:(1)三角形三边不等关系.(2)归纳例题的解题要领.(3)练习:①一个等腰三角形的周长为24cm,只知其中一边的长为7cm,则这个等腰三角形的腰长为7 或8.5cm.②下列长度的线段不能组成三角形的是(A)A.3,8,4B.4,9,6C.15,20,8D.9,15,8三、评价1.学生自我评价(围绕三维目标):学生总结交流自己的学习收获及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习过程的态度、方法、成果和不足进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):教学过程中,强调学生自主探索和合作交流,经历观察、猜想、实验、数据处理、归纳、类比等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.一、基础巩固(每题10分,共50分)1.下列说法:①等边三角形是等腰三角形;②三角形按边分类可分为等腰三角形、等边三角形、不等边三角形;③三角形的两边之差大于第三边;④三角形按角分类应分为锐角三角形、直角三角形、钝角三角形. 其中正确的有(B)A.1个B.2个C.3个D.4个2.如图,下列不等关系成立的是(C)A.PA+PD>AMB.PN+PD>ADC.PN+PM>MND.PA+PM>MN3.下列长度的线段能组成三角形的是(D)A.3cm,12cm,8cmB.6cm,8cm,15cmC.2cm,3cm, 5cmD.6.3cm,6.3cm,12cm4.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是(D)A.20米B.15米C.10米D.5米5.已知三角形的一边长为5cm,另一边长为3cm.则第三边的长x的取值范围是2cm<x<8cm.二、综合应用(第6题20分,第7题10分,共30分)6.已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长.解:如果该等腰三角形的腰长为4,三角形的三边长分别为4,4,9.因为4+4<9,此时不能构成三角形.如果该等腰三角形的腰长为9,三角形的三边长分别为4,9,9,所以这个等腰三角形的周长为4+9+9=22.7.如图△ABC中,AB=AC,AD=BD=BC,则图中有3个等腰三角形.三、拓展延伸(每题10分,共20分)8.等腰三角形的周长为20厘米.(1)若已知腰长是底长的2倍,求各边的长;(2)若已知一边长为6厘米,求其它两边的长.解:(1)设底边长为x厘米,则腰长为2x厘米.x+2x+2x=20解得x=4.所以三边长分别为4cm,8cm,8cm.(2)如果6厘米长的边为底边,设腰长为x厘米,则6+2x=20,解得x=7;如果6厘米长的边为腰,设底边长为x厘米,则2×6+x=20,解得x=8.由以上讨论可知,其他两边的长分别为7厘米,7厘米或6厘米,8厘米.9.观察下列图形,完成后面的问题.(1)第十个图形中共有55个阴影三角形.(2)用正整数n表示第n个图形中阴影三角形的个数.解:12(n2+n)【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
11.1.1 三角形的边 课件(共24张PPT)
若一个三角形的两边长分别是2和4,第三
边的长可能是( B )
A.2
B.4
C.6
D.8
解析:设第三边的长为x,由三角形的三边关系,得
4-2<ⅹ<4+2,即2<ⅹ<6.观察四个选项,知B项正确.
特别提醒
“两边的和”“两边的差”中的“两边”是指三角形的任
意两边。
总结
根据三角形的三边关系可得三角 形的任意一边总是大于另两边之 差,小于另两边之和,据此通过 列不等式(组)求出三角形的待求 边长的取值范围.
( D)
A.2,2,4
B.5,6,12
C.5,7,2
D.6,8,10
思路分析:根据“三角形两边之和大于第三
边”可以判断长度为各个选项中数值的三
条线段是否能组成三角形。
3.若一个等腰三角形中的两边长分别是 4cm和8cm,则此三角形的周长为( B)
A.16cm B.20cm C.16cm或20cm
解析:当腰长是4cm时,则三角形的三边长分别 是4cm,4cm,8cm,4+4=8,不满足三角形的三 边关系,舍去;当腰长是8cm时,三角形的三 边长分别是8cm,8cm,4cm,8+4>8,符合三角形 的三边关系,此时三角形的周长是20cm.
α
A
b
C
如图:△ABC有三条边,三个内角,三个顶点。
顶点:相邻两边的 公共端点是 三角形的顶 点。
3.三角形的表示
顶点A,B,C的三角形,记作“△ABC”,读 作“三角形ABC”。
注意:在△ABC中,∠A的对边可以用BC表 示,也可以用a表示;∠B对边可以用AC 表示,也可以用b表示;∠C的对边可以用 AB表示,也可以用c表示。
11.1三角形的边学案使用
11.1.1三角形的边教学案主备人:张伟班级:________ 使用人:________ 时间8月25日【学习目标】1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.能从不同角度对三角形进行分类。
3.掌握三角形三边的不等关系,并能运用三角形三边的不等关系解决生活实际问题。
【重点】理解三角形的三边不等关系。
【难点】1.在具体的图形中不重复,且不遗漏地识别所有三角形。
2.三角形三边不等关系的应用。
一、【温故而知新】1.如何表示一个角?你有几种方法?2.线段的性质:两点之间,最短二、【预习检测】自学课本2-3页,并回答以下问题:知识点1:三角形的有关概念1、三角形的定义:由的三条线段所组成的图形,叫做三角形。
2、三角形的表示:三角形用符号“”表示。
图1中的三角形记作:读作:注意:三角形三个顶点字母的顺序可以自由安排。
练:说出右图中有多少个三角形,用符号“△”表示,并指出每一个三角形.图中有个三角形分别是3、三角形的三要素:如下图(1)顶点:三角形两边的公共点称为三角形的顶点;ABC∆的顶点是,,。
(2)边:组成三角形的三条称为三角形的边;①ABC∆的三条边为,,。
②ABC∆的边AB、AC和BC还可用小写字母分别表示为,,。
请在图中标出。
(3)内角:在三角形中,每两条边所组成的角叫做三角形的内角;ABC∆的三个内角为,,。
(4)每个三角形有个顶点、条边、个内角。
知识点2:三角形的分类①三角形分类有两种方法:(1)按角分类(2)按边分类②在等腰三角形中,相等的两条边都叫,另一边叫做,两腰的夹角叫做,腰和底边的夹角叫做。
知识3:探究三角形的三边关系(图2)三角形的三边关系是:符号语言表示为(小写字母):其推理的依据是。
注:三角形两边之和大于第三边指的是三角形两边之和大于第三边。
练1:完成课本p4 练习 2题思考判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法?练2:已知等腰三角形的两边长分别为4,9,求它的周长为三、【新知应用】完成课本p3 例四、【畅谈收获】今天我们学会了哪些内容,有哪些易错点,用到了哪些数学思想?五、【达标检测】(共100分)1.课本p4 练习 1题2.(2010.南京)有下列长度的三条线段,能组成三角形的是( )A.1cm,2cm,3cmB.1cm,2cm,4cm;C.2cm,3cm,4cmD.2cm,3cm,6cm3. 现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( ) A.10cm B.20cm C.50cm D.60cm4.若等腰三角形的两边长分别为3和7,则它的周长为若等腰三角形的两边长分别是3和4,则它的周长为5.如图,线段AB、CD相交于点O,能否确定CDAB+与BCAD+的大小,并加以说明。
人教版八年级数学上册教案(RJ) 第十一章 三角形
11.1 与三角形有关的线段11.1.1 三角形的边1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边与任意两边之差小于第三边的性质,并会初步运用这些性质来解决问题.重点三角形的三边关系. 难点三角形的三边关系.一、创设情境,引入新课老师出示一个用硬纸板剪好的三角形,并提出问题;小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义? 老师出示教具,提出问题.让学生观察教具,然后给出三角形的定义. 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 二、探究问题,形成概念(一)探究三角形的有关概念1.三角形的顶点及符号表示方法. 2.三角形的内角. 3.三角形的边.教师继续利用教具向学生直接指明相关的概念. 学生注意记忆相关的概念. 教师再出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.(二)探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类? 教师提出问题,学生举手回答. 教师提示,分类的标准是什么?学生回答:有两边相等和有三边相等,以及三条边均不相等.教师进一步提出新的问题,并进一步讲解等边三角形、等腰三角形的有关概念,然后给出三角形按边分类的方法:三角形⎩⎪⎨⎪⎧三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.(三)探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C点,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从点B出发沿三角形的边爬到点C有如下几条路线:a.从B→Cb.从B→A→C(2)从B→C路线最短.然后老师进一步提出问题:这条路线为什么是最短的?学生举手回答:“两点之间,线段最短.”然后师生共同归纳得出:AC+BC>AB①AB+AC>BC②AB+BC>AC③即三角形两边的和大于第三边.教师提问:(1)由不等式①②③移项,你能得到怎样的不等式?(2)通过刚才得到的不等式,你有什么发现?学生回答,师生共同归纳:三角形两边的差小于第三边.教师出示教材第3页例题.分析:(1)“用一条长18 cm的细绳围成一个等腰三角形”,这句话有什么含义?(2)有一边长为4 cm是什么意思,哪一边的长度是4 cm?三、练习巩固练习:教材第4页练习第1,2题.老师布置练习,学生举手回答即可.第2题注意让学生说明理由.解决完以后,教师利用投影出示补充练习,学生独立完成.补充练习:一个三角形有两条边相等,周长为20 cm,一条边长是6 cm,求其他两条边长.四、小结与作业小结:谈谈本节课的收获.老师引导学生主要从对三角形的分类和三边关系的认识方面进行小结.布置作业:习题11.1第1,2,7题.三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,让学生自己动手操作,初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。
人教版数学八年级上册11.1.1《三角形的边》教学设计
人教版数学八年级上册11.1.1《三角形的边》教学设计一. 教材分析人教版数学八年级上册11.1.1《三角形的边》是学生在学习了平面几何基本概念的基础上,进一步研究三角形的性质。
本节课主要让学生了解三角形的三边关系,学会用不等式表示三角形的三边关系,并能够运用这一性质解决一些实际问题。
教材通过生活中的实例引入,激发学生的学习兴趣,接着引导学生通过观察、操作、推理等过程,发现三角形的边长之间存在的关系,培养学生的几何直观能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具有一定的观察、操作和推理能力。
但部分学生对抽象的几何概念理解不够深入,对三角形的边长关系理解起来可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习差异,引导学生通过实际操作和几何直观图,更好地理解三角形的边长关系。
三. 教学目标1.理解三角形的三边关系,并能用不等式表示。
2.学会运用三角形的三边关系解决一些实际问题。
3.培养学生的几何直观能力和逻辑思维能力。
4.激发学生学习数学的兴趣,提高学生合作交流的能力。
四. 教学重难点1.重点:三角形的三边关系,三角形三边关系的应用。
2.难点:三角形三边关系的证明和灵活运用。
五. 教学方法1.情境教学法:通过生活中的实例引入,激发学生的学习兴趣。
2.观察操作法:引导学生观察三角形模型,操作实践,发现边长关系。
3.推理教学法:引导学生运用逻辑推理,证明三角形的三边关系。
4.合作交流法:鼓励学生分组讨论,分享学习心得,提高合作交流能力。
六. 教学准备1.教学课件:制作三角形的性质课件,用于辅助教学。
2.几何模型:准备一些三角形模型,让学生观察和操作。
3.练习题:准备一些有关三角形边长关系的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如:帆船比赛中的三角形帆船,引出三角形的三边关系。
引导学生关注三角形在实际生活中的应用,激发学生的学习兴趣。
《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
(1)三角形的内角和定理的应用:在解决具体问题时,学生可能难以灵活运用内角和定理;
突破方法:通过设置不同类型的练习题,让学生多角度、多层次的运用内角和定理,提高其解决问题的能力。
(2)三角形两边之和大于第三边的原理的理解:学生对这一原理的理解可能不够深入,难以应用到实际问题中;
突破方法:通ห้องสมุดไป่ตู้举例、画图等方式,让学生直观地理解这一原理,并引导他们将其应用于解决实际问题。
《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
一、教学内容
《11.1.1三角形的边》教案教学反思,选自2023-2024学年数学人教版八年级上册第十一章第一节的课程内容。本节课主要围绕以下知识点展开:
1.三角形的定义及其基本性质;
2.三角形的分类:按边分(不等边三角形、等腰三角形、等边三角形)和按角分(锐角三角形、直角三角形、钝角三角形);
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、内角和定理以及两边之和大于第三边的原理等重要知识点。同时,我们也通过实践活动和小组讨论加深了对三角形边的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对三角形的边这一知识点表现出较大的兴趣。通过引入日常生活中的例子,同学们能够更好地理解三角形的概念和性质。以下是我对今天教学的一些思考:
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版初二数学第十一章 三角形的边教案
第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边第1课时三角形的边一、教学目标【知识与技能】1.进一步认识三角形的概念及其基本要素;2.学会对三角形进行分类;3.理解并掌握三角形三条边之间的关系。
【过程与方法】经历度量三角形边长的实践活动,理解三角形三边不等的关系。
【情感态度与价值观】帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣。
二、课型新授课三、课时第1课时四、教学重难点【教学重点】理解三角形定义、证明三角形三边关系。
【教学难点】1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.五、课前准备教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
六、教学过程(一)导入新课(出示课件2)1. 你能从中找出4个不同的三角形吗?与同学交流各自找出的三角形.2. 这些三角形有什么共同特点?(二)探索新知1.观察三角形的构成,探索三角形的概念(出示课件4)教师问1:你能画出一个三角形吗?让学生画出三角形,直观感受三角形的构成.教师问2:结合你画的三角形,说明三角形是由什么组成的?学生回答:三角形是由三条线段组成的.教师问3:什么叫三角形?学生回答:由三条线段组成的图形叫做三角形.教师问4:如下图,是由三条线组成的图形,这样的图形是三角形吗?学生回答:这样的不是三角形.教师问5:你们讨论一下,如何给三角形下定义呢?学生讨论回答:需要满足以下条件:三角形的特征有:(1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.教师画出图形:如图所示:教师归纳:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(出示课件5)2.自主学习三角形的表示方法及分类阅读教材第2页到第3页探究前内容,回答下列问题.教师问6:根据右图回答以下问题:(1)在三角形中,什么叫边?什么叫内角?什么叫顶点?学生回答:如图:线段AB、BC、CA是△ABC的三边;点A、B、C△ABC的三个顶点;∠A、∠B、∠C是△ABC的三个内角.教师总结(出示课件6):①边:组成三角形的每条线段叫做三角形的边. ②顶点:每两条线段的交点叫做三角形的顶点. ③内角:相邻两边组成的角.(2)如何用小写字母表示三角形ABC的三条边?学生回答:△ABC的边AB为∠C所对的边,可以用顶点C的小写字母c表示,同样,边AC可用b表示,边BC可用a表示.教师出示下图边讲解:(3)如何用符号表示三角形ABC?(出示课件7)学生回答:三角形用符号“△”表示. 记作“△ABC”读作“三角形ABC”.例 1: 说出图中有多少个三角形,用符号“△”表示,并指出每一个三角形的三条边,三个顶点,三个内角. (出示课件8)师生共同讨论解答如下:解:图中有3个三角形,分别是△EHG,△EHF,△EFG.△EHG 的三边是EH 、HG 、GE ,三内角是∠G、∠GHE、∠HEG,三个顶点是G 、H 、E ;△EHF 的三边是EH 、HF 、FE ,三内角是∠EHF、∠HFE、∠HEF,三个顶点是F 、H 、E ;△EFG 的三边是EF 、FG 、GE ,三内角是∠G、∠GFE、∠FEG,三个顶点是G 、F 、 E.Q F E P GH 1 2总结点拨:(出示课件9)在查三角形的个数时,先给单个三角形编号,查单个的三角形,再查两个三角形组成的较大三角形,然后再查三个,四个三角形组成的三角形.出示课件10,找学生读出三角形。
人教版数学八年级上册11.1.1《三角形的边》说课稿
人教版数学八年级上册11.1.1《三角形的边》说课稿一. 教材分析《三角形的边》是人教版数学八年级上册第11章第1节的内容。
本节课主要让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。
在教材中,通过引入“三角形的边”的概念,让学生在探究过程中发现三角形的边长之间的相互关系,从而培养学生的观察能力、操作能力和推理能力。
二. 学情分析八年级的学生已经掌握了平面几何的基本概念,具备了一定的观察、操作和推理能力。
但对于三角形边长的特性和关系,可能还比较陌生。
因此,在教学过程中,我将以学生已有的知识为基础,引导学生通过观察、操作、猜想、验证等方法,探究三角形边长之间的关系,提高学生的几何思维能力。
三. 说教学目标1.知识与技能:让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:三角形的三条边之间的关系,三角形的边长特性。
2.教学难点:如何引导学生发现并证明三角形边长之间的关系。
五. 说教学方法与手段1.教学方法:采用观察、操作、猜想、验证的教学方法,引导学生主动探究三角形边长之间的关系。
2.教学手段:运用多媒体课件、几何画板等教学辅助工具,直观展示三角形边长的特性。
六. 说教学过程1.导入新课:通过复习平面几何的基本概念,引导学生进入新课。
2.探究三角形边长之间的关系:让学生分组讨论,每组设计实验,观察、操作、猜想三角形边长之间的关系,并尝试用语言描述。
3.验证猜想:引导学生利用几何画板等工具,验证猜想的正确性。
4.归纳总结:师生共同总结三角形边长的特性,得出结论。
5.巩固练习:设计一些具有代表性的练习题,让学生巩固新知识。
6.课堂小结:回顾本节课的学习内容,总结三角形边长的特性。
七. 说板书设计板书设计如下:三角形的三条边:1.任意两边之和大于第三边2.任意两边之差小于第三边八. 说教学评价本节课的教学评价主要从学生的知识掌握、能力培养、情感态度三个方面进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1.1 三角形的边
【教学目标】
1.了解三角形的概念及分类,学会用符号语言表示三角形.
2.通过具体的实践活动理解三角形三边的不等关系.
【重点难点】
重点:1.了解三角形的概念及分类.
2.通过具体的实践活动,理解三角形三边的不等关系.
难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.
2.三角形三边不等关系的应用.
┃教学过程设计┃
教学过程设计意图
一、创设情境,导入新课
问题1:出示教材第1页图片,你能找到哪些我们熟悉的图形?
学生回答:三角形、四边形等.
问题2:在小学,我们学过三角形,你了解三角形的哪些性质?
通过展示现实生活中建筑物的图片,让学生从常见图形入手,降低知识难度,激发学生自主学习的兴趣和积极性,并引入新课.
二、师生互动,探究新知
1.观察三角形的构成,探索三角形的概念
问题1:你能画出一个三角形吗?
让学生画出三角形,直观感受三角形的构成.
问题2:结合你画的三角形,说明三角形是由什么组成的?
学生回答:三角形是由三条线段组成的.
问题3:什么叫三角形?
学生回答,教师归纳:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
2.自主学习三角形的表示方法及分类
阅读教材第2页到第3页探究前内容,回答下列问题.
问题1:根据右图回答以下问题:
(1)在三角形中,什么叫边?什么叫内角?什么叫顶点?
(2)如何用符号表示三角形ABC?
(3)如何用小写字母表示三角形ABC的三条边?
学生回答:三角形边、内角、顶点的概念.三角形ABC用符号表示为△ABC.△ABC的边AB为∠C所对的边,可以用顶点C的小写字母c表示,同样,边AC可用b
表示,边BC可用a表示.
本环节设计了阶梯式的问题,引导学生经历了动手画图、回顾旧知、归纳总结三个过程.在归纳总结时,要留给学生一定的时间进行思考和归纳,教师也要适时进行引导和强调.
自学三角形的表示方法,并能在具体的图形中不重不漏地识别所有三角形.在表示方法上要注意:在表示△ABC 时,三个顶点字母A,B,C的顺序可以
问题2:如果将三角形分类,按照边的关系可以分成几类?按照角的关系又如何分类呢?
学生回答:三角形按照“有几条边相等”可以分为:
3. 通过观察实践,理解三角形三边关系
问题1:任意画一个△ABC,假设有一只小虫从点B 出发,沿三角形的边爬到点C,它有几条线路可以选择?各条线路的长一样吗?
学生回答:小虫从点B出发沿三角形的边爬到点C 有2条线路:(1)从B→C,即线段BC的长;(2)从B→A →C,即线段BA与线段AC长之和:BA+AC.
经过测量可得BA+AC>BC,所以这两条线路的长不一样.
根据“两点的所有连线中,线段最短”,说明BA+AC>BC.
问题2:联系三角形的三边,从问题1中你可以得到怎样的结论?
学生回答:三角形两边的和大于第三边.
改变,所以△ABC,△ACB,△BAC,△BCA,△CAB,△CBA表示的是同一个三角形.同时,要让学生明白,并不是所有的图形都可以用符号表示,目前只有角和三角形可以分别用“∠”和“△”表示.对于三角形的分类,教师要加以引导,启发学生进行思考.
通过观察与实践,经历猜想与推论的过程,理解三角形三边的不等关系.在探究问题的时候,教师要留给学生一定的时间进行思考和讨论,同时要引导并启发学生运用各种不同的方法说明结论的正确性.
三、运用新知,解决问题
1.三角形是指( )
A.由三条线段所组成的封闭图形
B.由不在同一直线上的三条直线首尾顺次相接组成的图形
C.由不在同一直线上的三条线段首尾顺次相接组成的图形
D.由三条线段首尾顺次相接组成的图形
2.有三根木棒的长度分别为3cm,6cm和4cm,用这些木棒能否围成一个三角形?为什么?
通过渐进式的练习,帮助学生从基础出发,进一步加深对三角形的认识,形成初步技能.
四、课堂小结,提炼观点
1.本节课你学习了什么?
2.本节课你有哪些收获?
围绕两个问题,师生以谈话交流的形式,共同总结本节课的学习。